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Abstract

In this paper we propose a mathematical model to describevblation of glioma cells taking
into account the viscoelastic properties of brain tissube Mmathematical model is established
considering that the glioma cells are of two phenotypesratagy and proliferative. The evolution
of the migratory cells is described by dfdision-reaction equation of non Fickian type deduced
considering a mass conservation law with a non Fickian rtogyamass flux. The evolution of
the proliferative cells is described by a reaction equatiénstability analysis that leads to the
design of d#icient protocols is presented. Numerical simulations tthastrate the behaviour of
the mathematical model are included.
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1. Introduction

Cancer is a complex disease which leads to the uncontraltedtly of abnormal cells, destruc-
tion of normal tissues and invasion of vital organs. Theeadifferent stages of tumor development
with varying duration, starting from genetic changes attielevel and finishing with detachment
of metastasis and invasion. Tumor cell transport and n@itfon are the main contributors to the
malignant dissemination.([44]).

Extensive research has been done to model cancerous gspetially on solid tumors, in
which growth primarily comes from cellular proliferatiott.is far beyond the aim of the present
paper to list exhaustively the many significant contribmtio the topic. References [16], [22],
[23], [25], [33], |43], [44] and the references therein regent some of these contributions.

Gliomas are dtusive and highly invasive brain tumors accounting for al&®%6 of all primary
brain tumors and, unfortunately, the prognosis for pasienth gliomas is very poor. Median
untreated survival time for high grade gliomas ranges fromdhths to 1 year and even lower
grade gliomas can rarely be cured. Theorists and experati&stbelieve that inféiciency of
treatments results from the high mobility of glioma cellsddiionally gliomas can exhibit very
high proliferation rates.
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The understanding of malignant glioma growth still veryslesmplete, mostly because gliomas
proliferate as solid tumors and invade the surroundingnbparenchyma actively. Proliferation
and specially migration of gliomas represent a very chgilegm problem from a mathematical
viewpoint.

Cancer research has been a fertile ground for mathematazélimg, beginning with the early
concept of simple exponential growth of solid tumors doulpkt a constant rate. The introduction
of logistic or gompertzian growth (there is increased dmgblime and decreased growth fraction
as a function of time) allowed to slow the growth in the latages. With the recognition that tumor
cells might spread outside the grossly visible mass, imgatically and metastizing distantly, and
that some cells die during the development process, theameittical concepts necessarily became
more complex than those used in the original simple modelsdid tumors.

The initial answer to the question of how to measure the draf&an infiltrating glioma was
provided by Murray in the early 90s ([33]). He formulated g®blem as a conservation law
where the rate of change of tumor’s cell population resutisxfmobility and net proliferation of
cells. An equation of type

oc ,
E+V-J;:f(c)|nQ><(O,oo) (1)
was used, wher c R",n = 1, 2, 3, is the glioma domaing(x, t) denotes the tumor cell density
at locationx and timet, f(c) denotes net proliferation of tumor cells, aWddefines the spatial
gradient operator. Under the assumption of the classic&ldHiaw for the mass fluxg

J- = -DVec, (2)
whereD is the difusion tensor, equatiohl(1) can be written as

%:v-(ﬁw)n(c) in Q x (0, ). (3)
The mathematical model is complemented by boundary camditivhich impose no migration of

