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Abstract—The fluence map optimization (FMO) problem is
one of the most studied problems in intensity-modulated radi-
ation therapy treatment planning. Although many approaches
have shown to yield good solutions to the FMO problem, the op-
timal solutions obtained ensure that the resulting treatment is
the best possible with respect to the weighting parameters of the
formulation used. Since the ‘optimal’ weighting scheme is un-
known, the choice of the weight parameters is typically a long
trial-and-error process until a satisfactory solution is achieved.
Moreover, for selecting the best irradiating directions, it is not
clear how traditional trial-and-error parameter tuning sh ould
be incorporated or managed. A two-stage programming ap-
proach is proposed to reduce the dependency of the optimal so-
lutions on the weight parameters and simultaneously improve
the overall plan quality. This approach is yet another step to-
wards automated generation of treatment plans which will re-
sult in breakthrough developments in radiation therapy care.

Keywords—Intensity-modulated Radiation Therapy, Fluence
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I. INTRODUCTION

Cancer is one of the most significant health problems
worldwide and was recently identified by the World Health
Organization as one of the four leading threats to hu-
man health and development. Radiation therapy, along with
surgery and chemotherapy, is one of the main treatment
modalities for cancer, used for more than half of the cancer
patients, either to cure the disease or to palliate symptoms. It
is generally used as a local treatment, irradiating tissueswith
proven or suspected disease with ionizing radiation, basedon
the fact that cancerous cells are focused on fast reproduction
and are not as able to repair themselves when damaged by ra-
diation as healthy cells. Therefore, the goal of the treatment
is to deliver enough radiation to kill the cancerous cells but
not so much that jeopardizes the ability of the surrounding
healthy cells to survive.

Typically, radiation is generated by a linear accelerator and

several beams of ionizing radiation, sent at different inci-
dence directions, pass through the patient. The intersection
of these beams is centered at the tumor attempting to sterilize
all cancer cells while the surrounding healthy organs and tis-
sues receive radiation from some but not all radiation beams
and may thus be spared. An important type of radiation ther-
apy is intensity-modulated radiation therapy (IMRT), a mod-
ern technique where the radiation beam is modulated by a
multileaf collimator. Multileaf collimators (MLC) enablethe
transformation of the beam into a grid of smaller beamlets
of independent intensities. Beamlets do not exist physically.
Their existence is generated by the movement of the leaves
of the MLC that block part of the beam during portions of the
delivery time. The MLC has movable leaves on both sides
that can be positioned at any beamlet grid boundary.

In the inverse planning of the radiation therapy treatment
plan, for a prescribed plan, a correspondent set of parameters
(beams and fluences) is algorithmically computed in order to
fulfill the prescribed doses and restrictions. A common way
to solve the IMRT optimization problems is to use a beamlet-
based approach leading to a large-scale programming prob-
lem. Due to the complexity of the whole optimization prob-
lem, the treatment planning is typically divided into three
smaller problems which can be solved sequentially: beam an-
gle optimization problem, fluence map optimization problem
and realization problem. The first problem consists in finding
the minimum number of beams and corresponding directions
that satisfy the treatment goals using optimization algorithms
[1, 2]. After deciding what beam angles should be used, a pa-
tient will be treated using an optimal plan obtained by solv-
ing the fluence map (or intensity) optimization problem - the
problem of determining the optimal beamlet weights for the
fixed beam angles. Many mathematical optimization models
and algorithms have been proposed for the intensity problem,
including linear models [3, 4], mixed integer linear models
[5, 6], nonlinear models [7, 8], and multiobjective models
[9, 10]. After an acceptable set of fluence maps is produced,
one must find a suitable way for delivery (realization prob-
lem). Typically, beamlet intensities are discretized and one



of the many existing techniques ([3, 11]) is used to construct
the apertures and intensities that approximately match thein-
tensity maps previously determined. However, plan’s quality
deterioration must be prevented when reproducing the opti-
mized intensity maps [12, 13].

The objective of this paper is to present a two-stage pro-
gramming approach for the fluence map optimization (FMO)
problem. This new approach aims at improving the fulfilment
of dose prescription limits for structures other than tumors
in a first stage while proper tumor irradiation is aimed in a
second stage. Another important goal that we kept in mind
during the development of this approach is the reduction of
the dependency of the optimal solutions on the weight pa-
rameters and a consequent improved usefulness in beam an-
gle optimization. The benefits of this approach are discussed
using a retrospective treated case of head-and-neck tumor at
the Portuguese Institute of Oncology of Coimbra. The pa-
per is organized as follows. In the next section we describe
the FMO problem. Section 3 briefly presents the two-stage
programming approach proposed. Section 4 presents the ob-
tained results. In the last section we have the conclusions.

