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1 Introduction

We start recalling the notion of Q-algebra over an associative commutative ring ¢ with
unity: this is a unital module over ®, on which we define a system of multilinear algebraic
operations Q = {w; : |w;} = n; € N, i € I}, where |w;i| denotes the arity of w;. An Q-algebra
is merely called an algebra.

Among these is the class of n-Lie algebras, recently rebaptized as n-ary Filippov algebras
(see, for instance, [2], [13] and [10]), so-called in honor of Filippov’s work [3], where this
subject was first studied. An n-ary Filippov algebra, or simply Filippov algebra (if the arity
of the operation can be omitted) is an Q-algebra L with one n-ary operation [.,...,.] :
x"L — L, n > 2, satisfying the identities

[CL‘], e e ,fL‘n} = sgn(a)[.z'g(l),... ’:ca'(n)]’ (1)
n
[[x]s--' 1$n]7y23'-- 7yn] == Z[wls--- 7[$i7y21'-~ ayn]w'- 7337).]1 (2)

i=1

where o is a permutation in the symmetric group S, and sgn(o) stands for the sign of o.
The identity (1) is called enticommutativity, while (2) is a generalized Jacobi wdentity, also
known as Filippov identity.

. Recently, Pozhidaev [9] introduced another class of Q-algebras, the n-ary Malcev alge-
bras, which are a generalization of Malcev algebras. These were first introduced by A. 1.
Malcev in 1955 [6] and are defined by the identities

2 =0, (3)

J(I7 y7 :L'Z) = J(.'L" y’ Z)x’ (4)

where J(z,y,2) = (zy)z + (yz)x + (2x)y is the Jacobian of the elements z, Y, 2.
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We briefly recall the procedure under which this generalization was achieved. It is easy
to see that (4) can be written as follows:

zyzz + yzzx + ey = (2y)(zz2) (5)

(in order to simplify notations, hereinafter the brackets in the left-normalized products
shall be omitted, so that xyzz = [(zy)z|x). Let R; : a — az be the operator of right
multiplication by z in a Malcev algebra A and let A* be the multiplication algebra of A,
i.e., the associative algebra generated by the operators R,. It follows from (5) that

RyRey + RyyR, = R2R,, — RyR? (6)

holds in A*. We can generalize (6) to the n-ary case:

n n
RI(Z Rmz,‘..,.’riRy,... ,a:n) + (Z R:t-.z.,...,:t,-Ry,... “n )R:r — RgRy o RyRa%’

i=2 =2

where Ry = Ry, .z, and Ry = R, _,, are right multiplication operators: zR; =
{2,72,... ,zp]- Being A an algebra with an n-ary anticommutative multiplication [.,...,.],
we can rewrite the last equality as follows:

n

Z[[Z,:I:?y--- axn]7$27"' ,[519573/2,--- 7yn]:--- 7$n] (7)
i=2
n
N (XN [ TSR R N N SN N
i=2
== [[[Z,SCQ,... 9mn]’x2,"' )x‘n]iy?w" ay‘n]—‘ [[[273/27'-' 73/71}7932:--- ‘mn];sz‘ .. )xnlv

hereafter known as the generalized Malcev identity (GMI).

This way, as proposed by Pozhidaev [9], an n-ary Malcev algebra (n > 2) is a unitary
®-module M equipped with an anticommutative n-ary operation [.,...,.} : X"M — M
such that (7) holds.

Several notions have a natural translation to the theory of n-ary Malcev algebras. For the
sake of completeness, we recall some of these. A subspace S of an n-ary Malcev algebra M is
a subalgebra if [S, ... , 8] C S and a subspace I is said to be an ideal of M if [I, M,... ,M] C
I. A particular ideal of M is the center, which is defined by

Z(M)={zeM:[x,M,.. M =0}

If [M, ..., M] # 0 and M has no nontrivial ideals we say that M is simple.

We recall that it has been proved that every n-ary Filippov algebra is an n-ary Malcev
algebra [9]. Further, if M is an n-ary Malcev algebra, n > 3, with multiplication [.,... ,.],
and @ € M is an arbitrary element, it is possible to equip M with a new multiplication,
[.,...,.]q defined by

{1:1,... amn—l]a = [a,scl,. oo ,In_l].

Together with this multiplication, we define a reduced algebra of M, which is denoted by M,.
It has been proved [9] that the reduced algebras of an n-ary Malcev algebra are (n — 1)-ary
Malcev algebras.
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In this paper we start presenting two examples of ternary Malcev algebras (the first of
which introduced by Pozhidaev) defined by means of a composition algebra. This will be
done in the second section and will be followed by a discussion of other possible generaliza-
tions of the Malcev identity (4). It turns out that none of the multiplications concerning
the above mentioned examples satisfy the ternary versions of those generalizations.

The third section is devoted to the transference of the notions of solvability and nilpo-
tence to the class of n-ary Malcev algebras, inspired by Kasimov’s work [4] on n-ary Filippov
algebras. Although the impossibility of all results being adopted, the invariance of the rad-
ical under derivations of an n-ary Malcev algebra (over a field of characteristic zero) is
valid.

If A is a finite-dimensional n-ary Malcev algebra over a field of characteristic zero, then
Rady(A) is invariant under all derivations of A.

The description of the ternary Malcev algebras of low dimensions (< 4) is studied in
the fourth section. The conclusion of this section is that all ternary Malcev algebras with
dimension not greater than 4 are ternary Filippov algebras.

Finally, last section is devoted to the reduced Malcev algebras of the ternary Malcev
algebras M(A) defined on composition algebras. It turns out that all reduced Malcev
algebras which arise by fixing the elements of an arbitrary orthonormal basis of A are
simple.

