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Abstract

The aim of this paper is to estimate the probability distribution of power

TGARCH processes by establishing bounds for their finite dimensional laws.

These bounds only depend on the parameters of the model and on the distri-

bution function of its independent generating process. The application of this

study to some particular models allows us to conjecture that this procedure is

an adequate alternative to the corresponding estimation using the empirical

distribution functions, particularly useful in the development of control charts

for this kind of models.
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1 Introduction

The knowledge of the true theoretical law of conditional heteroskedastic models

remains an open question to which it seems difficult to answer. The most part of

the analysis undertaken for these models is dedicated to the study of properties or

probabilistic summaries of those laws. But the use of these models, for instance
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within the quality control theory, needs the assessment of the probability of certain

regions depending on the process. In order to answer this problem, Pawlak and

Schmid (2001), Gonçalves and Mendes-Lopes (2007) and Gonçalves, Leite and

Mendes-Lopes (2013a) developed studies to find bounds for the finite dimensional

laws of certain transformations of ARCH and TGARCH processes. These authors

showed for some particular situations the usefulness of this methodology in the

evaluation of control charts for conditional heteroskedastic models.

For a real stochastic process X = (Xt, t ∈ Z) let us define X+
t = max(Xt, 0),

X−
t = max(−Xt, 0) and Xt the sigma field generated by Xt, Xt−1, ...

The process X follows a power δ generalized threshold autoregressive condi-

tionally heteroskedastic model with orders p and q, denoted δ-TGARCH(p, q), if

for real constants α0 > 0, αi ≥ 0, βi ≥ 0, γj ≥ 0, (i = 1, ..., p, j = 1, ..., q)

and a sequence of independent and identically distributed real random variables,

(Zt, t ∈ Z), with zero mean, unit variance and Zt independent of Xt−1 we have,

for every t ∈ Z,
Xt = σtZt

σδ
t = α0 +

p∑
i=1

[αi(X
+
t−i)

δ + βi(X
−
t−i)

δ] +
q∑

j=1
γjσ

δ
t−j ,

with δ ̸= 0, provided the following convention is considered for δ < 0 : (X+
t )δ = 0

if Xt < 0 and (X−
t )δ = 0 if Xt > 0. The process Z = (Zt, t ∈ Z) is called

the generating process of X. If γj = 0, j = 1, ..., q, we say that X follows a

δ-TARCH(p) model.

This class of models includes the more significant and useful conditional het-

eroskedastic models present in literature like GARCH and GTARCH (Gonçalves,

Leite and Mendes-Lopes, 2012; Pan, Wang and Tong, 2008).

We consider in the following that
q∑

j=1
γj < 1 which is a necessary condition of

strict and weak stationarity of X and also to its stationarity up to the δ-order

(Gonçalves, Leite and Mendes-Lopes, 2012). Moreover, under this condition σt is

Xt−1-measurable.

The main characteristic of threshold conditionally heteroskedastic models is

the fact that they allow to take into account different reactions in the volatility

according to the sign of the process values even for values with the same absolute

size. So, these models capture the so-called leverage effect very common in financial
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time series of daily returns (Francq and Zaköıan, 2010). The introduction of the

exponent allows to take into account long memory in the shocks of the conditional

variance (Ding, Granger and Engle, 1993). A not so very common, but yet still

present characteristic in some daily returns series is skewness, positive in some

cases and negative in others (Taylor, 2007). We note that X has a symmetric

marginal distribution (relatively to the origin) if and only if the same happens to

its generating process Z.

We point out this relation between the symmetry of the marginal distribution

of a δ-TGARCH process and the symmetry of its generating process to stress the

importance of studying the distributions of the δ-TGARCH process and not only

the distributions of some transformations of these processes as Pawlak and Schmid

(2001) did for the squared of a GARCH process. The transformation considered

by these authors for the GARCH process only produces conclusions for the process

itself if the marginal distribution of the generating process is symmetric.

In this paper we propose bounds for the finite dimension laws of the process

X following a δ-TGARCH(p, q) model with δ > 0 and, whenever possible, with

δ < 0. These bounds are expressed in terms of the distribution function of the

independent generating process, Z, and it becomes clear that the marginal law

of X is, in certain regions, strongly controlled by that of the process Z. This

fact is rather relevant as we know that these laws have in general quite different

characteristics; for example, the marginal law of X is leptokurtic even if it doesn’t

happen with that of the independent generating process.

We remark that the regions where the bounds are valid seem to be larger than

those theoretically stated, as suggested by the simulation studies done to evaluate

the quality of those bounds.

The study here developed strongly enlarges the results of Pawlak and Schmid

(2001), Gonçalves and Mendes-Lopes (2007) and Gonçalves, Leite and Mendes-

Lopes (2013a) and, so far as we know, there are no other results on this subject.

In fact we consider a wide class of general conditionally heteroskedastic models

and we establish bounds for the distribution of the finite dimensional laws of the

process X.

In Section 2 we study the marginal distribution of X. Section 3 begins with

a preliminary bound for the distribution function of the 2n-dimensional vector
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(
X+

1 , X−
1 , ..., X+

n , X−
n

)
, which reveals useful in the bounding of the joint marginal

distributions of X established in the last part of this Section. In Section 4 we

illustrate the overall good quality of the theoretical bounds obtained by means

of a simulation study with n = 2. In Section 5 a contribution is given for the

theoretical evaluation of the run length of control charts for δ-TGARCH processes

with the possibility of asymmetric limits. In the last Section some concluding

remarks are included.

2 Bounds for the marginal laws

Let X = (Xt, t ∈ Z) be a δ-TGARCH(p, q) process, δ ̸= 0, and let us denote by

FXt the distribution function of Xt and by FZ the distribution function of Zt.

Defining θ = α
1
δ
0

(
1−

q∑
j=1

γj

)− 1
δ

, we have σδ
t ≥ θδ, for δ ̸= 0. In fact, since

γj > 0, j = 1, ..., q, and
q∑

j=1
γj < 1 we have

(1−
q∑

j=1

γjz
j)−1 =

+∞∑
j=0

φjz
j

with φj ≥ 0 for all j. It follows that

σδ
t = (1−

q∑
j=1

γjB
j)−1(α0+

p∑
i=1

[
αi

(
X+

t−i

)δ
+ βi

(
X−

t−i

)δ]
) ≥ (1−

q∑
j=1

γjB
j)−1α0 = θδ.

Thus σt ≥ θ, if δ > 0, and σt ≤ θ, if δ < 0.

In consequence, and taking into account that FXt (x) = E
[
FZ

(
x
σt

)]
, the

following bounds are easily obtained:

a) for x ≥ 0, we have

– if δ > 0, FXt (x) ≤ FZ

(
x
θ

)
,

– if δ < 0, FXt (x) ≥ FZ

(
x
θ

)
;

b) for x < 0,

– if δ > 0, FXt (x) ≥ FZ

(
x
θ

)
,

– if δ < 0, FXt (x) ≤ FZ

(
x
θ

)
.
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To complete the bounding of FXt we must consider some additional assump-

tions. Namely, we suppose that the generator process is δ-integrable, that is

E
(
|Z0|δ

)
< +∞, and

Sδ =

p∑
i=1

(αiϕ1,δ + βiϕ2,δ) +

q∑
i=1

γi < 1,

where E
[(
Z+
t

)δ]
= ϕ1,δ and E

[(
Z−
t

)δ]
= ϕ2,δ.

Under these assumptions, X is strict and weakly stationary of order δ (Gonçal-

ves, Leite and Mendes-Lopes, 2012); moreover, E
(
σδ
t

)
is finite, independent of t

and equal to

E
(
σδ
t

)
=

α0

1− Sδ
.

In addition, we suppose that (Zt) are absolutely continuous random variables

with a differentiable probability density fZ .

The following result may then be established.

