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Abstract

The selection of appropriate beam directions is decisive for the quality of the
treatment, both for maximizing tumor doses and for organs sparing. However,
the beam angle optimization (BAO) problem is still an open problem and, most
of the time, beam directions continue to be manually selected in clinical practice
which requires many trial and error iterations between selecting beam angles and
computing fluence patterns until a suitable treatment is achieved. The goal of
BAO is to improve the quality of the directions used and, at the same time,
release the treatment planner for other tasks. The objective of this paper is to
introduce a new approach for the resolution of the BAO problem, using pattern
search methods to tackle this highly non-convex optimization problem. Pattern
search methods are derivative-free optimization methods with the ability to
avoid local entrapment. Moreover, they require few function value evaluations
to progress and converge. These two characteristics gathered together make
pattern search methods suited to address the BAO problem. A set of clinical
examples of head-and-neck cases is used to discuss the benefits of using pattern
search methods in the optimization of the BAO problem.

Keywords: IMRT, Radiotherapy, Beam Angle Optimization, Fluence Map
Optimization, Derivative-free Optimization

1. Introduction

The goal of radiation therapy is to deliver a dose of radiation to the cancer-
ous region to sterilize the tumor minimizing the damages on the surrounding
healthy organs and tissues. Radiation therapy is delivered with the patient
immobilized on a couch that can rotate. Typically, radiation is generated by a
linear accelerator mounted on a gantry that can rotate along a central axis. The
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rotation of the couch combined with the rotation of the gantry allows radiation
from almost any angle around the tumor. Many authors consider non-coplanar
angles [1, 2, 3, 4, 5]. However, despite the fact that almost every angle is pos-
sible for radiation delivery, the use of coplanar angles is predominant. This is
a way to simplify an already complex problem, and the angles considered lay
in the plane of the rotation of the gantry around the patient. Regardless the
evidence presented in the literature that appropriate radiation beam incidence
directions can lead to a plan’s quality improvement [5, 6], in clinical practice,
most of the time, the number of beam angles is assumed to be defined a priori
by the treatment planner and the beam directions are still manually selected by
the treatment planner that relies mostly on his experience.

An important type of radiation therapy is intensity modulated radiation
therapy (IMRT), where the radiation beam is modulated by a multileaf colli-
mator. Multileaf collimators enable the transformation of the beam into a grid
of smaller beamlets of independent intensities. Here, we will consider IMRT
optimization problems using coplanar angles and will assume that the number
of beam angles is defined a priori by the treatment planner.

A common way to solve the inverse planning in IMRT optimization problems
is to use a beamlet-based approach. This approach leads to a large-scale pro-
gramming problem. Due to the complexity of the whole optimization problem,
many times the treatment planning is divided into three smaller problems which
can be solved sequentially: BAO problem, fluence map optimization (FMO)
problem, and leaf sequencing problem. That division has the consequence of
causing a plan quality deterioration arising from the transition between the in-
tensity problem and the realization problem [7]. Most of the efforts in the IMRT
optimization community have been devoted at optimizing beamlet intensities
[8]. Comparatively fewer research effort has been directed to the optimization
of beam angles [9].

Except for rare exceptions, where the BAO problem is addressed as a non-
convex nonlinear problem (see, e.g., [8]), for the vast majority of previous work
on beam angle optimization, the continuous [0◦, 360◦] gantry angles are dis-
cretized into equally spaced beam directions with a given angle increment, such
as 5 or 10 degrees, where exhaustive searches are performed directly or guided
by a variety of different heuristics including simulated annealing [3, 10, 11],
genetic algorithms [9, 12, 13, 14], particle swarm optimization [15] or other
heuristics incorporating a priori knowledge of the problem. Although those
global heuristics can avoid local optima theoretically, globally optimal or even
clinically better solutions can not be obtained without a large number of ob-
jective function evaluations. Another common alternative is scoring methods,
where scores are assigned to beam angles based on geometric and dosimetric
information [16]. Despite the fact that these methods reduce the computational
time, they have the drawback of ignoring the inter-relationship between beam
angles by calculating dosimetric parameters from a single incident beam angle
plan. Set covering and vector quantization are two other single-step techniques
used. A comparison of all those methodologies is presented in [17] leading to the
conclusion that these techniques are very similar and intertwined even knowing
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that their clinical perspectives may differ.
The concept of beam’s eye view has been a popular approach to address the

