
IMRT Beam Angle Optimization using Differential 
Evolution 

 

Joana Dias 
Inesc-Coimbra and Faculty of Economics 

University of Coimbra 
Coimbra, Portugal 

joana@fe.uc.pt 

Brígida Ferreira 
I3N, University of Aveiro 

Aveiro, Portugal 
brigida@ua.pt 

Humberto Rocha 
Inesc-Coimbra 

Coimbra, Portugal 
hrocha@mat.uc.pt 

Maria do Carmo Lopes 
IPOC-FG, EPE, Coimbra  
I3N, University of Aveiro 

Aveiro, Portugal 
mclopes@ipocoimbra.min-saude.pt

 
 
 

Abstract—Radiation therapy is one of the main treatments 
against cancer. Intensity Modulated Radiation Therapy 
(IMRT) is one type of radiation therapy that allows a high 
degree of conformity between the radiation intensities and the 
areas to treat. The planning of a radiation treatment for a 
given patient is crucial for obtaining the desired goals (being 
able to destroy cancer cells while preserving the healthy ones). 
In clinical practice, treatment planning is most of the times 
based on a lengthy trial-and-error procedure during which the 
planner interacts with a treatment planning system trying to 
find a treatment that complies with the medical prescription. 
One of the first decisions the planner has to make is on the 
angles to be used to deliver radiation. In clinical practice, most 
of the times, the number of angles to be used is defined a priori 
based on the experience of the planner with similar cases. 
Often, the solution that is used is the equidistant solution, 
where all angles are equally apart. In this paper we propose 
the use of Differential Evolution (DE) for determining in an 
automated way the set of angles that should be used in a given 
IMRT treatment. Solutions obtained after the DE optimization 
are then compared with the equidistant solution. Preliminary 
results considering ten already treated patients at the 
Portuguese Institute of Oncology of Coimbra IPOCFG are 
presented. 

Keywords—Differential Evolution; inverse planning; 
radiation therapy; optimization 

I.  INTRODUCTION 

Cancer is considered by the World Health Organization 
as one of the main threats for health and human 
development, being nowadays responsible for about 20% of 
deaths in Europe. Radiation therapy, chemotherapy and 
surgery are the main treatment options, many times used 
concomitantly. About half of all cancer patients will be 
submitted to radiation therapy sometime during their illness. 
Radiation therapy tries to kill cancerous cells by delivering 
radiation to the areas to treat, while at the same time 
preserving healthy cells that will also be damaged by 

radiation. There are many different types of radiation 
therapy techniques. In this paper we will focus on Intensity 
Modulated Radiation Therapy (IMRT). In IMRT, high 
energy photon beam radiation is generated by a linear 
accelerator mounted on a gantry that can rotate around a 
central axis parallel to the couch where the patient lays. The 
rotation of the couch combined with the rotation of the 
gantry allows irradiation from almost any angle around the 
tumor. Nevertheless, most of the times, only coplanar 
treatments are considered. 

The head of the gantry has a multileaf collimator (Fig. 
1). IMRT is one technique of radiation therapy, where the 
modulation of the radiation intensity is enabled by the 
controlled movement of the multiple leaves of the 
collimator. The leaves are capable of blocking radiation. By 
changing the position of the leaves from a given angle 
during the radiation delivery it is possible to achieve 
intensity modulated radiation profiles. Not only the area to 
be irradiated is adjusted to the tumor shape, but also the 
radiation intensity is modulated to better irradiate the tumor, 
sparing as most as possible adjacent healthy cells. In 
conceptual terms, we can interpret a radiation beam as being 
composed by a grid of smaller beamlets of independent 
intensities.  

The planning of a given IMRT treatment is based on the 
patients’ CT images, where the medical doctor delineates all 
important structures that have to be taken into account 
during planning (Fig. 2). Important structures to consider 
are the areas to treat (usually denominated Planning Target 
Volumes – PTVs), and all the organs to spare (Organs at 
Risk – OARs). The set of all patients’ CT images allow a 
discretization of the patient into voxels. 

