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Abstract—Radiation therapy is one of the main treatments
against cancer. Intensity Modulated Radiation Theray
(IMRT) is one type of radiation therapy that allows a high
degree of conformity between the radiation intensiés and the
areas to treat. The planning of a radiation treatmen for a
given patient is crucial for obtaining the desiredgoals (being
able to destroy cancer cells while preserving theealthy ones).
In clinical practice, treatment planning is most of the times
based on a lengthy trial-and-error procedure duringwhich the
planner interacts with a treatment planning systemtrying to
find a treatment that complies with the medical precription.
One of the first decisions the planner has to makes on the
angles to be used to deliver radiation. In clinicapractice, most
of the times, the number of angles to be used isfa®d a priori
based on the experience of the planner with similacases.
Often, the solution that is used is the equidistansolution,
where all angles are equally apart. In this paper w propose
the use of Differential Evolution (DE) for determining in an
automated way the set of angles that should be uséda given
IMRT treatment. Solutions obtained after the DE optimization
are then compared with the equidistant solution. Peliminary
results considering ten already treated patients atthe
Portuguese Institute of Oncology of Coimbra IPOCFGare
presented.

Keywords—Differential  Evolution; inverse
radiation therapy; optimization

planning;

I. INTRODUCTION

Cancer is considered by the World Health Orgaropati
as one of the main threats for health and human
development, being nowadays responsible for abdut &f
deaths in Europe. Radiation therapy, chemotherapy a
surgery are the main treatment options, many tiomsed
concomitantly. About half of all cancer patientslivie
submitted to radiation therapy sometime duringrthigiess.
Radiation therapy tries to kill cancerous cellsd&fivering
radiation to the areas to treat, while at the same
preserving healthy cells that will also be damadsd
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radiation. There are many different types of radiat
therapy techniques. In this paper we will focuslaensity
Modulated Radiation Therapy (IMRT). In IMRT, high
energy photon beam radiation is generated by aadine
accelerator mounted on a gantry that can rotatenara
central axis parallel to the couch where the pateys. The
rotation of the couch combined with the rotation thé
gantry allows irradiation from almost any anglewrd the
tumor. Nevertheless, most of the times, only comlan
treatments are considered.

The head of the gantry has a multileaf collimatéig(
1). IMRT is one technique of radiation therapy, vehéhe
modulation of the radiation intensity is enabled the
controlled movement of the multiple leaves of the
collimator. The leaves are capable of blockingatdn. By
changing the position of the leaves from a givemglan
during the radiation delivery it is possible to msie
intensity modulated radiation profiles. Not onlethrea to
be irradiated is adjusted to the tumor shape, kg the
radiation intensity is modulated to better irradittie tumor,
sparing as most as possible adjacent healthy chils.
conceptual terms, we can interpret a radiation besiveing
composed by a grid of smaller beamlets of indepeinde
intensities.

The planning of a given IMRT treatment is basedtan
patients’ CT images, where the medical doctor éelies all
important structures that have to be taken intooawct
during planning (Fig. 2). Important structures wnsider
are the areas to treat (usually denominated Plgnharget
Volumes — PTVs), and all the organs to spare (Grgen
Risk — OARSs). The set of all patients’ CT imagelewla
discretization of the patient into voxels.

For each given patient, the radiation oncologist also
determine the medical prescription that stipulatbe
radiation doses that should be deposited in the sPBvid
the doses that are acceptable for OARs (see Tafile dn



example). For each given patient, there is no gueeathat
the medical prescription can be totally fulfilled.

il
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Fig. 1. Multileaf collimator (Image courtesy of Varian Medi Systems,
Inc. All rights reserved.)

Fig. 2. Example of a patient’s CT slice, with several stuues delineated.

Depending on organ functionality, OARs can be
classified as being serial or parallel organs.gergans are
such that even if only a small percentage of thgaoris
over-irradiated the whole organ’s functionality is
jeopardized (spinal cord, for instance). This isywh is
necessary to guarantee that the maximum dose egceiv
anywhere within the organ has to be upper boun@¢der
organs can still perform their function even if madl
percentage of the organ is damaged (lung, for masa In
this case, a dose-volume condition has to be predeand

can be expressed by guaranteeing that the mean dose

received is not above a given threshold.