BAO problem as well [3, 18, 19]. The concept is similar to a bird’s eye view,
where the object being viewed is the tumor as seen from a beam. The bigger
the area of the tumor and the smaller the area of the surrounding organs is
seen by the beam, the better candidate the beam is to be used in the treatment
plan. Other approaches include the projection of the surrounding organs into
the tumor. Pugachev and Xing [20] present a computer assisted selection of
coplanar angles based on a variation of the beam’s eye view concept. Many
other attempts to address the BAO problem can be found in literature. Ehrgott
et al. [9] discuss a mathematical framework that unifies the approaches found
in literature. Aleman et al. [2] propose a response surface approach and include
non-coplanar angles in beam orientation optimization. Lim and Cao [21] propose
an approach that consists of two sequential phases: branch-and-prune and local
neighborhood search. Lee et al. [22] suggests a mixed integer programming
(MIP) approach for simultaneously determining an optimal intensity map and
optimal beam angles for IMRT delivery. Schreibmann et al. [23] propose a
hybrid multiobjective evolutionary optimization algorithm for IMRT inverse
planning and apply it to the optimization of the number of incident beams,
their orientations and intensity profiles. Other approaches include maximal
geometric separation of treatment beams [5] or gradient searches [8].

Here, similarly to [1, 2, 5, 8, 13, 23, 24, 25], we will use the optimal solution
of the FMO problem to drive our BAO problem. Most of the previous BAO
studies are based on a variety of scoring methods or approximations to the FMO
to gauge the quality of the beam angle set. When the BAO problem is not based
on the optimal FMO solutions, the resulting beam angle set has no guarantee of
optimality and has questionable reliability since it has been extensively reported
that optimal beam angles for IMRT are often non-intuitive [26]. Obtaining the
optimal solution for a beam angle set is time costly and even if only one beam
angle is changed in that set, a complete dose computation is required in order to
compute and obtain the corresponding optimal FMO solution. To minimize this
time issue, methods that require few function value evaluations should be used
to tackle the BAO problem. Additionally, the BAO problem is quite difficult
since it is a highly non-convex optimization problem with many local minima
[8]. Therefore, methods that avoid being easily trapped in local minima should
be used as well.

The objective of this paper is to introduce a new approach for the resolu-
tion of the BAO problem, using pattern search methods to tackle this highly
non-convex optimization problem. Pattern search methods gather the two char-
acteristics enumerated in the previous paragraph, making them suited to address
the BAO problem. The paper is organized as follows. In the next section we
describe the BAO problem formulation and the coupled FMO problem formu-
lation. Section 3 briefly presents the pattern search methods framework used.
Clinical examples of head-and-neck cases used in the computational tests are
presented in section 4. Section 5 presents the obtained results. In the last
section we have the conclusions and future work.
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2. Beam angle optimization problem

In order to model the BAO problem as a mathematical programming prob-
lem, a quantitative measure to compare the quality of different sets of beam
angles is required. For the reasons presented in section 1, our approach for
modeling the BAO problem uses the optimal solution value of the FMO prob-
lem as the measure of the quality of a given beam angle set. Thus, we will
present the formulation of the BAO problem followed by the formulation of the
FMO problem we used.

2.1. BAO model

Let us consider k to be the fixed number of (coplanar) beam directions, i.e., k
beam angles are chosen on a circle around the CT-slice of the body that contains
the isocenter (typically the center of mass of the tumor). A basic formulation
for the BAO problem is obtained by selecting an objective function such that
the best set of beam angles is obtained for the function’s minimum:

min f(θ1, . . . , θk)

s.t. θ1, . . . , θk ∈ Θ, where Θ is the set of all possible angles.
(1)

Typically, the BAO problem is formulated as a combinatorial optimization
problem in which a specified number of beam angles is to be selected among
a beam angle candidate pool. The continuous [0◦, 360◦] gantry angles are gen-
erally discretized into equally spaced directions with a given angle increment,
such as 5 or 10 degrees originating Θ = Θk

1 , Θ1 = {0, 5, . . . , 355} or Θ = Θk
2 ,

Θ2 = {0, 10, . . . , 350}, respectively. We could think in all possible combinations
of k beam angles as an exhaustive global search method. However, this requires
an enormous amount of time to calculate and compare all dose distributions
for all possible angle combinations. For example if we choose k = 5 angles out
of 72 candidate beam angles (Θ1), there are C72

5 = 13, 991, 544 combinations.
By decreasing the number of candidate beam angles to 36 (Θ2), the number of
different combinations is still C36

5 = 376, 992, requiring an enormous amount of
time to compare all the resulting plans regardless the measure considered in (1).
Therefore, an exhaustive search of a large-scale combinatorial problem is con-
sidered to be too slow and inappropriate for a clinical setting. Many heuristics
and meta-heuristics have been presented as an attempt to reduce the number
of combinations to compare. However, most require a prohibitive number of
function evaluations when the measure considered is the optimal value of the
FMO problem.