cells beyond the brain boundary, that is,
JF.T] = O,

on the boundary, whemgdenotes the exterior unit normal to the brain region, andhiial con-
ditionsc(x, 0) = cp(X) , X € Q, wherecy defines the initial spatial distribution of malignant cells
Tumor growth is generally assumed to be exponential, so élegoowth term is given by
f(c) = pc, where the net proliferation raje is constant. Logistic and gompertzian growths
have been also considered but found to be unnecessary imiaéames considered for gliomas
development ([25]). To apply the modeling approach to depatients, a more realistic look at
the brain geometry and structure was necessary. Swatsbnintroduced in|[43] the complex
geometry of the brain and allowedfidision to be a function of the spatial variable to reflect the
observation that glioma cells exhibit higher motility irettvhite matter than in the grey matter.
The partial diferential equation’(3), of parabolic type, was establishmdlining the mass
conservation law (1) with Fick’s laz{2) for mass flux. It islenown that, in this case, if a sudden
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change on the cell concentration takes place somewhere sptce, it will be felt instantaneously
everywhere. This means that Fickian approach gives ris#itute speed of propagation which is
not physically observable. To avoid the limitation of Fi@kimodels an hyperbolic correction has
been proposed in fierent contexts (see! [9], [28], [14], [15], [24], |34] and tteferences cited in
these papers).

It is accepted by the biomedical research community thatH@mical and biophysical prop-
erties of the brain tissue, namely of the extracellular mg&ECM), are key factors in the pro-
liferation and migration of glioma cells. The aggressiwnef the gliomas is determined by its
unique pattern of interaction with ECM. Experimental sasgshow that the mechanical properties
of ECM are regularization factors in the evolution of seVerdl types in particular glioma cells
([22], [13], [31], [45], [47]). In fact it was observed thdtd growth, diferentiation and functional-
ities of glioma cells are determined by theffstess of the ECM. These observations are explained
by the fact that extracellular matrix ftiess induces complex biochemical phenomena that de-
pend on the type of elusive cells and microenvironment properties which are motclarified.
The complete understanding of such complex biochemi@atecan be used to develop tumor
treatments based on the characteristics of the mechaniloainvhere the cancer cells move.

The aim of the present paper is to study the influence of thesgepties on glioma growth
and treatment. To this end we establish of a class of nonackiodels that take into account
the viscoelastic behavior of the brain tissue. The mathiealahodel that we consider is defined
in a simple geometry. To apply the modeling approach to §ipgatients, a more realistic look
at the brain geometry and structure is necessary. In thes wascan follow [[43],where, for a
Fickian model, a complex geometry of the brain was consitlasewell as a space dependent
diffusion codicient were taken into account to reflect the observationdhatna cells exhibit
higher motility in the white matter than in grey matter ([22]

Finally we observe that the most popular treatments useatdat gliomas are chemotherapy
and radiotherapy. Some mathematical models that desdrébefect of these treatments were
proposed in the literature. Without being exhaustive wetioanj29], |[38] and [46]. Chemother-
apy involves the use of drugs to disrupt the cell cycle anddolkbproliferation. The success of
chemotherapy agents varies widely, depending on cell typelze type of drug being used. The
effectiveness of a particular drug depends on the concentrafidrug reaching the tumor, the
duration of exposure and the sensitivity of the tumor cellhe drug.

Tracquiet al. in [4€] incorporated chemotherapy by introducing cell Heas a loss term. If
G(t) defines the rate of cells death then, assuming a loss propakto the tumour cells density,
equation[(B) is replaced by

% =V - (DVc) + f(c) - G(t)c in @ x (0, T], (4)
where
_ | k, when chemotherapy is being administered
GO = { 0, otherwise )

Herek describes the rate of cell death due to exposure to the dfulfc)l = pc, for a tumor to
decrease in size during chemotherdgyust be larger than the growth ratef the cell population.
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The main question in this paper is to definand the periods of chemotherapy applications that
lead to control the glioma mass.

In chemotherapy protocols a specific drug or a cocktail ofjdris injected in the circulatory
system and are homogeneously distributed in the human bolg. dfect of chemotherapy in
glioma cells is described here by the functid(t) defined by[(b). However, the death rate of cells
that are exposed to the action of a drug should depend ondag¢duration of exposure and drug
concentration. To incorporate all these interveners irdtreh rate we need to define a funct®n
depending orx, t, c(x, t) andcy(x, t)).To define such deathtect on the tumor cells, the equation
for the dynamic of cancer cells needs to be coupled witlfaglon equation for the concentration
in the line of the models studied for instance lin/[26],  [35HdA8], where Michaelis-Menten
kinetic or its generalization have been considered in tlimitien of the corresponding tG. As
in the present paper we do not consider such coupling, oungsson on the death ra@(t) while
simple, is reasonable and it is mathematically manipuletediow the definition of chemotherapy
protocols with a prescribedtect.