Theorem 1. Supposing X a δ-TGARCH(p, q) under the previous assumptions

and, considering the function

hδ (x, y) = (1 + δ) fZ

(
x

y
1
δ

)
+

x

y
1
δ

f ′
Z

(
x

y
1
δ

)
,

where y ∈
[
θδ,+∞

[
, we have

a) if x ≥ 0,

(a1) hδ (x, y) ≥ 0,∀y ∈
[
θδ,+∞

[
=⇒ FXt (x) ≥ FZ

(
x

[E(σδ
t )]

1
δ

)
,

(a2) hδ (x, y) ≤ 0,∀y ∈
[
θδ,+∞

[
=⇒ FXt (x) ≤ FZ

(
x

[E(σδ
t )]

1
δ

)
;

b) if x < 0,

(b1) hδ (x, y) ≥ 0,∀y ∈
[
θδ,+∞

[
=⇒ FXt (x) ≤ FZ

(
x

[E(σδ
t )]

1
δ

)
,

(b2) hδ (x, y) ≤ 0,∀y ∈
[
θδ,+∞

[
=⇒ FXt (x) ≥ FZ

(
x

[E(σδ
t )]

1
δ

)
.
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Proof. We restrict ourselves to the proof of the conditions in a) as those referred

in b) are analogously obtained.

For t ∈ Z and x ∈ R, we may write FXt (x) = E

[
FZ

(
x

(σδ
t )

1
δ

)]
. For x ∈ R

arbitrarily fixed, let us consider the function Rδ :
[
θδ,+∞

[
−→ [0, 1] such that

Rδ (y) = FZ

(
x

y
1
δ

)
for which we have

dRδ

dy
(y) = − x

δy
1
δ
+1

fZ

(
x

y
1
δ

)
,

and

d2Rδ

dy2
(y) =

(1 + δ)x

δ2y
1
δ
+2

fZ

(
x

y
1
δ

)
+

x2

δ2y
2
δ
+2

f ′
Z

(
x

y
1
δ

)
=

x

δ2y
1
δ
+2

hδ (x, y) .

As referred above, under the previous hypotheses, E
(
σδ
t

)
exists and is inde-

pendent of t. As for x ≥ 0, y ≥ θδ and hδ (x, y) ≥ 0, Rδ is a convex function,

Jensen’s inequality allows to write

FXt (x) = E

FZ

 x(
σδ
t

) 1
δ

 ≥ FZ

 x[
E
(
σδ
t

)] 1
δ

 .

Similarly, as Rδ is a concave function when x > 0, y ≥ θδ and hδ (x, y) ≤ 0, we

have

FXt (x) = E

FZ

 x(
σδ
t

) 1
δ

 ≤ FZ

 x[
E
(
σδ
t

)] 1
δ

 .

From the previous results we conclude that to bound FXt we have to discuss

the sign of the function

hδ (x, y) = (1 + δ) fZ

(
xy−

1
δ

)
+ xy−

1
δ f ′

Z

(
xy−

1
δ

)
,∀y ∈

[
θδ,+∞

[
;

namely, to properly combine the bounds determined in the beginning of this section

and those in theorem 1, we are interested in hδ ≤ 0, when δ < 0, and hδ ≥ 0, when

δ > 0. In the following we illustrate this discussion for some distributions of the

generator process Z and some values of δ.
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Example 1. Let us consider Zt following a standard normal distribution. For

y ∈ [θδ,+∞[, we have

hδ (x, y) = fZ

(
x

y
1
δ

)(1 + δ)−

(
x

y
1
δ

)2
 , x ∈ R.

So, it is obvious that ∀x ∈ R, hδ (x, y) ≤ 0 if δ ≤ −1.

Let us consider now −1 < δ < 0. As hδ (x, y) ≤ 0 ⇔ |x| ≥ y
1
δ

√
1 + δ

and y
1
δ ≤ θ, we may assure that hδ (x, y) ≤ 0 at least for x ∈

]
−∞,−θ

√
1 + δ

]
∪[

θ
√
1 + δ,+∞

[
.

Analogously we conclude that, if δ > 0, then hδ (x, y) ≥ 0 at least for x ∈[
−θ

√
1 + δ, θ

√
1 + δ

]
, taking into account that, in this case, y

1
δ ≥ θ. ⋄

Taking into consideration these results, we present in Figure 1 the bounds of

the distribution function of a δ-TGARCH(1, 1), with α0 = 10, α1 = 0.3, β1 = 0.5,

γ1 = 0.2 and a standard Gaussian generator process, for δ equal to −1
2 , −

1
3 ,

1
2 , 1,

3
2 and 2, representing, in each case, the bounds FZ

(
x
θ

)
and FZ

(
x
[
E
(
σδ
t

)]− 1
δ

)
and the empirical estimation of FXt (x). This empirical distribution was ob-

tained by a simulation study considering a sample of 10 000 observations of the

δ-TGARCH(1, 1) process X.

∆=-

1

2

-0.0045 0.0045

0.2

0.4

0.6

0.8

1 ∆=-

1

3

-0.00042 0.00042

0.2

0.4

0.6

0.8

1

∆=

1

2

-191.37 191.37

0.2

0.4

0.6

0.8

1 ∆=1

-17.68 17.68

0.2

0.4

0.6

0.8

1

∆=

3

2

-8.52 8.52

0.2

0.4

0.6

0.8

1 ∆=2

-6.12 6.12

0.2

0.4

0.6

0.8

1

Figure 1: Plots of FZ

(
x
θ

)
(red), FZ

(
x
[
E
(
σδ
t

)]− 1
δ

)
(blue) and the estimate of

FXt (x) (green), for X ∼ δ-TGARCH(1, 1) and Zt ∼ N (0, 1)

According with the previous study these bounds are theoretically validated

for x between the lines x = ±θ
√
1 + δ, when δ > 0, and outside of these lines,
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when δ < 0. Nevertheless, the previous plots lead us to conjecture that these

bounds are still valid for x outside those intervals, which is understandable since

our results only establish sufficient conditions for the validity of these bounding;

moreover, the quality of the bounds seems to be strongly related to the corre-

sponding value of Sδ (for the chosen increasing values of δ, Sδ is approximately

equal to 0.888, 0.739, 0.529, 0.520, 0.544 and 0.6, respectively). In what concerns

the bounding accuracy, we stress the high quality of the bounds related to the

function FZ

(
x
[
E
(
σδ
t

)]− 1
δ

)
that depends on all the model parameters.

Example 2. Let us consider random variables Zt following a centered and reduced

distribution based on the Student law with parameter n, n > 2, that is, with den-

sity fZ (x) = 1√
(n−2)π

Γ(n+1
2 )

Γ(n
2 )

(
1 + x2

n−2

)−n+1
2
, x ∈ R. So, f ′

Z (x) = − x(n+1)
n−2+x2 fZ (x),

x ∈ R.
As, for y ∈

[
θδ,+∞

[
, hδ (x, y) = fZ

(
x

y
1
δ

)
(1+δ)(n−2)y

2
δ +(δ−n)x2

y
2
δ (n−2)+x2

, x ∈ R, we

have the following discussion:

i) hδ (x, y) ≤ 0,∀x ∈ R, if δ ≤ −1;

ii) hδ (x, y) ≤ 0, ∀x ∈
]
−∞,−θ

√
(1+δ)(n−2)

n−δ

]
∪
[
θ
√

(1+δ)(n−2)
n−δ ,+∞

[
, if −1 <

δ < 0;

iii) hδ (x, y) ≥ 0, ∀x ∈
[
−θ
√

(1+δ)(n−2)
n−δ , θ

√
(1+δ)(n−2)

n−δ

]
, if 0 < δ < n;

iv) hδ (x, y) ≥ 0,∀x ∈ R, if δ ≥ n. ⋄

As in the Example 1, a simulation study was developed considering four δ-

TGARCH models with generator process following the previous distribution with

n = 6, parameters δ = 1, α0 = 10, α1 = 0.3, β1 = 0.5 and γ1 = 0.2 and orders

(1, 1), (2, 1) , (1, 2) and (2, 2). We note that the values of Sδ are, respectively, 0.5,

0.688, 0.75 and 0.938. The bounds obtained in each one of these cases are plotted

in Figure 2.

