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Abstract

In this paper we present a mathematical model to describe the evolution of glioma
cells taking into account the viscoelastic properties of brain tissue. A theoretical stability
analysis gives information to design protocols which efficiency is illustrated by a number
of numerical simulations.
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1 Introduction

Cancer is a complex disease which leads to the uncontrolled growth of abnormal cells,
destruction of normal tissues and invasion of vital organs. Extensive research has been
done to model cancerous growth, however the understanding of malignant gliomas is much
less complete, mostly because migration of gliomas represent a very challenging problem
from a mathematical viewpoint.

Gliomas are diffusive and highly invasive brain tumors. Median untreated survival
time for high grade gliomas ranges from 6 months to 1 year and even lower grade gliomas
can rarely be cured. Theorists and experimentalists believe that inefficiency of treatments
results from the high mobility of glioma cells, which is partly driven by the mechanical
properties of brain tissue.

The first model to measure the growth of an infiltrating glioma was provided by Murray
in the early 90s ([19]). He formulated the problem as a conservation law where the rate
of change of tumor cell population results from mobility and net proliferation of cells. An
equation of type

∂c

∂t
= ∇.(D̃∇c) + f(c) in Ω × (0,∞) (1)
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was used, where Ω ⊂ R
n, n = 1, 2, 3, is the glioma domain, c(x, t) denotes the tumor cell

density at location x and time t, f(c) denotes net proliferation of tumor cells (generally
assumed to be exponential, f(c) = ρ c where the net proliferation rate ρ is constant), D̃ is
the diffusion tensor and ∇ defines the spatial gradient operator.

The partial differential equation (1), of parabolic type, was established combing the
mass conservation law with Fick’s law for the mass flux JF ,

JF = −D̃∇c . (2)

It is well known that that Fickian approach gives rise to infinite speed of propagation
which is not physically observable. To avoid the limitation of Fickian models an hyperbolic
correction has been proposed in different contexts (see [1], [6], [9], [10], [15], [17], and [20]).

The aim of this paper is to establish a class of non Fickian models that take into account
the viscoelastic behavior of the brain tissue and to present a stable numerical method for
this class of models. A simplified version of this model was considered [2] using a simple
geometry. To apply the modeling approach to specific patients a more realistic look at the
brain geometry and structure is necessary. In this case we can follow [23] where a complex
geometry of the brain and a space dependent diffusion coefficient were considered to reflect
the observation that glioma cells exhibit higher motility in the white matter than in grey
matter ([14]).

We observe that the most popular treatments used to combat gliomas are chemotherapy
and radiotherapy. Chemotherapy involves the use of drugs to disrupt the cell cycle and to
block proliferation. Tracqui et al. [24] incorporated chemotherapy by introducing cell death
as a loss term. If G(t) defines the rate of cells death then, assuming a loss proportional to
the tumour cells density, equation (1) is replaced by

∂c

∂t
= ∇.(D̃∇c) + f(c) − G(t)c in Ω × (0, T ] , (3)

where

G(t) =

{

k, when chemotherapy is being administered
0, otherwise .

(4)

Here k describes the rate of cell death due to exposure to the drug. The main question
is how to define k and the periods of chemotherapy applications that lead to control the
glioma mass.

2 A viscoelastic model

The brain tissue presents a viscoelastic behaviour that can be described by the Voigt-Kelvin
model ([13], [16], [18]). In this section we present a class of non Fickian models to describe
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the space and time evolution of glioma cancer cells, combining the diffusion process with
the viscoelastic properties of the brain tissue.

Several authors have studied the diffusion in a viscoelastic medium ([5], [7], [8] and
[22]), using a modified diffusion equation of type

∂c

∂t
= ∇.(D̃∇c) + ∇.(D̃v∇σ) + f(c) in Ω × (0,∞), (5)

where σ represents the stress exerted by the medium on the diffusing molecules and D̃
represents a diagonal tensor with positive entries.