Partial diferential equations of non-Fickian type that describe thaduton of cells in a
medium where they dye as they move can be establish usingthmgous time random walks
approach. Without being exhaustive we refer [1], [18] an#] (@here such approach was con-
sidered in diferent contexts. This approach was also considered, fanostin [16] and [17], to
establish non-Fickian fusion models to describe the proliferation and migratioglmima cells
in the absence of the deatfiect.

Our aim in this paper is the modelling and analysis of gliomaagh under the £ect of the
rheological properties of the brain tissue. The paper iammgd as follows. Since the brain tissue
presents a viscoelastic behaviour that can be described/bigaKelvin model (see for instance
[21], [27], [32]), we present in Section 2 a class of non Fackmodels to describe the space and
time evolution of glioma cancer cells constructed by conmgrthe difusion process with the
viscoelastic properties of the brain tissue. In Section 3tudy the behaviour of the glioma mass
when chemotherapy is considered. Criteria to deftfieient protocols that lead to the decreasing
of the tumor mass are established in this section. In Sedtiwe introduce a semi-discrete model
that mimics the continuous model in the sense that it presbatsame qualitative properties. Plots
illustrating the evolution of gliomas are included in Sentb. The numerical results illustrate the
theoretic results obtained. Finally, in Section 6 we preseme conclusions. It must be pointed
out that the present paper aims to extend the results odtanthe authors in 4], [5] and [6].

2. A viscoelastic model

The class of non Fickian models that we present in what falmaestablished by taking into
account the viscoelastic nature of the brain tissue. Fatigjg], [10], [11], [20], [30] and [41],
if a diffusion process occurs in a medium with a viscoelastic behgwvioen a modified diusion
equation

% =V - (DVc) + V- (D\Vo) + (c) in Q x (0, ), (6)
should be used, wheke represents the normal stress which is assumed to be the etesamt
component of the stress developed in the brain tissue wheetuthor cells move in it. In (6D
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andD, are difusion and stress drive tensors respectively.

The proliferation and migration of several cancer cellsagepon the rigidity of ECM growing
significantly better on i matrices than on soft tissues ([45],[47]). This phenomasarsually
called durotaxis or mechanotaxis and it was firstly defind@81hwhen the migration of fibroblasts
in vitro from soft to stif regions of the ECM was observed. Based on these fBgts) equation
(@) is a diagonal tensor with negative entries.

We assume that the viscoelastic behaviour of the braindissdescribed by

88—(1- +,80':a/16+a2%, (7)
where e stands for the normal strain. Equatidon (7) is based on a méstimmodel which is
represented by a spring (restorative force component) ag@shpot (damping component) in
parallel connected with a free spring. (7) the visco@tasharacteristic times is given by
B = % anday = EZlEl, a, = Eo whereE; is the Young modulus of the spring element,
represents the viscosity art) stands for the Young modulus of the free spring (see [21]), [27
[32]), [3€)).

Equation[(¥) leads to the following expression for

o(t) = fo v (@1€(9) + QZ%(S))ds+ &0 (0). 8)

If we assume that the straérsatisfiess = Ac whereA is a positive constant(see [8], [10], [11]),
we obtain from[(B) and(8) an integroftérential equation
t
Z—f =V . (DVc) +f ke (t — )V - (D, Ve(9)) ds+ f(c) in Q x (0, o), 9)
0
whereD = D + Aa,Dy, Dy = A(a1 — Bay)Dy andke () = €75,

