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Abstract—Radiation therapy is an important type of cancer
treatment, being delivered to more than half of allcancer
patients. Intensity Modulated Radiation Therapy (IMRT) is
one type of radiation therapy where it is possiblenot only to
conform the dose distribution to the shape of the alumes to
treat, but also to have different radiation intensty profiles that
will allow a better coverage of the volumes to tréaand a better
sparing of all other structures. Planning an IMRT treatment is
a time-demanding task, based on a trial and error pcedure.
We propose an inverse planning approach to this pltbem
based on simulated annealing (SA) and a dynamic mgibor-
hood concept. The planning of an IMRT treatment canbe
interpreted as having several stages, from choosingroper
incidence directions until deciding on the movemenbf the
multiple collimator leaves that will produce the deired intensi-

ty profiles. We consider here mainly the first of hese stages:

the problem of choosing the best intensity directioss. This
problem is known to be highly non-convex and with rany
local minima. SA is a well known metaheuristic thathas prov-
en to be capable of escaping local minima. Some fireinary
computational results using ten clinical examples foalready
treated patient cases of head-and-neck tumors at ¢hPortu-
guese Institute of Oncology of Coimbra (IPOC) willbe de-
scribed.
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I. INTRODUCTION

Radiation therapy is one type of cancer treatmieat is
delivered to more than half of all cancer patiefitse goal
of radiation therapy is to deliver a dose of radiato the
cancerous region to sterilize the tumor (radiativth dam-
age cancer cells that will have difficulties to weer and/or
will die) but at the same time minimizing the damsgo
the surrounding healthy organs and tissues. Tygichigh
energy photon beam radiation is generated by ariaecel-
erator mounted on a gantry that can rotate aroucengal
axis parallel to the couch where the patient |ays rota-
tion of the couch combined with the rotation of tntry
allow an irradiation from almost any angle arouhd tu-
mor. IMRT is one technique of radiation therapy.endthe
modulation of the radiation intensities is enablad the
controlled movement of the multiple leaves of tldima-

tor. In conceptual terms, we can interpret a réaatiabeam
as being composed by a grid of smaller beamletisidd-
pendent intensities. The planning of a given IMR&at-
ment is based on the patient’s CT images and omnti-
cal prescription. In the CT images, the medical tdioc
delineates the area(s) to treat and also all imapbrstruc-
tures that should be spared. The planner will ttrgnto
comply with the radiation oncologist treatment alijees.
These constitute a list of dose prescriptions ® tdrget
volume(s) (PTVs or CTVs) and of tolerance dose-wwu
relationships for the organs at risk (OARS). Imidal prac-
tice, most of the times, treatment planning is dasig a
trial and error approach: the planner tries différsets of
objectives and penalties until a satisfactory dtisgibution
is obtained. This is a lengthy procedure, givingguaran-
tees that the best possible solution is reachechofe effi-
cient way of tackling this problem is an approadtere the
best set of treatment parameters complying withnbdical
prescription are generated by using models ananigztion
algorithms, with the least human interaction pdssib

IMRT treatment planning can be thought as being-com
posed of three sequential and interrelated stagekeciding
the number of beam angles and their directions (BAO
Beam Angle Optimization), where different treatmemb-
dalities can be considered (step-and-shoot, dynakhiT
or Arc Therapy); b. calculating the optimal radiatiinten-
sity map to be delivered to the patient from evbeam
direction (FMO — Fluence Map Optimization); c. det@-
ing the movement of the multileaf collimator's leavto
deliver the optimal beamlet intensities (Leave Seging
Problem). We will consider the two first plannintages,
and BAO in particular, in step-and-shoot coplardRT.
BAO problem is known to be a challenging problemghly
non-convex and with many local minima. Several ap-
proaches have been proposed to tackle this profilesh
SA is a well known metaheuristic that has provebdable
of calculating good quality solutions for challengiprob-
lems. In the next section we will describe the Bk@erse
planning problem. In section 3 we will briefly debe the
SA algorithm. Section 4 will show some preliminarym-
putational results. Section 5 will state some cosions and
possible developments.