Even if studies of glioma growth have essentially addressed biochemical and genetic
factors, recent biomedical research has highlighted the role of mechanical properties. Our
aim in this paper is the modelling and analysis of glioma growth under the effect of the
rheological properties of the brain tissue.

Investigators have observed that the stiffness of extracellular matrix can either increase
or decrease the diffusion of migration cells. These observations are explained by the fact
that extracellular matrix stiffness induce complex biochemical phenomena that depend on
the type of diffusive cells and microenvironment properties.

In [25] the authors observed in vitro migration of fibroblasts from soft to stiff regions of
extracellular matrix. Following this paper we consider equation (5) where D̃v is a diagonal
tensor with negative entries.

We assume that the viscoelastic behaviour of the brain tissue is described by the Voigt-
Kelvin model

∂σ

∂t
+ βσ = α1ǫ + α2

∂ǫ

∂t
, (6)

where ǫ stands for the strain. Equation (6) is based on a mechanistic model which is
represented by a spring and a dashpot in parallel, connected with a free spring. In (6) the
viscoelastic characteristic time β is given by β = E0+E1

µ1
, and α1 = E0E1

µ1
, α2 = E0 where E1

is the Young modulus of the spring element, µ1 represents the viscosity and E0 stands for
the Young modulus of the free spring (see [13], [16], [18]).

If we assume that the strain ǫ satisfies ǫ = λc where λ is a positive constant (see [5], [7]
and [8]), from (6) we obtain

∂c

∂t
= ∇.(D∇c) +

∫ t

0
ker(t − s)∇.(Dv∇c(s)) ds + f(c) in Ω × (0,∞) , (7)

where D = D̃ + λα2D̃v, Dv = λ(α1 − βα2)D̃v and ker(s) = e−βs .

According to [11] and [12] we will consider the following assumptions: glioma cells are
of two phenotypes - proliferation (state 1) and migratory (state 2); in state 2 cells randomly
move but there is no cell fission; in state 1 cancer cells do not migrate and only proliferation
takes place with rate ρ; a cell of type 1 remains in state 1 during a time period and then
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switches to a cell of type 2; β1 is the switching rate from state 1 to 2; a cell of type 2 remains
in state 2 during a time period and then switches to a cell of type 1; β2 is the switching
rate from state 2 to 1.

Let u(x, t) and v(x, t) represent the density of migratory and proliferation cells at x
and t, respectively. The dynamics of glioma cells is then described by















∂u

∂t
= ∇.(D∇u) +

∫ t

0
ker(t − s)∇.(Dv∇u(s)) ds − β1u + β2v in Ω × (0, T ],

∂v

∂t
= ρv + β1u − β2v in Ω × (0, T ],

(8)

where D and Dv denote square matrices of order n. The set of equations (8) is complemented
with initial conditions

u(0) = u0, v(0) = v0 in Ω ,

where u0 and v0 define the initial spatial distribution of malignant cells, and boundary
conditions

J.η = 0 on ∂Ω, (9)

where ∂Ω denotes the boundary of Ω, η represents the exterior unit normal to the brain

region and the non Fickian flux J is given by J(t) = −D∇u(t) −

∫ t

0
e−β(t−s)Dv∇u(s) ds .

Condition (9) means that the glioma is located inside of the brain and the cancer cells do
not cross the pia mater.

We will assume that D = [dij ] and Dv = [dv,ij ] are diagonal matrices with diagonal
entries di and dv,i such that

0 < di, dv,i in Ω, i = 1, . . . , n. (10)

If we consider the mass of glioma cells in Ω, M1(t) =

∫

Ω
(u(t) + v(t)) dx we showed in

[4] that M1(t) ≤ eρtM1(0) , assuming the positivity of u, which means that mass M1(t) of
cancer cells at time t depends on the initial mass, on time t and on the proliferation rate ρ.