In this paper we consider that the viscoelastic behavioheflirain tissue is described by
the Voigt-Kelvin model[(¥) and the mass flux of migration sellis driven by the gradient of
the concentration and by the gradient of the forces exeryethé brain tissue into the glioma
cells, that isJ = —DVc — D,\Vo. The stressr is given by [8) where the straiais identified
with the results of the action of the glioma cells into theibrassue. Here, to simplify, we
assume that such results depend linearly on the glioma @etientrations. We do not take into
account the microenvironment where glioma cells migraté @mwoliferate, their constituents and
their interactions. Mathematical models based on mixteeity and interaction forces between
intervenients in the cancer growth have been studied, &ante, inl[2],[3],.[37],[36] and [40].

To establish a mathematical model to describe the spa@eewmiution of gliomas some med-
ical information is needed. According to [16] and|[17] th#dwing assumptions are considered
in our model: the glioma cells are of two phenotypes - prddifon (state 1) and migratory (state
2); in state 2 (migratory phenotype) the cells randomly mlowethere is no cell fission; in state
1 (proliferation phenotype) the cancer cells do not migeate only proliferation takes place with
ratep; a cell of type 1 remains in state 1 during a random time peaiind then switches to a cell
of type 2;3, is the switching rate from state 1 to 2; a cell of type 2 remamnstate 2 during a
random time period and then switches to a cell of typg,is the switching rate from state 2 to 1.
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Let u(x, t) andv(x, t) represent the density of migratory and proliferationsalix andt, re-
spectively. The dynamics of glioma cells is then described b

{
@ :V-(DVu)+fke,(t—S)V~(DVVu(s))ds—,81u+ﬁ2v inQx (0, T],
ot 0 (10)
g—\tl =pV+Bu—Bvin Qx(0,T],

whereT > 0 is fixed,D and D, denote square matrices of order The set of equation§ (110) is
complemented with initial conditions

u(0) = ug, v(0) = vp in Q,
and boundary conditions
Jn =0 onoQ, (12)

wheredQ denotes the boundary 61, n represents the exterior unit normal and the non Fickian
t
flux J is given byJ(t) = —DVu(t) — f e?=9D,Vu(s) ds. Condition [I1) means that the glioma

0
is located inside of the brain and the cancer cells do nosdiespia mater.
In what follows we assume th&t = [d;;] andD, = [d,;;] are diagonal matrices with diagonal
entriesd, andd,; such that

O<aosdi,d\,,iin ﬁ,i:].,...,n. (12)

Let M(t) be the mass of glioma cells{&, My(t) = f(u(t) + v(t))dQ. We study in what follows
the behaviour oM, (t). We start by remarking that ?

M (1) = f &0+ T w)de. (13)

As u andv are defined by the system of equatidng (10), from (13) we obtai

Vi = [ (730 + pvit)d,

that leads to

MJ(t) = — fa 3O7do0 +p fg v(t)dQ.

From (11) we conclude tha;(t) = pr(t)dQ, which means that the instantaneous time varia-

Q
tion of the cancer mass depends only as expected on the mikesmbliferation cells and on the
proliferation rate p. Assuming the positivity ofu, we finally obtain the upper bound
Mj(t) < e'M1(0).



To avoid the positivity assumption amwe establish in what follows an upper bound for
the mass related functionMy(t) = ||u(t)||? + |[v(t)||?, where]|.|| denotes the usudl’> norm in-
duced by the usudl? inner product (.). As My(t) < \/H(Hu(t)n + [v(t)]), if we assume that

{IIU(t)II [IvE)Il
timate of M,(t). This assumption is biologically sound because it statesthigatumor density is
largen than 1

As lMz(t) = ( (t) u(t)) + (—(t) v(t)), we obtain from[(1D)

} > 1, we conclude that an upper bound fdr (t) can be deduced from an es-

1

M0 = [ ~309u0) o2 - VBT - ( f ke (t — 9D,VU(S) ds, u(t))