Despite being in a very different situation, the behavior of these bounds are sim-

ilar to those of the previous example; in particular, we highlight that the bounding

accuracy seems also to be dependent on the Sδ value.
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Figure 2: Plots of FZ

(
x
θ

)
(red), FZ

(
x
[
E
(
σδ
t

)]− 1
δ

)
(blue) and the estimate of

FXt (x) (green), for X ∼ 1-TGARCH(p, q) and Zt =
√

2
3W , with W ∼ t6

Example 3. Let us consider a mixture of two Gaussian distributions (not neces-

sarily symmetric), that is

fZ (x) = p1f1 (x;m1, s1) + p2f2 (x;m2, s2) ,

where p1, p2 ∈ ]0, 1[ with p1 + p2 = 1, and where fk (·;mk, sk) is the Gaussian

probability density with mean mk and variance s2k.

In order to obtain a centered and reduced generator process, we have the

following relations p2 = 1− p1, m2 =
p1m1

p1−1 and s2 =

√
1−p1(m2

1+s21)−(1−p1)
(

p1m1
p1−1

)2

1−p1
.

To analyze the sign of the function hδ we restrict ourselves to the case δ = 1.

As f ′
k (x;mk, sk) = fk (x;mk, sk)

(
− (x−mk)

s2k

)
, we have, for x ∈ R,

h1 (x, y) = 2fZ

(
x

y

)
+

x

y
f ′
Z

(
x

y

)
=

2∑
k=1

pkfk

(
x

y
;mk, sk

)2−
(
x
y −mk

)
x
y

s2k


and so h1 (x, y) ≥ 0 if, at least, x

y ∈
2∩

k=1

[
mk−

√
m2

k+8s2k
2 ,

mk+
√

m2
k+8s2k

2

]
, that is x

y ∈

[l1, l2], with l1 = max
k∈{1,2}

mk−
√

m2
k+8s2k

2 and l2 = min
k∈{1,2}

mk+
√

m2
k+8s2k

2 .

As this theoretical study leads us only to a sufficient condition for the positivity

of h1, we may improve this study using numerical and graphical methods.

So, let (p1,m1,s1) = (0.65,−0.15, 0.4) and (p1,m1,s1) = (0.6, 0.3, 0.4) be two

different set of parameters, denoted A and B respectively, associated to the distri-

bution considered above. In Figure 3 we plot the function h1, for y = 1 without

loss of generality, corresponding to each one of these cases.
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Figure 3: Function h1 when Zt follows a mixture of Gaussian distributions with

parameters A, (p1,m1,s1) = (0.65,−0.15, 0.4) and B, (p1,m1,s1) = (0.6, 0.3, 0.4)

Analyzing these plots and using numerical methods we conclude, in case A,

that h1 (x, y) ≥ 0, ∀y ∈ [θ,+∞[, if x
y ∈ [−0.714, 2.353] and if x ∈ [−0.714θ, 2.353θ].

Similarly, in case B, we have the same result if x
y ∈ [−2.198, 0.788] and also if x ∈

[−2.198θ, 0.788θ]. ⋄

A simulation study is developed for this kind of generator process distribution,

considering the laws associated to the cases of parameter sets A and B. Unlike

the previous examples we take now skewed distributions for Zt. Namely, in cases

denoted A1 e A2, we choose (p1,m1,s1) = (0.65,−0.15, 0.4) (positive skewness);

in cases denoted B1 e B2, we take (p1,m1,s1) = (0.6, 0.3, 0.4) (negative skewness).

Regarding the δ-TGARCH process we consider in all the cases δ = 1, α0 = 10,

α1 = 0.15, β1 = 0.5 and, in A1 and B1, γ1 = 0.2; in A2 and B2 we take γ1 = 0.6.

So, the values for Sδ are equal to 0.416, 0.816, 0.430 and 0.830 in the cases A1,

A2, B1 and B2, respectively. The corresponding plots are presented in Figure 4.

Also in this asymmetrical case, the conclusions are similar to the previous ones.

Moreover, this example reinforces the conjecture that the bounding accuracy is

better for smaller values of Sδ.

Observation 1. Before ending this section, we point out that the technique used

to prove theorem 1 can be extended to the log-GARCH and EGARCH models,

even though the one used to obtain the initial bounds presented in this section

cannot, as in these two cases there is no real positive number θ such that σt ≥ θ.

In fact, (Francq, Wintenberger and Zaköıan, 2013) a process X follows a log-
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Figure 4: Plots of FZ

(
x
θ

)
(red), FZ

(
x
[
E
(
σδ
t

)]− 1
δ

)
(blue) and the estimate of

FXt (x) (green), for X ∼ 1-TGARCH(1, 1) and Zt ∼ NM

GARCH(p, q) model if
Xt = σtZt

log σ2
t = ω +

q∑
i=1

(
αi+1{Xt−i>0} + αi−1{Xt−i<0}

)
logX2

t−i +
p∑

j=1
βj log σ

2
t−j

and follows a EGARCH(p, l) model if
Xt = σtZt

log σ2
t = ω +

p∑
j=1

βj log σ
2
t−j +

l∑
k=1

(γkZt−k + δk|Zt−k|)

where σt > 0 but without positivity constrains imposed to the parameters.

Regarding the procedure adaptation related to theorem 1, it is easily done if

we note that, because log |Xt| = log σt + log |Zt|, we have

Flog|Xt| (x) = E
[
F|Zt| (exp (x− log σt))

]
.

Assuming, for simplicity, that Zt are symmetrically distributed, then

Flog|Xt| (x) = 2E [FZ (exp (x− log σt))]− 1

and, because Xt are also symmetrically distributed Flog|Xt| (x) = 2FXt (expx)− 1,

we have

FXt (expx) = E [FZ (exp (x− log σt))] .

So, for x arbitrarily fixed, the function R in the proof of theorem 1, is de-

fined, in the case of these two models, by R : ]−∞,+∞[ −→ [0, 1] such that
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R (y) = FZ (exp (x− y)). From where it is easily deduced that

h (x, y) = fZ (exp (x− y)) + exp (x− y) f ′
Z (exp (x− y)) .

Consequently, if h (x, y) ≥ 0, for all y ∈ R, then

FXt (expx) ≥ FZ (exp (x− E (log σt)))− 1

and if h (x, y) ≤ 0, for all y ∈ R, then

FXt (expx) ≤ FZ (exp (x− E (log σt)))− 1.

For example, in Francq, Wintenberger and Zaköıan (2013), the value of E (log σt) is

available in the case of the stationary model log-GARCH(1,1) with symmetrically

distributed generating process.

3 Bounds for the finite dimensional laws

In this section we concentrate our study on δ-TGARCH processes with positive

power δ and generator process with absolutely continuous distribution. To develop

bounds for the distribution function of the finite dimensional laws of the process,

we begin by an auxiliary study on the bounding of the distribution function of the

vector
(
X+

1 , X−
1 , ..., X+

n , X−
n

)
.

3.1 Bounds for the distribution of
(
X+

1 , X
−
1 , ..., X

+
n , X

−
n

)
Let X = (Xt, t ∈ Z) be a δ-TGARCH(p, q) process, δ > 0, for which the law of

Zt is absolutely continuous.

As in Gonçalves, Leite and Mendes-Lopes (2013a), it is easy to establish the

following upper bound for the distribution function of
(
X+

1 , X−
1 , ..., X+

n , X−
n

)
:

∀ (x1, x∗1, ..., xn, x∗n) ∈
(
R+
0

)2n
, n ∈ N,

F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (x1, x
∗
1, ..., xn, x

∗
n) ≤

n∏
t=1

[
FZ

(xt
θ

)
− FZ

(
−x∗t

θ

)]
.

In fact, taking into account the definitions of X+
t and X−

t and the positivity

of σt, we have

F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (x1, x
∗
1, ..., xn, x

∗
n) = P

(
−x∗t
σt

≤ Zt ≤
xt
σt

, t = 1, ..., n

)
.

12



So, as σt > θ and Zt are i.i.d. and absolutely continuous random variables, the

announced result follows from the inequality

P

(
−x∗t
σt

≤ Zt ≤
xt
σt

, t = 1, ..., n

)
≤ P

(
−x∗t

θ
≤ Zt ≤

xt
θ
, t = 1, ..., n

)
=

n∏
t=1

[
FZ

(xt
θ

)
− FZ

(
−x∗t

θ

)]
.

We note that, when δ is negative, a reversed inequality is obtained using the

same technique.

As previously, the methodology used to obtain the other bound is more refined

and leads us to a precise approximation of the distribution function under study.

However, it is only valid for positive δ.

Let us begin by considering the following result.