To avoid the positivity assumption on u we consider the mass related functional
M2(t) = ‖u(t)‖2 + ‖v(t)‖2 , where ‖.‖ denotes the usual L2 . In this case we deduce that

M2(t) ≤ e2max{
β2−β1

2
,
β1−β2

2
+ρ,−β}tM2(0) . (11)

If the tumor density is largen than 1 then an upper bound for M1(t) can be deduced from
an estimate of M2(t) . We observe that we can not select parameters β1, β2, ρ such that
M2(t) is bounded in time. We also remark that inequality (11) allow us to conclude the
stability of the proposed mathematical model with respect to perturbations of the initial
conditions in [0, T ], for fixed T > 0.
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3 Chemotherapy: control of the glioma growth

In this section we study the behaviour of the glioma mass when chemotherapy is considered
and we establish criteria to define protocols that lead to the decreasing of the tumor mass.
All the results of this section were carefully analyzed in [3].

To take into account the chemotherapy effect, the viscoelastic model for glioma growth
(8) is modified as follows















∂u

∂t
= ∇.(D∇u) +

∫ t

0
ker(t − s)∇.(Dv∇u(s)) ds − β1u + β2v − G(t)u in Ω × (0, T ],

∂v

∂t
= ρv + β1u − β2v − G(t)v in Ω × (0, T ],

(12)
where G(t) is defined by (4).

Considering E(t) = M2(t) + ‖

∫ t

0
ker(t − s)

√

Dv∇u(s) ds‖2 , it can be proved that

E′(t) ≤ 2 max
{β2 − β1

2
− G(t),

β1 − β2

2
+ ρ − G(t),−β

}

E(t) . (13)

From (13) some conditions on the parameters, that lead to a decreasing of M2(t) , can be
established:

1. If the net proliferation rate is greater than the switching proliferation rate

ρ > β2 − β1 , (14)

and the total amount of death cells until time t due to chemotherapy effect is such
that

(β1 − β2

2
+ ρ

)

t <

∫ t

0
G(s) ds <

(β2 − β1

2
+ β

)

t , (15)

then we can conclude that M2(t) decreases.

From (15) we conclude that the difference between the net and switching proliferation
rates should be less than the viscoelastic characteristic time, that is,

ρ − (β2 − β1) < β. (16)

If no viscoelastic effects are considered (β = 0) we deduce from (15) that

∫ t

0
G(s) ds,

which measures in some sese the intensity of the treatment, should be smaller.
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2. Otherwise, if the net proliferation rate is less than the switching proliferation rate

ρ < β2 − β1 (17)

and the total amount of death cells until time t, due to chemotherapy effect, is such
that

(β2 − β1

2

)

t <

∫ t

0
G(s) ds <

(β1 − β2

2
+ ρ + β

)

t , (18)

then we conclude that M2(t) decreases. Again we observe that the parameter β has
influence on the admissible threshold of the chemotherapy treatment.

We note that condition (18) implies

ρ − (β2 − β1) > β . (19)

When chemotherapy is applied, conditions (15) and (18) can be used to determine an
effective dosage that induces a rate k of cell death due to the exposure to the drug that
allows to control the total tumor mass. Obviously the value of k depends of the protocol of
chemotherapy. The typical bang-bang protocol corresponds to treatment which alternate
maximum doses of chemotherapy with rest periods when no drug is administered, as defined
by (4) and illustrated in Figure 1.

t

k

Figure 1: Chemotherapy protocol.

4 A fully discrete model

In this section we present a stable method to obtain numerical approximations for the
density of proliferation and migratory glioma cells. We show that the method preserves the
qualitative behaviour of the initial boundary value problem studied in the last section.

We assume that n = 2, Ω is the square [0, L] × [0, L] and H = (h1, h2) with hi >
0, i = 1, 2. In Ω we introduce the spatial grid ΩH = {(x1,i, x2,j), i = 0, . . . , Nh1 , j =
0, . . . , Nh2} ,where xℓ,i = xℓ,i−1 + hℓ, i = 1, . . . , Nhℓ

, xℓ,0 = 0, xℓ,Nhℓ
= L, for ℓ = 1, 2.