For each given patient, the radiation oncologist will also 
determine the medical prescription that stipulates the 
radiation doses that should be deposited in the PTVs, and 
the doses that are acceptable for OARs (see Table 1 for an 



example). For each given patient, there is no guarantee that 
the medical prescription can be totally fulfilled.   

 
Fig. 1. Multileaf collimator (Image courtesy of Varian Medical Systems, 
Inc. All rights reserved.) 

 

 
Fig. 2. Example of a patient’s CT slice, with several structures delineated. 

Depending on organ functionality, OARs can be 
classified as being serial or parallel organs. Serial organs are 
such that even if only a small percentage of the organ is 
over-irradiated the whole organ’s functionality is 
jeopardized (spinal cord, for instance). This is why it is 
necessary to guarantee that the maximum dose received 
anywhere within the organ has to be upper bounded. Other 
organs can still perform their function even if a small 
percentage of the organ is damaged (lung, for instance). In 
this case, a dose-volume condition has to be preserved and 
can be expressed by guaranteeing that the mean dose 
received is not above a given threshold.  

Different IMRT treatment modalities can be considered, 
like step-and-shoot, dynamic IMRT or Arc Therapy. IMRT 
treatment planning can be thought as being composed of 
three sequential and interrelated stages: a. deciding the 
number of beam angles and their directions (BAO – Beam 
Angle Optimization); b. calculating the optimal radiation 
intensity map to be delivered to the patient from every beam 
direction (FMO – Fluence Map Optimization); c. 
determining the movement of the multileaf collimator’s 

leaves to deliver the optimal beamlet intensities (Leave 
Sequencing Problem). We will consider the two first 
planning stages, and BAO in particular, in step-and-shoot 
coplanar IMRT.  

TABLE I.  EXAMPLE OF PRESCRIBED DOSES 

Structure Mean dose Maximum Dose Prescribed Dose 
Spinal cord – 45 Gy – 
Brainstem – 54 Gy – 

Left parotid 26 Gy – – 
Right parotid 26 Gy – – 

PTV1 – – 70.0 Gy 
PTV2 – – 59.4 Gy 
Body – 80 Gy – 

 
BAO problem is known to be a challenging problem, 

highly non-convex and with many local minima. Several 
approaches have been proposed to tackle this problem [1-8]. 

In clinical practice, the treatment planning process 
requires the planner to interact with a treatment planning 
system, trying different sets of objectives and penalties in a 
trial and error process until a satisfactory dose distribution is 
obtained. This is a lengthy procedure, giving no guarantees 
that the best possible solution is reached. In this paper we 
will try to contribute to the improvement of the treatment 
planning process by deciding in an automated way which 
gantry angles to use. We will do this by looking at the BAO 
problem as an optimization problem, and by using 
Differential Evolution (DE) to calculate good quality 
solutions. 

In the next section we will describe the BAO problem. 
In section III we will briefly describe the DE algorithm. 
Section IV will show some preliminary computational 
results. Section V will state some conclusions and possible 
developments. 

II. BEAM ANGLE OPTIMIZATION PROBLEM 

The first decision a planner has to make is to determine 
which angles should be used for radiation delivery. It is 
common practice to fix the number of angles a priori, 
considering previous experiences with similar cases.  Usual 
number of angles used is 5, 7 or 9, depending on the patient 
and on the location of PTVs and OARs. The planner will try 
to plan a treatment with the minimum number of angles 
possible. Increasing the number of angles is only considered 
if it is the only way of trying to comply with the medical 
prescription. Increasing the number of angles will also 
increase the treatment time. This means that fewer patients 
can be treated per day. Furthermore, from the patient point 
of view, faster treatments are better because the probability 
of deviations relatively to the planning CT due to patient’s 
movements decreases. Actually, the position of the patient 
during treatment is of the utmost importance: it should be as 
close as possible to the position during the CT scans, since 
treatment planning is based on CT images. 