Lemma 1. Under the previous conditions, we have

P (Vt ≤ Zt ≤ Wt, t = 1, ..., k) =

k∏
t=1

E [FZ (Wt)− FZ (Vt)] ,

where Vt and Wt, such that Vt ≤ Wt, are X0-measurable random variables, t

∈ {1, ..., k}.

Proof. Using expectation and conditional expectation properties and taking into

account that Z1, ..., Zk are i.i.d. absolutely continuous random variables and also

that they are independent from X0, it is easy to conclude that

P (Vt ≤ Zt ≤ Wt, t = 1, ..., k) = E
[
E
(
1l[V1,W1]×...×[Vk,Wk] (Z1, ..., Zk)

∣∣X0

)]
=

k∏
t=1

E [FZ (Wt)− FZ (Vt)] .

In the next theorem we present the required lower bound. For simplicity, we

restrict the presentation of this study to δ-TARCH(p) (that is, γ1 = ... = γq = 0)

and δ-TGARCH(1, 1) models; more general cases use the same procedure with a

more complicated framework.

Theorem 2. Let X be a δ-TGARCH(p, q) process, δ > 0, such that E
(
|Z0|δ

)
<

+∞ and Sδ < 1. Supposing Zt absolutely continuous with a differentiable density

fZ , let us define, for each y ∈
[
θδ,+∞

[
, the function

13



hδ (x, y) = (1 + δ) fZ

(
x

y
1
δ

)
+ x

y
1
δ
f ′
Z

(
x

y
1
δ

)
.

For (x1, x
∗
1, ..., xn, x

∗
n) ∈

(
R+
0

)2n
such that

xt hδ (xt, y) + x∗t hδ (−x∗t , y) ≥ 0,∀y ∈
[
θδ,+∞

[
,

where t =

{
1, ...,min {p, n} if q = 0

1, ..., n, if q = 1
, we have:

a) if q = 0 and

(a1) 1 ≤ p ≤ n,

F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (x1, x
∗
1, ..., xn, x

∗
n) ≥

≥
p∏

t=1

[
FZ

(
xt

u
1/δ
t

)
− FZ

(
− x∗

t

u
1/δ
t

)] n∏
t=p+1

[
FZ

(
xt

v
1/δ
t

)
− FZ

(
− x∗

t

v
1/δ
t

)]
,

(a2) p > n ≥ 1

F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (x1, x
∗
1, ..., xn, x

∗
n) ≥

n∏
t=1

[
FZ

(
xt

u
1/δ
t

)
− FZ

(
− x∗

t

u
1/δ
t

)]
,

where ut =
t−1∑
i=1

[
αi (xt−i)

δ + βi
(
x∗t−i

)δ]
+ E

(
σδ
t

) [
1−

t−1∑
i=1

(αiϕ1,δ + βiϕ2,δ)

]
and vt = α0 +

p∑
i=1

[
αi (xt−i)

δ + βi
(
x∗t−i

)δ]
;

b) if p = 1 and q = 1,

F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (x1, x
∗
1, ..., xn, x

∗
n) ≥

n∏
t=1

[
FZ

(
xt

w
1/δ
t

)
− FZ

(
− x∗

t

w
1/δ
t

)]
,

where wt = α0

t−1∑
j=1

γj−1
1 +

t−1∑
j=1

γj−1
1

[
α1 (xt−j)

δ + β1

(
x∗t−j

)δ]
+ γt−1

1 E
(
σδ
t

)
.

Proof. Let (x1, x
∗
1, ..., xn, x

∗
n) ∈

(
R+
0

)2n
. We introduce the random variables Ũt =

α0 +
t−1∑
i=1

[
αi (xt−i)

δ + βi
(
x∗t−i

)δ]
+

p∑
i=t

[
αi

(
X+

t−i

)δ
+ βi

(
X−

t−i

)δ]
, t ∈ {1, ..., n}.

(a1) Let us begin by considering q = 0 and 1 ≤ p ≤ n.

As δ > 0, if X+
t ≤ xt and X−

t ≤ x∗t , t ∈ {1, ..., n}, we have

14



– if t ∈ {2, ..., p},

σδ
t = α0 +

t−1∑
i=1

[
αi

(
X+

t−i

)δ
+ βi

(
X−

t−i

)δ]
+

p∑
i=t

[
αi

(
X+

t−i

)δ
+ βi

(
X−

t−i

)δ]
≤ Ũt,

as for i ∈ {1, ..., t− 1}, 1 ≤ t− i ≤ p− 1 < n and for i ∈ {t, ..., p}, t− i ≤ 0;

– if t = 1, σδ
1 = α0 +

p∑
i=1

[
αi

(
X+

1−i

)δ
+ βi

(
X−

1−i

)δ]
, thus σ1 = Ũ1;

– and, if t ∈ {p+ 1, ..., n},

σδ
t = α0 +

p∑
i=1

[
αi

(
X+

t−i

)δ
+ βi

(
X−

t−i

)δ]
≤ α0 +

p∑
i=1

[
αi (xt−i)

δ + βi
(
x∗t−i

)δ]
= vt,

as, for i ∈ {1, ..., p}, 1 ≤ t− i ≤ n− 1.

Using the definitions of X+
t and X−

t , the previous bounds and lemma, and

taking into consideration that Ũ
1
δ
t , t = 1, ..., p, and v

1
δ
t , t = p + 1, ..., n, are X0-

measurable, we are able to write

F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (x1, x
∗
1, ..., xn, x

∗
n) ≥

≥ P

− x∗t

Ũ
1
δ
t

≤ Zt ≤
xt

Ũ
1
δ
t

, t = 1, ..., p,−x∗t

v
1
δ
t

≤ Zt ≤
xt

v
1
δ
t

, t = p+ 1, ..., n


=

p∏
t=1

E

FZ

 xt

Ũ
1
δ
t

− FZ

− x∗t

Ũ
1
δ
t

 n∏
t=p+1

FZ

 xt

v
1
δ
t

− FZ

−x∗t

v
1
δ
t

 .

For a1 and a2 arbitrarily fixed inR+
0 and R−

0 , respectively, let us consider the

function Rδ :
[
θδ,+∞

[
−→ [−1, 1] defined by

Rδ (y) = FZ

(
a1

y
1
δ

)
− FZ

(
a2

y
1
δ

)
.

It is easy to show that

d2Rδ

dy2
(y) =

1

δ2y
1
δ
+2

[a1 hδ (a1, y)− a2 hδ (a2, y)] .
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So, considering for each t, t ∈ {1, ..., p} , a1 = xt and a2 = −x∗t , we have the con-

vexity of Rδ if xt hδ (xt, y) + x∗t hδ (−x∗t , y) ≥ 0. Thus, applying Jensen inequality,

we obtain

p∏
t=1

E

[
FZ

(
xt

Ũ
1
δ
t

)
− FZ

(
− x∗

t

Ũ
1
δ
t

)]
n∏

t=p+1

[
FZ

(
xt

v
1
δ
t

)
− FZ

(
− x∗

t

v
1
δ
t

)]
≥

≥
p∏

t=1

[
FZ

(
xt

[E(Ũt)]
1
δ

)
− FZ

(
− x∗

t

[E(Ũt)]
1
δ

)]
n∏

t=p+1

[
FZ

(
xt

v
1
δ
t

)
− FZ

(
− x∗

t

v
1
δ
t

)]
.

As, under the hypotheses, E
(
Ũt

)
exists and is equal to

ut =
t−1∑
i=1

[
αi (xt−i)

δ + βi
(
x∗t−i

)δ]
+ E

(
σδ
t

)[
1−

t−1∑
i=1

(αiϕ1,δ + βiϕ2,δ)

]
,

the inequality presented in point (a1) is then established.

(a2) The inequality corresponding to q = 0 and p > n ≥ 1 is analogously obtained.

In fact, as δ > 0, if X+
t ≤ xt and X−

t ≤ x∗t , t ∈ {1, ..., n}, we obtain

– if t ∈ {2, ..., n}, σδ
t ≤ Ũt, as, for i ∈ {1, ..., t− 1}, 1 ≤ t − i ≤ n − 1 and, for

i ∈ {t, ..., p}, t− i ≤ 0;

– if t = 1, σδ
1 = α0 +

p∑
i=1

[
αi

(
X+

1−i

)δ
+ βi

(
X−

1−i

)δ]
, and so σ1 = Ũ1.