2 oQ 0 (14)
—BalUII + (=82 + P)IVOI + (B2 + B2)(u(D), (1)),

where the inner product ih?(Q) x L?(Q) is denoted by ((.)) and||.|| represents the induced

norm. Considering the boundary conditionl(11), the Causblgwarz inequality and the following

equality

i [ att=9 VB dsi? = 2( [ ket~ 9DLTU(S) ds Tu(w)

t (15)
28| fo ket (t — 9) VD, VU(9) ds?,
we deduce from(14) that
E,(t) < maX{BZ _ﬁl’ﬁl _:82 + ZP’ _ZB}E(t)’t > O’ (16)
t
whereE(t) = My(t) + ||f ke (t — S) v/DyVu(s) ds|f?. Inequality [I6) leads to
Ma(t) < @Mt 28 5520 Aty 0), (17)

We observe that if mdg, — 81,81 — B2 + 20,28} = -28thenB1 + 20+ 2B < B < B1— 2B
which is not possible. This means that we can dr@g from the max expression. In the case
B2 — 1> B1— B2+ 20 we haveB, — B, > p; for B> < B1 + p the maximum is g2 — B, + B1 > p.

In both cases the second memberiof (17) is an increasingidanatt. As expected, under these
assumptions, we can not select paramedgis,, o such thatM,(t) is bounded in time.

We remark that inequality (17) allow us to conclude the ditgtwnf the proposed mathematical
model with respect to perturbations of the initial condigan [Q, T], for fixed T > O.

3. Chemotherapy : control of the glioma growth

To take into account the chemotherayfieet, the viscoelastic model for glioma growith](10) is
modified as follows

t
ou =V.-(DVu)+ f Kee(t — ) V- (DyVU(9)) ds— B1u + Bov — G(t)u in Q x (0, T],
ot 0 (18)
%’ = pV+ U —Bv—G(t)v in Q x (0, T],
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whereG(t) is defined byl(b).
From (18) following the proof of the upper bound116), it candlnown that

B2 —B1 B1—p2
2 2

In what follows we establish conditions on the parameteasidad to a decreasing df(t) :

E'(t) <2 max{

- G(),

+p - G(t). —BJE(). (19)

1. If the net proliferation rate is greater than the switghpnoliferation rate

P >ﬁ2_ﬁl’ (20)

and the diference between the rate of cells death and the switchinggyadlon rate is
bounded by the viscoelastic characteristic time

6 - <p, 1)
then equatior((19) leads to

Ma(t) < (47206949 M, Q). 22)
To conclude thaM,(t) decreases we need to combine condition (20) and (21) with

('81;232 +p)t < fo tG(s) ds, (23)

that is the density of proliferation cells at timés less than the total amount of death cells
until time t due to chemotherapyfect.
As from condition[(21L) we obtain

f t G(s)ds < ('G’Z;Zﬁ1 + At (24)
0

conditions [(2B) and[(24) are compatible if thefdience between the net and switching
proliferation rates is less than the viscoelastic charestietime

p— (B2—p1) <pB- (25)
If no viscoelastic &ects are constidereﬂ,: 0, we deduce from (24) that an overall admis-
sible measure of the treatmenf G(9) ds, should be smaller.
2. Otherwise, if the net proliferatign rate is less than twgching proliferation rate
p <B2-p1 (26)

and the diference between the rate of cells death and the residenfepation rate is
bounded by the viscoelastic characteristic time

6 - -2 <p @7)
then inequality[(2R) is replaced by
My (t) < X569 M), (28)



Assuming that the density of switching proliferation cedistimet is less than the total
amount of death cells until timedue to chemotherapyffect

([%)t < fo G(s)ds, (29)

we conclude thaM,(t) decreases. Again we observe that the parangetas influence on
the admissible threshold of the chemotherapy treatment.
We note that as froni.(27)

_ t

("’7l Zﬁz +p+p)t > f G(s) ds, (30)
0

we must impose that the féierence between the net and switching proliferation rates is
greater than the viscoelastic characteristic time

p—B2—p1)>p (31)
in order to have the compatibility betweén(29) and (30).

