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Abstract

In this paper we propose a mathematical model to describe theevolution of glioma cells taking
into account the viscoelastic properties of brain tissue. The mathematical model is established
considering that the glioma cells are of two phenotypes: migratory and proliferative. The evolution
of the migratory cells is described by a diffusion-reaction equation of non Fickian type deduced
considering a mass conservation law with a non Fickian migratory mass flux. The evolution of
the proliferative cells is described by a reaction equation. A stability analysis that leads to the
design of efficient protocols is presented. Numerical simulations that illustrate the behaviour of
the mathematical model are included.
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1. Introduction

Cancer is a complex disease which leads to the uncontrolled growth of abnormal cells, destruc-
tion of normal tissues and invasion of vital organs. There are different stages of tumor development
with varying duration, starting from genetic changes at thecell level and finishing with detachment
of metastasis and invasion. Tumor cell transport and proliferation are the main contributors to the
malignant dissemination ([44]).

Extensive research has been done to model cancerous growth,specially on solid tumors, in
which growth primarily comes from cellular proliferation.It is far beyond the aim of the present
paper to list exhaustively the many significant contribution in the topic. References [16], [22],
[23], [25], [33], [43], [44] and the references therein represent some of these contributions.

Gliomas are diffusive and highly invasive brain tumors accounting for about50% of all primary
brain tumors and, unfortunately, the prognosis for patients with gliomas is very poor. Median
untreated survival time for high grade gliomas ranges from 6months to 1 year and even lower
grade gliomas can rarely be cured. Theorists and experimentalists believe that inefficiency of
treatments results from the high mobility of glioma cells. Additionally gliomas can exhibit very
high proliferation rates.
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The understanding of malignant glioma growth still very less complete, mostly because gliomas
proliferate as solid tumors and invade the surrounding brain parenchyma actively. Proliferation
and specially migration of gliomas represent a very challenging problem from a mathematical
viewpoint.

Cancer research has been a fertile ground for mathematical modeling, beginning with the early
concept of simple exponential growth of solid tumors doubling at a constant rate. The introduction
of logistic or gompertzian growth (there is increased doubling time and decreased growth fraction
as a function of time) allowed to slow the growth in the later stages. With the recognition that tumor
cells might spread outside the grossly visible mass, invading locally and metastizing distantly, and
that some cells die during the development process, the mathematical concepts necessarily became
more complex than those used in the original simple models for solid tumors.

The initial answer to the question of how to measure the growth of an infiltrating glioma was
provided by Murray in the early 90s ([33]). He formulated theproblem as a conservation law
where the rate of change of tumor’s cell population results from mobility and net proliferation of
cells. An equation of type

∂c
∂t
+ ∇ · JF = f (c) in Ω × (0,∞) (1)

was used, whereΩ ⊂ R
n, n = 1, 2, 3, is the glioma domain,c(x, t) denotes the tumor cell density

at locationx and timet, f (c) denotes net proliferation of tumor cells, and∇ defines the spatial
gradient operator. Under the assumption of the classical Fick’s law for the mass fluxJF

JF = −D̃∇c , (2)

whereD̃ is the diffusion tensor, equation (1) can be written as

∂c
∂t
= ∇ · (D̃∇c) + f (c) in Ω × (0,∞). (3)

The mathematical model is complemented by boundary conditions which impose no migration of
cells beyond the brain boundary, that is,

JF.η = 0,

on the boundary, whereη denotes the exterior unit normal to the brain region, and by initial con-
ditionsc(x, 0) = c0(x) , x ∈ Ω , wherec0 defines the initial spatial distribution of malignant cells.

Tumor growth is generally assumed to be exponential, so the cell growth term is given by
f (c) = ρ c, where the net proliferation rateρ is constant. Logistic and gompertzian growths
have been also considered but found to be unnecessary in the time frames considered for gliomas
development ([25]). To apply the modeling approach to specific patients, a more realistic look at
the brain geometry and structure was necessary. Swansonet al. introduced in [43] the complex
geometry of the brain and allowed diffusion to be a function of the spatial variable to reflect the
observation that glioma cells exhibit higher motility in the white matter than in the grey matter.

