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Abstract In this paper we establish bounds for the finite dimensional laws of a

threshold GARCH process, X , with generating process Z. In this class of models

the conditional standard deviation has different reactions according to the sign of

past values of the process. So, we firstly find lower and upper bounds for the law of
(

X+
1 ,−X+

1 , . . . ,X+
n ,−X+

n

)

, in certain regions of R2n, and use them to find bounds of

the law of (X1, . . . ,Xn). Some of these bounds only depend on the parameters of the

model and on the distribution function of the independent generating process, Z. An

application of these bounds to control charts for time series is presented.

1 Introduction

As the true theoretical law of conditional heteroskedastic models is difficult to find,

the most part of the analysis undertaken for these models is dedicated to the study

of properties or probabilistic summaries of those laws. The use of these models, for

instance within the quality control theory, needs the assessment of the probability

of certain regions depending on the process. So, contrary to that trend, Pawlak and

Schmid [5], Gonçalves, Leite and Mendes-Lopes [1] and Gonçalves and Mendes-

Lopes [3] develop studies to find bounds for the finite dimensional laws of certain

transformations of ARCH and TGARCH processes, respectively, here denoted X .
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These bounds are expressed in terms of the distribution function of the independent

generating process, Z, and it becomes clear that the marginal law of X is, in certain

regions, strongly controlled by that of the process Z. This fact is rather relevant as

we know that these laws have in general quite different characteristics; for example,

the marginal law of X is leptocurtic even if it does not happen with that of the in-

dependent generating process. The application in time series of this kind of bounds

on control charts with symmetric control limits has been explored in the literature

(Severin and Schmid [6], Gonçalves, Leite and Mendes-Lopes [2]), due to the rel-

evance of the target process distribution in the alarm signal definition as it makes

possible to analyze the probability of having the process out of control in a given

moment.

For a real stochastic process X = (Xt , t ∈ Z) let us define X+
t = XtI{Xt≥0}, X−

t =
XtI{Xt<0} and X t the sigma field generated by Xt ,Xt−1, . . ..

The process X follows a generalized threshold auto-regressive conditionally het-

eroskedastic model with orders p and q, TGARCH(p,q), if for real constants

α0 > 0, αi ≥ 0, βi ≥ 0, γ j ≥ 0, (i = 1, . . . ,q, j = 1, . . . , p) and a sequence of in-

dependent and identically distributed real random variables, (Zt , t ∈ Z), with zero

mean, unit variance and Zt independent of X t−1 we have, for every t ∈ Z,











Xt = σtZt

σt = α0 +
q

∑
i=1

αiX
+
t−i −

q

∑
i=1

βiX
−
t−i +

p

∑
j=1

γ jσt− j.

The process Z = (Zt , t ∈ Z) is called the generating process of X . If γ j = 0, j =
1, . . . , p, we say that X follows a TARCH(q) model.

The main characteristic of threshold conditionally heteroskedastic models is the

fact that they allow to take into account different reactions in the volatility accord-

ing to the sign of the process values even for values with the same absolute size. So,

these models capture the so-called leverage effect very common in financial time

series of daily returns (Malmsten and Terasvirta [4]). A not so very common, but

yet still present characteristic in some daily returns series is skewness, positive in

some cases and negative in others (Taylor [7]). For these financial series, only con-

trol charts designed with asymmetric control limits are appropriate. So, following

the ideas of Gonçalves and Mendes-Lopes [3] for the finite dimensional laws of the

absolute value process of a TGARCH model, we firstly establish in Section 2 lower

and upper bounds for the law of
(

X+
1 ,−X−

1 , . . . ,X+
n ,−X−

n

)

, in certain regions of

R
2n. A relationship between the finite dimensional laws of the process X and the cor-

responding laws of |X | and (X+,X−) processes is obtained in Section 3 from which

we bound the distribution function of (X1, . . . ,Xn). Some of these bounds only de-

pend on the parameters of the model and on the distribution function of the error pro-

cess Z. These new results on the distribution function of
(

X+
1 ,−X−

1 , . . . ,X+
n ,−X−

n

)