After fixing the number of angles to k, it is then 
necessary to determine which angles to use. Each angle will 
belong to ]0º,360º]. Two different approaches to this 
problem can be considered: we can discretize the set 



]0º,360º], and the BAO problem can be interpreted as a 
combinatorial problem where we seek to find the best 
combination of k angles out of all possible combinations. 
We can also choose to interpret each variable as a 
continuous variable. In this case it is interesting to observe 
that it is not even necessary to consider bounds to the 
possible variables’ values, since all possible values are 
admissible (-10º, for instance, is equivalent to 350º). 
Although most of the approaches in the literature choose the 
first approach, we will choose the latter. A solution to the 
BAO problem can thus be interpreted as a vector of k 
continuous values in ]0º,360º]. For ease in the exposition, 
we will consider that angles in this vector are in ascending 
order. 

To assess the quality of each solution, it is necessary to 
calculate the absorbed radiation doses in every voxel of the 
patient, and consider some measure relating the solution 
with the medical prescription. This can only be done after 
solving the FMO problem, that will determine the radiation 
intensities from every angle considered. There are many 
ways of solving the FMO problem described in the 
literature, each one of them with pros and cons. It is out of 
the scope of this paper to discuss the different possible 
approaches. In our work, we have chosen to use a quadratic 
programming problem, where a small amount of underdose 
or overdose is accepted but larger deviations are 
decreasingly tolerated. The FMO can be defined as [8]:  
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where iT is the desired dose for voxel i, V is the total 

number of voxels, iλ  and iλ  are the penalty weights of 
underdose and overdose of voxel i, respectively, 

( ) { }max 0,+ =i i . ijD corresponds to the dose contribution 

to voxel i from beamlet j with unit intensity, whereas jw  

represents the intensity (or fluence) of beamlet j. The total 

dose received by the voxel i is then given by
1

N

ij j
j
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=
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the superposition principle. It can be calculated using 
several different algorithms. In this work we used CERR’s 
pencil beam algorithm [9]. The dose calculation can take a 
considerable amount of time, depending on the patient, 
delineated structures and number of angles considered. The 
assessment of a single solution is computationally and time 
demanding. 

If we define Θ as the set of all possible angles, then 
BAO problem can be defined as follows: 

1min ( ,..., )kf θ θ   (2) 

Subject to 1,..., kθ θ ∈ Θ  

In our case, ( )f θθθθ , 1, , kθ θ= ∈Θ⋯θθθθ , is given by (1) 

considering all beamlets belonging to θθθθ and only these. By 
using this function, we are implicitly assuming that we 
expect that lower values of ( )f θθθθ correspond to better 

dosimetric results for the patient. Actually, this is not 
always guaranteed, as will be shown in section IV, but in 
fact we do need an objective function to guide the search 
process.  

BAO problem is non-linear, non-convex and multimodal, 
being a challenge for most optimization algorithms. Direct 
search approaches can be considered to tackle this kind of 
problems. In this paper we apply DE to this problem. 

III.    DIFFERENTIAL EVOLUTION 

DE is a stochastic direct search method, based on a 
population of solutions, that is able to handle nonlinear, 
non-differentiable and multimodal objective functions [10]. 
The algorithm begins with a population of n randomly 
generated solutions. The main idea behind DE is to evolve 
the population by taking the difference vector between two 
solutions and use this vector to perturb another solution. The 
algorithm only requires two parameters, F and CR, whose 
role will be explained shortly. 

Let g
iθθθθ represent the solution i in iteration (generation) 

g, and [ ]g
i jθθθθ  represent the jth element of vector g

iθθθθ . DE’s 

strategy can be understood as a sequence of  mutation, 
crossover and selection operators, described as follows [10]: 

• Mutation: A mutant vector v , applied to solution i, is 
calculated by using three different solutions (a, b and 
c different from i) as follows: 

 ( ) [ ], 0,2g g g
a b cF F+ − ∈θ θ θθ θ θθ θ θθ θ θv =  (3) 

• Crossover: Consider as parents vectors v  and g
iθθθθ . 