Different IMRT treatment modalities can be consatkr
like step-and-shoot, dynamic IMRT or Arc TherapgylRT
treatment planning can be thought as being compos$ed
three sequential and interrelated stages: a. derithe
number of beam angles and their directions (BAOearB
Angle Optimization); b. calculating the optimal raiibn
intensity map to be delivered to the patient frorarg beam
direction (FMO - Fluence Map Optimization); c.
determining the movement of the multileaf collint&o

leaves to deliver the optimal beamlet intensitiésafe
Sequencing Problem). We will consider the two first
planning stages, and BAO in particular, in step-andot
coplanar IMRT.

TABLE I. EXAMPLE OF PRESCRIBED DOSES
Structure Mean dose Maximum Dose Prescribed Dose
Spinal cord - 45 Gy -
Brainstem - 54 Gy -
Left parotid 26 Gy - -
Right parotid 26 Gy - -
PTV1 - - 70.0 Gy
PTV2 - - 59.4 Gy
Body - 80 Gy —

BAO problem is known to be a challenging problem,
highly non-convex and with many local minima. Sever
approaches have been proposed to tackle this pndhte].

In clinical practice, the treatment planning praces
requires the planner to interact with a treatmdahming
system, trying different sets of objectives andgtéss in a
trial and error process until a satisfactory dasériution is
obtained. This is a lengthy procedure, giving nargatees
that the best possible solution is reached. In phaiser we
will try to contribute to the improvement of thee&tment
planning process by deciding in an automated waictwh
gantry angles to use. We will do this by lookingtet BAO
problem as an optimization problem, and by using
Differential Evolution (DE) to calculate good qugli
solutions.

In the next section we will describe the BAO prable
In section 11l we will briefly describe the DE algthhm.
Section IV will show some preliminary computational
results. Section V will state some conclusions passible
developments.

[I. BEAM ANGLE OPTIMIZATION PROBLEM

The first decision a planner has to make is tordete
which angles should be used for radiation delivétyis
common practice to fix the number of anglaspriori,
considering previous experiences with similar casdsual
number of angles used is 5, 7 or 9, depending empdatient
and on the location of PTVs and OARs. The planniértry
to plan a treatment with the minimum number of asgl
possible. Increasing the number of angles is oahsitered
if it is the only way of trying to comply with thenedical
prescription. Increasing the number of angles ko
increase the treatment time. This means that fagents
can be treated per day. Furthermore, from the mageint
of view, faster treatments are better because rihieapility
of deviations relatively to the planning CT duepttient’s
movements decreases. Actually, the position ofpigent
during treatment is of the utmost importance: dwdtl be as
close as possible to the position during the CThscaince
treatment planning is based on CT images.

After fixing the number of angles t& it is then
necessary to determine which angles to use. Eagle aill
belong to ]0°,360°]. Two different approaches tas th
problem can be considered: we can discretize the se



]0°,360°], and the BAO problem can be interpretsdaa
combinatorial problem where we seek to find thetbes
combination ofk angles out of all possible combinations.
We can also choose to interpret each variable as a
continuous variable. In this case it is interestiogpbserve
that it is not even necessary to consider boundshé¢o
possible variables’ values, since all possible eslare
admissible (-10°, for instance, is equivalent to0%35
Although most of the approaches in the literatureose the
first approach, we will choose the latter. A salatito the
BAO problem can thus be interpreted as a vectok of
continuous values in ]0°,360°]. For ease in theositipn,
we will consider that angles in this vector areagtending
order.

To assess the quality of each solution, it is nesgsto
calculate the absorbed radiation doses in everghvoixthe
patient, and consider some measure relating theticol
with the medical prescription. This can only be eafter
solving the FMO problem, that will determine theliedgion
intensities from every angle considered. There rasny
ways of solving the FMO problem described in the
literature, each one of them with pros and cons ttut of
the scope of this paper to discuss the differergsibpde
approaches. In our work, we have chosen to useadratic
programming problem, where a small amount of unoszd
or overdose is accepted but larger deviations are
decreasingly tolerated. The FMO can be define@hs [
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where T, is the desired dose for voxelV is the total

number of voxels,A and A are the penalty weights of
underdose and overdose of voxal respectively,
(+), =max{ 0s} . D, corresponds to the dose contribution

to voxeli from beamlef with unit intensity, whereasv,
represents the intensity (or fluence) of beapldthe total

N
dose received by the voxeils then given bE D,w, , using
j=1
the superposition principle. It can be calculatesing
several different algorithms. In this work we useHRR’s
pencil beam algorithm [9]. The dose calculation take a
considerable amount of time, depending on the pitie
delineated structures and number of angles coriddihe
assessment of a single solution is computatioraily time
demanding.