,

are essential to generalize the study developed in Gonçalves, Leite and Mendes-

Lopes [2] to control charts with asymmetric limits. A preliminary contribution for

the evaluation of the run length of this kind of control charts is presented in Sec-

tion 4. In the last Section some concluding remarks are included.
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2 Bounds for the Distribution Function of (X+
1 ,−X−

1 ,. . . ,X+
n ,−X−

n )

Let X = (Xt , t ∈ Z) be a TGARCH(p,q) process. In the following, the distribu-

tion function of Zt is denoted by FZ and, if the law of Zt is absolutely continuous,

fZ denotes its density of probability function. We also consider the conventions

∑
0
i=1 (.) = 0 and, for n < q+1, ∏

n
t=q+1 (.) = 1.

If the law of Zt is diffuse, we have the following upper bound for the distribution

function of
(

X+
1 ,−X−

1 , . . . ,X+
n ,−X−

n

)

:

F(X+
1 ,−X−

1 ,...,X+
n ,−X−

n ) (x1,x
∗
1, . . . ,xn,x

∗
n)≤

n

∏
t=1

[

FZ

(xt

θ

)

−FZ

(

−x∗t
θ

)]

for every (x1,x
∗
1, . . . ,xn,x

∗
n) ∈ [0,+∞[2n

and where θ = α0

(

1+∑
p
j=1 γ j

)

.

This result follows easily taking into account the equality

F(X+
1 ,−X−

1 ,...,X+
n ,−X−

n ) (x1,x
∗
1, . . . ,xn,x

∗
n)

= P

(

− x∗1
σ1

≤ Z1 ≤
x1

σ1
, . . . ,− x∗n

σn

≤ Zn ≤
xn

σn

)

,

the inequality σt ≥ α0 +∑
p
j=1 γ jσt− j as well as the independence and identical law

of Z1, . . . ,Zn.

The determination of a lower bound of F(X+
1 ,−X−

1 ,...,X+
n ,−X−

n ) is more complex and

it is subject to more restrictive hypotheses. The following theorem states a result

for TARCH(q) and TGARCH (1,1) models. The general case of TGARCH (p,q)

models is studied in an analogous way, with increased calculations complexity. Let

us define the real function h(x) = x f
′
Z (x)+2 fZ (x), x ∈ R.

Theorem 2.1. Let X = (Xt , t ∈ Z) be a stationary TGARCH(p,q) process, with

variance σ2
X , such that the law of Zt is absolutely continuous with a differentiable

density of probability. For (x1,x
∗
1, . . . ,xn,x

∗
n) ∈ [0,+∞[2n

such that

∀y ≥ 0, g(y) = xth

(

xt

α0 + y

)

+ x∗t h

(

− x∗t
α0 + y

)

≥ 0,

where

t =

{

1, . . . ,min{q,n}, if p = 0

1, . . . ,n, if p = 1,

we have:

a) if p = 0 and 1 ≤ q < n,

F(X+
1 ,−X−

1 ,...,X+
n ,−X−

n ) (x1,x
∗
1, . . . ,xn,x

∗
n)

≥
q

∏
t=1

[

FZ

(

xt

ut

)

−FZ

(

−x∗t
ut

)]

n

∏
t=q+1

[

FZ

(

xt

vt

)

−FZ

(

−x∗t
vt

)]
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where ut = α0 + ∑
t−1
i=1

(

αixt−i +βix
∗
t−i

)

+ E
(

X+
t

)

∑
q
i=t (αi +βi) , t = 1, . . . ,q, and

vt = α0 +∑
q
i=1

(

αixt−i +βix
∗
t−i

)