By ∂ΩH we represent the set of boundary points. We introduce the following auxiliary
points xℓ,−1 = xℓ,0 − hℓ, xℓ,Nhℓ

+1 = xℓ,Nhℓ
+ hℓ, ℓ = 1, 2.

c©CMMSE ISBN: 978-84-616-9216-3



J. R. Branco, J. A. Ferreira, P. Oliveira

Let wH = (uh, vH) represent a semi-discrete aprocimation of w = (u, v) . To simplify

the presentation we use the notation wi,j = wH(x1,i, x2,j). We discretize
∂

∂x1
(a

∂u

∂x1
), a is a

scalar functions, using the usual second order finite difference discretization

∇∗
h1

(âH∇h1uH)(x1,i, x2,j) =
1

h1

(

ai+1/2,jD−x1ui+1,j − ai−1/2,jD−x1ui,j

)

, (20)

where ai±1/2,j = a(x1,i±
h1
2 , x2,j) and D−x1 denotes the usual backward finite difference oper-

ator in x1 direction. The second order finite difference discretization ∇∗
h2

(b̂H∇h2uH)(x1,i, x2,j)

to discretize
∂

∂x2
(b

∂u

∂x2
) is defined analogously.

In [0, T ] we introduce the grid {tn, n = 0, . . . , M} with tn = tn−1 + ∆t, n = 1, . . . , M,
t0 = 0, tM = T. To compute numerical approximations for u and v in (x1,i, x2,j) at time level
tn, un

H(x1,i, x2,j), vn
H(x1,i, x2,j), respectively, we introduce the fully discrete initial boundary

value problem


















































D−tu
n+1
H =

∑

i=1,2

∇∗
hi

(di∇hi
un+1

H ) + ∆t

n+1
∑

ℓ=1

ker(tn+1 − tℓ)
∑

i=1,2

∇∗
hi

(dv,i∇hi
uℓ

H)

−(β1 + G(tn+1)u
n+1
H + β2v

n+1
H in ΩH ,

D−tv
n+1
H = (ρ − β2 − G(tn+1))v

n+1
H + β1u

n+1
H in ΩH ,

n = 0, . . . , M − 1,

(21)

u0
H = u0, v0

H = v0 in ΩH , (22)

Dηx1
un+1

H (x1,i, x2,j) = 0, i = 0, Nh1 , j = 0, . . . , Nh2 ,

Dηx2
un+1

H (x1,i, x2,j) = 0, i = 0 . . . , Nh1 , j = 0, Nh2 ,
(23)

where

Dηx1
un+1

H (x1,i; x2,j) = Dd1,ηx1
uH(x1,i; x2,j) + ∆t

n+1
∑

l=1

ker(tn+1 − tl)Ddv,1,ηx1
ul

H(x1,i; x2,j) ,

(24)
and Da,ηx1

uH(x1,i; x2,j) is defined by

1

2

(

a(x1,i+1/2; x2,j)D−x1u
n+1
H (x1,i; x2,j) + a(x1,i−1/2; x2,j)D−x1u

n+1
H (x1,i; x2,j)

)

,

for a = d1, dv,1 , being Da,ηx2
uH(x1,i; x2,j) defined analogously.

We now study the stability of the discrete scheme (21), (22) and (23). It’s easy to prove
that

min{1, 1 − ∆tαn+1}En+1
H ≤ En

H , n = 0, . . . , M, (25)
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where

En
H = Mn

H +
∑

i=1,2

‖∆t
n

∑

ℓ=0

ker(tn − tℓ)

√

d̂v,i,HD−xi
uℓ

H‖2
hi

,

Mn
H = ‖un

H‖2
H + ‖vn

H‖2
H represents a discretization of M2(t) and

αn = 2∆t max
{β2 − β1

2
− G(tn), ρ +

β1 − β2

2
− G(tn)

}

.