We will consider a different approach for the formulation of the BAO prob-
lem. All continuous [0◦, 360◦] gantry angles will be considered instead of a
discretized sample. Since the angle −5◦ is equivalent to the angle 355◦ and the
angle 365◦ is the same as the angle 5◦, we can avoid a bounded formulation and
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consider the following unconstrained BAO model:

min f(θ1, . . . , θk)

s.t. θ1, . . . , θk ∈ Rk (= Θ).
(2)

The objective f(θ1, . . . , θk) that measures the quality of the set of beam
directions θ1, . . . , θk is chosen, in practice, in many different ways, expressing
different criteria. Such functions may have numerous local optima, which in-
crease the difficulty of obtaining a good global solution. Thus, the choice of
the solution method becomes a critical aspect for obtaining a good solution.
Our formulation was mainly motivated by the ability of using a class of solution
methods that we consider to be suited to successfully address the BAO problem:
pattern search methods. The FMO model used is presented next.

2.2. FMO model

For a given beam angle set, an optimal IMRT plan is obtained by solving
the FMO problem - the problem of determining the optimal beamlet weights for
the fixed beam angles. Many mathematical optimization models and algorithms
have been proposed for the FMO problem, including linear models [27], mixed
integer linear models [28], nonlinear models [29], and multiobjective models [30].

Radiation dose distribution deposited in the patient, measured in Gray (Gy),
needs to be assessed accurately in order to solve the FMO problem, i.e., to de-
termine optimal fluence maps. Each structure’s volume is discretized in voxels
(small volume elements) and the dose is computed for each voxel using the super-
position principle, i.e., considering the contribution of each beamlet. Typically,
a dose matrix D is constructed from the collection of all beamlet weights, by
indexing the rows of D to each voxel and the columns to each beamlet, i.e., the
number of rows of matrix D equals the number of voxels (V ) and the number
of columns equals the number of beamlets (N) from all beam directions consid-
ered. Therefore, using matrix format, we can say that the total dose received by
the voxel i is given by

∑N
j=1Dijwj , with wj the weight of beamlet j. Usually,

the total number of voxels considered reaches the tens of thousands, thus the
row dimension of the dose matrix is of that magnitude. The size of D originates
large-scale problems being one of the main reasons for the difficulty of solving
the FMO problem.

Here, we will use a convex penalty function voxel-based nonlinear model [24].
In this model, each voxel is penalized according to the square difference of the
amount of dose received by the voxel and the amount of dose desired/allowed
for the voxel. This formulation yields a quadratic programming problem with
only linear non-negativity constraints on the fluence values [27]:

minw

V∑
i=1

1
vS

λi
(
Ti −

N∑
j=1

Dijwj

)2

+

+ λi

(
N∑
j=1

Dijwj − Ti

)2

+


s.t. wj ≥ 0, j = 1, . . . , N,

(3)
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where Ti is the desired dose for voxel i, λi and λi are the penalty weights of
underdose and overdose of voxel i, and (·)+ = max{0, ·}. Although this formu-
lation allows unique weights for each voxel, similarly to the implementation in
[24], weights are assigned by structure only so that every voxel in a given struc-
ture has the weight assigned to that structure divided by the number of voxels of
the structure (vS). This nonlinear formulation implies that a very small amount
of underdose or overdose may be accepted in clinical decision making, but larger
deviations from the desired/allowed doses are decreasingly tolerated [24].

The optimal set of beam angles depends on the penalty weight values of the
objective function selected. For example, for a head-and-neck cancer case, a
higher penalty weight on the parotid objective results in a set of beams which
will enhance better parotid sparing. For multi-objective IMRT optimization
[30], each Pareto optimal treatment plan will have a distinct set of optimal beam
angles. For traditional trial-and-error parameter tuning for IMRT planning, it
is not clear how BAO should be incorporated into the planning process [8]. The
penalty weights were manually selected to obtain acceptable treatment plans.

Other models used before for BAO include convex penalty function structure-
based approaches [25] and a variety of linear approaches [8, 31]. It is beyond
the scope of this study to discuss if this formulation of the FMO problem is
preferable to others. The FMO model is used as a black-box function. The
conclusions drawn regarding BAO coupled with this nonlinear model are valid
also if different FMO formulations are considered.

3. Pattern search methods

Pattern search methods are directional direct search methods that belong to
a broader class of derivative-free optimization methods (see [32] for a detailed
overview of derivative-free optimization methods), such that iterate progression
is solely based on a finite number of function evaluations in each iteration,
without explicit or implicit use of derivatives. We will briefly describe pattern
search methods for unconstrained optimization problems of the form

min f(x)
s.t. x ∈ Rn,

where the decision vector x is used as input into the black-box function f . This
type of resolution method is suited for the beam angle problem formulation
presented in (2). Similar to other derivative-free optimization methods, when
minimizing non-convex functions with a large number of local minima, pattern
search methods have the ability to avoid being trapped by the closest local
minima of the starting iterate, and find a local minimum in a lowest region, i.e.,
in a region with lower function values.