Then, each angle in solution 1g
i

+θθθθ  will be equal to 

the angle occupying the same position in  g
iθθθθ  or v , 

randomly chosen by using a uniform probability 
distribution, and guaranteeing that at least one angle 
comes fromv by randomly chosen a position j such 
that [ ] [ ]1g

i j v j+ =θθθθ . 

• Selection:Solution 1g
i

+θθθθ  is compared with g
iθθθθ . If   

( ) ( )1g g
i if f+ >θ θθ θθ θθ θ , then 1g

i
+θθθθ  will not replace g

iθθθθ  

and 1g g
i i

+ ←θ θθ θθ θθ θ . 

 

The DE algorithm can be briefly described as follows: 

1. Generate randomly n solutions. Initialize it←1.  

2. i←1. 

3. Pick randomly three vectors from the population and 
calculate vector v by using (3). 



4.Calculate 1g
i

+θθθθ  by considering the crossover procedure 

using g
iθθθθ  and v as parents. 

5. If ( ) ( )1g g
i if f+ >θ θθ θθ θθ θ  then 1g g

i i
+ ←θ θθ θθ θθ θ . i←i+1.  

6. If i n≤  then go to 3. Else it← it+1.  

7. If it maxit> then stop. Else go to 2. 

Many variants to this basic algorithm can be thought 
(see, for instance, [10-14]). In this paper we will apply this 
basic version of the algorithm to IMRT BAO problem. The 
only difference between this basic version and the one that 
was implemented has to do with a specificity of the BAO 
problem. Regarding clinical outcomes, two angles that differ 
less than 5º can be considered as equal. For this reason, after 
step 4, we guarantee that all adjacent angles are at least 5º 
apart. 

IV.  COMPUTATIONAL RESULTS 

The DE algorithm was tested considering ten clinical 
cases of already treated head-and-neck cancer patients at the 
Portuguese Institute of Oncology of Coimbra IPOCFG, 
signalized as complex cases where proper target coverage 
and organ sparing proved to be difficult to obtain. The 
medical prescription was similar for all these patients (Table 
I). For each patient, several PTVs with different dose 
prescriptions were defined. The simplified OAR list 
includes the spinal cord, brainstem and parotids.  The spinal 
cord and the brainstem are some of the most critical OARs 
in the head-and-neck tumor cases, because they are serial 
type organs. Parotid glands are the largest of the three 
salivary glands and their irradiation can cause xerostomia 
(dry mouth due to lack of saliva), decreasing the quality of 
life of patients due to difficulties to swallow. The parotids 
are parallel type organs. Treatments with five coplanar 
beams are considered, since in this case beam direction is 
critical/fundamental to achieve a good treatment plan. 

Our tests were performed on a Intel Core i7 CPU 2.8 
GHz 4GB RAM Windows 7 PC. The dose was computed by 
CERR’s pencil beam algorithm [14] (v. 3.2.2, Matlab 
R2007a). For each of the ten cases, the voxel size was 
0.3×0.3×0.3cm3. The FMO problem was solved by a trust-
region-reflective algorithm (fmincon, Matlab Optimization 
Toolbox). Each instance of the FMO took from 56 to 350 
seconds to be solved. The weights were considered equal to 
4 for all PTVs, equal to 2 for all OARs. The prescriptions 
are depicted in Table I. For different patients, different 
structures were delineated by the medical doctors, especially 
considering the PTVs, as can be seen in Table III. 

The objective function considered is time demanding. If 
an automated approach is to be considered in clinical 
practice, it should be able to produce a good quality solution 
in a reasonable amount of time, implying that there cannot 
be too many objective function evaluations. For this reason, 
and for these preliminary computational experiments, we 
decided to apply DE considering a very small population of 
only 4 solutions and a reduced number of iterations (only 
50). In this way we limit the number of objective function 

evaluations to 200. The drawback is that we are loosing 
some of the exploration capability of the algorithm, and in 
effect, the solutions that are used in the mutation operator  
(step 3 of the algorithm) are not randomly chosen: they are 
all the solutions of the population but the one that is being 
processed. 