2 Ternary Malcev algebras defined on composition algebras

In this section we present two examples of ternary Malcev algebras, the first of which already
mentioned by Pozhidaev. We point out the possibility of different generalizations of Malcev
algebras and present some counterexamples for these based on the two known examples of
ternary Malcev algebras.

2.1 Two examples of ternary Malcev algebras

Let A be a composition algebra over a field ® such that char® # 2, with an involution
~ i@+ @ and unity e. Admit that the symmetric bilinear form (z,y) = 3(zy + yZ) defined
on A is nonsingular, being possible to define a norm n such that n(a) = (a,a) for every
a€ A.

For the sake of completeness we present, without proof (which can be found, e.g., in
[9]), some results concerning composition algebras.

Lemma 2.1. For every elements a, b, ¢ of a composition algebra A, the following equal-
ities hold:

1. aab = a(ab) = n(a)b = baa = b(aa);

2. aba = —n(a)b+ 2 {(a,b) a;

3. abc + ach =2 (b, c) a;

4. a(be) + b(ac) = 2{a, b) ¢;

5. (ab,c) = (b,ac) = <a,c5>;

6. {a,b) = (a,b), {(a,b) = (a,b).

Some of these results have a short version if we are dealing with orthonormal vectors.

Corollary 2.2. If a,b, ¢ are elements on an orthonormal basis of A, then
1. aba = —b;
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Finally, since every composition algebra is an alternative algebra, the Moufang identities
hold in A (see, e.g., [12]):

yzyz = y(z(yz)) (the left Moufang identity), (8)
(zy)(2z) = 2(yz)x (the middle Moufang identity), (9)
zyzy = x(yzy) (the right Moufang identity). (10)

As proved by Brown and Gray [1] on the classification of algebras with vector cross
product, there is a class of 8-dimensional algebras with ternary vector cross product, being
these defined either by

[z,9,2] = zg2 = (y,2) T+ (2, 2) y — (7, ¥) 2 (11)

or

[$,y9 Z] =T (gz) - (y,z> x -+ (CL‘, Z) Y- (x»y) Z. (12)

Examples of ternary Malcev algebras defined on composition algebras can be given using
(11) and (12).

Theorem 2.3. Let A be a composition algebra with unity e and with an involution
~ :aw— a. Equip A with a ternary multiplication |.,.,.] by one of the rules, (11) or (12).
Then A is a simple ternary Malcev algebra with respect to |[.,.,.], which will be denoted by
M(A).

Proof The proof concerning the algebra with multiplication defined by (11) has already
been given in [9].

Admit that [.,.,.] is defined by (12). It is easy to use properties from lemma 2.1 to
deduce the anticommutativity of [., ., .].

Recall that a ternary version of (7) is given by:

[[I, y’ 2], [y’u’ v]’z] + [[x’ y’ z]7y7 [Z,'U.,'U]] + [[‘7"7 [y’ u’ 'U],Z],y, z] + [[$5 y’ [27 u’ v]]’:y’ 2]

== [[[z1 y’z]ﬂ‘ y7 z])’“? U] - [[[a”‘!uﬁ v]’y’ z]’y) Z]' (13)

In order to prove that (13) is satisfied when the multiplication is given by (12), we denote
it by [.,.,.]2, while the first will be denoted by {.,.,.]. The mapping ¢ : a — @ from
M, = (4,1,.,.1) to My = (A,[,-,.]2) is an anti-isomorphism of ternary Malcev algebras.
In other words, ¢ is an automorphism of the linear space A which satisfies

é([a,b,c];) = —[#(a), ¢ (b), ¢ (c)],, for all @,b,c in A, (14)

as it is simple to verify. Applying ¢ to both sides of the identity (13) with respect to
[.,.,.]1 and using (14), it is possible to observe (13) written with respect to {., ., .]o in terms
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Henceforth, M is also a ternary Malcev algebra.

To prove the simplicity of Ma, admit that I is a non-trivial ideal of My and consider ¢
the inverse mapping of ¢, which is also an anti-isomorphism of A4, but from M, to M;. By
definition of ideal, we have [I, A, A], C I and therefore,

P (1,4, 4]y C (D).

Observing that ¢ ([Z, 4, 4],) = [¢ (I), A, 4], and recalling that ¢ is an automorphism of A,
the above inclusion implies that ¢ (I) is a non-trivial ideal of AM;. But this can’t happen,
because M is simple. The result is proved.

2.2 Different generalizations

It is possible to obtain different generalizations of Malcev algebras. Indeed, if A is a Mal-
cev algebra, the identity (4), which is equivalent to the Malcev identity, also leads to the
following identity in A* :

RyR% — R2R, = R,Ry; + Ry R;. (15)

Proceeding analogously to what’s described in the introduction, if A is now an algebra
with an n-ary anticommutative operation [, ...,.] and A* its multiplication algebra, we can
generalize (15) writing

n n
Rsz - R?:Ry = R (Z Ryz,--»,yiRz...-,yn) + (Z Ryz,--.,yin,m,yn) Ry

=2 =2

where R;, Ry € A are defined as before. Finally, the correspondent identity in A can be
derived from the last one, leading to:

(13

Z[[zam2)"~ 1xn]1y27'-' a[y‘hz?w-- )xn]y--' 7yn] (16)
=2
n
+Z[[Z,y2,--- ’[y’tha--' 7$n]’--- ;yn],$2,--- axﬂ]
=2
= ll&y2,.-. synlizo, ... s 20], 22, .. , 20 — [[[2; Bgsie = silinlzdns s s 2l 28, - s Ynl,

which will be denoted by the second generalized Malcev identity (2GMI).