The partial differential equation (3), of parabolic type, was established combining the mass
conservation law (1) with Fick’s law (2) for mass flux. It is well known that, in this case, if a sudden
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change on the cell concentration takes place somewhere in the space, it will be felt instantaneously
everywhere. This means that Fickian approach gives rise to infinite speed of propagation which is
not physically observable. To avoid the limitation of Fickian models an hyperbolic correction has
been proposed in different contexts (see [9], [28], [14], [15], [24], [34] and thereferences cited in
these papers).

It is accepted by the biomedical research community that biochemical and biophysical prop-
erties of the brain tissue, namely of the extracellular matrix (ECM), are key factors in the pro-
liferation and migration of glioma cells. The aggressiveness of the gliomas is determined by its
unique pattern of interaction with ECM. Experimental studies show that the mechanical properties
of ECM are regularization factors in the evolution of several cell types in particular glioma cells
([12], [13], [31], [45], [47]). In fact it was observed that the growth, differentiation and functional-
ities of glioma cells are determined by the stiffness of the ECM. These observations are explained
by the fact that extracellular matrix stiffness induces complex biochemical phenomena that de-
pend on the type of diffusive cells and microenvironment properties which are not yet clarified.
The complete understanding of such complex biochemical effect can be used to develop tumor
treatments based on the characteristics of the mechanical milieu where the cancer cells move.

The aim of the present paper is to study the influence of these properties on glioma growth
and treatment. To this end we establish of a class of non Fickian models that take into account
the viscoelastic behavior of the brain tissue. The mathematical model that we consider is defined
in a simple geometry. To apply the modeling approach to specific patients, a more realistic look
at the brain geometry and structure is necessary. In this case we can follow [43],where, for a
Fickian model, a complex geometry of the brain was considered as well as a space dependent
diffusion coefficient were taken into account to reflect the observation thatglioma cells exhibit
higher motility in the white matter than in grey matter ([22]).

Finally we observe that the most popular treatments used to combat gliomas are chemotherapy
and radiotherapy. Some mathematical models that describe the effect of these treatments were
proposed in the literature. Without being exhaustive we mention [29], [38] and [46]. Chemother-
apy involves the use of drugs to disrupt the cell cycle and to block proliferation. The success of
chemotherapy agents varies widely, depending on cell type and the type of drug being used. The
effectiveness of a particular drug depends on the concentration of drug reaching the tumor, the
duration of exposure and the sensitivity of the tumor cells to the drug.

Tracquiet al. in [46] incorporated chemotherapy by introducing cell death as a loss term. If
G(t) defines the rate of cells death then, assuming a loss proportional to the tumour cells density,
equation (3) is replaced by

∂c
∂t
= ∇ · (D̃∇c) + f (c) −G(t)c in Ω × (0, T ] , (4)

where

G(t) =

{

k, when chemotherapy is being administered
0, otherwise.

(5)

Herek describes the rate of cell death due to exposure to the drug. If f (c) = ρc, for a tumor to
decrease in size during chemotherapy,k must be larger than the growth rateρ of the cell population.
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The main question in this paper is to definek and the periods of chemotherapy applications that
lead to control the glioma mass.

In chemotherapy protocols a specific drug or a cocktail of drugs is injected in the circulatory
system and are homogeneously distributed in the human body.The effect of chemotherapy in
glioma cells is described here by the functionG(t) defined by (5). However, the death rate of cells
that are exposed to the action of a drug should depend on location, duration of exposure and drug
concentration. To incorporate all these interveners in thedeath rate we need to define a functionG
depending onx, t, c(x, t) andcd(x, t)).To define such death effect on the tumor cells, the equation
for the dynamic of cancer cells needs to be coupled with a diffusion equation for the concentration
in the line of the models studied for instance in [26], [35] and [48], where Michaelis-Menten
kinetic or its generalization have been considered in the definition of the corresponding toG. As
in the present paper we do not consider such coupling, our assumption on the death rateG(t) while
simple, is reasonable and it is mathematically manipulatedto allow the definition of chemotherapy
protocols with a prescribed effect.

Partial differential equations of non-Fickian type that describe the evolution of cells in a
medium where they dye as they move can be establish using the continuous time random walks
approach. Without being exhaustive we refer [1], [18] and [42] where such approach was con-
sidered in different contexts. This approach was also considered, for instance in [16] and [17], to
establish non-Fickian diffusion models to describe the proliferation and migration ofglioma cells
in the absence of the death effect.