Il. BAO INVERSE PLANNING PROBLEM

In the first stage of the planning process it isessary to
determine the irradiation angles. This is usualhnel se-
quentially trying different sets of directions. adly the
numberk of angles to use is considered fixed. So, a give
solution will be any set df angles chosen from the interval
[0,360] that will satisfy as much as possible thedioal
prescription (the medical prescription is not al&/ajtaina-
ble and assessing the quality of a given solut®a non-
trivial problem). In order to apply an inverse piarg ap-
proach, one has to somehow quantify the qualityadh
solution. This can only be done after calculating tiuence
intensities to be delivered from each of the chosegles
(FMO). There are many different ways of solving MO
problem and it is beyond the scope of this papatisouss
the appropriateness of the different approachese He
convex penalty function voxel-based nonlinear md8gis
used, where each voxel is penalized consideringguare
difference of the amount of dose received by the vamdl
the amount of dose desired/allowed for the voxed Wéed
a way to calculate accurately the radiation dos#idution
deposited in the patient. Each structure is dismdtin
voxels (small volume elements) and the dose is ci@tp
for each voxel using the superposition principle,,icon-
sidering the contribution of each beamlet. Typiga#l dose
matrix D is such that each row &f corresponds to a voxel
(V in total) and each column to each possible beafrdet
all beam directions considerel {n total). The element,])
of D corresponds to the dose contribution to vaxélom
beamletj with unit intensity. Therefore, the total dose re-

N
ceived by the voxel is given byz D;w, , with w; repre-
j=1
senting the intensity (or fluence) of beanjlethe FMO can
then be defined as:
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whereT, is the desired dose for voxeld and ) are the
penalty weights of underdose and overdose of vigxed-
spectively, and(-)+ :max{ 0,-} . This nonlinear formula-

tion implies that a very small amount of underdosever-
dose may be accepted in clinical decision makingJdrger
deviations from the desired/allowed doses are dsargly
tolerated. If we defin@® as the set of all possible angles
then BAO problem can be defined as follows:
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where f (9) ,8=4,---,6,00 ,is given by (1) considering
91l beamlets belonging t6 and only these. The a&noi

optimize (2) in an automated way, without humaerven-
tion, by applying a SA algorithm.

subject tod,---,6, 0O

. SA ALGORITHM

SA can be interpreted as a local search probabifiso-
cedure that will try to find a global minimum otast func-
tion even in the presence of many local minima &4 is
inspired by the thermal process for obtaining lonergy
states of a solid in a heat bath in condensed malttgsics
[10]. Detailed descriptions of SA can be found $11P].
Given a setS of possible solutions to the problem, a func-
tion f that will allow us to compare two solutions, agtei
borhood structure and a non-increasing function

T:N - (0,00), SA algorithm can be described as follows:

1. Set counteii —1; Define the initial solutiorx_current and calculate
f_current. f_best —f_current; x_best — x_current.
Generate randomly a new solutian rfew) in the neighborhood of

x_current . x_current — Xx_new. Evalute this solutionf (current).

3. If f_currentsf_best thenf best—f current and x_best — x_current.
Goto 5.
_(f _current—f _best)
T(i)xf _best

Calculate aux — e Generate a random number
n0[0,9 from a uniform distribution. Ih>aux thenf_current —f_best
andx_current — X_best.

5. i« i+1. If the stopping criterion is not met go tcEse stop.

Step 1 initializes the procedure. In Step 2 a smiuis
randomly selected from the neighborhood of the enurr
solution. If this new generated solution is betigsin the
best one known so far, it will become the best tsmuand
the best known value of the objective function pxlated
(Step 3). If this new solution is worse than trestbsolu-
tion, it can still be considered the current onethia next
iteration with a given probability (Step 4). Othésey the
current solution in the next iteration will be thest one
known so far. This probability will depend on therrent
value of functionT (T(i)). The procedure is repeated until
some stopping criterion is met (in the present Gaseaxi-
mum number of iterations). We have defined theiahit
solution to be the one with equidistant anglesgesithis is
usually the solution used in clinical practice. Thelity of
each solution is given by (1). Two solutions aresidered
to be neighbors if they differ by at masangles. The value
of z is dynamically and stochastically determined ichea
iteration by using the concept of dynamically disiened



search spaces [13]. Each variable (angle) will &eupbed
with a given probability calculated as-log()/log(N)

antee a minimum mean dose in the delivered tredtmen
Treatments with five coplanar beams are considesiede

whereN is the maximum number of iterations consideredin this case beam direction is critical/fundametdedchieve

This means that larger neighborhoods are considartte
beginning of the algorithm’s execution, promotingnare
global search. The algorithm will then become fechin
the small neighborhood of the current solution. Tiegni-
tudes of the perturbations are randomly sampled feo
normal distribution with mean 0 and standard désmat
(considered equal t@6Q X ).Given the specificities of

BAO problem, it is also guaranteed that the cursaftition
does not have two adjacent angles that are lessdthapart
(considered the same from a clinical point of viefinc-
tion T (also known asemperature or cooling schedule due
to the analogy with the physical annealing procejlus

here defined aB(i) = (1-log( )/ log(N )) .The probability of
accepting a worse solution than the current orggaater at

the beginning of the algorithm and is close to zerine last
iterations.