II. FLUENCE MAP OPTIMIZATION PROBLEM

For optimization purposes, radiation dose distribution de-
posited in the patient, measured in Gray (Gy), needs to be
assessed accurately. Each structure’s volume is discretized in
voxels (small volume elements) and the dose is computed for
each voxel using the superposition principle, i.e., consider-
ing the contribution of each beamlet. Typically, a dose matrix
D is constructed from the collection of all beamlet weights,
by indexing the rows of D to each voxel and the columns to
each beamlet, i.e., the number of rows of matrix D equals the
number of voxels (V) and the number of columns equals the
number of beamlets (N) from all beam directions considered.
Therefore, using matrix format, we can say that the total dose
received by the voxeli is given by∑N

j=1Di j wj , with wj the
weight of beamletj. Usually, the total number of voxels con-
sidered reaches the tens of thousands, thus the row dimension
of the dose matrix is of that magnitude. The size ofD origi-
nates large-scale problems being one of the main reasons for
the difficulty of solving the FMO problem.

Most of the FMO models in the literature belong to a class
of constrained optimization models such that an objective
function is optimized while meeting dose requirements. A
variety of criteria may be considered to be included in the
objective function, leading to many different objective func-
tions. It is beyond the scope of this study to discuss which
formulation of the FMO problem is preferable. Romeijn et
al. [9] demonstrated that most of the treatment plan evalu-

ation criteria proposed in the medical physics literature are
equivalent to convex penalty function criteria when viewed
as a multi-criteria optimization problem. Here, we will use
a convex penalty function voxel-based nonlinear model [7].
The conclusions drawn regarding this particular model em-
bedded in the proposed two-stage programming strategy are
valid also if different FMO formulations are considered. In
this model, each voxel is penalized according to the square
difference of the amount of dose received by the voxel and
the amount of dose desired/allowed for the voxel. This for-
mulation yields a quadratic programming problem with only
linear non-negativity constraints on the fluence values [4]:

minw
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s.t. 0≤ wj ≤ wmax, j = 1, . . . ,N,

where Ti is the desired dose for voxeli, λ i and λ i are
the penalty weights of underdose and overdose of voxeli,
wmax is the maximum beamlet intensity allowed and(·)+ =
max{0, ·}. This nonlinear formulation implies that a very
small amount of underdose or overdose may be accepted in
clinical decision making, but larger deviations from the de-
sired/allowed doses are decreasingly tolerated [7].

The optimal solutions obtained ensure that the resulting
treatment is the best possible with respect to the weighting
parameters (λ ) used. Since it is impossible to attribute effec-
tive clinical meaning to the weight parameters, the ‘optimal’
weighting scheme is unknown and the choice of the weights
is typically a long trial-and-error process until a satisfactory
solution is achieved. Furthermore, for beam angle optimiza-
tion it is not clear how traditional trial-and-error parameter
tuning should be incorporated or managed. A two-stage pro-
gramming approach is proposed next, to reduce the depen-
dency of the optimal solutions on the weight parameters and
at the same time trying to improve the overall plan quality.

III. T WO-STAGE APPROACH TO THEFLUENCE

MAP OPTIMIZATION PROBLEM

Treatment plan optimization is inherently a multi-criteria
process. However, typically, the FMO problem is modeled
as a weighted sum function where constraints are often im-
plemented as objectives. We propose the following two-stage
programming approach, using the FMO problem formulation
described in the previous Section, that can be used for most
of the formulations present in the literature and/or used in
clinical practice:



Initialization Choosewmax> 0. SetTi , i = 1, . . . ,V accord-
ing to the prescribed doses.

First stage Setw0
j = wmax, j = 1, . . . ,N. Setλ i = λ i = 0 for

tumors andλ i = 0, λ i = 1 for the remaining structures.
Obtain the optimal solution of (1),wopt.

Second stageSetw0
j = 0, j = 1, . . . ,N. Setλ i = λ i = 1 for

tumors andλ i = λ i = 0 for the remaining structures. Ob-
tain the optimal solution of (1), for 0≤ wj ≤ wopt

j instead
of 0≤ wj ≤ wmax, j = 1, . . . ,N.

After setting the maximum beamlet intensities allowed
(wmax), the first stage only considers structures other than
tumors in an optimization loop that starts with the fluences
equal to the maximum fluence allowed. The fluence intensi-
ties are then iteratively optimized (decreased) until the min-
imum of the first stage is (fast and easily) achieved. Zero is
naturally the optimal objective function value of the first stage
and the optimal fluences (wopt) correspond to the maximum
beamlet intensities allowed that fulfill the dose requirements
for all structures but tumors. In a second stage, the fluences
are optimized only for tumors considering the previously op-
timized fluences as upper limits.