The pattern search methods framework [33] is the class of the most used and
implemented directional direct search methods. Each iteration is composed of
a search step and a poll step. Pattern search methods framework as described
in [33] or later in [34] is presented next.
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Pattern search methods are iterative methods generating a sequence of it-
erates {xk} using positive bases or positive spanning sets and moving in the
direction that would produce a function decrease. Therefore, in order to de-
scribe pattern search methods we need to describe the notions and motivations
for the use of positive bases.

The positive span (strictly speaking we should say nonnegative) of a set of
vectors v1 · · · vm ∈ Rn is the convex cone

L+
0 (v1, . . . , vm) = {v ∈ Rn : v = α1v1 + · · ·+ αmvm, αi ≥ 0, i = 1, . . . ,m} .

The set {v1, . . . , vm} is said to be positively dependent if one of the vectors is in
the convex cone positively spanned by the remaining vectors, i.e., if one of the
vectors is a positive combination of the others. Otherwise the set is positively
independent.

A positive basis for Rn is a positively independent set of Rn whose positive
span is Rn. A positive basis for Rn can also be defined as a set of nonzero
vectors of Rn whose positive combinations span Rn, but no proper set (strict
subset) does.

It can be shown that a positive basis for Rn contains at least n+ 1 vectors
and cannot contain more than 2n [35]. Positive basis with n+1 and 2n elements
are referred to as minimal and maximal positive basis, respectively. In Figure
1 we have an illustration of a minimal positive basis ([I − e], with I being the
identity matrix of dimension 2 and e = [1 1]>) and a maximal positive basis
([I − I]).

The following theorem [35] presents three necessary and sufficient character-
izations for positive bases and are the motivation for directional direct search
methods:

Theorem 3.1. Let {v1, . . . , vm}, with vi 6= 0 for all i ∈ {1, . . . ,m}, span Rn.
Then the following are equivalent:

(i) {v1, . . . , vm} is a positive basis for Rn.

(ii) For every i = 1, . . . ,m, −vi is in the convex cone positively spanned by the
remaining vj, j 6= i.

(iii) There exist real scalars α1, . . . , αm with αi > 0, i ∈ {1, . . . ,m}, such that∑m
i=1 αivi = 0.

(iv) For every nonzero vector b ∈ Rn, there exists an index i in {1, . . . ,m} for
which b>vi > 0.

The characterization given by Theorem 3.1.iv (considering b = −∇f(xk))
implies that, unless the current iterate is at a stationary point, there is always a
vector vi in a positive basis (or positive spanning set) that is a descent direction,
i.e., −∇f(xk)>vi > 0. In other words, the previous inequality means that there
is always a vector vi in a positive basis that forms an acute angle with −∇f(xk).
Therefore, vi is a descent direction in the sense that there is an α > 0 such that
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(a) (b)

Figure 1: Examples of minimal (a) and maximal (b) positive bases in R2.

f(xk + αvi) < f(xk). This is the core of directional direct search methods and
in particular of pattern search methods.

Pattern search methods are iterative methods generating a sequence of non-
increasing iterates {xk}. Given the current iterate xk, at each iteration k, the
next point xk+1 is chosen from a finite number of candidates on a given mesh
Mk aiming to provide a decrease on the objective function: f(xk+1) < f(xk).
In order to define the mesh Mk, let us denote by V the matrix whose columns
correspond to the |V| vectors forming a positive spanning set. The mesh at
iteration k is then defined as

Mk = {xk + ∆kVz : z ∈ Z|V|+ },

where ∆k is the mesh parameter and Z+ is the set of nonnegative integers.
Pattern search methods consider two phases at every iteration. The first

phase, or step, consists of a finite search on the mesh, with the goal of finding
a new iterate that decreases the value of the objective function at the current
iterate. This step, called the search step, has the flexibility to use any strategy,
method or heuristic, or take advantage of a priori knowledge of the problem
at hand, as long as it searches only a finite number of points in the mesh. If
the search step is unsuccessful, a second phase or step, called the poll step, is
performed around the current iterate with the goal of decreasing the objective
function.

The poll step follows stricter rules and appeals to the concepts of positive
bases. In this step the candidate for a new iterate xk+1 is chosen in the mesh
neighborhood around xk

N (xk) = {xk + ∆kv : for all v ∈ V } ⊂Mk,

where V is a positive basis (or positive spanning set) chosen from the finite set
V.

We have now all the ingredients to describe pattern search methods.
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Algorithm 3.1 (Pattern search methods).