Unfortunately, the notion of n-ary Malcev algebra which arise replacing (7) by (16)
doesn’t seem to be as interesting as the one we have first introduced. Indeed, we claim that
none of the products defined by (11) or (12) satisfies

[z, y, 2], [u,y, z],v) + [[z,9, 2], u, fo, 9, 2] + [z, [v, ¥, z},v],y,2] + [z, u, [v,9, 2]}, 2]

= [[[.’II,U,’U] Y, Z] Y, z] - [[[:C,y, 2] s Yy Z},U, ’U] ? (17)
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which is the ternary case of (16). The proof will only include a case where it fails, restricted
to the product defined by (11). !
Putting z = y, (17) reduces to

[z, [4s 2, 21 s v] 2, 2] 4 [[50, [0, 21} 2 2] = [[l2yw o] i 2] s 25 2] (18)

Let us take x, z, u,v pairwise different belonging to an orthonormal basis. Developing the
term on the right side of (18), using the fact that [a,b, ¢] is orthogonal to a,b, ¢, together
with properties of lemma 2.1 and its corollary, we have:

llz,u,v},z,2],2,2] = [[z,u,v],z,2]Z2
= TWVEZTz + (2,200} T2

= —zuv+ (2, 2uv) 2.
Concerning the first summand on the left side, we have:
([, (v, z, 2] ,v] , 2, 2] = v — (2, zTW) 2.

The second summand on the left side of (18) can be obtained from the first one, interchang-
ing v and v. In fact, we have

[[z,u, [v,z,2]],2,2] = —[[z,[v,z,2],u4],2,2]
= —zTu+ (z,2T0u) 2
= gzuv — (z,2Uv) 2.
Thérefore, the left side of (18) is equal to 2ztv — 2 (2, 2%v) z while the right side is equal to

—zuv + (z,zuv) 2 (note that if char® = 3 we obtain a trivial identity, since the difference
between the left and the right side equals to 3z%wv 4 3 (2%, u) 2, which is zero in this case).

Both identities, (7) and (16), being though generalizations of the Malcev identity to
n = 3, are nonlinear on all variables, but just on two sets of variables (although linearizable).
We will now analyze two generalizations which result from (4) and are already linear on all
variables.

If A is a Malcev algebra over an associative and commutative ring ® with unity and
char® # 2, it has been proved {11] that (4) is equivalent to

(zy)(2w) = z(wyz) + w(yzz) + y(2zw) + z(zwy),
which in turn can be written in the operator form, as follows:
RnyRz - RszR:c = RszRy - RszRy - R(sz)Ra-r

for every right multiplication operator R;, Ry, R, € A*. Generalizing this to the n-ary case,
we have

n

RmRsz - RszRz = Z (RZR(EQ,--.,(EiRg,---,I'n - RZQ,..,,z,vRI,.,,,any)

=2
n n
} " Ry iBeretjBaretn — 2 By (iR R
ij=2 =2
i '

'In this and forthcoming counterexamples, we could deal with the multiplication defined by (12). By
analogous procedures, we would arrive to the same conclusions.
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where R is such that bR, = [b, 2, ..., 2] . A ternary version of this identity can be expressed
in A as follows:

([lz,y, 2], u, 0], 8, 8] — [{[z, u, v, s,t,y, 2] (19)

= [[z,s,4], [y, u,v], 2] + [[=, $,t], 9, [z, u, v]] = [z, [s, 4, 2] , 8} , u, v} — [[z, s, .y, 2]} u, v]

— [z, [u, s8], [v, 9, 2] - [z, [w,9,2],[v, 8, 8] = [z, [[w, s, 2] , 9, 2] , 0] — [z, %, [[v.s.t] .9, 2]] -
Let A be a composition algebra under the same conditions as those described in the previ-
ous subsection and consider the multiplication |[., ., .] defined by (11). Consider f(z,y, z,u, v,
s,1) as the difference between the left and the right sides of (19), which is a linear function of

all variables. Admit that z,y, z,u, v, s,t belong to an orthonormal basis and put z = y = u,
being x, z, v, s, t pairwise different. Then

flz,z,2,2,v,8,t) = —[{z,s,8],7,[zz,v]] + [[z, [s, &5 2] 8] 5 2y v (20)
+ [z, s, [t, z, 2], z, v} + [, [2, 8, 8], [v, 2, 2]] + [z, [[z, 8, 1], 7, 2} . 0]
= [llx,s,2},2,8] - [[x,t,2],2,8] — [[2,5,1],z,2],z,0]..

Now, it is an easy task to apply properties form lemma 2.1 and its corollary to conclude
that

{z,s,2],2,8] = —28t+ (z,25t)x
[[x,t,2],2,8] = 23t — (z,23t)x,
[[x,8,t],2,2] = 23— (z,z5t)x.

This way, replacing in (20), we obtain
flz,z,2,2,v,8,t) = —3[28t,z,v],

which is nonzero in general (except if char® = 3). Thus, the proposed ternary Malcev
identity (19) is not satisfied by the multiplication defined by (11).