If we define® as the set of all possible angles, then
BAO problem can be defined as follows:

minf(@,---ﬂk) (2)

Subject tog,,...,6, 1 ©

In our casef(6), 6=6,-.,600, is given by (1)

considering all beamlets belonging &and only these. By
using this function, we are implicitly assuming tthae

expect that lower values off (8) correspond to better

dosimetric results for the patient. Actually, this not
always guaranteed, as will be shown in sectiond, in
fact we do need an objective function to guide sharch
process.

BAO problem is non-linear, non-convex and multimoda
being a challenge for most optimization algorithiDgect
search approaches can be considered to tackldititsof
problems. In this paper we apply DE to this problem

lll.  DIFFERENTIAL EVOLUTION

DE is a stochastic direct search method, based on a

population of solutions, that is able to handle limaar,
non-differentiable and multimodal objective funciso[10].
The algorithm begins with a population af randomly
generated solutions. The main idea behind DE svtive
the population by taking the difference vector hesw two
solutions and use this vector to perturb anothkettisn. The
algorithm only requires two parametefs,and CR, whose
role will be explained shortly.

Let 8°rrepresent the solutionin iteration (generation)
g, and 8°[ j] represent th¢" element of vecto§’® . DE’s
strategy can be understood as a sequence of amytati
crossover and selection operators, described lasv[10]:

* Mutation: A mutant vectov , applied to solutiom, is
calculated by using three different solutioask{and
c different fromi) as follows:

v=8'+F(g -6°).F0[0,7 (3)

» Crossover: Consider as parents vectorsandg® .
Then, each angle in solutiog°"* will be equal to

the angle occupying the same position & or v,

randomly chosen by using a uniform probability
distribution, and guaranteeing that at least orglean
comes fronv by randomly chosen a positignsuch

that 8°"*[ ] = V[ j] -

+ Selection:Solution@°** is compared withg® . If
t(g°*)>f(g°). then g will not replace g°
and 8°* — @°.

The DE algorithm can be briefly described as foBow
1. Generate randomlysolutions. Initializat — 1.
2.i1.

3. Pick randomly three vectors from the populatomul
calculate vectov by using (3).



4.Calculateg®"* by considering the crossover procedure
using 8° andv as parents.

5.1F 1(6°7) > £(6°) theng®™ — 6°.i—i+l.

6. If i <n then go to 3. Elsi — it+1.
7. 1If it > maxit then stop. Else go to 2.

Many variants to this basic algorithm can be thaugh
(see, for instance, [10-14]). In this paper we \ajpiply this
basic version of the algorithm to IMRT BAO probleithe
only difference between this basic version andahe that
was implemented has to do with a specificity of B%O
problem. Regarding clinical outcomes, two angles thiffer
less than 5° can be considered as equal. Forethé®n, after
step 4, we guarantee that all adjacent anglestdeast 5°
apart.

V. COMPUTATIONAL RESULTS

The DE algorithm was tested considering ten clinica
cases of already treated head-and-neck cancenisasiethe
Portuguese Institute of Oncology of Coimbra IPOCFG,
signalized as complex cases where proper targetrage
and organ sparing proved to beffidult to obtain. The
medical prescription was similar for all these pats (Table
[). For each patient, several PTVs with differentse
prescriptions were defined. The simplified OAR list
includes the spinal cord, brainstem and parotitise spinal
cord and the brainstem are some of the most dribéeRs
in the head-and-neck tumor cases, because thegeaiad
type organs. Parotid glands are the largest of thinee
salivary glands and their irradiation can causeostemia
(dry mouth due to lack of saliva), decreasing thality of
life of patients due to fficulties to swallow. The parotids
are parallel type organs. Treatments with five aopf
beams are considered, since in this case beantidirés
critical/fundamental to achieve a good treatmeahpl

Our tests were performed on a Intel Core i7 CPU 2.8
GHz 4GB RAM Windows 7 PC. The dose was computed by
CERR’s pencil beam algorithm [14] (v. 3.2.2, Matlab
R2007a). For each of the ten cases, the voxel wi&e
0.3x0.3x0.3cm3. The FMO problem was solved by a trust-
region-reflective algorithm (fmincon, Matlab Optiration
Toolbox). Each instance of the FMO took from 563&0
seconds to be solved. The weights were considereal ¢o
4 for all PTVs, equal to 2 for all OARs. The pregtions
are depicted in Table I. For different patientsffedent
structures were delineated by the medical docesgsecially
considering the PTVs, as can be seen in Table IlI.