0. Initialization Choose x0 ∈ Rn, ∆0 > 0, and a positive spanning set V ⊂ V.
Choose a rational number τ > 1 and an integer number mmax ≥ 1. Set
k = 0.

1. Search step (in current mesh) Try to obtain a decrease of the objective
function value at xk by evaluating f at a finite number of points in Mk. If
xk+1 ∈ Mk is found satisfying f(xk+1) < f(xk), go to step 3, expanding
Mk (search step and iteration are declared successful).

2. Poll step (in mesh neighborhood) This step is only performed if the
search step is unsuccessful. If f(xk) ≤ f(x) for every x in the mesh
neighborhood N (xk), go to step 4, shrinking Mk (poll step and iteration
are declared unsuccessful). Otherwise, choose a point xk+1 ∈ N (xk) such
that f(xk+1) < f(xk) and go to step 3, expanding Mk (poll step and
iteration are declared successful).

3. Mesh expansion (at successful iterations) Let ∆k+1 = τm
+
k ∆k, with

0 ≤ m+
k ≤ mmax. Increase k by one, and return to step 1 for a new

iteration.

4. Mesh reduction (at unsuccessful iterations) Let ∆k+1 = τm
−
k ∆k, with

−mmax ≤ m−k ≤ −1. Increase k by one, and return to step 1 for a new
iteration.

The search step provides the flexibility for a global search since it allows
searches away from the neighborhood of the current iterate, and influences the
quality of the local minimizer or stationary point found by the method. The
poll step is applied when the search step fails to produce a better point. The
poll step attempts to perform a local search in a mesh neighborhood that, for
a sufficiently small mesh parameter ∆k, is guaranteed to provide a function
reduction, unless the current iterate is at a stationary point (a fact that can be
inferred by Theorem 3.1.iv with b = −∇f(xk)). So, if the poll step also fails,
the mesh parameter ∆k must be decreased. The most common choice for the
mesh parameter update is to half the mesh parameter at unsuccessful iterations
and to keep it or double it at successful ones. Note that if the initial mesh
parameter is a power of 2, (∆0 = 2p, p ∈ N), and the initial point is a vector of
integers, using this common mesh update, all iterates will be a vector of integers
until the mesh parameter size becomes inferior to 1. This possibility is rather
interesting for our BAO problem at hand.

Typically, the stopping criteria of the pattern search methods is based either
on the maximum number of function value evaluations allowed or in convergence
criteria related with the mesh size. Provided the following assumption is made
on the mesh: each column i of V is given by Gz̄i, where G ∈ Rn×n is a nonsingu-
lar generating matrix and z̄i is an integer vector in Zn, pattern search methods
share the following convergence result [34]:
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Theorem 3.2. Suppose that the level set L(x0) = {x ∈ Rn : f(x) ≤ f(x0)}
is compact and that f is continuously differentiable in an open set containing
L(x0). Then

lim inf
k−→+∞

‖∇f(xk)‖ = 0,

and there exists at least one limit point x∗ such that ∇f(x∗) = 0.
Furthermore, if limk−→+∞∆k = 0, ‖xk+1 − xk‖ ≤ C∆k for some constant

C > 0 independent of the iteration counter k, and xk+1 = argminx∈N (xk)
f(x)

in the poll step, then

lim
k−→+∞

‖∇f(xk)‖ = 0,

and every limit point x∗ satisfies ∇f(x∗) = 0.

The results of Theorem 3.2 concern the ability of pattern search methods
to converge globally, i.e., from arbitrary points, to local minimizers candidates.
We recall, despite the inexistence of any supporting theory, that due to their
blindness caused by the nonuse of derivatives, and also by the flexibility of the
search step to incorporate global search procedures while the poll step continues
to assure convergence to local minima, numerical evidence about the capability
of pattern search methods to compute global minimizers has been reported –
see, e.g., [34, 36].

To address the BAO problem, efficiency on the number of function value
computations is of the utmost importance. Therefore, the number of trial
points in the search step should be minimalist, and guided by some physical
or biological meaning. On the other hand, when the search step fails to obtain
a decrease on the function value, polling should also be oriented in order to
further reduce the number of function value evaluations (at least for successful
iterations). Recently, the efficiency of pattern search methods improved signif-
icantly by reordering the poll directions according to descent indicators built
from simplex gradients [37]. Adding to that, the search step was provided with
the use of minimum Frobenius norm quadratic models to be minimized within
a trust region, which can lead to a significant improvement of direct search for
smooth, piecewise smooth, and noisy problems [36]. For driving the resolution
of the BAO problem, we will use the last version of SID-PSM [36, 37] which is a
MATLAB [38] implementation of the pattern search methods that incorporate
the referred improvements for the search and the poll steps.