, t = q+1, . . . ,n;

b) if p = 0 and q ≥ n ≥ 1,

F(X+
1 ,−X−

1 ,...,X+
n ,−X−

n ) (x1,x
∗
1, . . . ,xn,x

∗
n)≥

n

∏
t=1

[

FZ

(

xt

ut

)

−FZ

(

−x∗t
ut

)]

where ut = α0 +∑
t−1
i=1

(

αixt−i +βix
∗
t−i

)

+E
(

X+
t

)

∑
q
i=t (αi +βi), t = 1, . . . ,n;

c) if p = 1 and q = 1,

F(X+
1 ,−X−

1 ,...,X+
n ,−X−

n ) (x1,x
∗
1, . . . ,xn,x

∗
n)≥

n

∏
t=1

[

FZ

(

xt

wt

)

−FZ

(

− x∗t
wt

)]

where wt = α0 ∑
t−1
j=1 γ

j−1
1 +∑

t−1
i=1 γ

j−1
1

(

α1xt− j +β1x∗t− j

)

+ γ t−1
1 E (σ1) , t = 1, . . . ,n.

Proof. We present the proof for the situation considered in a), p = 0 and 1 ≤ q ≤ n.

Let (x1,x
∗
1, . . . ,xn,x

∗
n) ∈ [0,+∞[2n

. We note that if X+
1 ≤ x1,−X−

1 ≤ x∗1, . . . ,X
+
n ≤

xn,−X−
n ≤ x∗n then

(i) for t ∈ {2, . . . ,q}, σt ≤ α0+∑
t−1
i=1

(

αixt−i +βix
∗
t−i

)

+∑
q
i=t

(

αiX
+
t−i −βiX

−
t−i

)

= St ;

(ii) for t = 1, σ1 = α0 +∑
q
i=1

(

αiX
+
1−i −βiX

−
1−i

)

= S1;

(iii) and for t ∈ {q+1, . . . ,n}, σt = α0 +∑
q
i=1

[

αiX
+
t−i +βi

(

−X−
t−i

)]

≤ α0 +∑
q
i=1

(

αixt−i +βix
∗
t−i

)

= vt .

So,

F(X+
1 ,−X−

1 ,...,X+
n ,−X−

n ) (x1,x
∗
1, . . . ,xn,x

∗
n)

= P

(

−x∗t
σt

≤ Zt ≤
xt

σt

, t = 1, . . . ,q,−x∗t
σt

≤ Zt ≤
xt

σt

, t = q+1, . . . ,n

)

≥ P

(

−x∗t
St

≤ Zt ≤
xt

St

, t = 1, . . . ,q,−x∗t
vt

≤ Zt ≤
xt

vt

, t = q+1, . . . ,n

)

.

As St is X0-measurable (t = 1, . . . ,q), vt is non random (t = q + 1, . . . ,n), Zt

is independent of X t−1 and X0 ⊂X t−1, Z1, . . . ,Zn are independent and identically

distributed and absolutely continuous, we get, using the properties of the mean and

conditional mean,

P

(

−x∗t
St

≤ Zt ≤
xt

St

, t = 1, . . . ,q,−x∗t
vt

≤ Zt ≤
xt

vt

, t = q+1, . . . ,n

)

= E

[

P

(

−x∗t
St

≤ Zt ≤
xt

St

, t = 1, . . . ,q,−x∗t
vt

≤ Zt ≤
xt

vt

, t = q+1, . . . ,n | X0

)]

=
q

∏
t=1

E

[

FZ

(

xt

St

)

−FZ

(

−x∗t
St

)]

n

∏
t=q+1

E

[

FZ

(

xt

vt

)

−FZ

(

−x∗t
vt

)]

.
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For t arbitrarily fixed in {1, . . . ,q} , let us consider the function Rt : [0,+∞[ −→
[−1,1] defined by Rt (y) = FZ

(

xt
α0+y

)

−FZ

(

− x∗t
α0+y

)

. We have

d2Rt

dy2
(y) =

1

(α0 + y)3
g(y).