The objective function considered is time demandifg
an automated approach is to be considered in alinic
practice, it should be able to produce a good tusdilution
in a reasonable amount of time, implying that themanot
be too many objective function evaluations. Fos tigason,
and for these preliminary computational experimemis
decided to apply DE considering a very small pojtaof
only 4 solutions and a reduced number of iterati@@mdy
50). In this way we limit the number of objectiventtion

evaluations to 200. The drawback is that we aresit@p
some of the exploration capability of the algorithamd in
effect, the solutions that are used in the mutatparator
(step 3 of the algorithm) are not randomly chogbay are
all the solutions of the population but the onet ikabeing
processed.

The initial set of solutions is constituted by the
equidistant solution and three other solutions that
generated by randomly perturbing this equidistahat®n
(each angle is perturbed by using a normal proibabil
distribution of mean 0 and standard deviation 45°).

Taking into account the stochastic behavior of the
algorithm, DE was run five times for each patidRésults
are then compared with the objective function valfiehe
equidistant solutionf(equi). Table 2 shows the average
objective function value over the 5 executioWs/efage
f DE), the objective function standard deviatied)(and the
improvement, in percentage, obtained with the DE
approach. The average improvement for all patisnégjual
to 5.93%, and the standard deviation over the five
executions of the algorithm is low. There are, hosve
huge differences in the objective function value
improvement among the patients. This is mainly ttuthe
specificities of each patient, namely the locatioh the
structures of interest (PTVs and OARSs), as welltrasr
relative position.

TABLE I1. COMPARISON BETWEEN THE EQUIDISTANT SOLUTION AND
THE DE CALCULATED SOLUTIONS REGARDING OBJECTIVE FUNCTION

VALUES
Patient f_equi Average f DE Sd % improvement
1 207,77 202,60 2,54 2,49%
2 78,80 73,85 1,08 6,28%
3 134,47 129,87 1,04 3,42%
4 169,11 160,34 1,18 5,18%
5 336,42 304,69 3,07 9,43%
6 267,47 257,37 3,72 3,78%
7 41,12 37,369 0,55 9,13%
8 177,90 162,77 3,84 8,50%
9 138,05 12560 2,35 9,02%
10 195,74 191,80 2,20 2,01%

In this problem, the objective function guides the
algorithm towards regions of the search space wheare
hope better solutions can be found. Neverthelesghis
particular problem, more important than the valdette
objective function per se, we are interesting iseasing the
clinical impact of these improved solutions. Focteaf the
10 patients, some dose metrics usually used inicalin
practice for plan evaluation were calculated, ngmel

e Dgs — the dose received by 95% of the PTVs and
that should be greater or equal to 95% of the
prescribed dose;

*  Dpmean — the mean dose received by the whole organ,
usually used for parallel OARs (in this case Leftla
Right Parotids);



* Dmx— the maximum dose received anywhere in the
organ, usually used for serial OARs (in this case
Spinal Cord and Brainstem).

In an ideal situation we would like to have all PV
(primary tumour mass) receiving at least 66.5Gy aiid
PTV2s (regional lymph nodes) receiving at leasD56y.
Considering the OARs, spinal cord should not rezenore
than 45Gy anywhere in the organ. For brainsters, thiue
increases to 54Gy. Parotids should receive a mediation
less than 26Gy.

As for every patient we run the DE algorithm 5 tiane
generating 5 different solutions, we have chosedépict
the results considering the best and the worstheka
solutions, according to the objective function ‘eglu
comparing them with the equidistant solution. Bdo Fig.
8 summarize the dosimetric results obtained for tére
patients, considering the equidistant solution &mel best
and worst DE solutions calculated. Regarding PTVs,
different patients have a different number of PT#iid
PTV2 structures delineated. Figures 3 and 4 defhiet
weighted average dose received (with weights catledl by
the relative volumes of each structure).

PTV g Dggy)
70 T T T T T T T T T T
* e
4 DE_best
B9 < DE worst 4
s
A o
B8 [ = &
*
F o
F 6T} & * o 1
FiN *
o b o
66 il
F ° :
65 q
54 L | | L | L 1 . L .