Our aim in this paper is the modelling and analysis of glioma growth under the effect of the
rheological properties of the brain tissue. The paper is organized as follows. Since the brain tissue
presents a viscoelastic behaviour that can be described by aVoigt-Kelvin model (see for instance
[21], [27], [32]), we present in Section 2 a class of non Fickian models to describe the space and
time evolution of glioma cancer cells constructed by combining the diffusion process with the
viscoelastic properties of the brain tissue. In Section 3 westudy the behaviour of the glioma mass
when chemotherapy is considered. Criteria to define efficient protocols that lead to the decreasing
of the tumor mass are established in this section. In Section4 we introduce a semi-discrete model
that mimics the continuous model in the sense that it presents the same qualitative properties. Plots
illustrating the evolution of gliomas are included in Section 5. The numerical results illustrate the
theoretic results obtained. Finally, in Section 6 we present some conclusions. It must be pointed
out that the present paper aims to extend the results obtained by the authors in [4], [5] and [6].

2. A viscoelastic model

The class of non Fickian models that we present in what follows is established by taking into
account the viscoelastic nature of the brain tissue. Following [8], [10], [11], [20], [30] and [41],
if a diffusion process occurs in a medium with a viscoelastic behaviour, then a modified diffusion
equation

∂c
∂t
= ∇ · (D̃∇c) + ∇ · (D̃v∇σ) + f (c) in Ω × (0,∞), (6)

should be used, whereσ represents the normal stress which is assumed to be the most relevant
component of the stress developed in the brain tissue when the tumor cells move in it. In (6)̃D
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andD̃v are diffusion and stress drive tensors respectively.
The proliferation and migration of several cancer cells depend on the rigidity of ECM growing

significantly better on stiff matrices than on soft tissues ([45], [47]). This phenomenonis usually
called durotaxis or mechanotaxis and it was firstly defined in[31] when the migration of fibroblasts
in vitro from soft to stiff regions of the ECM was observed. Based on these facts,D̃v in equation
(6) is a diagonal tensor with negative entries.

We assume that the viscoelastic behaviour of the brain tissue is described by

∂σ

∂t
+ βσ = α1ǫ + α2

∂ǫ

∂t
, (7)

whereǫ stands for the normal strain. Equation (7) is based on a mechanistic model which is
represented by a spring (restorative force component) and adashpot (damping component) in
parallel connected with a free spring. In (7) the viscoelastic characteristic timeβ is given by
β =

E0+E1
µ1
, andα1 =

E0E1
µ1
, α2 = E0 whereE1 is the Young modulus of the spring element,µ1

represents the viscosity andE0 stands for the Young modulus of the free spring (see [21], [27],
[32]), [39]).

Equation (7) leads to the following expression forσ

σ(t) =
∫ t

0
e−β(t−s)(α1ǫ(s) + α2

∂ǫ

∂t
(s))ds + e−βtσ(0). (8)

If we assume that the strainǫ satisfiesǫ = λc whereλ is a positive constant(see [8], [10], [11]),
we obtain from (6) and (8) an integro-differential equation

∂c
∂t
= ∇ · (D∇c) +

∫ t

0
ker(t − s)∇ · (Dv∇c(s)) ds + f (c) in Ω × (0,∞), (9)

whereD = D̃ + λα2D̃v,Dv = λ(α1 − βα2)D̃v andker(s) = e−βs.
In this paper we consider that the viscoelastic behavior of the brain tissue is described by

the Voigt-Kelvin model (7) and the mass flux of migration cells J is driven by the gradient of
the concentration and by the gradient of the forces exerted by the brain tissue into the glioma
cells, that isJ = −D̃∇c − D̃v∇σ. The stressσ is given by (8) where the strainǫ is identified
with the results of the action of the glioma cells into the brain tissue. Here, to simplify, we
assume that such results depend linearly on the glioma cell concentrations. We do not take into
account the microenvironment where glioma cells migrate and proliferate, their constituents and
their interactions. Mathematical models based on mixture theory and interaction forces between
intervenients in the cancer growth have been studied, for instance, in [2], [3], [37], [36] and [40].