So, for every t ∈ {1, . . . ,q} , if g(y) ≥ 0, for every y ≥ 0, then Rt is a convex

function. In these conditions we may apply Jensen inequality and we obtain

q

∏
t=1

E

[

FZ

(

xt

St

)

−FZ

(

−x∗t
St

)]

n

∏
t=q+1

E

[

FZ

(

xt

vt

)

−FZ

(

−x∗t
vt

)]

≥
q

∏
t=1

[

FZ

(

xt

E (St)

)

−FZ

(

− x∗t
E (St)

)]

n

∏
t=q+1

[

FZ

(

xt

vt

)

−FZ

(

−x∗t
vt

)]

and so

F(X+
1 ,−X−

1 ,...,X+
n ,−X−

n ) (x1,x
∗
1, . . . ,xn,x

∗
n)

≥
q

∏
t=1

[

FZ

(

xt

ut

)

−FZ

(

−x∗t
ut

)]

n

∏
t=q+1

[

FZ

(

xt

vt

)

−FZ

(

−x∗t
vt

)]

,

taking into account that E (St) = ut . ⊓⊔

Remark. We point out that E
(

X+
t

)

and E (σ1) only depend on the coefficients

of the model and on Z law. In fact, as X is second order stationary, it is also strictly

stationary; so, E (σt) is independent of t and we obtain

E
(

X+
t

)

= E (σt)E
(

Z+
t

)

=
α0

1−E
(

Z+
t

)

∑
q
i=t (αi +βi)−∑

p
i=t γi

E
(

Z+
t

)

.

⊓⊔
The result presented is valid for a large class of probability laws of the process

Z. In order to get some insight on the sets where the lower bounds obtained for the

distribution function of
(

X+
1 ,−X−

1 , . . . ,X+
n ,−X−

n

)

are valid, related to the positiv-

ity of the g function, we analyze the positivity of the h function considering two

distributions particularly useful in the applications.

Example 2.1. For Zt distributed according to the standard Gaussian law, we have

h(x) = 1√
2π

fZ (x)
[

−x2 +2
]

,x ∈ R, and so h(x)≥ 0 if x ∈
[

−
√

2,
√

2
]

.

Example 2.2. We consider now that Zt follows a centered and reduced Laplace law,

that is, Zt is absolutely continuous with density fZ (y) =
√

2
2

exp
(

−
√

2
2
|y|
)

, y ∈ R.

We obtain, for y > 0, h(y) = fZ (y)
(

−
√

2
2

y+2
)

and h(y)≥ 0 if y ≤ 2
√

2.
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3 Bounds for the Distribution Function of (X1, . . . ,Xn)

As a probabilistic application of the results developed in Section 2 we analyze now

some bounds of the distribution function of (X1, . . . ,Xn) in the regions ]0,+∞[n and

]−∞,0[n. Let us consider θ = α0

(

1+∑
p
j=1 γ j

)

.

If (x1, . . . ,xn) ∈ ]0,+∞[n we easily conclude that

F(X1,...,Xn) (x1, . . . ,xn)≤
n

∏
t=1

FZ

(xt

θ

)

.

A lower bound for F(X1,...,Xn) (x1, . . . ,xn) is found as a consequence of the follow-

ing theorem.

Theorem 3.1. Let X = (Xt , t ∈ Z) be a TGARCH(p,q) process such that the law of

Zt is absolutely continuous. Then, for every (x1, . . . ,xn) ∈ ]0,+∞[n,

F(X1,...,Xn) (x1, . . . ,xn)≥

≥ [FZ (0)]
n +

n

∑
t=1

F(X+
1 ,−X−

1 ,...,X+
t ,−X−

t )
(x1,0,x2,0, . . . ,xt ,0) [FZ (0)]

n−t
.