It is well known {11] that being A a Malcev algebra, for every z,y € A the operator
defined by

where [., .} stands for the commutator, is a derivation of A, that is,
(zw)D(z,y) = (2D(z,y)) w + 2 (wD(x,y)) (22)

is satisfied. If A is now an algebra with an n-linear anticommutative multiplication [.,... ,.],
a generalization of (21) is the operator defined by

n

D(z,y) = Z Ray,..ziRy,..an + [Ra, Ry], (23)

=2

where z = (x2,...,2n), ¥y = (¥2,-.,¥n), and Ry, Ry, € A*. One may ask if D(z,y) is a
derivation of A, that is, if

(21, ...s 2] D(x, ) = Z[zl, coxy B I8 Ul s 2] (24)
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holds. Written in terms of right multiplication operators, (24) is equivalent to:

n
[Rza D(:L'/ y)] = z Rzg,...,ziD(m,y),...,zn-

§=2

Using (23), from the above identity we may conclude that (24) is also equivalent to:

n
> " (RzRay,..ciRy..tn ~ RasotiRy,.wnRz) + Be (Rey Ry) — (Ry, Ry) R, (25)
=2
n n
- ijz=2Rz2’ ’Z‘R(wz ,,,,, szy....,xn)""’Z"+;RZ?""’zf(Rx’Rv)’-"vzﬂ'

In A, this identity is expressed the following way:

Z({[w, 224 ey Zn] 25 ey [T, Y25 cer Yn] 5 ooes Tn) = [[Wy T2, ooy [T, Y2, s Yn) ooy Tn] 5 224 oey ey Zn))

i=2
+[[[w, 22, -y 2n] s T2y ooy Ta] , Y2, ooy Yn] — [[[W, 22, o, 28] L Y2, e YUn] L 22, s Tn]
—[[w, 22, -y Zn] s Y2, ooy Yn) s 22, ooy 2] + [, Y25 or Yn] s B2, ooy T , 22, - 20]

n
= Z [w,zZ,...,[zi,Ez,A.., [J,‘_—,',yz,....,yn] ,...,fL‘n],...,Zn] (26)
i,7=2

n
£ Z ([’w,Z2, ey [[z‘hz?! ...,.’L‘n] 1 Y25 -eny yn] 3 oeey Zﬂ] = [10,_22, ey [[ziiyzi “ey yﬂ.] 3 &2y veey mn] PR zn])
i=2

Therefore, D(z,y) is a derivation of the n-ary algebra A if (26) is satisfied.

Let A be an algebra with multilinear and anticommutative multiplication [., ...,.] which
satisfies (26). We may investigate if, in the ternary case, any of the multiplications given
in a composition algebra A by (11) or by (12) satisfy the ternary version of (26). That is,
we are asking if any of those multiplications verify

(l, 5,2), [y, u, 9], 2] — [, [y, u,0], 2], 8,8 + [[2, 8, 8]y, [2, w, )] — [z, 9, (2,0, 0] 8, 2] (27)
+ [i[z, s, ], ¥, Z] vu?”] - [[[:r:,s,t] 4, 0], 9, 2] — ([, 9, 2], u, ), 85 2] + [{[x:u!v] 9y7z] ’Sﬂt]
= [z, {5 [w,u,v], 2], 8] + [, 8,1, [z, 2, v]] , 1] + [z, 8, [t, [y, u, 0], 2]) + [z, 8, [, 9, [2, 4, 0]
+ [:C, [[379’ 2], u, v, t] — [e, [[s,u, v, 9, 2] , 2] + [$75’[[t’y!z} !u?v]} — [z, 8, {[t,u,],9,2]] .
As usual, defining f(z,y, z,u,v, s,t) as the difference between the left and the right hand
sides of (27}, it is easy to observe that f is linear on all variables and skew-symmetric on
the pairs of variables (y, z), (u,v),(s,t). We may consider z,y, 2,u,v, 8,t belonging to an

orthonormal basis of A. Taking = = y, and considering the multiplication defined by (11),
we have:

flz,z, z,u,v,5,t) = [jz,81,[z,u,v],2] - [z ]z, u,v],2],s 1 + [z, 2, [2,u,0]]
+[[[z, s8], z, 2] , u, ] — [[[z, 8, ] , u, ¥}, 2, 2] + [[[2, u, 9], 2, 2] , 5, ]
~ [z, [, [z, u, 0] , 2], 1] — [z, [8, 2, [2, w0, 0] , ] — [z, 8, [¢, [2, u, 0], 2]
—fz,s,[t,x, [2,u,7]]] — [z, [[s,z, 2}, u,v] . ] + [z, [[s, u, 9] , 2, 2] , 1]
- [z, 8, [[t, x, 2], u, v]] + [, 8, [[E, u, 0], 2, 2]] -

which may not be zero. Indeed, being e,a,b,ab,c,ac, be,abe an orthonormal basis of A,
where e is the unity, we have f(e,e,a,b,c, ab,ac) = 4a.



On Some Generalizations of Malcev Algebras

3 k-solvability and k-nilpotence of n-ary Malcev algebras

In this section A stands for an n-ary Malcev algebra (over an associative and commutative
ring ® with unit) with multiplication denoted by [.,... ,.]. Without further properties for
the multiplication, we can just say that the sum of two ideals of A is again an ideal of A,
but if Ih,... I, are ideals of A [I1,...,I,] may not be an ideal of A, oppositely to what
happens concerning n-ary Filippov algebras (a counterexample can be found in [11], when
= 2].

We are going to discuss different generalizations of the notions of solvability and nilpo-
tence concerning the n-ary Malcev algebra A. Those have been analyzed by Kasymov but
with respect to n-ary Filippov algebras.

The following definitions are adopted from those proposed by E. N. Kuz’min (about
n-ary Filippov algebras). Being I an ideal of A, consider two descending sequences of
subalgebras of A, I'®), s > 0, and I°,s > 1, recursively defined by

I(O) =17
{ 1640 = [16),16), 4, 4], 5>0

and

N=1
=LA, A, s>1,

respectively.

Definition 3.1. We say that I is a solvable ideal of A if I'") — 0 for some r > 0.