1 2 3 4 5 6 T 8 9 10
patient #

Fig. 3. Dosimetric results considering PTV1.

PTVeg 4 (Dggey)
80 T T T T T T
* equi
4 DE_best
591 < DE_waorst []
&
B & * © )
W * " o
#
5Tt & T = .
= A & 2 & * 3
[0
56 A
* & *
&
55} #
o
54 -

53 I I I I 1 I 1 1 ! 1
1 2 3 4 5 6 7 8 9 10

patient #

Fig. 4. Dosimetric results considering PTV2.

60

55

50

Gy

45

40

52

50

48

46

44

Gy

42

40

38

36

30

29

Brainstem (DMaX)
*® equ
& DE_best
o @ DE_worst
#* o i
é Fis
*
*
A (o]
A M & Ed i
o]
) |
x |
1 2 3 4 5 8 7 10
patient #
Fig. 5. Dosimetric results considering Brainstem.
Spinal cord (DMax)
# equl
& & DE best |
< DE_worst
Q
#*
Q & b
) & & z
Fiy
o] E & 4
* 'y *
1 2 3 4 5 & 7 10
patient #
Fig. 6. Dosimetric results considering Spinal Cord.
Right parotid (DMean)
A # equ
* 4 DE_best
< DE_worst

28

27

26

24

23

22

21

20

O ¥l

[= %

& S
*
A
o
. | |
5 & 7
patient #

Fig. 7. Dosimetric results considering the Right Parotid.



Left parotid (DMean)

30 T T T T T

* equi
sal o 4 DE best ||
< DE_waorst
281 A
*
7 a ¥ 51
¥
* * * %
= o
& 26
o i o
[+} *
BE o % 2 . A
a Q
241 A -
A
Pl A
|

372 I I I I L I L L )

patient #

Fig. 8. Dosimetric results considering the Left Parotid.

For PTVs (Fig. 3 and Fig. 4), we would like to have
doses above the depicted line. For OARs (Fig. Bigo 8),
we would like to have all values under the depiditeets.

The DE calculated solutions present, for most pigie
better planning target coverage and better left gt
parotids sparing. This is possibly achieved dua sightly
higher radiation of Spinal Cord, although in alksea but
one the treatment complies with the maximum dose

allowed.

Detailed dosimetric results are depicted in Table |
where all the planning target structures delineased

discriminated for each patient (PTV1_ 1,

represents one of the PTV1 structures).

for ins@®nc

Values in bold correspond to better outcomes oflike

generated solutions.

TABLE Il ASSESSMENT OF THE IMPROVED SOLUTIONS

Patient & Equidistant Best DE solution Worst DE

Structures solution solution
PTV1_1 D95=65.70 D95=66.28 D95=65.93
PTV1_2 D95=65.70 D95=66.48 D95=66.28
PTV1_3 D95=67.30 D95=67.78 D95=67.83
PTV2_1 D95=57.50 D95=57.92 D95=57.53
PTV2_2 D95=57.50 D95=58.38 D95=57.93
Spinal Cord | Dmax=38.90 | Dmax=40.26 Dmax=40.97
Left Parotid Dmean=26.4 | Dmean=24.46 Dmean=24.97
Right Parotid | Dmean=25.64 | Dmean=24.94 Dmean=25.04
Brainstem Dmax=52.61 | Dmax=50.58 Dmax=52.06
PTV1 D95=67.03 D95=67.08 D95=66.23
PTV2 D95=55.78 D95=56.58 D95=54.53
Spinal Cord | Dmax=44.96 | Dmax=50.36 Dmax=48.71
Left Parotid Dmean=26.35| Dmean=25.96 Dmean=25.73
Right Parotid | Dmean=25.18 | Dmean=27.45 Dmean=25.09
Brainstem Dmax=55.25 | Dmax=53.90 Dmax=56.11
PTV1 D95=66.30 D95=65.9 D95=66.33
PTV2 D95=56.70 D95=56.70 D95=56.63
Spinal Cord | Dmax=42.46 | Dmax=30.65 Dmax=40.03
Left Parotid Dmean=27.26 | Dmean=25.98 Dmean=26.96
Right Parotid | Dmean=26.23 | Dmean=25.78 Dmean=25.13
Brainstem Dmax=40.58 | Dmax=40.00 Dmax=44.23
PTV1_1 D95=67.90 D95=68.10 D95=67.90
PTV1 2 D95=67.91 D95=65.10 D95=65.10
PTV2 D95=55.30 D95=55.70 D95=55.30

