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Abstract—Radiation therapy is an important type of cancer 
treatment, being delivered to more than half of all cancer 
patients. Intensity Modulated Radiation Therapy (IMRT) is 
one type of radiation therapy where it is possible not only to 
conform the dose distribution to the shape of the volumes to 
treat, but also to have different radiation intensity profiles that 
will allow a better coverage of the volumes to treat and a better 
sparing of all other structures. Planning an IMRT treatment is 
a time-demanding task, based on a trial and error procedure. 
We propose an inverse planning approach to this problem 
based on simulated annealing (SA) and a dynamic neighbor-
hood concept. The planning of an IMRT treatment can be 
interpreted as having several stages, from choosing proper 
incidence directions until deciding on the movement of the 
multiple collimator leaves that will produce the desired intensi-
ty profiles. We consider here mainly the first of these stages: 
the problem of choosing the best intensity directions. This 
problem is known to be highly non-convex and with many 
local minima. SA is a well known metaheuristic that has prov-
en to be capable of escaping local minima. Some preliminary 
computational results using ten clinical examples of already 
treated patient cases of head-and-neck tumors at the Portu-
guese Institute of Oncology of Coimbra (IPOC) will be de-
scribed. 
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I. INTRODUCTION  

Radiation therapy is one type of cancer treatment that is 
delivered to more than half of all cancer patients. The goal 
of radiation therapy is to deliver a dose of radiation to the 
cancerous region to sterilize the tumor (radiation will dam-
age cancer cells that will have difficulties to recover and/or 
will die) but at the same time minimizing the damages to 
the surrounding healthy organs and tissues. Typically, high 
energy photon beam radiation is generated by a linear accel-
erator mounted on a gantry that can rotate around a central 
axis parallel to the couch where the patient lays. The rota-
tion of the couch combined with the rotation of the gantry 
allow an irradiation from almost any angle around the tu-
mor. IMRT is one technique of radiation therapy, where the 
modulation of the radiation intensities is enabled by the 
controlled movement of the multiple leaves of the collima-

tor. In conceptual terms, we can interpret a radiation beam 
as being composed by a grid of smaller beamlets of inde-
pendent intensities. The planning of a given IMRT treat-
ment is based on the patient’s CT images and on the medi-
cal prescription. In the CT images, the medical doctor 
delineates the area(s) to treat and also all important struc-
tures that should be spared. The planner will then try to 
comply with the radiation oncologist treatment objectives. 
These constitute a list of dose prescriptions to the target 
volume(s) (PTVs or CTVs) and of tolerance dose-volume 
relationships for the organs at risk (OARs). In clinical prac-
tice, most of the times, treatment planning is done using a 
trial and error approach: the planner tries different sets of 
objectives and penalties until a satisfactory dose distribution 
is obtained. This is a lengthy procedure, giving no guaran-
tees that the best possible solution is reached. A more effi-
cient way of tackling this problem is an approach where the 
best set of treatment parameters complying with the medical 
prescription are generated by using models and optimization 
algorithms, with the least human interaction possible. 

IMRT treatment planning can be thought as being com-
posed of three sequential and interrelated stages: a. deciding 
the number of beam angles and their directions (BAO – 
Beam Angle Optimization), where different treatment mo-
dalities can be considered (step-and-shoot, dynamic IMRT 
or Arc Therapy); b. calculating the optimal radiation inten-
sity map to be delivered to the patient from every beam 
direction (FMO – Fluence Map Optimization); c. determin-
ing the movement of the multileaf collimator’s leaves to 
deliver the optimal beamlet intensities (Leave Sequencing 
Problem). We will consider the two first planning stages, 
and BAO in particular, in step-and-shoot coplanar IMRT. 
BAO problem is known to be a challenging problem, highly 
non-convex and with many local minima. Several ap-
proaches have been proposed to tackle this problem [1-8]. 
SA is a well known metaheuristic that has proven to be able 
of calculating good quality solutions for challenging prob-
lems. In the next section we will describe the BAO inverse 
planning problem. In section 3 we will briefly describe the 
SA algorithm. Section 4 will show some preliminary com-
putational results. Section 5 will state some conclusions and 
possible developments. 