Definition 3.2. We say that I is a nilpotent ideal of ‘A if I™ = 0 for some + > 1. In
particular, if 72 = 0 we say that the ideal T is abelian.

It is easy to observe that both I®) and I°® are descending series of subalgebras of A, but
not necessarily of ideals of A.

Filippov’s version of these notions can be adopted, too. Given an ideal I of an n-ary
Malcev algebra A, consider the following descending sequences of subalgebras of A, denoted
respectively by 1), s > 0, and I®), s > 1, such that:

10 =7
{ It = [718,, . I, s>0

and

0 — g
I = [ 1), s> 1

Definition 3.1.” An ideal I of 4 is said to be solvable if I() = 0 for some r > 0.

Definition 3.2.” An ideal I of A is said to be nilpotent if I = 0 for some r > 0.

Observe that an ideal I of A is solvable (nilpotent) in the sense of Filippov if it is a
solvable (nilpotent) subalgebra in the sense of Filippov.

Though both pairs of definitions agree when n = 2, it is possible a certain gradation of
the concepts of solvability and nilpotence for the ideals of an n-ary Malcev algebra A, as
Kasymov did concerning n-ary Filippov algebras. Let k be a fixed integer in {2,...,n}, I
an ideal of A and consider the following sequences of subalgebras of 4, I*%) s > 0, and
I®% s> 1, such that
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JOKk —
Te+LE) = [poh), 14 A, 0 AL 820
k
and
P =]
Is+l’k = [Is’k,l,-w ,I7A1"' 1A]78 2> 1
k-1

Definition 3.3. For a fixed integer k € {2,...,n}, an ideal I of A is said to be k-solvable
if I(rk) = 0 for some r > 0.

Definition 3.4. For a fixed integer k € {2,...,n}, an ideal I of A is said to be k-nilpotent
if I™* = 0 for some 7 > 1.

At the light of these, Kuz’min’s and Filippov’s definitions are particular cases, with
k = 2 and k = n, respectively. Clearly, if & < r < n the k-solvability (k-nilpotence) of an
ideal implies it r-solvability (r-nilpotence).

The example described by Kasymov concerning n-ary Filippov algebras can also be
adopted to the present study to show that for different values of £ we obtain distinct
notions of k-solvability (k-nilpotence), even when the ideal coincides with the n-ary Malcev
algebra.

Ezample Consider an (n + 1)-dimensional space A with basis ey, ... , e,4; and anticom-
mutative, n-linear multiplication defined by

fe1y--- 1 6iy--- €nr1)=oye;, o4 €F, i=1,..,n+1.

Then A is an n-ary Malcev algebra (further, it is an n-ary Filippov algebra) for any choice
of the constants. Considering ... # 0 and ag4; = ... = apy1 =0, 2 < k < n, it is easy
to observe that the ideal AMY) = A2 has basis ey, ...,ex for all I € {2,...,n} and that

A(Q,k) _ [A2,... ,AQ’A,“_ ,A]:O.
k

Thus, A is k-solvable. However, since
ARHRD = g2 — AQKR=D | for k> 3,

we conclude that A is not (k — 1)-solvable.

Observe that in the above example the ideal I = A? is an abelian subalgebra, since
2= [AQ, - A2] = (. However, when k > 3, it is not a (k — 1)-nilpotent ideal and not even
a {(k — 1)-solvable ideal, since

I(l,k—l) —J = I(O,k:—l).
Thus, if £ < n, an ideal of A that is a k-solvable (k-nilpotent) algebra doesn’t need to be a

k-solvable (k-nilpotent) ideal.
Returning to the context of definitions 3 and 4, we have the following basic results:
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Theorem 3.1. If I and J are ideals of an n-ary Malcev algebra A such that I 2 J, J
is a k-solvable ideal of A and I = I/J is a k-solvable ideal of A = A/J, then I is also a
k-solvable ideal of A.

Proof Considering the canonical epimorphism ¢ : A — A, we see that ¢ (I) =T is, by
hypothesis, a k-solvable ideal of A. Therefore, I — 0 for some r > 0. Since @ (IR) =

1" we conclude that I C J. But, being J k-solvable, we have J(*¥) = 0 for some
s > 0. Thus, I'"*$%) — 0, and the result is proved.

Corollary 3.2. If J; and J; are k-solvable ideals of A, then J; + J5 is also a k-solvable
ideal.
Proof Considering the canonical epimorphism ¢ : A — A/.Jy, we have

o(Jy+J2) = (J1).

Since @ (J1) is a k-solvable ideal of A/J> (for it is the image of a k-solvable ideal by an
epimorphism), we obtain the desired conclusion.

Therefore, if A is a finite dimensional n-ary Malcev algebra, for each fixed k € {2,...,n}
there is a maximal k-solvable ideal of A, which is called the k-radical of A and is denoted
by Radi(A). If Radp(A) = 0, A is said to be a k-semisimple n-ary Malcev algebra. Of
course, by theorem 3.1, we can conclude that A/Rady(A) is k-semisimple.

Remark 3.1. Kasymov proposed yet a different definition of k-solvability {k-nilpotence)
of an ideal, which asserts that an ideal of an algebra A is said to be k-solvable (k-nilpotent)
if it is a k-solvable (k-nilpotent) subalgebra. However, he pointed some deficiencies in this
definition. First, if £ < n — 1 we are not allowed to define the k-radical of an algebra, since
the sum of k-solvable ideals of a finite dimensional algebra in the sense of this definition is
not necessarily a k-solvable ideal. Further, if ¥ = n the above example can be used to show

T

that the quotient A/Rad,,_,(A), where Rad,_1(A) is the (n— 1)-radical in the sense of this
definition, is not semisimple. Thus, one of the basic properties of the radicals doesn’t hold.
By these reasons, we will not adopt that definition to the present algebras we are studying.