Proof. We have

F(X1,...,Xn) (x1, . . . ,xn) = P(X1 ≤ x1,Xt ≤ xt , t = 2, . . . ,n)

= P(0 ≤ X1 ≤ x1,Xt ≤ xt , t = 2, . . . ,n)+P(X1 < 0,Xt ≤ xt , t = 2, . . . ,n)

= P(0 ≤ X1 ≤ x1,0 ≤ X2 ≤ x2,Xt ≤ xt , t = 3, . . . ,n)+

+P(0 ≤ X1 ≤ x1,X2 < 0,Xt ≤ xt , t = 3, . . . ,n)+

+P(X1 < 0,0 ≤ X2 ≤ x2,Xt ≤ xt , t = 3, . . . ,n)+

+P(X1 < 0,X2 < 0,Xt ≤ xt , t = 3, . . . ,n) .

Repeating this reasoning we obtain

F(X1,...,Xn) (x1, . . . ,xn)

≥ P(0 ≤ Xt ≤ xt , t = 1, . . . ,n)+P(Xt < 0, t = 1, . . . ,n)

+
n−1

∑
t=1

P(0 ≤ Xi ≤ xi, i = 1, . . . , t, Xi < 0, i = t +1, ...,n) .

But

P(0 ≤ Xt ≤ xt , t = 1, . . . ,n) = P
(

X+
t ≤ xt ,−X−

t ≤ 0, t = 1, . . . ,n
)

= F(X+
1 ,−X−

1 ,...,X+
n ,−X−

n ) (x1,0, . . . ,xn,0) .

Further, as P(Xt < 0, t = 1, . . . ,n) = [FZ (0)]
n

and Zi is independent of X i−1, i ∈
{t +1, . . . ,n} , then
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P(0 ≤ Xi ≤ xi, i = 1, . . . , t,Xi < 0, i = t +1, ...,n)

= F(X+
1 ,−X−

1 ,...,X+
t ,−X−

t )
(x1,0, . . . ,xt ,0) [FZ (0)]

n−t
.

In this way we obtain

F(X1,...,Xn) (x1, . . . ,xn)≥ F(X+
1 ,−X+

1 ,...,X+
n ,−X+

n ) (x1,0, . . . ,xn,0)

+[FZ (0)]
n +

n−1

∑
t=1

F(X+
1 ,−X−

1 ,...,X+
t ,−X−

t )
(x1,0, . . . ,xt ,0) [FZ (0)]

n−t
.

⊓⊔

Remark. A lower bound of F(X1,...,Xn) (x1, . . . ,xn) depending only on the coeffi-

cients of the model and on the distribution function of Z may be obtained taking

into account the results of the previous Section. In fact, if we consider, for example,

that X follows a TARCH(q) model (with q ≤ n) we get for 1 ≤ t ≤ n and under the

conditions of Theorem 1,

F(X+
1 ,−X−

1 ,...,X+
t ,−X−

t )
(x1,0, . . . ,xt ,0)≥

≥















q

∏
j=1

[

FZ

(

x j

u j

)

−FZ (0)
] t

∏
j=q+1

[

FZ

(

x j

v j

)

−FZ (0)
]

, 1 ≤ q < t,

t

∏
j=1

[

FZ

(

x j

u j

)

−FZ (0)
]

, t ≤ q,

where u j = α0+∑
j−1
i=1 αix j−i+E

(

X+
t

)

∑
q
i= j (αi +βi) and v j = α0+∑

q
i=1 αix j−i. So,

for a process X following a TARCH(q) model we have, if (x1, . . . ,xn) ∈ ]0,+∞[n,

F(X1,...,Xn) (x1, . . . ,xn)

≥ [FZ (0)]
n +

q

∑
t=1

{

[FZ (0)]
n−t

t

∏
j=1

[

FZ

(

x j

u j

)

−FZ (0)

]

}

+
n

∑
t=q+1

{

[FZ (0)]
n−t

q

∏
j=1

[

FZ

(

x j

u j

)

−FZ (0)

]

t

∏
j=q+1

[

FZ

(

x j

v j

)

−FZ (0)

]

}

.