II.  BAO INVERSE PLANNING PROBLEM 

In the first stage of the planning process it is necessary to 
determine the irradiation angles. This is usually done se-
quentially trying different sets of directions. Usually the 
number k of angles to use is considered fixed. So, a given 
solution will be any set of k angles chosen from the interval 
[0,360] that will satisfy as much as possible the medical 
prescription (the medical prescription is not always attaina-
ble and assessing the quality of a given solution is a non-
trivial problem). In order to apply an inverse planning ap-
proach, one has to somehow quantify the quality of each 
solution. This can only be done after calculating the fluence 
intensities to be delivered from each of the chosen angles 
(FMO). There are many different ways of solving the FMO 
problem and it is beyond the scope of this paper to discuss 
the appropriateness of the different approaches. Here a 
convex penalty function voxel-based nonlinear model [8] is 
used, where each voxel is penalized considering the square 
difference of the amount of dose received by the voxel and 
the amount of dose desired/allowed for the voxel. We need 
a way to calculate accurately the radiation dose distribution 
deposited in the patient. Each structure is discretized in 
voxels (small volume elements) and the dose is computed 
for each voxel using the superposition principle, i.e., con-
sidering the contribution of each beamlet. Typically, a dose 
matrix D is such that each row of D corresponds to a voxel 
(V in total) and each column to each possible beamlet from 
all beam directions considered (N in total). The element (i,j) 
of D corresponds to the dose contribution to voxel i from 
beamlet j with unit intensity. Therefore, the total dose re-

ceived by the voxel i is given by
1
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senting the intensity (or fluence) of beamlet j. The FMO can 
then be defined as:  

 (1) 

s.t.  

where is the desired dose for voxel i,  and  are the 

penalty weights of underdose and overdose of voxel i, re-

spectively, and . This nonlinear formula-

tion implies that a very small amount of underdose or over-
dose may be accepted in clinical decision making, but larger 
deviations from the desired/allowed doses are decreasingly 
tolerated. If we define Θ as the set of all possible angles, 
then BAO problem can be defined as follows: 

  (2) 

subject to   (3) 

where , , is given by (1) considering 

all beamlets belonging to and only these. The aim is to 
optimize (2) in an automated way, without human interven-
tion, by applying a SA algorithm. 

III.  SA ALGORITHM 

SA can be interpreted as a local search probabilistic pro-
cedure that will try to find a global minimum of a cost func-
tion even in the presence of many local minima [9]. SA is 
inspired by the thermal process for obtaining low energy 
states of a solid in a heat bath in condensed matter physics 
[10]. Detailed descriptions of SA can be found in [9-12]. 
Given a set S of possible solutions to the problem, a func-
tion f that will allow us to compare two solutions, a neigh-
borhood structure and a non-increasing function 

, SA algorithm can be described as follows: 
1. Set counter i←1; Define the initial solution x_current and calculate  

f_current. f_best←f_current; x_best←x_current. 
2. Generate randomly a new solution (x_new) in the neighborhood of 

x_current . x_current←x_new.  Evalute this solution (f_current).  
3. If f_current≤f_best then f_best←f_current  and x_best←x_current. 

Go to 5. 

4. Calculate . Generate a random number 

[ ]0,1n∈ from a uniform distribution. If n>aux then f_current←f_best 

and x_current←x_best. 
5. i← i +1. If the stopping criterion is not met go to 2. Else stop. 

 
Step 1 initializes the procedure. In Step 2 a solution is 

randomly selected from the neighborhood of the current 
solution. If this new generated solution is better than the 
best one known so far, it will become the best solution and 
the best known value of the objective function is updated 
(Step 3).  If this new solution is worse than the best solu-
tion, it can still be considered the current one in the next 
iteration with a given probability (Step 4). Otherwise, the 
current solution in the next iteration will be the best one 
known so far. This probability will depend on the current 
value of function T (T(i)). The procedure is repeated until 
some stopping criterion is met (in the present case a maxi-
mum number of iterations). We have defined the initial 
solution to be the one with equidistant angles, since this is 
usually the solution used in clinical practice. The quality of 
each solution is given by (1). Two solutions are considered 
to be neighbors if they differ by at most z angles. The value 
of z is dynamically and stochastically determined in each 
iteration by using the concept of dynamically dimensioned 
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search spaces [13]. Each variable (angle) will be perturbed 
with a given probability calculated as 1 log( ) log( )i N−
where N is the maximum number of iterations considered. 
This means that larger neighborhoods are considered in the 
beginning of the algorithm’s execution, promoting a more 
global search. The algorithm will then become focused in 
the small neighborhood of the current solution. The magni-
tudes of the perturbations are randomly sampled from a 
normal distribution with mean 0 and standard deviation r 
(considered equal to 360 2 ).k Given the specificities of 

BAO problem, it is also guaranteed that the current solution 
does not have two adjacent angles that are less than 4º apart 
(considered the same from a clinical point of view). Func-
tion T (also known as temperature or cooling schedule due 
to the analogy with the physical annealing procedure) is 
here defined as ( )( ) 1 log( ) log( ) .T i i N= − The probability of 

accepting a worse solution than the current one is greater at 
the beginning of the algorithm and is close to zero in the last 
iterations. 

IV.  COMPUTATIONAL RESULTS 

The SA algorithm was tested considering ten clinical 
cases of already treated head-and-neck cancer patients at 
IPOC, signalized as complex cases where proper target 
coverage and organ sparing proved to be difficult to obtain. 
The medical prescription was similar for all these patients 
(Table 1). There are two PTVs with different dose prescrip-
tions. The simplified OAR list includes the spinal cord, 
brainstem and parotids.   