Let Der(A) be the algebra of derivations of A.

Theorem 3.3. If A is a finite-dimensional n-ary Malcev algebra over a field of charac-
teristic zero, then Rady(A) is invariant under all derivations of A.

Proof Let D € Der(A) and consider I = Radi(A). It is easy to observe that

J=I+4+ID

is an ideal of A. If we prove that J is k-solvable, then J C I, which implies that ID C I,
as we wish to prove.

Since I is k-solvable, we have I("%) = 0 for some r > 0. The elements of I™*) can be
represented by fr (T1,...,Tm, Y1, -, y1) where m = k", 21, ...,z € I, y1,..., 1 € A and f,
involves multiplications of these elements by means of [.,...,.] . Therefore, we have f, = 0
and thus f,D™ = 0. Whence,

Ml fy (21D, o0y Tm D, Y1, - ) € 1. (28)
Observe that

JE) C 1+ (1D)™R. (29)
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Since all elements in (ID)(T’k) have the shape f, (21D,...,2mD,¥1, ..., y1), it follows from
(28) and (29) that JF) C I. Thus, J?") C ("%} = 0 and J is k-solvable. This ends the
proof.

4 Description of ternary Malcev algebras of low dimensions

The description of ternary Malcev algebras of dimension < 4 can be summarized and stated
as follows:

Theorem 4.1. Let M be a ternary Malcev algebra with dimension not greater than 4
over a field ® of arbitrary characteristic. Then M is a ternary Filippov algebra.

In order to prove this assertion, we have to consider several cases.

4.1 Case: dimM <3

It is easy to see [3] that if A is an Q-algebra with one anticommutative n-ary multiplication
(simply anticommutative {2-algebra) such that dim A < n, then A is abelian. Thus, every
ternary Malcev algebra with dimension lower than 3 is abelian. It has also been proved
that the only anticommutative -algebras A, up to an isomorphism, with dim A = n, are
those with multiplication given by:

[Biss s yu] =0
and
[e1555 = 58] = €15
where e;,... . e, is a basis of A. Any of such algebras is an n-ary Filippov algebra and thus

an n-ary Malcev algebra. Henceforth, the only nonabelian 3-dimensional ternary Malcev
algebra M has multiplication isomorphic to

[ela €2, 63] = €1,

where €1, €9, €3 is a basis of M.

4.2 Case: dmM =141

In order to recognize two isomorphic.4-dimensional ternary Malcev algebras, we start re-
calling a necessary and sufficient condition for two anticommutative (n + 1)-dimensional
Q-algebras being isomorphic [3].

Theorem 4.2. Let A and A be two anticommutative (n + 1)-dimensional Q-algebras,
with multiplications matricially defined by

(6 3n 54 €5 ) = fi5a s Bint1] B (30)
and

(e_l,... ,W) = (&1,-.- ,&nm1) B,
where €1, ... ,e,41 and €7,... ,8,41 are basis of A and A, respectively, and

e = (-1)""er,.. ,Ehyeer vlnt1], P=1.,n+ 1
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Then A and A are isomorphic if and only if there is a nonsingular matrix 7 such that
B=|T|"*TBT.
Recall also that rank B = dim A', being A = [A, ..., A] the square of A.

In what follows, M is a 4-dimensional ternary Malcev algebra, with multiplication de-
fined by

(e',...,e") = (e1,.-. ,eq) B, (31)
that is,
et = brier + ...+ byeq, t=1,..,4,
where e1,...,¢e4 is a basis of M and

e = (=1)[e1,... ,&,-.. ,eq]. (32)

Therefore, M must satisfy (13).

4.2.1 Case: dimM =4 and dimM! =1

Admit that M is nonabelian (the abelian case means that M has trivial multiplication)
and suppose that dim M! = 1. It is easy to see that Filippov's work on the description
of n-ary Filippov algebras can be adopted to conclude the following. The only possible
multiplications are isomorphic to those described by:

[62’63164I =€ . 1
C -
{ [e1, €2, €3] = [e1,€2,e4] = [e1,€3,€4] =0, if M* C Z(M);
and
fe1, €2, €5) = €1 o
{ [61162a64] = [E], 63,6’4] = [62, 63,64] =i s if M g Z(M)‘

4.2.2 Case: dimM =4 and dim M?! = 2

Let M be a 4-dimensional ternary Malcev algebra such that dim M! = 2. It is clear that
we may choose the basis ey, ...,e4 of M such that M! = (e!,e?) . Thus,

e =oe! + B and € = ve! + e,

for some a, 3,7,8 € F. Further, without loss of generality, we may admit that these scalars
are all zero, since M is isomorphic to M with basis 7, ..., & such that M= <e],e2> and
e3=¢l =0. Indeed, take

T =Ty (—a)T32 (—B)Tn (—7) Ta2 (—96),
where

Tij{a) = E+aeyj, 4,5 =1,..4,
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and apply tEeorem 4.2. Then, the ternary Malcev algebra M with multiplication matricially
defined by B such that

B=|T|"'TBT’

satisfies the mentioned assertions.
In what follows, e!,€? is a basis of M such that

ei = (—1)i [81., ey é:h —eey 84] = bliel + b2’i62 =+ b3i€3 -+ b4/je4, i = 1, 2,

Bll 0
By 0O
anticommutative algebra, it is known [3] that a necessary and sufficient condition for M to
be ternary Filippov is

and €3 = e* = 0. Thus B = [ ] where rankB = 2. Being M a 4-dimensional

(bij — byi) € + (bhi — i) € + (bjk — bj) €' =0, 4,5,k =1,...,4.
Due to the present circumstances, this is equivalent to

b3261 — b3] 62 =0
b42€1 — b41€2 =0 '

s g

Since el. e? is a basis of M. we must conclude that M is ternary Filippov if and only if

o b bz |
B = [bzu bso } =10

Now, putting
T=e€3; Yy=e4; 2=€; u=ey; V=€ (33)
in (13), we have:
b2,e! — b3 bsge? = 0,

which implies b3 = 0. Further, by suitable changes of indexes in (33), we conclude that
bsys = b3y = by; = 0. Therefore, By = 0 and M is a ternary Filippov algebra.