In consequence, we have the inequality

F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (x1, x
∗
1, ..., xn, x

∗
n) ≥ P

− x∗t

Ũ
1
δ
t

≤ Zt ≤
xt

Ũ
1
δ
t

, t = 1, ..., n

 ,

from which the referred condition is similarly deduced.

b) The proof of this last inequality is also analogous to the previous ones. In fact,

if X+
t ≤ xt and X−

t ≤ x∗t , t ∈ {1, ..., n}, and introducing

W̃t = α0

t−1∑
j=1

γj−1
1 +

t−1∑
j=1

γj−1
1

[
α1 (xt−j)

δ + β1
(
x∗t−j

)δ]
+ γt−1

1 σδ
1,

we may write

– if t ∈ {2, ..., n}, σδ
t ≤ α0 + α1 (xt−1)

δ + β1
(
x∗t−1

)δ
+ γ1σ

δ
t−1 ≤ W̃t,
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– if t = 1, we have σ1 = W̃1,

and so

F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (x1, x
∗
1, ..., xn, x

∗
n) ≥ P

− x∗t

W̃
1
δ
t

≤ Zt ≤
xt

W̃
1
δ
t

, t = 1, ..., n

 ,

with W̃
1
δ
t X0-measurable (t = 1, ..., n). Following the same steps the inequality in

b) is obtained.

To illustrate this theorem, let us consider the cases n = 1 and n = 2 for the

δ-TGARCH(1,1) model.

When n = 1, if x1 hδ (x1, y) + x∗1 hδ (−x∗1, y) ≥ 0, for all y ∈
[
θδ,+∞

[
, then

F(X+
1 ,X−

1 )
(x1, x

∗
1) ≥ FZ

(
x1
ϖ1

)
− FZ

(
− x∗1
ϖ1

)
,

considering the notation ϖ1 =
[
E
(
σδ
t

)]1/δ
.

When n = 2, if, for t = 1, 2, we have xt hδ (xt, y) + x∗t hδ (−x∗t , y) ≥ 0, for all

y ∈
[
θδ,+∞

[
, then

F(X+
1 ,X−

1 ,X+
2 ,X−

2 )
(x1, x

∗
1, x2, x

∗
2) ≥

≥
[
FZ

(
x1
ϖ1

)
− FZ

(
− x∗1
ϖ1

)][
FZ

(
x2

ϖ (x1, x∗1)

)
− FZ

(
− x∗2
ϖ (x1, x∗1)

)]
,

with ϖ1 =
[
E
(
σδ
t

)]1/δ
and ϖ (x1, x

∗
1) =

[
α0 + α1 (x1)

δ + β1 (x
∗
1)

δ + γ1E
(
σδ
t

)]1/δ
.

3.2 Bounds for the distribution function of (X1, ..., Xn)

We present now bounds for the distribution function of (X1, ..., Xn) considering

the three following regions for (x1, ..., xn) ∈ Rn: [0,+∞[n, ]−∞, 0]n \ {0, ..., 0} and

Rn\ (]−∞, 0]n ∪ [0,+∞[n).

3.2.1 Region [0,+∞[n

Let X be a δ-TGARCH(p, q) process with δ > 0. Then, for every (x1, ..., xn) ∈
[0,+∞[n, n ∈ N, it is easily concluded that

F(X1,...,Xn) (x1, ..., xn) ≤
n∏

t=1

FZ

(xt
θ

)
.
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For the lower bound, we begin by writing the distribution function as a sum

of probabilities of sets where the variables are bounded, up or above, by zero like,

for n = 2,

F(X1,X2) (x1, x2) = P (X1 < 0, X2 < 0) + P (X1 < 0, 0 ≤ X2 ≤ x2)+

+P (0 ≤ X1 ≤ x1, X2 < 0) + P (0 ≤ X1 ≤ x1, 0 ≤ X2 ≤ x2) .

In order to facilitate the reading, we introduce some notation and illustrate its

use in the case n = 3. As ]−∞, xt] = ]−∞, 0[∪ [0, xt], let us denote these intervals

as C
(−1)
t = ]−∞, 0[ and C

(+1)
t = [0, xt]. We note that the exponent used in this

notation is also used as a number, that is, C
(−1)2

t = C
(+1)
t and C

(−1)3

t = C
(−1)
t , for

example. In this way, we have

3∏
t=1

]−∞, xt] =
3∏

t=1

(
C

(+1)
t ∪ C

(−1)
t

)
= C

(+1)
1 × C

(+1)
2 × C

(+1)
3 ∪ C

(+1)
1 × C

(+1)
2 × C

(−1)
3 ∪

∪ C
(+1)
1 × C

(−1)
2 × C

(+1)
3 ∪ C

(+1)
1 × C

(−1)
2 × C

(−1)
3 ∪

∪ C
(−1)
1 × C

(+1)
2 × C

(+1)
3 ∪ C

(−1)
1 × C

(+1)
2 × C

(−1)
3 ∪

∪ C
(−1)
1 × C

(−1)
2 × C

(+1)
3 ∪ C

(−1)
1 × C

(−1)
2 × C

(−1)
3 .

This Cartesian product is written as the union of 23 Cartesian products, where

the exponents are the arrangements with replacement of the numbers (+1) and

(−1), three to three. For the condensed representation of this union, we consider

the triplet

(
(−1)

⌊
k−1
22

⌋
, (−1)

⌊
k−1
21

⌋
, (−1)

⌊
k−1
20

⌋)
, where ⌊x⌋ denotes the integer

part of number x. With this triplet and with k ranging from 1 to 23, we recover

the arrangements with replacement of the numbers (+1) and (−1), three to three,

in the same order as that displayed. So,

3∏
t=1

]−∞, xt] =
23∪
k=1

(
C

(−1)
⌊ k−1

22
⌋

1 × C
(−1)

⌊ k−1
21

⌋
2 × C

(−1)
⌊ k−1

20
⌋

3

)

=

23∪
k=1

(
3∏

t=1

C
(−1)

⌊ k−1
23−t ⌋

t

)
.

The result concerning the lower bound can then be stated.
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Theorem 3. Let X be a δ-TGARCH(p, q) process such that Zt are absolutely

continuous variables. For every (x1, ..., xn) ∈ [0,+∞[n, n ∈ N, we have

F(X1,...,Xn) (x1, ..., xn) ≥

≥ [FZ (0)]n +
n∑

k=1

F(X+
1 ,X−

1 ,...,X+
k ,X−

k )
(x1, 0, ..., xk, 0) [FZ (0)]n−k +

+

2n∑
k=1

k ̸=20,21,...,2n

F(X+
1 ,X−

1 ,...,X+
n ,X−

n )
(
ak,1, a

∗
k,1, ..., ak,n, a

∗
k,n

)
,

with ak,t =

{
xt, if

⌊
k−1
2n−t

⌋
is even

0, otherwise
and a∗k,t =

{
0, if

⌊
k−1
2n−t

⌋
is even

yt, otherwise
, and

yt arbitrarily fixed in [0,+∞[.

Proof. Let (x1, ..., xn) ∈ [0,+∞[n. Using the procedure previously referred, the

following equality holds for the set
n∏

t=1
]−∞, xt] :

n∏
t=1

]−∞, xt] =

n∏
t=1

(
C

(+1)
t ∪ C

(−1)
t

)
=

2n∪
k=1

(
n∏

t=1

C
(−1)

⌊ k−1
2n−t ⌋

t

)
.

As C
(+1)
t ∩ C

(−1)
t = ∅, t = 1, ..., n, then

n∏
t=1

C
(−1)

⌊
k1−1

2n−t

⌋
t ∩

n∏
t=1

C
(−1)

⌊
k2−1

2n−t

⌋
t = ∅,

for k1, k2 ∈ {1, ..., 2n} such that k1 ̸= k2. So,

F(X1,...,Xn) (x1, ..., xn) =
2n∑
k=1

P

(
(X1, ..., Xn) ∈

n∏
t=1

C
(−1)

⌊ k−1
2n−t ⌋

t

)
.