The initial set of solutions is constituted by the 
equidistant solution and three other solutions that are 
generated by randomly perturbing this equidistant solution 
(each angle is perturbed by using a normal probability 
distribution of mean 0 and standard deviation 45º). 

Taking into account the stochastic behavior of the 
algorithm, DE was run five times for each patient. Results 
are then compared with the objective function value of the 
equidistant solution (f_equi). Table 2 shows the average 
objective function value over the 5 executions (Average 
f_DE), the objective function standard deviation (sd) and the 
improvement, in percentage, obtained with the DE 
approach. The average improvement for all patients is equal 
to 5.93%, and the standard deviation over the five 
executions of the algorithm is low. There are, however, 
huge differences in the objective function value 
improvement among the patients. This is mainly due to the 
specificities of each patient, namely the location of the 
structures of interest (PTVs and OARs), as well as their 
relative position. 

TABLE II.  COMPARISON BETWEEN THE EQUIDISTANT SOLUTION AND 
THE DE CALCULATED SOLUTIONS REGARDING OBJECTIVE FUNCTION 

VALUES 

Patient f_equi Average f_DE Sd % improvement 
1 207,77 202,60 2,54 2,49% 
2 78,80 73,85 1,08 6,28% 
3 134,47 129,87 1,04 3,42% 
4 169,11 160,34 1,18 5,18% 
5 336,42 304,69 3,07 9,43% 
6 267,47 257,37 3,72 3,78% 
7 41,12 37,369 0,55 9,13% 
8 177,90 162,77 3,84 8,50% 
9 138,05 125,60 2,35 9,02% 
10 195,74 191,80 2,20 2,01% 
 

In this problem, the objective function guides the 
algorithm towards regions of the search space where we 
hope better solutions can be found. Nevertheless, in this 
particular problem, more important than the value of the 
objective function per se, we are interesting in assessing the 
clinical impact of these improved solutions. For each of the 
10 patients, some dose metrics usually used in clinical 
practice for plan evaluation were calculated, namely: 

•  D95 – the dose received by 95% of the PTVs and 
that should be greater or equal to 95% of the 
prescribed dose; 

• Dmean – the mean dose received by the whole organ, 
usually used for parallel OARs (in this case Left and 
Right Parotids); 



• Dmax – the maximum dose received anywhere in the 
organ, usually used for serial OARs (in this case 
Spinal Cord and Brainstem).  

In an ideal situation we would like to have all PTV1s 
(primary tumour mass) receiving at least 66.5Gy and all 
PTV2s (regional lymph nodes) receiving at least 56.05Gy. 
Considering the OARs, spinal cord should not receive more 
than 45Gy anywhere in the organ. For brainstem, this value 
increases to 54Gy. Parotids should receive a mean radiation 
less than 26Gy.  

As for every patient we run the DE algorithm 5 times, 
generating 5 different solutions, we have chosen to depict 
the results considering the best and the worst of these 
solutions, according to the objective function value, 
comparing them with the equidistant solution. Fig. 3 to Fig. 
8 summarize the dosimetric results obtained for the ten 
patients, considering the equidistant solution and the best 
and worst DE solutions calculated. Regarding PTVs, 
different patients have a different number of PTV1 and 
PTV2 structures delineated. Figures 3 and 4 depict the 
weighted average dose received (with weights calculated by 
the relative volumes of each structure). 

 
Fig. 3. Dosimetric results considering PTV1. 

 
Fig. 4. Dosimetric results considering PTV2. 

 

 
Fig. 5. Dosimetric results considering Brainstem. 

 

 
Fig. 6. Dosimetric results considering Spinal Cord. 

 

 
Fig. 7. Dosimetric results considering the Right Parotid. 



 
Fig. 8. Dosimetric results considering the Left Parotid. 

For PTVs (Fig. 3 and Fig. 4), we would like to have 
doses above the depicted line. For OARs (Fig. 5 to Fig. 8), 
we would like to have all values under the depicted lines. 