Iv. COMPUTATIONAL RESULTS

a good treatment plan. An increase in the numbemngfes
is only considered if it is not possible to reachliaically
acceptable solution with this number of angles.aling a
patient with a reduced number of angles has sewtal
vantages for the patient, by reducing setup eandsirradi-
ation time, and for the workflow of the health ihgion,
allowing to increase the number of treated patie@tse of
the difficulties a planner faces is to know whetbenot an
increased number of beams should be considerext girs
not possible for him to explore the whole feas#pace and
to know with a high level of certainty that it istnpossible
to find an acceptable solution with the current bemof
beams. An angle optimization approach can suppguwet t
decision of considering treatment plans with morgles.

Our tests were performed on a Intel Core i7 CPU 2.8
GHz 4GB RAM Windows 7 PC. The dose was computed
by CERR’s pencil beam algorithm [14] (v. 3.2.2, Mat
R2007a). For each of the ten cases, the voxel wsae
0.3x0.3x0.3cn?. N was set to 200. The FMO problem was
solved by a trust-region-reflective algorithnimifcon,
Matlab Optimization Toolbox). Each instance of #&O

The SA algorithm was tested considering ten clinicatgok from 56 to 350 seconds to be solved. The tesan-

cases of already treated head-and-neck cancemizati

sider the improvement in the objective function pamned to

IPOC, signalized as complex cases where propeettargthe equidistant solution. For each patient, thertigm was

coverage and organ sparing proved to Ifcdit to obtain.
The medical prescription was similar for all thgzsients
(Table 1). There are two PTVs with different dosesprip-
tions. The simplified OAR list includes the spinebrd,

executed five times.

Table 2 Computational Results

brainstem and parotids. Patient equi Average SA Standard ~ Average %
solution Solution Deviation  improvement
1 387.3 3746 1.4 3.3%
Table 1 Prescribed doses for all the structuresideresi 2 72.9 68.4 0.8 6.2%
3 187.6 173.6 2.2 7.5%
Structure Mean dose Maximum Dose Prescribed Dose 4 156.4 150.0 1.0 4.1%
Spinal cord - 45 Gy - 5 277.6 256.9 15 7.4%
Brainstem - 54 Gy - 6 165.6 155.1 15 6.3%
Left parotid 26 Gy - - 7 40.4 34.0 0.5 15.8%
Right parotid 26 Gy - - 8 165.0 153.4 1.1 7.7%
PTV1 - - 70.0 Gy 9 1243 116.0 2.3 6.6%
PTV2 - - 59.4 Gy 10 186.4 178.3 2.9 4.4%
Body - 80 Gy —

The spinal cord and the brainstem are some of thgt m
critical OARs in the head-and-neck tumor casesabse
even if only one subunit is damaged, the whole orfgac-
tionality is compromised (serial type organ). Pargiands
are the largest of the three salivary glands aed tiradia-
tion can cause xerostomia (dry mouth due to lackatif/a),
decreasing the quality of life of patients due itficulties to
swallow. The parotids are parallel type organs, iiea
small volume of the organ is damaged, the resh@forgan

functionality may not beféected, so we should try to guar-

More important than the value of the objective tiort
are the results from the clinical point of viewpking at the
irradiated doses in the structures considered. Kitneasu-
ally used for plan evaluation is the PTV volumetthe
ceives 95% of the prescribed dose (usually 95% oPfh¢
volume is required). These metrics are displayedHhe ten
cases in Fig. 1, considering the best and the veoistions
out of the 5 solutions generated by SA and alsethadis-
tant solution. The horizontal lines represent 95%thef
prescribed dose. In order to verify parotids’ spgrimean
doses are usually displayed (Fig. 2). The horidolm&s



represent the tolerance mean dose for the corrdampn
structures. Satisfactory treatment plans shouldinbesults
under these lines. The doses for spinal cord aamthétem
fulfilled the maximum dose tolerance in all testextes and
for all treatment plans, so are not depicted.

=) =

D

Fig. 2 Comparison of organ sparing metrics

The results show that it was possible to improeattr
ment plans with respect to all structures in 7 @ulO pa-
tients. The PTV coverage has improved for all peasieand
it was possible to obtain significant improvementshe left
parotid sparing. In these clinical cases, the rgdrotid has
proven to be more difficult to spare. Nevertheldes five
out of the ten patients it was necessary to ineréas num-
ber of beams to seven since the dose distributias mot
considered acceptable.

V. CONCLUSIONS

Applying SA to BAO inverse planning problem im-
proves organ sparing without jeopardizing tumorezage.
The use of automated optimization methods in IMRanp
ning problems diminishes the time needed for plagni
whilst at the same time improves the quality oftneents.
Other algorithmic approaches capable of dealing Wwigh
non-convex search spaces with many local minimailgho
be investigated, like tabu search, path relinkingyong
others. Another possibility is taken advantage loéaaly
treated patients’ data and applying knowledge-bamed
proaches.
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