To establish a mathematical model to describe the space-time evolution of gliomas some med-
ical information is needed. According to [16] and [17] the following assumptions are considered
in our model: the glioma cells are of two phenotypes - proliferation (state 1) and migratory (state
2); in state 2 (migratory phenotype) the cells randomly movebut there is no cell fission; in state
1 (proliferation phenotype) the cancer cells do not migrateand only proliferation takes place with
rateρ; a cell of type 1 remains in state 1 during a random time periodand then switches to a cell
of type 2;β1 is the switching rate from state 1 to 2; a cell of type 2 remainsin state 2 during a
random time period and then switches to a cell of type 1;β2 is the switching rate from state 2 to 1.
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Let u(x, t) andv(x, t) represent the density of migratory and proliferation cells at x andt, re-
spectively. The dynamics of glioma cells is then described by































∂u
∂t
= ∇ · (D∇u) +

∫ t

0
ker(t − s)∇ · (Dv∇u(s)) ds − β1u + β2v in Ω × (0, T ],

∂v
∂t
= ρv + β1u − β2v in Ω × (0, T ],

(10)

whereT > 0 is fixed,D andDv denote square matrices of ordern. The set of equations (10) is
complemented with initial conditions

u(0) = u0, v(0) = v0 in Ω,

and boundary conditions

J.η = 0 on∂Ω, (11)

where∂Ω denotes the boundary ofΩ, η represents the exterior unit normal and the non Fickian

flux J is given byJ(t) = −D∇u(t) −
∫ t

0
e−β(t−s)Dv∇u(s) ds. Condition (11) means that the glioma

is located inside of the brain and the cancer cells do not cross the pia mater.
In what follows we assume thatD = [di j] andDv = [dv,i j] are diagonal matrices with diagonal

entriesdi anddv,i such that

0 < α0 ≤ di, dv,i in Ω, i = 1, . . . , n. (12)

Let M(t) be the mass of glioma cells inΩ, M1(t) =
∫

Ω

(u(t) + v(t))dΩ.We study in what follows

the behaviour ofM1(t). We start by remarking that

M′1(t) =
∫

Ω

(
∂u
∂t

(t) +
∂v
∂t

(t)
)

dΩ. (13)

As u andv are defined by the system of equations (10), from (13) we obtain

M′1(t) =
∫

Ω

(−∇ · J(t) + ρv(t))dΩ,

that leads to

M′1(t) = −
∫

∂Ω

J(t).ηd∂Ω + ρ
∫

Ω

v(t)dΩ.

From (11) we conclude thatM′1(t) = ρ
∫

Ω

v(t)dΩ, which means that the instantaneous time varia-

tion of the cancer mass depends only as expected on the mass ofthe proliferation cells and on the
proliferation rate ρ. Assuming the positivity ofu, we finally obtain the upper bound
M1(t) ≤ eρt M1(0).
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To avoid the positivity assumption onu we establish in what follows an upper bound for
the mass related functionalM2(t) = ‖u(t)‖2 + ‖v(t)‖2, where‖.‖ denotes the usualL2 norm in-
duced by the usualL2 inner product (., .). As M1(t) ≤

√

|Ω| (‖u(t)‖ + ‖v(t)‖), if we assume that

min{‖u(t)‖
√
|Ω|
,
‖v(t)‖
√
|Ω|
} ≥ 1, we conclude that an upper bound forM1(t) can be deduced from an es-

timate ofM2(t). This assumption is biologically sound because it states that the tumor density is
largen than 1.

As
1
2

M′2(t) = (
∂u
∂t

(t), u(t)) + (
∂v
∂t

(t), v(t)), we obtain from (10)

1
2

M′2(t) =
∫

∂Ω

−J(t).ηu(t) d∂Ω − ‖
√

D∇u(t)‖2 − ((
∫ t

0
ker(t − s)Dv∇u(s) ds,∇u(t)))

−β1‖u(t)‖2 + (−β2 + ρ)‖v(t)‖2 + (β1 + β2)(u(t), v(t)),

(14)

where the inner product inL2(Ω) × L2(Ω) is denoted by ((., .)) and ‖.‖ represents the induced
norm. Considering the boundary condition (11), the Cauchy-Schwarz inequality and the following
equality

d
dt
‖
∫ t

0
ker(t − s)

√

Dv∇u(s) ds‖2 = 2((
∫ t

0
ker(t − s)Dv∇u(s) ds,∇u(t)))

−2β‖
∫ t

0
ker(t − s)