The benefits of using pattern search methods in the optimization of the BAO
problem are illustrated using a set of clinical examples of head-and-neck cases
that are presented next.

4. Head-and-neck clinical examples

Four clinical examples of retrospective treated cases of head-and-neck tu-
mors at the Portuguese Institute of Oncology of Coimbra are used to test the
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Figure 2: Structures considered in the IMRT optimization visualized in CERR.

pattern search methods framework proposed. The selected clinical examples
were signalized at IPOC as complex cases where proper target coverage and
organ sparing, in particular parotid sparing, proved to be difficult to obtain
with the typical 7-beam equispaced coplanar treatment plans. The patients’
CT sets and delineated structures were exported via Dicom RT to a freeware
computational environment for radiotherapy research (see Figure 2). Since the
head-and-neck region is a complex area where, e.g., the parotid glands are usu-
ally in close proximity to or even overlapping with the target volume, careful
selection of the radiation incidence directions can be determinant to obtain a
satisfying treatment plan.

The spinal cord and the brainstem are some of the most critical organs at
risk (OARs) in the head-and-neck tumor cases. These are serial organs, i.e.,
organs such that if only one subunit is damaged, the whole organ functionality
is compromised. Therefore, if the tolerance dose is exceeded, it may result
in functional damage to the whole organ. Thus, it is extremely important
not to exceed the tolerance dose prescribed for these type of organs. Other
than the spinal cord and the brainstem, the parotid glands are also important
OARs. The parotid gland is the largest of the three salivary glands. A common
complication due to parotid glands irradiation is xerostomia (the medical term
for dry mouth due to lack of saliva). This decreases the quality of life of patients
undergoing radiation therapy of head-and-neck, causing difficulties to swallow.
The parotids are parallel organs, i.e., if a small volume of the organ is damaged,
the rest of the organ functionality may not be affected. Their tolerance dose
depends strongly on the fraction of the volume irradiated. Hence, if only a small
fraction of the organ is irradiated the tolerance dose is much higher than if a
larger fraction is irradiated. Thus, for these parallel structures, the organ mean
dose is generally used instead of the maximum dose as an objective for inverse
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Structure Mean dose Max dose Prescribed dose

Spinal cord – 45 Gy –
Brainstem – 54 Gy –
Left parotid 26 Gy – –
Right parotid 26 Gy – –
PTV1 – – 70.0 Gy
PTV2 – – 59.4 Gy
Body – 80 Gy –

Table 1: Prescribed doses for all the structures considered for IMRT optimization.

planning optimization.
In general, the head-and-neck region is a complex area to treat with radio-

therapy due to the large number of sensitive organs in this region (e.g., eyes,
mandible, larynx, oral cavity, etc.). For simplicity, in this study, the OARs used
for treatment optimization were limited to the spinal cord, the brainstem and
the parotid glands.

The tumor to be treated plus some safety margins is called planning target
volume (PTV). For the head-and-neck cases in study it was separated in two
parts with different prescribed doses: PTV1 and PTV2. The prescription dose
for the target volumes and tolerance doses for the organs at risk considered in
the optimization are presented in Table 1.

The parotid glands are in close proximity to or even overlapping with the
PTV which helps explaining the difficulty of parotid sparing. Adequate beam
directions can help on the overall optimization process and in particular in
parotid sparing.

5. Results

The pattern search methods framework was tested using a set of four clin-
ical examples of retrospective treated cases of head-and-neck tumors at the
Portuguese Institute of Oncology of Coimbra (IPOC). A typical head-and-neck
treatment plan consists of radiation delivered from 5 to 9 equally spaced copla-
nar orientations around the patient. Treatment plans with 7 equispaced copla-
nar beams were used at IPOC and are commonly used in practice to treat
head-and-neck cases [2]. Therefore, treatment plans of 7 coplanar orientations,
denoted 7 PSM, are obtained using the pattern search method framework and
compared with 7-beam equispaced coplanar treatment plans, denoted 7 equi.
Treatment plans of 5 coplanar orientations, denoted 5 PSM, were also obtained
using the pattern search method framework and compared with the traditional
7-beam equispaced coplanar treatment plans. The objective of these compar-
isons is twofold. First, to demonstrate that using the same number of beam
angles, the quality of the plan can be improved with our BAO approach. Sec-
ond, to highlight that it is possible to reduce the number of beam angles and
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still obtain quality treatment plans. Obtaining acceptable treatment plans that
require fewer beams than in current practice may reduce the length of treatment
time, which is an important clinical aspect in IMRT.