Spinal Cord | Dmax=40.09 | Dmax=40.14 Dmax=40.89
Left Parotid | Dmean=27.11 | Dmean=26.71 Dmean=26.14
Right Parotid | Dmean=28.16 | Dmean=28.42 Dmean=27.76
Brainstem Dmax=50.04 | Dmax=51.27 Dmax=48.93
5 | PTV1_1 D95=69.30 D95=69.30 D95=69.30
PTV1_2 D95=67.10 D95=67.18 D95=67.13
PTV1_3 D95=64.90 D95=65.30 D95=64.70
PTV2_1 D95=55.10 D95=54.30 D95=53.90
PTV2_2 D95=56.30 D95=56.10 D95=56.30
PTV2_3 D95=55.70 D95=56.63 D95=56.93
Spinal Cord | Dmax=38.49 | Dmax=38.61 Dmax=24.44
Left Parotid Dmean=26.51 | Dmean=23.68 Dmean=29.15
Right Parotid | Dmean=29.10 | Dmean=29.34 Dmean=26.23
Brainstem Dmax=50.34 | Dmax=50.75 Dmax=50.55
6 | PTV1_ 1 D95=68.53 D95=68.43 D95=68.63
PTV1_2 D95=65.78 D95=65.88 D95=66.13
PTV1_ 3 D95=65.03 D95=63.98 D95=64.03
PTV2_1 D95=57.83 D95=58.48 D95=58.38
PTV2_2 D95=55.38 D95=57.43 D95=57.43
Spinal Cord | Dmax=38.72 | Dmax=39.78 Dmax=41.95
Left Parotid Dmean=24.93 | Dmean=23.87 Dmean=24.24
Right Parotid | Dmean=25.70 | Dmean=23.13 Dmean=22.84
Brainstem Dmax=51.96 | Dmax=53.21 Dmax=54.81
7 | PTV1_ 1 D95=69.18 D95=69.63 D95=69.73
PTV1 2 D95=67.48 D95=68.33 D95=68.58
PTV1_ 3 D95=67.43 D95=69.83 D95=69.78
PTV2 D95=57.48 D95=66.68 D95=67.83
Spinal Cord | Dmax=41.01 | Dmax=41.69 Dmax=41.14
Left Parotid | Dmean=26.42 | Dmean=26.60 Dmean=25.30
Right Parotid | Dmean=26.43 | Dmean=26.39 Dmean=27.81
Brainstem Dmax=52.35 | Dmax=52.17 Dmax=51.52
8 | PTV1_1 D95=69.10 D95=69.43 D95=69.43
PTV1_2 D95=68.50 D95=68.53 D95=68.63
PTV1_ 3 D95=66.90 D95=66.68 D95=67.18
PTV1 4 D95=65.30 D95=65.78 D95=65.73
PTV1_ 5 D95=66.30 D95=66.83 D95=67.33
PTV1_ 6 D95=67.70 D95=68.08 D95=67.60
PTV2_1 D95=56.70 D95=56.93 D95=57.18
PTV2_2 D95=56.30 D95=56.08 D95=57.03
Spinal Cord | Dmax=39.72 | Dmax=40.66 Dmax=42.78
Left Parotid | Dmean=25.29 | Dmean=25.55 Dmean=24.29
Right Parotid | Dmean=27.12 | Dmean=27.05 Dmean=26.30
Brainstem Dmax=52.45 | Dmax=53.27 Dmax=53.62
9 | PTV1_1 D95=69.10 D95=69.10 D95=69.10
PTV1_2 D95=66.70 D95=66.50 D95=66.90
PTV1_ 3 D95=66.10 D95=65.90 D95=65.90
PTV1 4 D95=66.70 D95=65.90 D95=65.30
PTV2_1 D95=57.50 D95=57.50 D95=57.50
PTV2_2 D95=57.50 D95=57.50 D95=57.30
PTV2_3 D95=56.50 D95=57.30 D95=57.10
Spinal Cord | Dmax=39.39 | Dmax=41.44 Dmax=40.49
Left Parotid | Dmean=25.25| Dmean=25.20 Dmean=25.15
Right Parotid | Dmean=20.80 | Dmean=21.63 Dmean=24.44
Brainstem Dmax=51.40 | Dmax=51.81 Dmax=49.93
10 | PTV1_1 D95=67.93 D95=67.53 D95=68.33
PTV1 2 D95=65.63 D95=65.63 D95=66.28
PTV1_3 D95=67.08 D95=67.98 D95=67.63
PTV1 4 D95=65.28 D95=65.28 D95=65.53
PTV1 5 D95=66.38 D95=66.28 D95=66.23
PTV2_1 D95=56.53 D95=55.88 D95=56.58
PTV2_2 D95=57.18 D95=57.58 D95=57.23
Spinal Cord | Dmax=41.06 | Dmax=40.59 Dmax=39.70
Left Parotid Dmean=24.88 | Dmean=26.84 Dmean=25.72
Right Parotid| Dmean=26.41 | Dmean=25.62 Dmean=25.90
Brainstem Dmax=50.44 | Dmax=51.03 Dmax=50.74