IV. NUMERICAL TESTSAND DISCUSSION

A clinical example of a retrospective treated case of head-
and-neck tumor at the Portuguese Institute of Oncology of
Coimbra is used to test the proposed approach. The patient
CT set and delineated structures were exported via Dicom RT
to a freeware computational environment for radiation ther-
apy research. In general, the head-and-neck region is a com-
plex area to treat with radiation therapy due to the large num-
ber of sensitive organs in this region (e.g. eyes, mandible,lar-
ynx, oral cavity, etc.). For simplicity, in this study, the organs
at risk (OARs) used for treatment optimization were limited
to the spinal cord, the brainstem and the parotid glands.

The tumor to be treated plus some safety margins is called
planning target volume (PTV). For the head-and-neck case in
study it was separated in two parts with different prescribed
doses: PTV1 and PTV2. The prescription dose for the target
volumes and tolerance doses for the OARs considered in the
optimization are presented in Table 1.

Our tests were performed on a 2.66Ghz Intel Core Duo
PC with 3 GB RAM. In order to facilitate convenient ac-
cess, visualization and analysis of patient treatment planning
data, the computational tools developed within MATLAB and
CERR [14] (computational environment for radiotherapy re-
search) were used as the main software platform to embody

Table 1: Prescribed doses for all the structures considered for IMRT
optimization.

Structure Mean dose Max dose Presc. dose

Spinal cord – 45 Gy –
Brainstem – 54 Gy –
Left parotid 26 Gy – –
Right parotid 26 Gy – –
PTV1 – – 70.0 Gy
PTV2 – – 59.4 Gy
Body – 80 Gy –
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Fig. 1: Optimal fluence intensities of first stage – left and optimal fluence
intensities of second stage – right.

our optimization research and provide the necessary dosime-
try data to perform optimization in IMRT. The dose was com-
puted using CERR’s pencil beam algorithm (QIB). To ad-
dress the convex nonlinear formulation of the FMO problem
in (1) we used a trust-region-reflective algorithm (fmincon) of
MATLAB 7.4.0 (R2007a) Optimization Toolbox.

Usually, in head-and-neck cancer cases, patients are
treated with 5 to 9 equispaced beams in a coplanar arrange-
ment. Considering 7 equispaced beams, the total number of
beamlets for the tested case is 1378 and the optimal solutions
of stages one and two are depicted in Fig. 1.

Typically, results are judged by depicting their cumulative
dose-volume histogram (DVH) or by a variety of metrics. A
metric usually used for plan evaluation is the volume of PTV
that receives 95% of the prescribed dose. Typically, 95% of
the PTV volume is required. The occurrence of coldspots,
less than 93% of PTV volume receives the prescribed dose,
and the existence of hotspots, the percentage of the PTV vol-
ume that receives more than 110% of the prescribed dose, are
other measures usually used to evaluate the target coverage.
Mean and/or maximum doses of OARs are usually displayed
to verify organ sparing.

The results considering 7 equispaced beams for the two-
stage solution, denotedTWO, and for the single stage solu-
tion, denotedONE, are presented in Tables 2 and 3. In terms
of targets coverage we can verify that bothTWO andONE
treatment plans obtained satisfactory target coverage num-



Table 2: Target coverage obtained by treatment plans.

Target coverage ONE TWO

PTV1 at 95 % volume 67.225 Gy 67.175 Gy
PTV1 %> 93% of Rx (%) 99.650 99.625
PTV1 %> 110% of Rx (%) 0.000 0.000
PTV2 at 95 % volume 57.975 Gy 57.925 Gy
PTV2 %> 93% of Rx (%) 97.844 97.619
PTV2 %> 110% of Rx (%) 15.691 15.855

Table 3: OARs sparing obtained by treatment plans.

Mean Dose (Gy) Max Dose (Gy)

OAR ONE TWO ONE TWO

Spinal cord – – 45.475 44.875
Brainstem – – 51.725 52.125
Left parotid 25.398 25.133 – –
Right parotid 25.132 24.997 – –

bers. However,TWOmanage to fulfill the required dose limits
for all OARs whileONEfail to do so.

V. CONCLUSION

A new programming approach to the FMO problem that
reduces the dependency of the optimal solution on the weight
parameters was proposed and tested successfully using a
clinical head-and-neck cancer case. This two-stage approach
guarantees organ sparing in a first stage and attempts proper
tumor coverage in a second stage which can be useful also for
a beam angle optimization process. Each beam angle set has
guaranteed organ sparing and the best beam angle set should
correspond to the one that presents better tumor coverage.
This weight parameter independence might be useful as well
for automated generation of treatment plans towards replace-
ment of the current manual trial-and-error planning, which
will result in breakthrough developments in radiation therapy
care.
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