√

Dv∇u(s) ds‖2,
(15)

we deduce from (14) that

E′(t) ≤ max{β2 − β1, β1 − β2 + 2ρ,−2β}E(t), t > 0, (16)

whereE(t) = M2(t) + ‖
∫ t

0
ker(t − s)

√

Dv∇u(s) ds‖2. Inequality (16) leads to

M2(t) ≤ e2 max{ β2−β12 ,
β1−β2

2 +ρ,−β}t M2(0). (17)

We observe that if max{β2 − β1, β1 − β2 + 2ρ,−2β} = −2β thenβ1 + 2ρ + 2β < β2 < β1 − 2β
which is not possible. This means that we can drop−2β from the max expression. In the case
β2 − β1 > β1 − β2 + 2ρ we haveβ2 − β1 > ρ; for β2 < β1 + ρ the maximum is 2ρ − β2 + β1 > ρ.

In both cases the second member of (17) is an increasing function of t. As expected, under these
assumptions, we can not select parametersβ2, β1, ρ such thatM2(t) is bounded in time.

We remark that inequality (17) allow us to conclude the stability of the proposed mathematical
model with respect to perturbations of the initial conditions in [0, T ], for fixed T > 0.

3. Chemotherapy : control of the glioma growth

To take into account the chemotherapy effect, the viscoelastic model for glioma growth (10) is
modified as follows































∂u
∂t
= ∇ · (D∇u) +

∫ t

0
ker(t − s)∇ · (Dv∇u(s)) ds − β1u + β2v −G(t)u in Ω × (0, T ],

∂v
∂t
= ρv + β1u − β2v −G(t)v in Ω × (0, T ],

(18)
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whereG(t) is defined by (5).
From (18) following the proof of the upper bound (16), it can be shown that

E′(t) ≤ 2 max
{β2 − β1

2
−G(t),

β1 − β2

2
+ ρ −G(t),−β

}

E(t). (19)

In what follows we establish conditions on the parameters that lead to a decreasing ofM2(t) :

1. If the net proliferation rate is greater than the switching proliferation rate

ρ > β2 − β1 , (20)

and the difference between the rate of cells death and the switching proliferation rate is
bounded by the viscoelastic characteristic time

G(t) −
β2 − β1

2
< β, (21)

then equation (19) leads to

M2(t) ≤ e2((
β1−β2

2 +ρ)t−
∫ t
0 G(s) ds)M2(0). (22)

To conclude thatM2(t) decreases we need to combine condition (20) and (21) with
(β1 − β2

2
+ ρ
)

t <
∫ t

0
G(s) ds, (23)

that is the density of proliferation cells at timet is less than the total amount of death cells
until time t due to chemotherapy effect.
As from condition (21) we obtain

∫ t

0
G(s) ds < (

β2 − β1

2
+ β)t, (24)

conditions (23) and (24) are compatible if the difference between the net and switching
proliferation rates is less than the viscoelastic characteristic time

ρ − (β2 − β1) < β. (25)

If no viscoelastic effects are considered,β = 0, we deduce from (24) that an overall admis-

sible measure of the treatment ,
∫ t

0
G(s) ds, should be smaller.

2. Otherwise, if the net proliferation rate is less than the switching proliferation rate

ρ < β2 − β1 (26)

and the difference between the rate of cells death and the resident proliferation rate is
bounded by the viscoelastic characteristic time

G(t) − (ρ − β2 − β1

2
) < β, (27)

then inequality (22) is replaced by

M2(t) ≤ e2( β2−β12 t−
∫ t
0 G(s) ds)M2(0). (28)
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Assuming that the density of switching proliferation cellsat time t is less than the total
amount of death cells until timet due to chemotherapy effect

(β2 − β1

2

)

t <
∫ t

0
G(s) ds, (29)

we conclude thatM2(t) decreases. Again we observe that the parameterβ has influence on
the admissible threshold of the chemotherapy treatment.
We note that as from (27)

(β1 − β2

2
+ ρ + β

)

t >
∫ t

0
G(s) ds, (30)

we must impose that the difference between the net and switching proliferation rates is
greater than the viscoelastic characteristic time

ρ − (β2 − β1) > β (31)

in order to have the compatibility between (29) and (30).