Table 1 Prescribed doses for all the structures considered 

Structure Mean dose Maximum Dose Prescribed Dose 
Spinal cord – 45 Gy – 
Brainstem – 54 Gy – 
Left parotid 26 Gy – – 
Right parotid 26 Gy – – 
PTV1 – – 70.0 Gy 
PTV2 – – 59.4 Gy 
Body – 80 Gy – 

 
The spinal cord and the brainstem are some of the most 

critical OARs in the head-and-neck tumor cases, because 
even if only one subunit is damaged, the whole organ func-
tionality is compromised (serial type organ). Parotid glands 
are the largest of the three salivary glands and their irradia-
tion can cause xerostomia (dry mouth due to lack of saliva), 
decreasing the quality of life of patients due to difficulties to 
swallow. The parotids are parallel type organs, i.e., if a 
small volume of the organ is damaged, the rest of the organ 
functionality may not be affected, so we should try to guar-

antee a minimum mean dose in the delivered treatment. 
Treatments with five coplanar beams are considered, since 
in this case beam direction is critical/fundamental to achieve 
a good treatment plan. An increase in the number of angles 
is only considered if it is not possible to reach a clinically 
acceptable solution with this number of angles. Treating a 
patient with a reduced number of angles has several ad-
vantages for the patient, by reducing setup errors and irradi-
ation time, and for the workflow of the health institution, 
allowing to increase the number of treated patients. One of 
the difficulties a planner faces is to know whether or not an 
increased number of beams should be considered, since it is 
not possible for him to explore the whole feasible space and 
to know with a high level of certainty that it is not possible 
to find an acceptable solution with the current number of 
beams. An angle optimization approach can support the 
decision of considering treatment plans with more angles. 

Our tests were performed on a Intel Core i7 CPU 2.8 
GHz 4GB RAM Windows 7 PC. The dose was computed 
by CERR’s pencil beam algorithm [14] (v. 3.2.2, Matlab 
R2007a). For each of the ten cases, the voxel size was 
0.3×0.3×0.3cm3. N was set to 200. The FMO problem was 
solved by a trust-region-reflective algorithm (fmincon, 
Matlab Optimization Toolbox). Each instance of the FMO 
took from 56 to 350 seconds to be solved. The results con-
sider the improvement in the objective function compared to 
the equidistant solution. For each patient, the algorithm was 
executed five times.  

Table 2 Computational Results 

Patient 
equi 

solution 
Average SA 

Solution 
Standard 
Deviation 

Average % 
improvement 

1 387.3 374.6 1.4 3.3% 
2 72.9 68.4 0.8 6.2% 
3 187.6 173.6 2.2 7.5% 
4 156.4 150.0 1.0 4.1% 
5 277.6 256.9 1.5 7.4% 
6 165.6 155.1 1.5 6.3% 
7 40.4 34.0 0.5 15.8% 
8 165.0 153.4 1.1 7.7% 
9 124.3 116.0 2.3 6.6% 
10 186.4 178.3 2.9 4.4% 

 
More important than the value of the objective function 

are the results from the clinical point of view, looking at the 
irradiated doses in the structures considered. A metric usu-
ally used for plan evaluation is the PTV volume that re-
ceives 95% of the prescribed dose (usually 95% of the PTV 
volume is required). These metrics are displayed for the ten 
cases in Fig. 1, considering the best and the worst solutions 
out of the 5 solutions generated by SA and also the equidis-
tant solution. The horizontal lines represent 95% of the 
prescribed dose. In order to verify parotids’ sparing, mean 
doses are usually displayed (Fig. 2). The horizontal lines 



represent the tolerance mean dose for the corresponding 
structures. Satisfactory treatment plans should obtain results 
under these lines. The doses for spinal cord and brainstem 
fulfilled the maximum dose tolerance in all tested cases and 
for all treatment plans, so are not depicted.  

  

Fig. 1 Comparison of target irradiation metrics 

 

Fig. 2 Comparison of organ sparing metrics 

The results show that it was possible to improve treat-
ment plans with respect to all structures in 7 out of 10 pa-
tients. The PTV coverage has improved for all patients, and 
it was possible to obtain significant improvements in the left 
parotid sparing. In these clinical cases, the right parotid has 
proven to be more difficult to spare. Nevertheless, for five 
out of the ten patients it was necessary to increase the num-
ber of beams to seven since the dose distribution was not 
considered acceptable. 

V. CONCLUSIONS  

Applying SA to BAO inverse planning problem im-
proves organ sparing without jeopardizing tumor coverage. 
The use of automated optimization methods in IMRT plan-
ning problems diminishes the time needed for planning, 
whilst at the same time improves the quality of treatments. 
Other algorithmic approaches capable of dealing with high 
non-convex search spaces with many local minima should 
be investigated, like tabu search, path relinking, among 
others. Another possibility is taken advantage of already 
treated patients’ data and applying knowledge-based ap-
proaches. 
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