The DE calculated solutions present, for most patients, 
better planning target coverage and better left and right 
parotids sparing. This is possibly achieved due to a slightly 
higher radiation of Spinal Cord, although in all cases but 
one the treatment complies with the maximum dose 
allowed.   

Detailed dosimetric results are depicted in Table III, 
where all the planning target structures delineated are 
discriminated for each patient (PTV1_1, for instance, 
represents one of the PTV1 structures). 

Values in bold correspond to better outcomes of the DE 
generated solutions. 

TABLE III.  ASSESSMENT OF THE IMPROVED SOLUTIONS. 

Patient & 
Structures 

Equidistant 
solution 

Best DE solution Worst DE 
solution 

1 PTV1_1 
PTV1_2 
PTV1_3 
PTV2_1 
PTV2_2 
Spinal Cord 
Left Parotid 
Right Parotid 
Brainstem 

D95=65.70 
D95=65.70 
D95=67.30 
D95=57.50 
D95=57.50 
Dmax=38.90 
Dmean=26.4 
Dmean=25.64 
Dmax=52.61 

D95=66.28 
D95=66.48 
D95=67.78 
D95=57.92 
D95=58.38 
Dmax=40.26 
Dmean=24.46 
Dmean=24.94 
Dmax=50.58 

D95=65.93 
D95=66.28 
D95=67.83 
D95=57.53 
D95=57.93 
Dmax=40.97 
Dmean=24.97 
Dmean=25.04 
Dmax=52.06 

2 PTV1 
PTV2 
Spinal Cord 
Left Parotid 
Right Parotid 
Brainstem 

D95=67.03 
D95=55.78 
Dmax=44.96 
Dmean=26.35 
Dmean=25.18 
Dmax=55.25 

D95=67.08 
D95=56.58 
Dmax=50.36 
Dmean=25.96 
Dmean=27.45 
Dmax=53.90 

D95=66.23 
D95=54.53 
Dmax=48.71 
Dmean=25.73 
Dmean=25.09 
Dmax=56.11 

3 PTV1 
PTV2 
Spinal Cord 
Left Parotid 
Right Parotid 
Brainstem 

D95=66.30 
D95=56.70 
Dmax=42.46 
Dmean=27.26 
Dmean=26.23 
Dmax=40.58 

D95=65.9 
D95=56.70 
Dmax=30.65 
Dmean=25.98 
Dmean=25.78 
Dmax=40.00 

D95=66.33 
D95=56.63 
Dmax=40.03 
Dmean=26.96 
Dmean=25.13 
Dmax=44.23 

4 PTV1_1 
PTV1_2 
PTV2 

D95=67.90 
D95=67.91 
D95=55.30 

D95=68.10 
D95=65.10 
D95=55.70 

D95=67.90 
D95=65.10 
D95=55.30 

Spinal Cord 
Left Parotid 
Right Parotid 
Brainstem 

Dmax=40.09 
Dmean=27.11 
Dmean=28.16 
Dmax=50.04 

Dmax=40.14 
Dmean=26.71 
Dmean=28.42 
Dmax=51.27 

Dmax=40.89 
Dmean=26.14 
Dmean=27.76 
Dmax=48.93 

5 PTV1_1 
PTV1_2 
PTV1_3 
PTV2_1 
PTV2_2 
PTV2_3 
Spinal Cord 
Left Parotid 
Right Parotid 
Brainstem 

D95=69.30 
D95=67.10 
D95=64.90 
D95=55.10 
D95=56.30 
D95=55.70 
Dmax=38.49 
Dmean=26.51 
Dmean=29.10 
Dmax=50.34 

D95=69.30 
D95=67.18 
D95=65.30 
D95=54.30 
D95=56.10 
D95=56.63 
Dmax=38.61 
Dmean=23.68 
Dmean=29.34 
Dmax=50.75 

D95=69.30 
D95=67.13 
D95=64.70 
D95=53.90 
D95=56.30 
D95=56.93 
Dmax=24.44 
Dmean=29.15 
Dmean=26.23 
Dmax=50.55 