Let us evaluate now P

(
(X1, ..., Xn) ∈

n∏
t=1

C
(−1)

⌊ k−1
2n−t ⌋

t

)
, for k = 2n−j , with j

ranging from 0 to n.

Taking into account that for k = 20 we have
n∏

t=1
C

(−1)
⌊ k−1

2n−t ⌋
t =

n∏
t=1

C
(+1)
t , we

obtain

P

(
(X1, ..., Xn) ∈

n∏
t=1

C
(+1)
t

)
= P (0 ≤ Xt ≤ xt, t = 1, ..., n)

= P
(
X+

t ≤ xt, X
−
t ≤ 0, t = 1, ..., n

)
= F(X+

1 ,X−
1 ,...,X+

n ,X−
n ) (x1, 0, ..., xn, 0) .
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Taking k = 2n, we have
n∏

t=1
C

(−1)
⌊ k−1

2n−t ⌋
t =

n∏
t=1

C
(−1)
t , and so

P

(
(X1, ..., Xn) ∈

n∏
t=1

C
(−1)
t

)
= P (Xt < 0, t = 1, ..., n)

= P (Zt < 0, t = 1, ..., n)

= [FZ (0)]n ,

since σt > 0, for t ∈ {1, ..., n}, and Z1, ..., Zn are i.i.d. absolutely continuous

variables.

Finally, let us analyze the case k = 2n−j , with j ∈ {1, ..., n− 1}. In this case
n∏

t=1
C

(−1)
⌊ k−1

2n−t ⌋
t =

j∏
t=1

C
(+1)
t ×

n∏
t=j+1

C
(−1)
t , and so

P

(X1, ..., Xn) ∈
j∏

t=1

C
(+1)
t ×

n∏
t=j+1

C
(−1)
t

 =

= P (0 ≤ Xt ≤ xt, t = 1, ..., j,Xt < 0, t = j + 1, ..., n)

= F(X+
1 ,X−

1 ,...,X+
j ,X−

j )
(x1, 0, ..., xj , 0)× [FZ (0)]n−j ,

taking into account that Zt is independent of Xt−1.

For the remaining values of k, that is, for k ∈ {1, ..., 2n} such that

k ̸= 2n−j with j ranging from 0 to n, we obtain now a lower bound for

P

(
(X1, ..., Xn) ∈

n∏
t=1

C
(−1)

⌊ k−1
2n−t ⌋

t

)
.

Let us fix arbitrarily (y1, ..., yn) in ]0,+∞[n.

For t = 1, ..., n, we have [−yt, 0[ ⊂ C
(−1)
t . Denoting D

(−1)
t = [−yt, 0[ and

D
(+1)
t = C

(+1)
t , we get

P

(
(X1, ..., Xn) ∈

n∏
t=1

C
(−1)

⌊ k−1
2n−t ⌋

t

)
≥ P

(
(X1, ..., Xn) ∈

n∏
t=1

D
(−1)

⌊ k−1
2n−t ⌋

t

)
.

Considering now

ak,t =

{
xt, if

⌊
k−1
2n−t

⌋
is even

0, otherwise
and a∗k,t =

{
0, if

⌊
k−1
2n−t

⌋
is even

yt, otherwise
,

we obtain, if
⌊
k−1
2n−t

⌋
is even,

[
−a∗k,t, ak,t

]
= [0, xt] = D

(+1)
t and, if

⌊
k−1
2n−t

⌋
is odd,
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[
−a∗k,t, ak,t

]
= [−yt, 0] = D

(−1)
t ∪ {0}. So,

P

(
(X1, ..., Xn) ∈

n∏
t=1

D
(−1)

⌊ k−1
2n−t ⌋

t

)
= P

(
(X1, ..., Xn) ∈

n∏
t=1

[
−a∗k,t, ak,t

])
= P

(
X+

t ≤ ak,t, X
−
t ≤ a∗k,t, t = 1, ..., n

)
= F(X+

1 ,X−
1 ,...,X+

n ,X−
n )
(
ak,1, a

∗
k,1, ..., ak,n, a

∗
k,n

)
,

as (Zt), and consequently (Xt), are absolutely continuous random variables.

The conclusions obtained for all the values of k from 1 to 2n, give the stated

lower bound.

We note that this theorem is valid for any value of δ, positive or negative.

Let us now exemplify theorem 3, starting with n = 1. In this case, for x1 ≥ 0,

FX1 (x1) ≥ FZ (0)+F(X+
1 ,X−

1 )
(x1, 0) and, if we then apply theorem 2 to the second

term of the sum, we get the bound obtained in case (a1) of theorem 1 with exactly

the same conditions regarding the function hδ (x1, y).

When n = 2, for (x1, x2) ∈ [0,+∞[2,

F(X1,X2) (x1, x2) ≥ [FZ (0)]2 + F(X+
1 ,X−

1 )
(x1, 0) [FZ (0)] +

+F(X+
1 ,X−

1 ,X+
2 ,X−

2 )
(x1, 0, x2, 0)+F(X+

1 ,X−
1 ,X+

2 ,X−
2 )
(0, y1, x2, 0) ,

as a3,1 = 0, a∗3,1 = y1, a3,2 = x2 and a∗3,2 = 0, with this bound valid for any y1 but

the quality of the bound improves as the value of y1 increases. This result, as in

the case n = 1, is only usable if now combined with theorem 2, so it is important

to refer that the hypotheses of theorem 2 imply all the hypotheses of theorem 3

and one consequence is that y1 should be chosen as the greatest positive real such

that hδ (−y1, y) ≥ 0, for all y ∈
[
θδ,+∞

[
.

3.2.2 Region ]−∞, 0]n \ {(0, ..., 0)}

In the region ]−∞, 0]n \ {(0, ..., 0)}, the lower bound is also a natural generalization

of the theorem related to the marginal distribution, that is,

F(X1,...,Xn) (x1, ..., xn) ≥
n∏

t=1

FZ

(xt
θ

)
.

In what concerns the upper bound for the distribution function in this region,

the following result is stated using again the distribution function of the vector(
X+

1 , X−
1 , ..., X+

n , X−
n

)
and it does not depend on the sign of δ.
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Theorem 4. Let X be a δ-TGARCH(p, q) process such that Zt are absolutely

continuous variables. For every (x1, ..., xn) ∈ ]−∞, 0]n \ {(0, ..., 0)}, n ∈ N,

F(X1,...,Xn) (x1, ..., xn) ≤ [FZ (0)]n − F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (0,−x1, ..., 0,−xn) .

Proof. The beginning of the proof is analogous to that of theorem 3, starting with

the set ]−∞, 0]n.

Let (x1, ..., xn) ∈ ]−∞, 0]n \ {(0, ..., 0)}. Since

]−∞, 0]n =

n∏
t=1

(
C(+1)
t ∪ C(−1)

t

)
=

2n∪
k=1

(
n∏

t=1

C(−1)
⌊ k−1

2n−t ⌋
t

)
,

where, for t = 1, ..., n, we have C(−1)
t = ]−∞, xt[ and C(+1)

t = [xt, 0], and so

C(+1)
t ∩ C(−1)

t = ∅, then, F(X1,...,Xn) (0, ..., 0) = [FZ (0)]n is also equal to

F(X1,...,Xn) (0, ..., 0) =
2n∑
k=1

P

(
(X1, ..., Xn) ∈

n∏
t=1

C(−1)
⌊ k−1

2n−t ⌋
t

)
.

As for k = 2n,
n∏

t=1
C

(−1)
⌊ k−1

2n−t ⌋
t =

n∏
t=1

C
(−1)
t , the last term of this sum is

F(X1,...,Xn) (0, ..., 0) = [FZ (0)]n.

Moreover, the first one, corresponding to k = 1, is such that
n∏

t=1
C(−1)

⌊ k−1
2n−t ⌋

t =

n∏
t=1

C(+1)
t , and so

P

(
(X1, ..., Xn) ∈

n∏
t=1

C(+1)
t

)
= P (0 ≤ Xt ≤ −xt, t = 1, ..., n)

= F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (0,−x1, ..., 0,−xn) ,

Consequently,

F(X1,...,Xn) (x1, ..., xn) = [FZ (0)]n − F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (0,−x1, ..., 0,−xn) +

−
2n−1∑
k=2

P

(
(X1, ..., Xn) ∈

n∏
t=1

C(−1)
⌊ k−1

2n−t ⌋
t

)
,

from which we conclude.