From (25) we deduce the stability inequality

En+1
H ≤

n+1
∏

ℓ=1

1

min{1, 1 − αℓ∆t}
E0

H , (26)

provided that

1 − ∆t αℓ > 0 , for all ℓ . (27)

When G is defined by (4), if the administered dosage of drug is fixed such that

β2 − β1

2
> k, ρ +

β1 − β2

2
> k , (28)

then condition (27) holds provided that time step size ∆t satisfies

∆t <
1

αβ
, (29)

where

αβ = 2 max
{β2 − β1

2
,
β1 − β2

2
+ ρ

}

.

In this case (26) can be rewritten as follows

En+1
H ≤

1
(

1 − 2∆tαβ

)(n+1)
E0

H ,

and consequently

En+1
H ≤ e

2(n+1)∆t

1−2∆tαβ E0
H , (30)

which means that the numerical scheme (21), (22), (23) is conditionally stable under the
condition (29) provided that the coefficients βi, i = 1, 2, and ρ satisfy (28).
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5 Numerical results

In this section we illustrate the behaviour of (21), (22) and (23). We consider a homogeneous
square domain Ω = [0, 15 cm]× [0, 15 cm], growth rate ρ = 0.012 /day and switching param-
eters β1 = 10−6/day and β2 = 0.036/day . These values are physiological and have been
obtained from [21]. According to [18] the initial condition is defined by 105 cells/cm2 prolif-
eration tumor cells located at the middle point of the domain, E0 = 3156Pa, E1 = 6E0 and
µ = 8.9×10−4 Pa·s . We also consider an isotropic behaviour with d̃11 = d̃22 = 0.004 cm2/day
and d̃v,11 = d̃v,22 = −10−14 /Pa · day (which leads to d11 = d22 ∼ 0.004 cm2/day and
dv,11 = dv,22 = 0.001 cm2/day2) and parameter λ = 1 cm2 .

Let us consider that the chemotherapy treatment is defined by (4) and applied with a
protocol as illustrated in Figure 1. Conditions (15) are used to compute a profile for G(t)
that lead to control the total tumor mass. We consider a 24h dosage and different rest
periods. In Table 1 we show the minimum value of k.

Protocol kmin [./day]

each 7 days 0.224

each 14 days 0.448

Table 1: kmin as (15), for a protocol of 24 consecutive hours of chemotherapy .

In Figure 2 we compare glioma masses for tree patients: one untreated and two sub-
mitted to chemotherapy starting at day 7 and with 7 and 14 rest periods, respectively. The
values of k were computed using conditions (15). We observe a significant reduction of
glioma masses when compared to glioma’s untreated patient. The results presented in this
figure show the effectiveness of our approach to define chemotherapy protocols.
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Figure 2: Glioma masses M1(t) for 200 days.
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In Figure 3 we plot the numerical solutions at day 104 for E0 = 3156Pa Solutions are
presented in a logarithmic scale, which means that the contour plots represent the power
of 10 of the density of tumor cells. For both cases we also present the distribution of pro-
liferation cells for two patients submitted at chemotherapy protocol with a 24h dosage and
14 days of rest period (dosage at days 7, 21, 35, 49, etc). Values of k were computed using
conditions (15) according to the weaker restriction. We observe a more intensive spreading
when Young modulus (of the free spring) increases. This conclusion is in agreement with
experimental results as stated in [25].
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Figure 3: Distribution of proliferation cells results at day 104 (E0 = 3156Pa).

6 Conclusions

In this paper we studied a mathematical model to describe the evolution of glioma cells with
and without chemotherapy. The model was established combining a mass conservation law
with a non Fickian mass flux that takes into account the viscoelastic behaviour of the brain
tissue described by the Voigt-Kelvin model.

We deduced estimates that allowed to define sufficient conditions on the parameters
that lead to control the glioma mass.

A fully discrete scheme was defined and the stability of such scheme was analyzed.

Numerical experiments suggest that our approach is a promising one. The behaviour of
the mass of glioma cells was illustrated under the conditions deduced for the chemotherapy
protocols.
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