When chemotherapy is applied, conditions] (21) (23) aditmns [2T) and[(29) can be
used to determine arffective dosage that induces a rktef cell death due to the exposure to the
drug that allows to control the total tumor mass. Obvioukl/talue ok depends of the protocol
of chemotherapy. The typical bang-bang protocol corredpon treatment which alternate maxi-
mum doses of chemotherapy with rest periods when no drugnsnéstered, as defined bly|(5) and
illustrated in Figure 1.

t
Figure 1: Chemotherapy protocol.

4. A semi-discrete mode

To compute the artificial madd,(t) we use a numerical method which is obtained discretizing
the spatial derivatives of (18) using centereffadence operators. In what follows we show that
this discretization preserves the qualitative behavidth®initial boundary value problem studied
in the last section. More precisely we establish the discvetsions of the inequalities (22) and

(28) under the conditions (20}, (210), (23),125) lor](26).)(ZZ9), (31), respectively.

We assume that = 2, Q is the square [] x [0, L] andH = (hy, hy) with h; > 0,i = 1,2.In Q
we introduce the spatial griﬁH = {(X0i» %2j), 1 = 0,...,Np,, ] =0,...,Np,}, wherex,j = Xgi_1 +
he, i =1,...,Np, X0 =0, XNy, = L, for ¢ = 1,2. By 0Qy we represent the set of boundary
points. We introduce the following auxiliary poimts_, = X, — hy, XeNn,+1 = XeNy, + h,¢=1,2.



o . : . .0 , 0u
To simplify the presentation we use the notatign = Wy (X, X2,;). We dlscretlze&(aa—x),
1 1
ais a scalar functions, using the usual second order finfferénce discetization

~ 1
Vi, (@n Vi Un)(Xei, X2.j) = — (814172, D-x Uis1,j — @i—1/2,jD-x Ui j ) (32)
1 h,

wherea,1»i = a(x.; + &, %, ) andD_,, denotes the usual backward finitéfdience operator in
/2,] , 2 S| 1

X, direction. The second order finiteffirence discretizatioﬁﬁz(BHthuH)(xl,i, X2 j) to discretize
0 , ou
—(b—) is defined analogously.
7% Lo gously -
The semi-discrete approximation feandv in Q4 at timet, uy(t) andvy(t), are defined by the

following system of ordinary dilerential equations

(O = D T AThO)+ [ Kalt=9) Y Vi Tnt(e)ds

i=1,2 i=1,2
— (33)
—(B1+ GO)Un () + B2Vh(t) In Qu,
Vig(t) = (o — B2 — G)VK (L) + Brun(t) in Qu,
complemented with the initial conditions
U4(0) = RyUo, Vii(0) = RyVo in Qu, (34)
and the boundary conditions
anlui,j(t) = O, i = O, Nhl, j = O, ceey th, (35)
D,]XZUi,j(t) =0, i=0... s Nhl, ] =0, th,
where, form= 1, 2,
t
DTIXm Ui,j(t) = Dd,nXmui,j(t) + f ker(t - S)DV’,,XmUi,j(S)dS, (36)
0

In (34) Ry denotes the restriction operator andlinl (8g), is defined by

1
Day, Wij = E(ai+1/2,jD—x1Wi+1,j + ai—l/z,jD—leVi,j),
beingDy,,,,wi ; defined analogously.

To prove a discrete version of the upper bounds (22, (28)oev [12] to introduce a con-
venient discrete functional context. BY,(Q) we denote the space of grid functions defined in
Qu. In WL (Qy) we introduce the inner product

Np;  Nhy

(W, OH)g,, = Z Z Wi W G j, Wi, O € Wh (Qu), (37)

i=0 j=0
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wherew;; = mhy in Qn, wij = %hlhz onoQy —Ch, wij = %hlhz on Cu, Cnx denotes the
set of corner points of2 anddQy = Qy N Q. The norm induced by the inner produEti(37) is
denoted byf.||4.