As in the previous theorems, in the following we illustrate theorem 4, starting

with n = 1. In this case, for x1 < 0, FX1 (x1) ≤ FZ (0) − F(X+
1 ,X−

1 )
(0,−x1) and,
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if we then apply theorem 2, we get the bound obtained in case (b1) of theorem 1

with exactly the same conditions regarding the function hδ (x1, y).

When n = 2, for (x1, x2) ∈ ]−∞, 0]2 \ {(0, 0)},

F(X1,X2) (x1, x2) ≤ [FZ (0)]2 − F(X+
1 ,X−

1 ,X+
2 ,X−

2 )
(0,−x1, 0,−x2) .

and, again, to use this result in practice it has to be combined with theorem 2.

3.2.3 Region Rn\ (]−∞, 0]n ∪ [0,+∞[n)

In the region Rn\ (]−∞, 0]n ∪ [0,+∞[n), with n ∈ N\ {1}, we consider only the

δ-TGARCH model with positive power. We use the following sets of indices:

I+ = {t ∈ {1, ..., n} : xt > 0}, with η̆ = min I+ and #I+ = k;

I− = {t ∈ {1, ..., n} : xt < 0}, with η̈ = min I− and #I− = κ;

I+∗ = {t ∈ I+ : t > η̈} such that #I+∗ = k∗;

I−∗ = {t ∈ I− : t > η̆} such that #I−∗ = κ∗.

The following theorem states an upper bound for the distribution function in

study.

Theorem 5. Let X be a δ-TGARCH(p, q) process such that δ > 0. Let (x1, ..., xn)

be any element of Rn\ (]−∞, 0]n ∪ [0,+∞[n), for n ∈ N\ {1}, with k positive co-

ordinates, for 1 ≤ k < n. Then,

a) if x1 ≤ 0, we have

F(X1,...,Xn) (x1, ..., xn) ≤

≤ F(X1,...,Xη̆−1) (x1, ..., xη̆−1)
∏
t∈I+

FZ

(xt
θ

)
× [FZ (0)]n−k−(η̆−1) ,

b) if x1 ≥ 0, we have

F(X1,...,Xn) (x1, ..., xn) ≤

≤ F(X1,...,Xη̈−1) (x1, ..., xη̈−1)
∏

t∈I+∗

FZ

(xt
θ

)
× [FZ (0)]n−k∗−(η̈−1) .

Proof. We present only the proof of part a), as the other is analogous.

Let (x1, ..., xn) ∈ Rn\ (]−∞, 0]n ∪ [0,+∞[n), with n fixed in N\ {1}, such that

k of its coordinates are positive, with 1 ≤ k < n.
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If x1 ≤ 0, we get

F(X1,...,Xn) (x1, ..., xn) = P (X1 ≤ x1, ..., Xη̆−1 ≤ xη̆−1, Xη̆ ≤ xη̆, ..., Xn ≤ xn)

= P

(
X1 ≤ x1, ..., Xη̆−1 ≤ xη̆−1, Zη̆ ≤

xη̆
ση̆

, ..., Zn ≤ xn
σn

)
with η̆ ≥ 2. So, for 1 ≤ t ≤ η̆ − 1, xt ≤ 0 and, for t = η̆, xt > 0.

For η̆ ≤ t ≤ n, we upper-bound each coordinate in the following way:

i) if xt ≤ 0, then, as σt > 0, we have xt
σt

≤ 0 and so
{
Zt ≤ xt

σt

}
⊆ {Zt ≤ 0};

ii) if xt > 0, as σt ≥ θ, then xt
σt

≤ xt
θ and so,

{
Zt ≤ xt

σt

}
⊆
{
Zt ≤ xt

θ

}
.

Consequently

F(X1,...,Xn) (x1, ..., xn) ≤ P (X1 ≤ x1, ..., Xη̆−1 ≤ xη̆−1, Zη̆ ≤ uη̆, ..., Zn ≤ un) ,

where ut =

{
0, if xt ≤ 0
xt
θ , if xt > 0

, for t = η̆, ..., n, is non random. As Zη̆, ..., Zn are

independent variables and independent of X η̆−1, then

P (X1 ≤ x1, ..., Xη̆−1 ≤ xη̆−1, Zη̆ ≤ uη̆, ..., Zn ≤ un)

= F(X1,...,Xη̆−1) (x1, ..., xη̆−1)× FZ (uη̆)× ...× FZ (un) .

Taking into account the ut definition, we conclude that

F(X1,...,Xn) (x1, ..., xn) ≤
≤ F(X1,...,Xη̆−1) (x1, ..., xη̆−1)

∏
t∈I+

FZ

(xt
θ

)
× [FZ (0)]n−k−(η̆−1) .

We point out that, in case a), the dependence of the upper bound on the

distribution function of (X1, ..., Xt), with t < η̆ − 1, is addressed taking into con-

sideration the previous studies since all the components of the point (x1, ..., xη̆−1)

where this function is evaluated are non positives which enables the use of the re-

sults stated for the region ]−∞, 0]n \ {(0, ..., 0)} . In case b), an analogous situation

occurs with points belonging now to [0,+∞[n.

In the next theorem we complete the bound of the distribution function. The

proof is omitted due to its similarity with that of the previous theorem.
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Theorem 6. Let X be a δ-TGARCH(p, q) process such that δ > 0. Let (x1, ..., xn)

be any point in Rn\ (]−∞, 0]n ∪ [0,+∞[n), for n ∈ N\ {1}, with κ negative coor-

dinates, for 1 ≤ κ < n. Then,

a) if x1 ≤ 0, we have

F(X1,...,Xn) (x1, ..., xn) ≥

≥ F(X1,...,Xη̆−1) (x1, ..., xη̆−1)
∏

t∈I−∗

FZ

(xt
θ

)
× [FZ (0)]n−κ∗−(η̆−1) ,

b) if x1 ≥ 0, we have

F(X1,...,Xn) (x1, ..., xn) ≥

≥ F(X1,...,Xη̈−1) (x1, ..., xη̈−1)
∏
t∈I−

FZ

(xt
θ

)
× [FZ (0)]n−κ−(η̈−1) .

We now exemplify theorems 5 and 6 when n = 2.

– For x1 ≤ 0 and x2 ≥ 0, we have I+ = {2}, η̆ = 2, k = 1, I− = {1}, η̈ = 1,

κ = 1, I+∗ = {2}, k∗ = 1, I−∗ = ∅ and κ∗ = 0, thus

FX1 (x1)FZ (0) ≤ F(X1,X2) (x1, x2) ≤ FX1 (x1)FZ

(x2
θ

)
.

– For x1 ≥ 0 and x2 ≤ 0, we have I+ = {1}, η̆ = 1, k = 1, I− = {2}, η̈ = 2,

κ = 1, I+∗ = ∅, k∗ = 0, I−∗ = {2} and κ∗ = 1, thus

FX1 (x1)FZ

(x2
θ

)
≤ F(X1,X2) (x1, x2) ≤ FX1 (x1)FZ (0) .

These results now have to be combined with the ones obtained for the marginal

distribution.

4 Simulation study

The theoretical bounds for the finite dimensional distributions of a process X

following a δ-TGARCH model are now evaluated by means of a simulation study.

This study is devoted to the bounds obtained for F(X1,X2) as in this case we are able

to graphically compare the results, like we have done in the marginal distributions.

We consider the δ-TGARCH(1, 1) model and we firstly resume the expressions

of the bounds obtained for n = 2. So, for each (x1, x2), we have an upper and a
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lower bound for F(X1,X2) (x1, x2), denoted by LS (x1, x2) and LI (x1, x2), respec-

tively. In order to facilitate the presentation, we consider R2 divided in its four

quadrants, including the points (0, x2) and (x1, 0) in the adequate odd quadrant.