By the initial considerations, we may conclude that every 4-dimensional ternary Malcev
algebra M such that dim M! = 2 is a ternary Filippov algebra.

The following result, due to Filippov, will be useful to analyze the next cases.

Theorem 4.3. Let A be an anticommutative (n + 1)-dimensional {2-algebra defined by
(30) and such that dim A' > 2. Then A is an n-ary Filippov algebra if and only if B is
symmetric.

4.2.3 Case: dimM = 4 and dimM! =3

Since dim M' = 3, we may, without loss of generality, assume that e!,e?, e is a basis of
M?!. Observe also that M is isomorphic to a ternary Malcev algebra M with basis el,e?,ed
and such that ¢? = 0. Indeed, consider the multiplication in M matricially defined by (31),
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being €1, e9,e3 and el,e?, €3 basis of M and M! respectively. Let o, 3,7 € F such that

e = ae! + Be? + ye*. Then take

1 0 0 0

0 1 0 O

T =Ty (-a)Tao (-B) Tuz (—v) = 0 0 1 0

- -8 —v 1

and apply theorem 4.2. Computing B = |T'| ' TBT”, we have

b1 bi2 b13 0
“E — b21 b22 b23 0
b31 b3o bas 0
—abyy — fby — yb31  —abiy — Bboy — yb3s  —abiz — Bbos — vbyz 0

i.e., €1 = 0. Thus, we can consider M a ternary Malcev algebra such that dim M = 4,

el,e?,e3 is a basis of M! and e = 0.

Put
=€ Y=¢€; 2=e3 u=e; vV=es,

and replace in (13). Then

{ b2y = 0
bagbyz =0 ’
and thus b43 = 0. Analogously, considering the cases
T=e€3; Y=e; z=e3; u=e;; v=ey,
and
T=eq Y=e€3; z2=ey u=e3; v=e,

we may conclude that bso = 0 and bs; = 0, respectively.
Consider now

T=e€1; y=ey; z=e3 u=ey; V= ey,
and replace in (13). We obtain

boo (b3 — b13) = bz (boy — bya)
br1 (b3 — ba3) = —bi3 (ba1 + b12) + 2b19b3; (34)
b2 (bo1 —b19) =0

It’s not difficult to see that, interchanging e; with e, in the previous case, we arrive to the
following identities:

b1 (bsz — bog) = b3y (12 — box)
bag (b31 — biz) = —boz (b12 + bay ) + 2bo b3y (35)
bo1 (b12 — b91) =0
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If byy # bya, from the third identities in (34) and in (35) it would be by; = b2 = 0, which is
a contradiction. Therefore, by; = b12. Analogously reasoning, the consideration of the two
pair of cases:

T=€1; Yy=—e€4; z=e€y u=e€g; U= ey

T—=e€3, Y—=e; z=e€2; U=e€; UV—e,
and

T=e3, Y=e€4; z=e€1; U=e4; U= ey,

T=€2; Y=¢€; 2=¢€; U=¢€4 UV=ey,

allows us to conclude that b3y = by3 and bsy = beg, respectively (no long computations are
needed: just a convenient change of indexes will produce equalities which are analogous to
(34) and (35)). Therefore, B = B'.

This way, if M is a 4-dimensional ternary Malcev algebra with dim M? = 3, then M is
a ternary Filippov algebra.

4.2.4 Case: dim M =4 and dim M! =4

Since dim M! = 4, we may admit, without loss of generality, that in the matricial definition
of the multiplication we have by # 0. Further, it is possible to take by = 0, ¢ = 1,2, 3.
This happens because M is always isomorphic to a ternary Malcev algebra, M, with basis
el,... et such that byy =0, i = 1,2,3 and by # 0, as it is easy to show by a proper choice
of T in Theorem 4.2. Indeed, the ternary Malcev algebra M with multiplication matricially
defined by B such that

B = T(e3)Toa(aa)Taa(e1) B (Tia(as)Toa(az)Taa(en)) .
where
_ =3 _ =] _ =)
ap = —bauby, as=—buby, o1 =—-bhsby,
is isomorphic to M. Tt is easy to see that by = 0, i = 1,2,3 and by # 0. Finally, being

% =0,¢=1,2,3, we can also admit that by = 1. In fact, M is isomorphic to M, with
bys = 1, by considering

100 0
010 0
™=loo1 o
0 0 0 by

and applying theorem 4.2.
Thus, in what follows, the basis of M is such that

el = [e1,e2, e3] = es.
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Putting
T=¢€; y=ey; z=e3; u=e; v=oey, (36)

in (13), since €', ...,e* are linearly independent, we obtain:

2(b32 —beg) =0
b1z = b3
b1z = boy

b12ba3 = by3byo
Considering now
T=€5 Yy=e; z=ey uU=e€; v-=e;, (37)
we get

—b3g = b5 — bag
boz = b3 — baghyz
0 = b33bso — bogbys

which is equivalent to

baz = b3o
b3zbgs = 0

A suitable change of indexes in (36) allows us to obtain:

b3a = bog and ba1 = b2
bagbsz = 0 bi1bga =0

Therefore, B is symmetric and, consequently, M is a ternary Filippov algebra.
Thus, every 4-dimensional ternary Malcev algebra M with dim M! = 4 is a ternary
Filippov algebra.