⊓⊔
Let us now consider (x1, . . . ,xn) ∈ ]−∞,0[n. We get

F(X1,...,Xn) (x1, . . . ,xn)≥ P
(

Z1 ≤
x1

θ
, . . . ,Zn ≤

xn

θ

)

=
n

∏
t=1

P
(

Zt ≤
xt

θ

)

=
n

∏
t=1

FZ

(xt

θ

)

.

Otherwise, for (x1, . . . ,xn) ∈ [0,+∞[n , an upper bound of F(X1,...,Xn) (−x1, . . . ,−xn)
can be obtained in terms of F(X1,...,Xn) (x1, . . . ,xn) and of F(|X1|,...,|Xn|) (x1, . . . ,xn) , as

stated in the next theorem.

Theorem 3.2. Let X = (Xt , t ∈ Z) be a TGARCH(p,q) process such that the law of

Zt is diffuse. Then, for every (x1, . . . ,xn) ∈ [0,+∞[n,
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F(X1,...,Xn) (−x1, . . . ,−xn)≤ F(X1,...,Xn) (x1, . . . ,xn)−F(|X1|,...,|Xn|) (x1, . . . ,xn) .

Proof. As

F(|X1|,...,|Xn|) (x1, . . . ,xn) = P(X1,...,Xn)

(

n

∏
t=1

[−xt ,xt ]

)

= P(X1,...,Xn)

(

n

∏
i=1

]−∞,xi]∩
(

n∪
t=1

(Rt−1 × ]−∞,−xt [×Rn−t)

)

)

,

then

F(|X1|,...,|Xn|) (x1, . . . ,xn)

= F(X1,...,Xn) (x1, . . . ,xn)−P(X1,...,Xn)

(

n
⋃

t=1

(

t−1

∏
i=1

]−∞,xi]× ]−∞,−xt [×
n

∏
i=t+1

]−∞,xi]

))

.

As, for every t = 1, . . . ,n,

(

n

∏
i=1

]−∞,−xi]

)

\{(−x1, . . . ,−xn)}⊂
n
⋃

t=1

(

t−1

∏
i=1

]−∞,xi]× ]−∞,−xt [×
n

∏
i=t+1

]−∞,xi]

)

and P(X1 =−x1, . . . ,Xn =−xn) = 0, then

P(X1,...,Xn)

(

n
⋃

t=1

(

t−1

∏
i=1

]−∞,xi]× ]−∞,−xt [×
n

∏
i=t+1

]−∞,xi]

))

≥ P(X1,...,Xn)

((

n

∏
i=1

]−∞,−xi]

)

\{(−x1, . . . ,−xn)}
)

= F(X1,...,Xn) (−x1, . . . ,−xn) .

So,

F(|X1|,...,|Xn|) (x1, . . . ,xn)≤ F(X1,...,Xn) (x1, . . . ,xn)−F(X1,...,Xn) (−x1, . . . ,−xn) .

⊓⊔

We recall the relation

F(|X1|,...,|Xn|) (x1, . . . ,xn)≤
n

∏
t=1

[

F|Z|

(

xt

α0

)]

, (x1, . . . ,xn) ∈ ]0,+∞[n ,

valid for a general TGARCH(p,q) (Gonçalves and Mendes-Lopes [3]) which may

contribute to build bounds useful in practice, that is, only expressed in terms of the

coefficients of the model and characteristics of the process Z. We point out that the

statement in Theorem 3 of these upper and lower bounds of F(X1,...,Xn) (x1, . . . ,xn)
when (x1, . . . ,xn) ∈ ]0,+∞[n or (x1, . . . ,xn) ∈ ]−∞,0[n do not demand the weak sta-

tionarity of the process X . Nevertheless, to get some bounds useful in practice the
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weak stationarity of X may be necessary. This is the case with lower bounds of

F(|X1|,...,|Xn|) (x1, . . . ,xn) for some sub-families of these models deduced in Gonçalves

and Mendes-Lopes [3].

