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Abstract—The fluence map optimization (FMO) problem is
one of the most studied problems in intensity-modulated rad
ation therapy treatment planning. Although many approaches
have shown to yield good solutions to the FMO problem, the op-
timal solutions obtained ensure that the resulting treatmat is
the best possible with respect to the weighting parameterd the
formulation used. Since the ‘optimal’ weighting scheme is o-
known, the choice of the weight parameters is typically a log
trial-and-error process until a satisfactory solution is achieved.
Moreover, for selecting the best irradiating directions, t is not
clear how traditional trial-and-error parameter tuning sh ould
be incorporated or managed. A two-stage programming ap-
proach is proposed to reduce the dependency of the optimal so
lutions on the weight parameters and simultaneously improg
the overall plan quality. This approach is yet another step ¢-
wards automated generation of treatment plans which will re
sultin breakthrough developments in radiation therapy care.

Keywords—ntensity-modulated Radiation Therapy, Fluence
Map Optimization, Inverse planning.

. INTRODUCTION

several beams of ionizing radiation, sent at different-inci
dence directions, pass through the patient. The intewsecti
of these beams is centered at the tumor attempting to geerili
all cancer cells while the surrounding healthy organs asd ti
sues receive radiation from some but not all radiation beams
and may thus be spared. An important type of radiation ther-
apy is intensity-modulated radiation therapy (IMRT), a mod
ern technique where the radiation beam is modulated by a
multileaf collimator. Multileaf collimators (MLC) enabkhe
transformation of the beam into a grid of smaller beamlets
of independent intensities. Beamlets do not exist phylsical
Their existence is generated by the movement of the leaves
of the MLC that block part of the beam during portions of the
delivery time. The MLC has movable leaves on both sides
that can be positioned at any beamlet grid boundary.

In the inverse planning of the radiation therapy treatment
plan, for a prescribed plan, a correspondent set of parasete
(beams and fluences) is algorithmically computed in order to
fulfill the prescribed doses and restrictions. A common way
to solve the IMRT optimization problems is to use a beamlet-
based approach leading to a large-scale programming prob-
lem. Due to the complexity of the whole optimization prob-
lem, the treatment planning is typically divided into three

Cancer is one of the most significant health problemsmaller problems which can be solved sequentially: beam an-