When chemotherapy is applied, conditions (21) and (23) or conditions (27) and (29) can be
used to determine an effective dosage that induces a ratek of cell death due to the exposure to the
drug that allows to control the total tumor mass. Obviously the value ofk depends of the protocol
of chemotherapy. The typical bang-bang protocol corresponds to treatment which alternate maxi-
mum doses of chemotherapy with rest periods when no drug is administered, as defined by (5) and
illustrated in Figure 1.

t

k

Figure 1: Chemotherapy protocol.

4. A semi-discrete model

To compute the artificial massM2(t) we use a numerical method which is obtained discretizing
the spatial derivatives of (18) using centered difference operators. In what follows we show that
this discretization preserves the qualitative behaviour of the initial boundary value problem studied
in the last section. More precisely we establish the discrete versions of the inequalities (22) and
(28) under the conditions (20), (21), (23), (25) or (26), (27), (29), (31), respectively.

We assume thatn = 2,Ω is the square [0, L] × [0, L] andH = (h1, h2) with hi > 0, i = 1, 2. In Ω
we introduce the spatial gridΩH = {(x1,i, x2, j), i = 0, . . . ,Nh1, j = 0, . . . ,Nh2}, wherexℓ,i = xℓ,i−1 +

hℓ, i = 1, . . . ,Nhℓ , xℓ,0 = 0, xℓ,Nhℓ
= L, for ℓ = 1, 2. By ∂ΩH we represent the set of boundary

points. We introduce the following auxiliary pointsxℓ,−1 = xℓ,0 − hℓ, xℓ,Nhℓ+1 = xℓ,Nhℓ
+ hℓ, ℓ = 1, 2.
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To simplify the presentation we use the notationwi, j = wH(x1,i, x2, j).We discretize
∂

∂x1
(a
∂u
∂x1

),

a is a scalar functions, using the usual second order finite difference discetization

∇∗h1
(âH∇h1uH)(x1,i, x2, j) =

1
h1

(ai+1/2, jD−x1ui+1, j − ai−1/2, jD−x1ui, j

)

, (32)

whereai±1/2, j = a(x1,i ± h1
2 , x2, j) andD−x1 denotes the usual backward finite difference operator in

x1 direction. The second order finite difference discretization∇∗h2
(b̂H∇h2uH)(x1,i, x2, j) to discretize

∂

∂x2
(b
∂u
∂x2

) is defined analogously.

The semi-discrete approximation foru andv in ΩH at timet, uh(t) andvH(t), are defined by the
following system of ordinary differential equations























































u′H(t) =
∑

i=1,2

∇∗hi
(di∇hiuH(t)) +

∫ t

0
ker(t − s)

∑

i=1,2

∇∗hi
(dv,i∇hiuH(s))ds

−(β1 +G(t))uH(t) + β2vH(t) in ΩH,

v′H(t) = (ρ − β2 −G(t))vH(t) + β1uH(t) in ΩH,

(33)

complemented with the initial conditions

uH(0) = RHu0, vH(0) = RHv0 in ΩH, (34)

and the boundary conditions

Dηx1
ui, j(t) = 0, i = 0,Nh1, j = 0, . . . ,Nh2,

Dηx2
ui, j(t) = 0, i = 0 . . . ,Nh1, j = 0,Nh2,

(35)

where, form = 1, 2,

Dηxm
ui, j(t) = Dd,ηxm

ui, j(t) +
∫ t

0
ker(t − s)Dv,ηxm

ui, j(s)ds, (36)

In (34) RH denotes the restriction operator and in (36)Da,ηx1
is defined by

Da,ηx1
wi, j =

1
2

(

ai+1/2, jD−x1wi+1, j + ai−1/2, jD−x1wi, j

)

,

beingDb,ηx2
wi, j defined analogously.

To prove a discrete version of the upper bounds (22), (28) we follow [19] to introduce a con-
venient discrete functional context. ByWH(ΩH) we denote the space of grid functions defined in
ΩH. In WH(ΩH) we introduce the inner product

(wH , qH)
ΩH
=

Nh1
∑

i=0

Nh2
∑

j=0

ωi, jwi, jqi, j, wH, qH ∈ WH(ΩH), (37)
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whereωi, j = h1h2 in ΩH, ωi, j =
1
2h1h2 on ∂ΩH − CH, ωi, j =

1
4h1h2 on CH, CH denotes the

set of corner points ofΩ and∂ΩH = ΩH ∩ ∂Ω. The norm induced by the inner product (37) is
denoted by‖.‖H.