To simplify the presentation we use the following notations

Nh2

(W, OH)a0n x = Z Z howi ;i j + Z %hZWi,jCIi,j),

i=0,Nn, = j=0,Nh,

for grid functions defined 0@Qy, being (4, gu)sn,.x, defined analogously, and fovy, gy €
Wi (Qn)

Nhl th

(WH, qH)h1 - Z hl Z h2W| quj Z %Wi,jqi,j),

j=0,Nn,

being W, o)n, defined analogousywiif = (Wi, Wi)g,, » Wkl s = Z [ID_ Wil .
i=1,2
The following identity has a central role in what follows abhdan be shown using summation
by parts

(Vi (@ Vi, Wi), Wh)g,, = —(8,HD—x Wi, Do Wi)n, + (Dagn,, Wk, Wi)oon x> € = 1,2, (38)
In what follows we establish an upper bound for the semirdigcversion oM,(t)
Man () = lun@IF + IVH O11F
whereuy (t) andvy (t) are defined by (33)[_(34) and (35). Lt (t) be the semi-discrete version of

E(t)
En(t) = MZH(t)+Z||f Ker(t = 9) 4/ 4D U () A2

i=1,2

Multiplying both equations of (33) by (t) andvy(t), respectively, with respect to the inner prod-
uct (., .)g,, and taking into accounf(38) we deduce

I, = — 3" (Do 1), Do (O, — (B2 + GO OIF, + Bolvi0). U D),

i=1,2

(39)
- f Kee (t - 9) Z(dv. HD L Un(8), Dy Un(t))n, ds + Z(an, U (77> Uk ()
i=1,2 i=1,2
and
%an I = (o = B2 = GONIVHOIIF + Ba(un(®), V(D) - (40)

Considering the boundary conditions{35), the discretsigarof [15)
d t = t ~
il f Ker (t = ) 4/0i.i Dy Un(S) dSIff = 2( f Ker (t — S)dy HDx U (S) ds, D Uk (t)n,
0 0

t
_2g] fo e (t = ) \fGu Dy Ui (9) S,
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and the Cauchy-Schwarz inequality, frdml(39)./(40) we get

£ (0) < 2 max{Z ;'81 _om).? '82 +p = (), ~BlEn(). (41)
If (2Q) and [21) then
Mau(t) < X0 beOM, () (42)
Otherwise, if[(26) and (27) then
Mzp(t) < @71 0h SO, L (0), (43)

Finally, if (20), (21), [(28) and(25) of (26, (R7), (29) af@lj, then the discrete artificial mass
M, (1) is bounded byM,(0). In the first case the decreasing factoed 2+ 694) gng

B2—B t .
A [16999) i the second case.

5. Results

In this section we present some numerical results illusahe behaviour of the glioma cells
defined by[(3B)[(34) and (B5). The numerical results werainbtl integrating in time the ordinary
differential problem using the implicit Euler method and diszneg the integral term ir.(33) with
a left rectangular rule. We consider a homogeneous squanaid® = [0, 15cm] x [0, 15¢cm)],
growth ratep = 0.012/day and switching paramete = 10°/day and 8, = 0.036/day.
These parameters were obtained from [39] and have biologieaning. According to [32], the
initial condition is defined by 10cells/cn? of proliferation tumor cells at middle point of the
domain,E; = 3156Pa, E; = 6B andu = 89 x 10%Pa-s. We also considen = 1cn?,
|sotrop|c behaviour withd;; = dy, = O. 004cn¥?/day? and to guarantee the positivity @f, we
taked,1; = dy2, = —10cell/Paday ([7], [30]) which leads tad;; = dp, ~ 0.004cn?/day and
dv,ll = dv’22 = 0001cm2/day2

In Figure 2 we plot the numerical solution at day 6. Solut®priesented in logarithmic scale,
which means that contour plots represent the power of 10eotiédnsity of tumor cells. In this
case we observe a very intense spreading of proliferatidsmared we can conclude that migration
cells are already quite far from the core.
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Figure 2: Numerical results at day 6 (logarithmic scale).