worldwide and was recently identified by the World Healthgle optimization problem, fluence map optimization problem
Organization as one of the four leading threats to huand realization problem. The first problem consists in figdin
man health and development. Radiation therapy, along witthe minimum number of beams and corresponding directions
surgery and chemotherapy, is one of the main treatmerthat satisfy the treatment goals using optimization atbors
modalities for cancer, used for more than half of the cancell, 2]. After deciding what beam angles should be used, a pa-
patients, either to cure the disease or to palliate sympttims tient will be treated using an optimal plan obtained by solv-
is generally used as a local treatment, irradiating tissuits  ing the fluence map (or intensity) optimization problem - the
proven or suspected disease with ionizing radiation, based problem of determining the optimal beamlet weights for the
the fact that cancerous cells are focused on fast repramfucti fixed beam angles. Many mathematical optimization models
and are not as able to repair themselves when damaged by emd algorithms have been proposed for the intensity problem
diation as healthy cells. Therefore, the goal of the treatme including linear models [3, 4], mixed integer linear models
is to deliver enough radiation to kill the cancerous cells bu[5, 6], nonlinear models [7, 8], and multiobjective models
not so much that jeopardizes the ability of the surrounding9, 10]. After an acceptable set of fluence maps is produced,
healthy cells to survive. one must find a suitable way for delivery (realization prob-
Typically, radiation is generated by a linear acceleramar a lem). Typically, beamlet intensities are discretized ané o
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of the many existing techniques ([3, 11]) is used to construcation criteria proposed in the medical physics literatwe a
the apertures and intensities that approximately matchnthe equivalent to convex penalty function criteria when viewed
tensity maps previously determined. However, plan’s quali as a multi-criteria optimization problem. Here, we will use
deterioration must be prevented when reproducing the opta convex penalty function voxel-based nonlinear model [7].
mized intensity maps [12, 13]. The conclusions drawn regarding this particular model em-
The objective of this paper is to present a two-stage probedded in the proposed two-stage programming strategy are
gramming approach for the fluence map optimization (FMO)valid also if different FMO formulations are considered. In
problem. This new approach aims at improving the fulfilmenthis model, each voxel is penalized according to the square
of dose prescription limits for structures other than tusnor difference of the amount of dose received by the voxel and
in a first stage while proper tumor irradiation is aimed in athe amount of dose desired/allowed for the voxel. This for-
second stage. Another important goal that we kept in mindnulation yields a quadratic programming problem with only
during the development of this approach is the reduction ofinear non-negativity constraints on the fluence values [4]
the dependency of the optimal solutions on the weight pa-
rameters and a consequent improved usefulness in beam an- N _ /N
gle optimization. The benefits of this approach are disaisse MiNw | A; <Ti -y Dijo> + Ai (,2 Dijw;j —Ti>
. . j=1 =1
using a retrospective treated case of head-and-neck tumor a
the Portuguese Institute of Oncology of Coimbra. The pa-
per is organized as follows. In the next section we describeSt. ~ 0<w; <w™ j=1... N,
the FMO problem. Section 3 briefly presents the two-stage _
programming approach proposed. Section 4 presents the oyhere Ti is the desired dose for voxél A; and A; are
tained results. In the last section we have the conclusions. the penalty weights of underdose and overdose of voxel
w" s the maximum beamlet intensity allowed afyl, =
max{0,-}. This nonlinear formulation implies that a very
Il. FLUENCE MAP OPTIMIZATION PROBLEM small amount of underdose or overdose may be accepted in
o . o clinical decision making, but larger deviations from the de
F.or optlmlzanor_] PUrposes, radlgtlon dose distribution desired/allowed doses are decreasingly tolerated [7].
posited in the patient, measured |n,Gray (Gy), ngedg .to be The optimal solutions obtained ensure that the resulting
assessed accurately. Each structure’s vqume. Is disedsitiz treatment is the best possible with respect to the weighting
voxels (small v_olume elements) _a_nd the_: dc_Jse 1S compute_d fcHarameters)() used. Since it is impossible to attribute effec-
gach voxel using the superposition prm_mple, €., CO*_"S"’ tive clinical meaning to the weight parameters, the ‘optima
N9 the contribution of each beam_let. Typically, a dose r_natr weighting scheme is unknown and the choice of the weights
D is con;tructed from the collection of all beamlet weights,; typically a long trial-and-error process until a satiséay
by indexing the_ rows of D to each voxel and the columns tosolution is achieved. Furthermore, for beam angle optimiza
each beamlet, i.e., the number of rows of matrix D equals thg,, it g ot clear how traditional trial-and-error paraere
number of voxels\() and the number qf co!umns eql_JaIs thetuning should be incorporated or managed. A two-stage pro-
number of begmlets\()_from all beam directions considered. gramming approach is proposed next, to reduce the depen-
Ther.efore, using matrlx fofmat’ we ﬁan say that. the tOt""’hdosdency of the optimal solutions on the weight parameters and
received by the voxalis given by j_, Dijwj, with wj the o yh0 same time trying to improve the overall plan quality.
weight of beamlej. Usually, the total number of voxels con-
sidered reaches the tens of thousands, thus the row dinmensio
of the dose matrix is of that magnitude. The sizeDobrigi- [1l. TWO-STAGE APPROACH TO THEFLUENCE
nates large-scale problems being one of the main reasons for MAP OPTIMIZATION PROBLEM
the difficulty of solving the FMO problem.
Most of the FMO models in the literature belongto a class Treatment plan optimization is inherently a multi-criteri
of constrained optimization models such that an objectiveprocess. However, typically, the FMO problem is modeled
function is optimized while meeting dose requirements. Aas a weighted sum function where constraints are often im-
variety of criteria may be considered to be included in theplemented as objectives. We propose the following twoestag
objective function, leading to many different objectiveés  programming approach, using the FMO problem formulation
tions. It is beyond the scope of this study to discuss whicldescribed in the previous Section, that can be used for most
formulation of the FMO problem is preferable. Romeijn etof the formulations present in the literature and/or used in
al. [9] demonstrated that most of the treatment plan evaluelinical practice:



Table 1: Prescribed doses for all the structures considerdiRT

optimization.
Initialization Choosew™ > 0. SetT;,i = 1,...,V accord-  girycture Mean dose Max dose Presc. dose
ing to the prescribed doses. _ -
First stage Setw) =w™ j =1,...,N. SetA; = A; = 0 for Spinal cord - 45 Gy -
= . Brainstem - 54 Gy -
tumors and\; = 0, A; = 1 for the remaining structures. L .
. . . " eft parotid 26 Gy - -
Obtain the optimal solution of (1P Right tid 26 G
Second stageSetw? = 0,j =1,...,N. SetA;, = A; = 1 for 'gh' parot y B N
= e N ORA A PTV1 - - 70.0 Gy
tumors and\; = A; = O for the remaining structures. Ob- pTy2 — — 59.4 Gy
tain the optimal solution of (1), for @ w; <wPinstead  Bogy _ 80 Gy _

of O<w; <W™X j=1_.N.