Denoting FZ (0) by a and considering θ =
(

α0
1−γ1

)1/δ
, ϖ1 =

[
E
(
σδ
t

)]1/δ
, ϖ2 (x) =[

α0 + α1x
δ + γ1E

(
σδ
t

)]1/δ
and ϖ3 (x) =

[
α0 + β1x

δ + γ1E
(
σδ
t

)]1/δ
with y1 chosen

as the greatest positive real such that hδ (−y1, y) ≥ 0, for all y ∈
[
θδ,+∞

[
, we get

LS (x1, x2) =



FZ

(
x1
θ

)
FZ

(
x2
θ

)
, (x1, x2) ∈ 1.oQ

FZ

(
x1
ϖ1

)
FZ

(
x2
θ

)
,

(x1, x2) ∈ 2.oQ such that

hδ(x1, y) ≥ 0

a2 −
[
a− FZ

(
x1
ϖ1

)]
×

×
[
a− FZ

(
x2

ϖ3(−x1)

)]
,

(x1, x2) ∈ 3.oQ such that

hδ(−x1, y) ≥ 0 and hδ(−x2, y) ≥ 0

FZ

(
x1
θ

)
a, (x1, x2) ∈ 4.oQ

and LI(x1, x2) =

=



FZ

(
x1
ϖ1

)
a+

+
[
FZ

(
x1
ϖ1

)
− a
] [

FZ

(
x2

ϖ2(x1)

)
− a
]
+

+
[
a− FZ

(
− y1

ϖ1

)] [
FZ

(
x2

ϖ3(y1)

)
− a
]
,

(x1, x2) ∈ 1.oQ such that

hδ(x1, y) ≥0 andhδ(x2, y) ≥ 0

FZ

(
x1
θ

)
a, (x1, x2) ∈ 2.oQ

FZ

(
x1
θ

)
FZ

(
x2
θ

)
, (x1, x2) ∈ 3.oQ

FZ

(
x1
ϖ1

)
FZ

(
x2
θ

)
,

(x1, x2) ∈ 4.oQ such that

hδ(x1, y) ≥ 0

In the sequel of the simulation study done for the marginal distribution of X

when the marginal distribution of the generator process is Gaussian we consider

the δ-TGARCH(1, 1) model, with α0 = 10, α1 = 0.3, β1 = 0.5, γ1 = 0.2, and

δ equal to 1
2 (Figure 5) and 2 (Figure 6). In each figure, the same graphic is

presented under four perspectives, with LS(x1, x2) in orange, LI(x1, x2) in blue

and, in green, the empirical estimate of F(X1,X2) (x1, x2), calculated from 10 000

realizations of the X process. For readability, we only present the region (x1, x2) ∈[
−θ

√
1 + δ, θ

√
1 + δ

]2
, where it is assured that hδ (x1, y) ≥ 0 and hδ (x2, y) ≥ 0.
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Nevertheless, we point out that the theoretical bounds for F(X1,X2) (x1, x2) by

means of LS(x1, x2) and LI(x1, x2) are valid in a larger region, as we easily see

from their expressions. We considered y1 = θ
√
1 + δ.

Figure 5: Graphical representation of LS (x1, x2) (orange), LI (x1, x2) (blue) and

estimate of F(X1,X2) (x1, x2) (green), with X ∼ 1
2 -TGARCH(1, 1) and Zt ∼ N (0, 1)

Figure 6: Graphical representation of LS (x1, x2) (orange), LI (x1, x2) (blue) and

estimate of F(X1,X2) (x1, x2) (green), with X ∼ 2-TGARCH(1, 1) and Zt ∼ N (0, 1)

From Figures 5 and 6 we note that:

– in the first quadrant, the lower bound presents, in both cases, good quality,

contrary to the upper bound that seems to be better with the increase of δ;

– in the second quadrant, we observe a clear increase in the quality with the

increase of δ, especially in what concerns the upper bound;
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– in the third and fourth quadrants, the quality of the lower bound increases

with δ, but it does not happen for the upper bound.

It will be interesting to analyze if the quality of the bounds is related with δ

or, alternatively, with other parameters associated to the δ order stationarity, as

Sδ, for example, which is equal, in this study, to 0.529, when δ = 1
2 , and 0.6, when

δ=2.

We point out that, by enlarging the plotted region, the bounds seem to be still

valid, as happened in the study of the marginal distribution.

The bounds obtained for F(X1,X2) (x1, x2) reveal a very good quality, the upper

bound in the third and fourth quadrants needing eventually additional attention.

As a final note, we observe that to obtain the empirical distribution function

for the vector (X1, X2) in Figure 6 (here n = 2) it took us 62.5% more time when

compared with the time needed to obtain the same function for the variable X1

drawn in the bottom right graphic of Figure 1 (here n = 1). In both graphics

we have the same δ-TGARCH(1,1) model and the same number of trajectories

of the process simulated. On the contrary, the computation times related to the

calculation of the bounds are not significantly different which may be seen as an

advantage of the bounding of the distribution of the process when compared with

its nonparametric estimation.

5 Application to Control Charts

In many situations we are interested in detecting if an observed process Y diverts

from a supposed target processX. Control charts are used for exactly that purpose.

This type of control scheme provides control limits that signal an out-of-control

situation if surpassed by the observed process.

In control charts for time series, in particular for δ-TGARCH processes, two

main problems arise in contrast with the classical context as we don’t have inde-

pendent observations nor the normality of the observed characteristic. Moreover,

the marginal law of the underlying process is unknown ant its non-parametric esti-

mation becomes mandatory. In order to overcome these issues, Severin and Schmid

(1999) proposed control charts for standard GARCH processes, namely modified

Shewhart control charts with symmetric limits to detect changes in the mean of

the process.
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When designing this kind of control charts that allow for asymmetric limits,

two distribution functions take on an added importance.

First, the marginal distribution of the target process is used to set the control

limits so that, when the process is in in-control, it is equally likely that an observed

value falls below the lower control limit (LCL) or above the upper control limit

(UCL). More specifically, we assume a Type-I risk α such that P (Xt < LCL) =

P (Xt > UCL) = α/2. To evaluate that probability we believe that the bound

FZ

(
x
[
E
(
σδ
t

)]− 1
δ

)
can be very relevant due to the exceptional quality present in

both symmetric and asymmetric cases.

Second, the distribution function of
(
X+

1 , X−
1 , ..., X+

n , X−
n

)
is used to evaluate

the average run length (ARL), which is the average number of instants that must

go by before an out-of-control situation is signaled. Usually a control chart is set

so that it has a specific in-control ARL (i.e., the ARL when the observed process

is in-control). For example, Severin and Schmid (1999) suggest that, in financial

applications using daily stock market values, the in-control ARL should be 20, 40

or 60, because these values correspond to 1, 2 or 3 months of stock market activity.

The ARL is also used to evaluate the performance control charts, as it is important

to have schemes with a high in-control ARL but with a low out-of-control ARL.

To calculate the ARL, the probability of no alarm until time n is needed, which

is, in the in-control state,

P (−a ≤ Xt ≤ b, t = 1, ..., n) = F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (b, a, ..., b, a)

where a = −LCL > 0 and b = UCL > 0. This equality can be extended to the

out-of-control state if a relation is established between the observed and the target

processes, like a change point model. Here the bounds of the distribution function

of
(
X+

1 , X−
1 , ..., X+

n , X−
n

)
can be used to evaluate the ARL, as shown in Gonçalves,

Leite and Mendes-Lopes (2013b).

6 Conclusion

In this paper we estimate the probability distribution of a power TGARCH process,

X = (Xt, t ∈ Z), by establishing bounds for their finite dimensional laws.

These bounds for the distribution function are expressed in terms of the distri-

bution function of its generating process and of the parameters of the model. For
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n ≥ 2, they are established by means of a preliminary bound for the 2n-dimensional

vector
(
X+

1 , X−
1 , ..., X+

n , X−
n

)
.

The overall good quality of these theoretical bounds is illustrated by a simula-

tion study with n = 1 and n = 2.

The examples presented show that the procedure here proposed is an alterna-

tive to the classical estimation of the finite dimensional laws of a process by the

empirical distribution functions.

We point out that this probabilistic methodology will be useful, in particular,

to evaluate control charts with symmetric or asymmetric bounds for the general

class of conditional heteroskedastic processes considered in this study. For some

particular models of this wide class and in the context of symmetrical control

charts we have shown in Gonçalves, Leite and Mendes-Lopes (2013b) the interest

and quality of this methodology.
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