5 Reduced Malcev algebras of the ternary Malcev algebras
M(A)

Consider an 8-dimensional composition algebra A over a field @ such that char® # 2, with
an involution ~ : @ + @ and unity e, and the related ternary Malcev algebra M(A) which
arise defining the following multiplication (11). Fix an orthonormal basis e;, ..., €g and, for
each ¢ = 1, ..., 8, consider the reduced Malcev algebra M., = (A4,[., '}et) , where

[lL‘, y]ei = [e'ia z, y] H

for all z,y € A. In order to simplify notations, we will write M; and Fia o
and [, ], respectively.
Lemma 5.1. For each 4 = 1,....8, we have Z(M;) = {ei)g -

instead of AL,
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Proof Let us fix 2 € {1,...,8}. Tt is clear that Z (M;) 2 (e;)s- Now, admit that
8
a= Y. aje; € Z(M;). We claim that a = oe;. Indeed, by definition of ideal, we have:
j=1

8
up = [a, ex); = Z ajeg e € Z (M),
—
j;i,k

for all k € {1, ...,?, vy 8} . On the other hand, as a consequence of the above inclusion, we
have:

vk = [ex, ul; = 0. (39)

Computing v, by means of the properties of lemma 2.1 and its corollary, we have:

WE

Vg = a; ei, ex, e;85ex] =

1
i &

LY
',
*

NE

a; ((eier) (eigjer) — (ei, ex) e€jer — {ex, €i€jex) €; + (e€ex, €;) ex)
1

1,

o,
!

“
H
x

Il
Moo
RS

i€j-

o,
[

J#ik
Therefore, from (39) and from the linear independence of the vectors e; we conclude that
Otj = 0,

for every j € {1,...,8}\{i,k}. Observing that this conclusion can be achieved for all
k e {1, ...,?,...,8} we obtain a; = 0 for all j € {1,...,’{,...,8}. Thus, ¢ = «a;e; and the
result is proved.

In order to simplify notations, being a € M, we often call reduced algebra of M not to
M, but to M,/Z (M,). Under this language simplification we have:

Theorem 5.2. The reduced algebras of the ternary Malcev algebras M(A) which
arise by fixing the elements of an orthonormal basis of A are 7-dimensional simple Malcev
algebras.

Proof Let ey, ...,eg be an arbitrary orthonormal basis of A. We want to prove that, for
eachi € {1,...,8}, M;/Z (M;) is a T-dimensional simple Malcev algebra. Fixing< € {1, ..., 8},
let M; be written as a direct sum of linear spaces, as follows:

M; = Z(M;)® N,

where N = (e1,...,&;, .., es) - Being Z (M;) = (e;)g, if we conclude that N is a simple
Malcev subalgebra of M; the result will be proved, since M; = N. First, it is clear that N2 =
[N, N], # 0 and further, NV is an ideal of M;. Indeed, since (e;, [z,y];) = {(es, [es, 2,y]) = 0

8
for all z,y € A, if we take arbitrary different basis elements ej,er € N and a = ) ope, we
r=1
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must have a; = 0 (remember that we are dealing with an orthonormal basis). Thus, a € N
and [N, N]; C N. By the above decomposition, we also have [N, M;], C N.
Now, let I be a nonzero ideal of N and consider

u = Zarer c I\ {0}

'r;éz

with minimal length and this length is greater than 1, i.c.,

m, m> 2, ifi>m

bengthis) :{ wi—1, m3 8, Figm

By definition of ideal, v = [u, e}, € I, for all k € {1, ....,‘z?, ...,8}. Computing v, we have:

m
- > arlerener], fi>m

r=1
v=—|u,e,e] = m . _
phickied — 2 orler,eieg], ifi<m
=
i
m
In the case ¢ > m, consider k € {1,...,m}. Then we have v = — )" a,erejer € I. On the
&
other hand,
w = [v, ex; Z arer € 1\ {0} .
r%k
-~ m
If i < m, considering again k € {1,...,i,...,m} , we now have v = — Y a,e e € I.

r=1
r#k,i
Further, it is a simple task to conclude that

w = [v,ex; Z arer € I\ {0}.

'r;é': k

In both cases, we have obtained an element w € I\ {0} such that length(w) < length(u),
which is absurd by the choice of u. Therefore, we may consider that there exists a basis
element e; of N belonging to I. We claim that, this way, I coincides with N. Indeed, by
definition of ideal, we have

ug = [ej, ex]; = e€jer € I,
for all k € {1,...,8} \ {i, 5} - Further, vy = [ug, e;], € I. Note that

vk = (e, e€€€x, €]
—e;€jereie; + (e€jer, €;) ej + (e, €;) e;€jex — {ej, ei€5ex) €;

= €.
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Therefore, e € I for all k € {1,...,8}\ {4,7} and thus I = N. The result is proved.

Remark 5.1. Observe that not all reduced Malcev algebras of the ternary Malcev
algebra M(A) are simple. In fact, consider an orthonormal basis e, a,b,ab, c,ac,be, abe,
of A,where e is the unity. Admit that there exists @ € ® such that a’? = —1 and take
u = e + aa. Considering the pair (M (4),[.,.],) it is possible to prove that the reduced
algebra M, is solvable.
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