After setting the maximum beamlet intensities allowed
(WM the first stage only considers structures other than
tumors in an optimization loop that starts with the fluences
equal to the maximum fluence allowed. The fluence intensi-
ties are then iteratively optimized (decreased) until thie-m
imum of the first stage is (fast and easily) achieved. Zero is
naturally the optimal objective function value of the firsige : o o oo o e
and the optimal fluences®™) correspond to the maximum
beamlet intensities allowed that fulfill the dose requiretae Fig. 1: Optimal flugnce in_tensities of first stage - left andropt fluence
for all structures but tumors. In a second stage, the fluences intensities of second stage — right.
are optimized only for tumors considering the previously op
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timized fluences as upper limits. our optimization research and provide the necessary desime
try data to perform optimization in IMRT. The dose was com-
IV. NUMERICAL TESTSAND DISCUSSION puted using CERR’s pencil beam algorithm (QIB). To ad-

dress the convex nonlinear formulation of the FMO problem

A clinical example of a retrospective treated case of headn (1) we used a trust-region-reflective algorithimipcor) of
and-neck tumor at the Portuguese Institute of Oncology oMATLAB 7.4.0 (R2007a) Optimization Toolbox.
Coimbra is used to test the proposed approach. The patient Usually, in head-and-neck cancer cases, patients are
CT set and delineated structures were exported via Dicom Rifeated with 5 to 9 equispaced beams in a coplanar arrange-
to a freeware computational environment for radiation-therment. Considering 7 equispaced beams, the total number of
apy research. In general, the head-and-neck region is a cofmeamlets for the tested case is 1378 and the optimal satution
plex area to treat with radiation therapy due to the large-nunof stages one and two are depicted in Fig. 1.
ber of sensitive organs in this region (e.g. eyes, mandénte, Typically, results are judged by depicting their cumulativ
ynx, oral cavity, etc.). For simplicity, in this study, thegans  dose-volume histogram (DVH) or by a variety of metrics. A
at risk (OARSs) used for treatment optimization were limitedmetric usually used for plan evaluation is the volume of PTV
to the spinal cord, the brainstem and the parotid glands.  that receives 95% of the prescribed dose. Typically, 95% of

The tumor to be treated plus some safety margins is callethe PTV volume is required. The occurrence of coldspots,
planning target volume (PTV). For the head-and-neck case iless than 93% of PTV volume receives the prescribed dose,
study it was separated in two parts with different presatibe and the existence of hotspots, the percentage of the PTV vol-
doses: PTV1 and PTV2. The prescription dose for the targatme that receives more than 110% of the prescribed dose, are
volumes and tolerance doses for the OARs considered in trether measures usually used to evaluate the target coverage
optimization are presented in Table 1. Mean and/or maximum doses of OARs are usually displayed

Our tests were performed on a 2.66Ghz Intel Core Dudo verify organ sparing.
PC with 3 GB RAM. In order to facilitate convenient ac- The results considering 7 equispaced beams for the two-
cess, visualization and analysis of patient treatmentiten  stage solution, denoteBWQ and for the single stage solu-
data, the computational tools developed within MATLAB andtion, denotedDNE, are presented in Tables 2 and 3. In terms
CERR [14] (computational environment for radiotherapy re-of targets coverage we can verify that b@O and ONE
search) were used as the main software platform to embodyeatment plans obtained satisfactory target coverage num



Table 2: Target coverage obtained by treatment plans. funds through FCT under project grant PTDC/EIA-

CCO0/121450/2010. This work has also been par-

Target coverage ONE TWO - .

tially supported by FCT under project grant PEst-
PTV1 at 95 % volume 67.225Gy 67.175Gy QOE/EEI/UI308/2014. The work of H. Rocha was supported
PTV1 %> 93% of Rx (%) 99.650 99.625 by the European social fund and Portuguese funds from
PTV1 %> 110% of R (%)  0.000 0.000 MCTES.
PTV2 at 95 % volume 57.975Gy 57.925Gy
PTV2 %> 93% of Rx (%) 97.844 97.619
PTV2 %> 110% of Rx (%)  15.691 15.855 REFERENCES

1. Rocha H, Dias JM, Ferreira BC, Lopes MC. Beam angle opétitn

Table 3: OARs sparing obtained by treatment plans.

Mean Dose (Gy) Max Dose (Gy) 2.
OAR ONE TWO ONE TWO
Spinal cord - - 45475 44.875 3.
Brainstem - - 51.725 52.125
Left parotid 25.398 25.133 - - 4

Right parotid 25.132 24.997

bers. HowevelTWOmanage to fulfill the required dose limits
for all OARs whileONEfail to do so.

V. CONCLUSION ;

A new programming approach to the FMO problem that
reduces the dependency of the optimal solution on the weight&
parameters was proposed and tested successfully using a.
clinical head-and-neck cancer case. This two-stage approa
guarantees organ sparing in a first stage and attempts prop
tumor coverage in a second stage which can be useful also for
a beam angle optimization process. Each beam angle set has
guaranteed organ sparing and the best beam angle set shoqlfi
correspond to the one that presents better tumor coverage.
This weight parameter independence might be useful as weli2.
for automated generation of treatment plans towards replac
ment of the current manual trial-and-error planning, which 13,
will result in breakthrough developments in radiation tpyr

care. 14.
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