4 Application to Control Charts

In problems related to assessing the performance of control charts for conditionally

heteroskedastic processes with symmetric marginal distribution, it is important to

evaluate the probabilities P(|Xt | ≤ xt , t = 1, . . . ,n) (Pawlak and Schmid [5]), con-

cretely when evaluating the distribution of the run length (Severin and Schmid [6]).
With this goal, upper and lower bounds for P(|Xt | ≤ xt , t = 1, . . . ,n) were estab-

lished in Gonçalves and Mendes-Lopes [3] when X is a TGARCH(p,q) process.

In particular, if X is a TARCH(q) process and under general conditions, they con-

clude that the probability of no alarm until time n in the in-control state, namely

P
(

max1≤t≤n
|Xt |
σX

≤ x
)

, can be evaluated, for certain values of x, using the inde-

pendent generating process Z. From these results Gonçalves, Leite and Mendes-

Lopes [2] developed theoretical and simulated studies for control charts with sym-

metric limits. The lower and upper bounds obtained in Theorem 1 for the distribu-

tion function of
(

X+
1 ,−X−

1 , . . . ,X+
n ,−X−

n

)

are crucial to generalize this approach

to control charts with asymmetric control limits, in the sense that, for x,y ∈ R, the

probability of no alarm until time n in the in-control state is

P

(

min
1≤t≤n

X−
t ≥ x, max

1≤t≤n
X+

t ≤ y

)

= P
(

X−
t ≥ x, t = 1, . . . ,n, X+

t ≤ y, t = 1, . . . ,n
)

= P
(

−X−
t ≤−x, t = 1, . . . ,n, X+

t ≤ y, t = 1, . . . ,n
)

= F(X+
1 ,−X−

1 ,...,X+
n ,−X−

n ) (y,−x, . . . ,y,−x) .

These asymmetric limits became relevant when the marginal distribution of the

generating process is skewed, as a symmetric marginal distribution of the generat-

ing process necessarily leads a symmetric marginal distribution of the conditionally

heteroskedastic process.

For example, if p = q = 1 and x < 0 and y > 0 we obtain the following bounds

for the probability of no alarm until time n in the in-control state

n

∏
t=1

[

FZ

(

y

wt

)

−FZ

(

x

wt

)]

≤ P

(

min
1≤t≤n

X−
t ≥ x, max

1≤t≤n
X+

t ≤ y

)

≤
[

FZ

( y

θ

)

−FZ

( x

θ

)]n

,
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where wt = α0 (1+α1y−β1x)
1−γt−1

1
1−γ1

+ γ t−1
1 E (σ1) and θ = α0 (1+ γ1). We note

that, if X becomes independent (α1 = β1 = γ1 = 0) , the equality holds for both

bounds as we have P
(

min1≤t≤n X−
t ≥ x, max1≤t≤n X+

t ≤ y
)

=
[

FZ

(

y
α0

)

−FZ

(

x
α0

)]n

.

5 Conclusions

The results here presented, namely the evaluation of the finite dimensional laws of

the process (X+,−X−), lead us to the theoretical analysis of no alarm until time n

in the in-control state in a way that is not necessarily symmetrical.

Moreover, the results established in Section 2 were also used to bound the laws

of the process taking into mind its application to control charts with unilateral con-

trol limits. The theoretical development of this study, particularly in the context of

control charts, as well as its evaluation with simulated and real data are planned for

future work. The generalization of these results to other models, for example with

several thresholds or random thresholds, is also an open question with relevance in

financial time series.
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