To simplify the presentation we use the following notations:

(wH , qH)∂ΩH ,x1 =
∑

i=0,Nh1

(

Nh2−1
∑

j=1

h2wi, jqi, j +
∑

j=0,Nh2

1
2

h2wi, jqi, j

)

,

for grid functions defined on∂ΩH, being (wH, qH)∂ΩH ,x2 defined analogously, and forwH , qH ∈
WH(ΩH)

(wH, qH)h1 =

Nh1
∑

i=1

h1

(

Nh2−1
∑

j=1

h2wi, jqi, j +
∑

j=0,Nh2

h2

2
wi, jqi, j

)

,

being (wH, qH)h2 defined analogously,‖wH‖2H = (wH ,wH)
ΩH
, ‖wH‖21,s =

∑

i=1,2

‖D−xi wH‖2hi
.

The following identity has a central role in what follows andit can be shown using summation
by parts

(∇∗hℓ (aℓ∇hℓwH),wH)
ΩH
= −(âℓ,HD−xℓwH,D−xℓwH)hℓ + (Daℓ ,ηxℓ

wHηxℓ ,wH)∂ΩH ,xℓ , ℓ = 1, 2. (38)

In what follows we establish an upper bound for the semi-discrete version ofM2(t)

M2,H(t) = ‖uH(t)‖2H + ‖vH(t)‖2H,

whereuH(t) andvH(t) are defined by (33), (34) and (35). LetEH(t) be the semi-discrete version of
E(t)

EH(t) = M2,H(t) +
∑

i=1,2

‖
∫ t

0
ker(t − s)

√

d̂v,i,HD−xi uH(s) ds‖2hi
.

Multiplying both equations of (33) byuH(t) andvH(t), respectively, with respect to the inner prod-
uct (., .)ΩH

and taking into account (38) we deduce

d
dt
‖uH(t)‖2H = −

∑

i=1,2

(d̂i,HD−xi uH(t),D−xiuH(t))hi − (β1 +G(t))‖uH(t)‖2H + β2(vH(t), uH(t))
ΩH

−
∫ t

0
ker(t − s)

∑

i=1,2

(d̂v,i,HD−xi uH(s),D−xiuH(t))hi ds +
∑

i=1,2

(Dηxi
uH(t)ηxi , uH(t))∂Ω,xi

(39)

and
d
dt
‖vH(t)‖2H = (ρ − β2 −G(t))‖vH(t)‖2H + β1(uH(t), vH(t))ΩH

. (40)

Considering the boundary conditions (35), the discrete version of (15)

d
dt
‖
∫ t

0
ker(t − s)

√

d̂v,i,HD−xi uH(s) ds‖2hi
= 2(
∫ t

0
ker(t − s)d̂v,i,HDxi uH(s) ds,D−xiuH(t))hi

−2β‖
∫ t

0
ker(t − s)

√

d̂v,i,HD−xi uH(s) ds‖2,
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and the Cauchy-Schwarz inequality, from (39), (40) we get

E′H(t) ≤ 2 max
{β2 − β1

2
−G(t),

β1 − β2

2
+ ρ −G(t),−β

}

EH(t), (41)

If (20) and (21) then

M2,H(t) ≤ e2((
β1−β2

2 +ρ)t−
∫ t
0 G(s) ds)M2,H(0) (42)

Otherwise, if (26) and (27) then

M2,H(t) ≤ e2( β2−β12 t−
∫ t
0 G(s) ds)M2,H(0), (43)

Finally, if (20), (21), (23) and (25) or (26), (27), (29) and (31), then the discrete artificial mass

M2,H(t) is bounded byM2,H(0). In the first case the decreasing factor ise2((
β1−β2

2 +ρ)t−
∫ t
0 G(s) ds) and

e2( β2−β12 t−
∫ t
0

G(s) ds) in the second case.