As can be seen from Fig. 3 to Fig. 8 and also THhle

the analysis of the dosimetric data of the difféigsiutions
is not as straightforward as looking only to thepiovement
in the objective function value. Actually, for eaghd every




patient, it is not possible to find a single salatithat is
better than the other two for all structures comsd.

Looking at patient 1, we see that de DE solutidnisio
a better PTV coverage, guaranteeing the satisfaci®gs
values. They also guarantee a better sparing oftigarand
brainstem. Considering the spinal cord, the resddtsnot
improve, but they are acceptable sifigg, is lower than the
desired threshold. We can say that, for this pgtiesults
are clearly better for DE solutions, despite thedesh
improvement of 2.49% in the objective function valu

Regarding patient 2, we can see that guaranteeopep
sparing of the spinal cord and brainstem and, atsdme
time, a proper coverage of the PTVs, especially PTi¥
very difficult. This patient should probably be dted with
more than 5 angles.

For patient 3, the solutions generated by the DE
algorithm seem to be superior to the equidistahitiom,
considerably improving OARSs sparing, without jeafizing
the treatment outcome. For patient 4, it is alsesjide to
have a better sparing of the parotids, althoughcthwerage
of PTV2 is a little bit under what would be desigab

Patient 5 is one of the patients with the highest
improvement in the objective function value. Nekeless,
as can be seen by the results depicted in Tabjethd
improvements regarding the clinical outcomes arelest
None of the solutions are capable of guaranteeipgoper
coverage of PTV2_1. DE solutions seem somewhaghigtt
organs sparing.

Results regarding patient 6 are better for DE gmhgt
both considering organ sparing and PTV coveragkeoadh
not entirely satisfactory for PTV1_3. PTV coveragenuch
better for DE solutions when looking at patientarid 8,
and this better coverage does not jeopardize OARSIH.

Although the objective function improvement for ipat
9 is very impressive, this may not necessarily Iteisua
much better expected dosimetric outcome. Therenate
significant differences between DE solutions anc th
equidistant solution.

Looking at patient 10, we see that the DE solutions
outperform the equidistant solution, since theyrgotee
better or equal PTV coverage, but with better osgaparing
in general.

In general, we can conclude that solutions gengéraye
the DE procedure usually result in better organrisga
without jeopardizing PTVs coverage. Results haveb¢o
carefully analyzed, and it is not sufficient toyaln the
improvement of the objective function value sincesingle
objective function has been clinically validatedt yand
therefore solutions with a better objective funeti@mlue do
not necessary correspond to better solutions frastinaal
point of view.

We should remember that we have considered DEawith
very small population of solutions, and a very teui
number of iterations. These preliminary resultsvshbat
DE can be a promising approach to deal with BAGhjzm.

V. CONCLUSIONS ANDFUTURE WORK

One of the main advantages of the DE algorithnhés t
fact that it can be easily parallelized. This wailow the use
of populations with more individuals, increasinge th
exploration capabilities of the algorithm, as wel a
greater number of iterations, without increasing touch
the computational time. Many of the DE variantst thee
known from the literature should also be testeck ihpact
of different objective function values, and the at&n
between improvements in the objective function and
improvements in the clinical outcomes requires hieirt
studies. Another way of tackling the expensive otije
function evaluation is through the use of surrogataels
(see, for instance, [4]). The use of surrogate rsodkdow
that only a subset of promising solutions are eatald by
the “true” and computationally expensive objective
function, whereas most of the solutions are evatlidtty a
very fast and hopefully accurate function.
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