Let us consider now that the chemotherapy treatment defin€g)lis applied with a protocol
as illustrated in Figure 1. Conditioris (21) andl(23) are usemmpute a profile foG(t) that lead
to control the total tumor mass. We consider a 24h dosage idlfedlesht rest periods. In Table 1
we show the minimum value & ((5)) defined by condition$ (21) and (23), for a virtual patias
defined in the beginning os this section.

Protocol Kmin [./day]
each 2 days 0.064
each 7 days 0.224
each 14 days 0.448

Table 1:kyin as [21) and (23), for a protocol of 24 consecutive hours ofraitberapy .

In Figure 3 we plot cell distribution at day 104 for an untezhpatient and three patients
with different chemotherapy protocols. All three protocols stadeat7, and follow diferent rest
periods represented in Figure B € 0.065/day is associated to a 24h dosage at days 7, 9, 11,
13, etc;k = 0.225/day is associated to a 24h dosage at days 7, 14, 21, 28ketc0.45/day
is associated to a 24h dosage at days 7, 21, 35, 49, etc). Wevelibat glioma mass density
is significantly reduced when chemotherapy is used, althoug do not observe a significant
reduction of the tumor’s area. We remind that all plots aesented using logarithmic scale of the
density of cells.
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Figure 3: Numerical results at day 104 (logarithmic scale) .

Finally, in Figure 4 we compare glioma masses of the virtwdigmt when no chemotherapy
is administered and the results of the adminstration of bova three chemotherapy protocols.
We observe a significant reduction of glioma masses when amdpo glioma’s untreated pa-
tient. The results presented in this figure shows fffiecéveness of the our approach to define
chemotherapy protocols.

— k=0 — — —k=0.45 k=0.225 -+ - k=0.065
5l
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<
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—
0 . . . . . . I
0 50 100 150 200 250 300 350
time [days]

Figure 4. Glioma masséd, (t) for 1 year (logarithmic scale).

6. Conclusions

In this paper we studied a mathematical model to describevblkition of glioma cells with
and without chemotherapy. The model was established congoinmass conservation law with
a non Fickian mass flux that takes into account the viscaelashaviour of the brain tissue de-
scribed by the Voigt-Kelvin model.
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Using the energy method we deduced estimates for a funttieteded glioma mas#,(t)
defined usind.? norm. These estimates allowed us to definfcient conditions on the parameters
that lead to the control d¥l,(t).

Semi-discrete approximations for the proliferation angmatory cancer cells presenting the
same qualitative behaviour of the continuous counterpeete introduced. Sticient conditions
that relate the chemotherapffect with the growing rates of the semi-discrete migratony jpro-
liferations glioma cells that lead tM, 4(t) < M, (0) were also established. These conditions
allow us to define ficient protocols that lead to a decreasing of the cancer mass.

Numerical experiments illustrating the behaviour of themla mass under the conditions
deduced for the chemotherapy protocols are also includad.r@sults obtained suggest that our
approach is a promising one.

Models that will take into account the spadéeet of chemotherapy will be addressed in a
future work. In this case we need to incorporate in tHeudion equation for the drug concentra-
tion the viscoelasticféect of the brain tissue on thefflision drug similar to the one considered
here in the migration of glioma cells. As the complete mod@lamposed by integro-@ierential
quasilinear equations of fllusion-reaction type, its mathematical and numerical stagychal-
lenging problem. Future work will also address mathemhtiwadels with a real geometry and
that takes into account the white and gray matter of the br&@omparison of the model with
existing medical protocols will be also considered.
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