5. Results

In this section we present some numerical results illustrating the behaviour of the glioma cells
defined by (33), (34) and (35). The numerical results were obtained integrating in time the ordinary
differential problem using the implicit Euler method and discretizing the integral term in (33) with
a left rectangular rule. We consider a homogeneous square domainΩ = [0, 15cm] × [0, 15cm],
growth rateρ = 0.012/day and switching parametersβ1 = 10−6/day and β2 = 0.036/day .
These parameters were obtained from [39] and have biological meaning. According to [32], the
initial condition is defined by 105 cells/cm2 of proliferation tumor cells at middle point of the
domain,E0 = 3156Pa, E1 = 6E0 andµ = 8.9 × 10−4 Pa · s . We also considerλ = 1cm2,
isotropic behaviour withd̃11 = d̃22 = 0.004cm2/day2 and to guarantee the positivity ofDv we
taked̃v,11 = d̃v,22 = −10−14 cell/Pa day ([7], [30]) which leads tod11 = d22 ∼ 0.004cm2/day and
dv,11 = dv,22 = 0.001cm2/day2.

In Figure 2 we plot the numerical solution at day 6. Solution is presented in logarithmic scale,
which means that contour plots represent the power of 10 of the density of tumor cells. In this
case we observe a very intense spreading of proliferation cells and we can conclude that migration
cells are already quite far from the core.
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Figure 2: Numerical results at day 6 (logarithmic scale) .

Let us consider now that the chemotherapy treatment defined by (5) is applied with a protocol
as illustrated in Figure 1. Conditions (21) and (23) are usedto compute a profile forG(t) that lead
to control the total tumor mass. We consider a 24h dosage and different rest periods. In Table 1
we show the minimum value ofk ((5)) defined by conditions (21) and (23), for a virtual patient as
defined in the beginning os this section.

Protocol kmin [./day]

each 2 days 0.064
each 7 days 0.224
each 14 days 0.448

Table 1:kmin as (21) and (23), for a protocol of 24 consecutive hours of chemotherapy .

In Figure 3 we plot cell distribution at day 104 for an untreated patient and three patients
with different chemotherapy protocols. All three protocols start atday 7, and follow different rest
periods represented in Figure 1 (k = 0.065/day is associated to a 24h dosage at days 7, 9, 11,
13, etc;k = 0.225/day is associated to a 24h dosage at days 7, 14, 21, 28, etc;k = 0.45/day
is associated to a 24h dosage at days 7, 21, 35, 49, etc). We observe that glioma mass density
is significantly reduced when chemotherapy is used, although we do not observe a significant
reduction of the tumor’s area. We remind that all plots are presented using logarithmic scale of the
density of cells.
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Figure 3: Numerical results at day 104 (logarithmic scale) .

Finally, in Figure 4 we compare glioma masses of the virtual patient when no chemotherapy
is administered and the results of the adminstration of the above three chemotherapy protocols.
We observe a significant reduction of glioma masses when compared to glioma’s untreated pa-
tient. The results presented in this figure shows the effectiveness of the our approach to define
chemotherapy protocols.
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Figure 4: Glioma massesM1(t) for 1 year (logarithmic scale) .

6. Conclusions

In this paper we studied a mathematical model to describe theevolution of glioma cells with
and without chemotherapy. The model was established combining a mass conservation law with
a non Fickian mass flux that takes into account the viscoelastic behaviour of the brain tissue de-
scribed by the Voigt-Kelvin model.
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Using the energy method we deduced estimates for a functional related glioma massM2(t)
defined usingL2 norm. These estimates allowed us to define sufficient conditions on the parameters
that lead to the control ofM2(t).

Semi-discrete approximations for the proliferation and migratory cancer cells presenting the
same qualitative behaviour of the continuous counterpartswere introduced. Sufficient conditions
that relate the chemotherapy effect with the growing rates of the semi-discrete migratory and pro-
liferations glioma cells that lead toM2,H(t) < M2,H(0) were also established. These conditions
allow us to define efficient protocols that lead to a decreasing of the cancer mass.

Numerical experiments illustrating the behaviour of the glioma mass under the conditions
deduced for the chemotherapy protocols are also included. The results obtained suggest that our
approach is a promising one.

Models that will take into account the space effect of chemotherapy will be addressed in a
future work. In this case we need to incorporate in the diffusion equation for the drug concentra-
tion the viscoelastic effect of the brain tissue on the diffusion drug similar to the one considered
here in the migration of glioma cells. As the complete model is composed by integro-differential
quasilinear equations of diffusion-reaction type, its mathematical and numerical studyis a chal-
lenging problem. Future work will also address mathematical models with a real geometry and
that takes into account the white and gray matter of the brain. Comparison of the model with
existing medical protocols will be also considered.
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