In order to facilitate convenient access, visualization and analysis of pa-
tient treatment planning data, as well as dosimetric data input for treatment
plan optimization research, the computational tools developed within MAT-
LAB and CERR – computational environment for radiotherapy research [39]
are used widely for IMRT treatment planning research. The ORART – opera-
tions research applications in radiation therapy [40] collaborative working group
developed a series of software routines that allow access to influence matrices,
which provide the necessary dosimetry data to perform optimization in IMRT.
CERR was elected as the main software platform to embody our optimization
research.

Our tests were performed on a 2.66Ghz Intel Core Duo PC with 3 GB RAM.
We used CERR 3.2.2 version and MATLAB 7.4.0 (R2007a). The dose was com-
puted using CERR’s pencil beam algorithm (QIB). For each of the four head-
and-neck cases, the sample rate used for Body was 32 and for the remaining
structures was 4, resulting in 20,874 to 24,158 voxels and 948 to 1,283 beamlets
for the 7-beam equispaced coplanar treatment plans. An automatized proce-
dure for dose computation for each given beam angle set was developed, instead
of the traditional dose computation available from IMRTP module accessible
from CERR’s menubar. This automatization of the dose computation was es-
sential for integration in our BAO algorithm. To address the convex nonlinear
formulation of the FMO problem we used a trust-region-reflective algorithm
(fmincon) of MATLAB 7.4.0 (R2007a) Optimization Toolbox. The last version
of SID-PSM was used as our pattern search methods framework. Since we want
to improve the quality of the 7 equi treatment plans, the 7 equispaced coplanar
beam angles were considered as initial point for the 7-beam angle optimization
process. For the 5-beam angle optimization process we considered the 5 equis-
paced coplanar beam angles as initial point. The choice of this initial points and
the non-increasing property of the sequence of iterates generated by SID-PSM
imply that each successful iteration correspond to an effective improvement with
respect to the usual equispaced beam configuration. The spanning set used was
the positive spanning set ([e − e I − I], with I being the identity matrix
of dimension k and e = [1 . . . 1]T ). Each of these directions correspond to,
respectively, the rotation of all incidence directions clockwise, to the rotation of
all incidence directions counter-clockwise, the rotation of each individual inci-
dence direction clockwise, and the rotation of each individual incidence direction
counter-clockwise. The initial size of the mesh parameter was set to 24 = 16.
Smaller powers of 2 were tested, namely 4 and 8, with worst results and worst
coverage of the whole search space. Larger powers of 2 were tested, namely
32 and 64, with similar results and coverage of the whole search space, but
at the cost of more function evaluations. Since the initial points were integer
vectors, all iterates will have integer values as long as the mesh parameter does
not become less than 1. Therefore, the stopping criteria adopted was the mesh
parameter becoming less than 1.
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(a) (b)

(c) (d)

Figure 3: History of the 7-beam angle optimization process using SID-PSM for cases 1 to 4,
3(a) to 3(d) respectively. Initial angle configuration, optimal angle configuration and inter-
mediate angle configurations are displayed with solid, dashed and dotted lines, respectively.

The history of the 7-beam angle optimization process using SID-PSM, in
terms of beam directions tested, for each case, is presented in Figure 3. By
simple inspection we can verify that the sequence of iterates are reasonably well
distributed by amplitude in R2, with an appropriate coverage in amplitude of
all the search space. The mean variation of each obtained beam direction with
respect to the initial equispaced directions is 12.9◦. Here, we have to highlight
that, BAO performed for these retrospective treated cases, using IPOC’s com-
mercial treatment planning system, obtained a mean variation of each beam
direction with respect to the initial equispaced directions inferior to 4◦, which is
not clinically relevant. One of the main advantages of this pattern search meth-
ods framework is the flexibility provided by the search step, where any strategy
can be applied as long as only a finite number of points is tested. This allows
the insertion of previously used and tested strategies/heuristics that successfully
address the BAO problem and enhance for a global search by influencing the
quality of the local minimizer or stationary point found by the method. In the
last version of SID-PSM, the search step computes a single trial point using
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Figure 4: Objective function value history of the 7-beam angle optimization process for each
head-and-neck case.

minimum Frobenius norm quadratic models to be minimized within a trust re-
gion, which enhanced a significant improvement of direct search for black-box
non-smooth functions [36] similar to the BAO problem at hand. The size of the
trust region is coupled to radius of the sample set. Thus, for a global search
attempt, the sample points should span all the search space. However, since
the BAO problem has many local minima and the number of sample points
is scarce, the polynomial interpolation or regression models (usually quadratic
models) used within the trust region may struggle to find the best local minima.
Global strategies like particle swarm methods can be included in the search step
to enhance a global search – see [41]. However, the number of function evalua-
tions required for this type of strategies is prohibitive for obtaining an answer
in a clinically acceptable time frame.