6 PTV1_1 
PTV1_2 
PTV1_3 
PTV2_1 
PTV2_2 
Spinal Cord 
Left Parotid 
Right Parotid 
Brainstem 

D95=68.53 
D95=65.78 
D95=65.03 
D95=57.83 
D95=55.38 
Dmax=38.72 
Dmean=24.93 
Dmean=25.70 
Dmax=51.96 

D95=68.43 
D95=65.88 
D95=63.98 
D95=58.48 
D95=57.43 
Dmax=39.78 
Dmean=23.87 
Dmean=23.13 
Dmax=53.21 

D95=68.63 
D95=66.13 
D95=64.03 
D95=58.38 
D95=57.43 
Dmax=41.95 
Dmean=24.24 
Dmean=22.84 
Dmax=54.81 

7 PTV1_1 
PTV1_2 
PTV1_3 
PTV2 
Spinal Cord 
Left Parotid 
Right Parotid 
Brainstem 

D95=69.18 
D95=67.48 
D95=67.43 
D95=57.48 
Dmax=41.01 
Dmean=26.42 
Dmean=26.43 
Dmax=52.35 

D95=69.63 
D95=68.33 
D95=69.83 
D95=66.68 
Dmax=41.69 
Dmean=26.60 
Dmean=26.39 
Dmax=52.17 

D95=69.73 
D95=68.58 
D95=69.78 
D95=67.83 
Dmax=41.14 
Dmean=25.30 
Dmean=27.81 
Dmax=51.52 

8 PTV1_1 
PTV1_2 
PTV1_3 
PTV1_4 
PTV1_5 
PTV1_6 
PTV2_1 
PTV2_2 
Spinal Cord 
Left Parotid 
Right Parotid 
Brainstem 

D95=69.10 
D95=68.50 
D95=66.90 
D95=65.30 
D95=66.30 
D95=67.70 
D95=56.70 
D95=56.30 
Dmax=39.72 
Dmean=25.29 
Dmean=27.12 
Dmax=52.45 

D95=69.43 
D95=68.53 
D95=66.68 
D95=65.78 
D95=66.83 
D95=68.08 
D95=56.93 
D95=56.08 
Dmax=40.66 
Dmean=25.55 
Dmean=27.05 
Dmax=53.27 

D95=69.43 
D95=68.63 
D95=67.18 
D95=65.73 
D95=67.33 
D95=67.60 
D95=57.18 
D95=57.03 
Dmax=42.78 
Dmean=24.29 
Dmean=26.30 
Dmax=53.62 

9 PTV1_1 
PTV1_2 
PTV1_3 
PTV1_4 
PTV2_1 
PTV2_2 
PTV2_3 
Spinal Cord 
Left Parotid 
Right Parotid 
Brainstem 

D95=69.10 
D95=66.70 
D95=66.10 
D95=66.70 
D95=57.50 
D95=57.50 
D95=56.50 
Dmax=39.39 
Dmean=25.25 
Dmean=20.80 
Dmax=51.40 

D95=69.10 
D95=66.50 
D95=65.90 
D95=65.90 
D95=57.50 
D95=57.50 
D95=57.30 
Dmax=41.44 
Dmean=25.20 
Dmean=21.63 
Dmax=51.81 

D95=69.10 
D95=66.90 
D95=65.90 
D95=65.30 
D95=57.50 
D95=57.30 
D95=57.10 
Dmax=40.49 
Dmean=25.15 
Dmean=24.44 
Dmax=49.93 

10 PTV1_1 
PTV1_2 
PTV1_3 
PTV1_4 
PTV1_5 
PTV2_1 
PTV2_2 
Spinal Cord 
Left Parotid 
Right Parotid 
Brainstem 

D95=67.93 
D95=65.63 
D95=67.08 
D95=65.28 
D95=66.38 
D95=56.53 
D95=57.18 
Dmax=41.06 
Dmean=24.88 
Dmean=26.41 
Dmax=50.44 

D95=67.53 
D95=65.63 
D95=67.98 
D95=65.28 
D95=66.28 
D95=55.88 
D95=57.58 
Dmax=40.59 
Dmean=26.84 
Dmean=25.62 
Dmax=51.03 

D95=68.33 
D95=66.28 
D95=67.63 
D95=65.53 
D95=66.23 
D95=56.58 
D95=57.23 
Dmax=39.70 
Dmean=25.72 
Dmean=25.90 
Dmax=50.74 

 

As can be seen from Fig. 3 to Fig. 8 and also Table III, 
the analysis of the dosimetric data of the different solutions 
is not as straightforward as looking only to the improvement 
in the objective function value. Actually, for each and every 



patient, it is not possible to find a single solution that is 
better than the other two for all structures considered.  

Looking at patient 1, we see that de DE solutions obtain 
a better PTV coverage, guaranteeing the satisfaction of D95 
values. They also guarantee a better sparing of parotids and 
brainstem. Considering the spinal cord, the results do not 
improve, but they are acceptable since Dmax is lower than the 
desired threshold. We can say that, for this patient, results 
are clearly better for DE solutions, despite the modest 
improvement of 2.49% in the objective function value. 

Regarding patient 2, we can see that guaranteeing proper 
sparing of the spinal cord and brainstem and, at the same 
time, a proper coverage of the PTVs, especially PTV2, is 
very difficult. This patient should probably be treated with 
more than 5 angles. 

For patient 3, the solutions generated by the DE 
algorithm seem to be superior to the equidistant solution, 
considerably improving OARs sparing, without jeopardizing 
the treatment outcome. For patient 4, it is also possible to 
have a better sparing of the parotids, although the coverage 
of PTV2 is a little bit under what would be desirable. 

Patient 5 is one of the patients with the highest 
improvement in the objective function value. Nevertheless, 
as can be seen by the results depicted in Table III, the 
improvements regarding the clinical outcomes are modest. 
None of the solutions are capable of guaranteeing a proper 
coverage of PTV2_1. DE solutions seem somewhat better in 
organs sparing. 

Results regarding patient 6 are better for DE solutions, 
both considering organ sparing and PTV coverage, although 
not entirely satisfactory for PTV1_3. PTV coverage is much 
better for DE solutions when looking at patients 7 and 8, 
and this better coverage does not jeopardize OARs sparing. 

Although the objective function improvement for patient 
9 is very impressive, this may not necessarily result in a 
much better expected dosimetric outcome. There are not 
significant differences between DE solutions and the 
equidistant solution. 

Looking at patient 10, we see that the DE solutions 
outperform the equidistant solution, since they guarantee 
better or equal PTV coverage, but with better organs sparing 
in general. 

In general, we can conclude that solutions generated by 
the DE procedure usually result in better organ sparing 
without jeopardizing PTVs coverage. Results have to be 
carefully analyzed, and it is not sufficient to rely on the 
improvement of the objective function value since no single 
objective function has been clinically validated yet and 
therefore solutions with a better objective function value do 
not necessary correspond to better solutions from a clinical 
point of view.  

We should remember that we have considered DE with a 
very small population of solutions, and a very limited 
number of iterations. These preliminary results show that 
DE can be a promising approach to deal with BAO problem.  

V. CONCLUSIONS AND FUTURE WORK 

One of the main advantages of the DE algorithm is the 
fact that it can be easily parallelized. This will allow the use 
of populations with more individuals, increasing the 
exploration capabilities of the algorithm,  as well as a 
greater number of iterations, without increasing too much 
the computational time. Many of the DE variants that are 
known from the literature should also be tested. The impact 
of different objective function values, and the relation 
between improvements in the objective function and 
improvements in the clinical outcomes requires further 
studies. Another way of tackling the expensive objective 
function evaluation is through the use of surrogate models 
(see, for instance, [4]). The use of surrogate models allow 
that only a subset of promising solutions are evaluated by 
the “true” and computationally expensive objective 
function, whereas most of the solutions are evaluated by a 
very fast and hopefully accurate function. 
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