The history of the 7-beam angle optimization process using SID-PSM, pre-
sented in terms of the number of function evaluations, is shown in Figure 4. The
mean decrease of the objective function was 12.4% with a mean computational
time of 3.7 hours. Dose computation using QIB consumed most of the overall
computational time. For different dose engines, different beamlet optimization
methods and different objective function strategies, the overall computational
time may be of significant different magnitude. Therefore, as important as
mentioning that in average it took 3.7 hours for the method to converge, it is
important to emphasize the few number of function evaluations required by pat-
tern search methods. It is worth to highlight as well the rapid initial decrease of
the FMO value. In practice, that feature can be used for obtaining quality beam
directions in shorter computational times, e.g., by adopting as stopping criteria
the mesh parameter becoming less than 2 or 4 instead of 1. For the 5-beam
angle optimization process using SID-PSM, the mean decrease of the objective
function was 21.8% with a mean computational time of 2.2 hours. The size of
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Case Target coverage 5 PSM 7 PSM 7 equi

1

PTV1 at 95 % volume 66.93 Gy 67.23 Gy 67.03 Gy
PTV1 % > 93% of Rx (%) 98.98 99.65 99.38
PTV1 % > 110% of Rx (%) 0.00 0.00 0.00
PTV2 at 95 % volume 57.53 Gy 57.93 Gy 57.78 Gy
PTV2 % > 93% of Rx (%) 97.27 97.76 97.41
PTV2 % > 110% of Rx (%) 16.25 15.90 16.02

2

PTV1 at 95 % volume 66.37 Gy 67.38 Gy 66.73 Gy
PTV1 % > 93% of Rx (%) 98.86 99.33 99.06
PTV1 % > 110% of Rx (%) 0.00 0.00 0.00
PTV2 at 95 % volume 56.58 Gy 57.28 Gy 56.98 Gy
PTV2 % > 93% of Rx (%) 96.83 97.29 96.84
PTV2 % > 110% of Rx (%) 4.36 4.85 4.34

3

PTV1 at 95 % volume 65.88 Gy 66.64 Gy 66.63 Gy
PTV1 % > 93% of Rx (%) 97.42 98.64 98.42
PTV1 % > 110% of Rx (%) 0.00 0.00 0.00
PTV2 at 95 % volume 55.89 Gy 56.88 Gy 56.78 Gy
PTV2 % > 93% of Rx (%) 95.77 96.78 96.66
PTV2 % > 110% of Rx (%) 16.79 17.18 17.66

4

PTV1 at 95 % volume 67.43 Gy 67.58 Gy 67.38 Gy
PTV1 % > 93% of Rx (%) 99.69 99.74 99.68
PTV1 % > 110% of Rx (%) 0.00 0.00 0.00
PTV2 at 95 % volume 57.23 Gy 57.78 Gy 57.43 Gy
PTV2 % > 93% of Rx (%) 97.81 98.47 97.99
PTV2 % > 110% of Rx (%) 11.95 11.52 11.81

Table 2: Target coverage obtained by treatment plans.

the 5-beam angle optimization problem is inferior to the 7-beam angle optimiza-
tion problem (less beamlets), which requires less time for dose computation for
each function value evaluation, leading to shorter computational times.

Despite the improvement in FMO value, the quality of the results can be
perceived considering a variety of metrics. Typically, results are judged by
their cumulative dose-volume histogram (DVH). The DVH displays the fraction
of a structure’s volume that receives at least a given dose. Another metric
usually used for plan evaluation is the volume of PTV that receives 95% of the
prescribed dose. Typically, 95% of the PTV volume is required. The occurrence
of coldspots, less than 93% of PTV volume receives the prescribed dose, and
the existence of hotspots, the percentage of the PTV volume that receives more
than 110% of the prescribed dose, are other measures usually used to evaluate
target coverage. Mean and/or maximum doses of OArs are usually displayed to
verify organ sparing.

The results regarding targets coverage are presented in Table 2. We can
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Mean Dose (Gy) Max Dose (Gy)

Case OAR 5 PSM 7 PSM 7 equi 5 PSM 7 PSM 7 equi

1

Spinal cord – – – 40.97 37.76 38.77
Brainstem – – – 48.33 48.40 53.70
Left parotid 25.23 23.54 26.99 – – –
Right parotid 25.52 23.06 26.18 – – –

2

Spinal cord – – – 44.39 43.92 44.78
Brainstem – – – 53.88 52.28 52.05
Left parotid 25.75 24.37 27.43 – – –
Right parotid 27.05 21.28 27.75 – – –

3

Spinal cord – – – 44.86 44.56 44.58
Brainstem – – – 48.58 49.21 48.87
Left parotid 28.57 27.83 28.36 – – –
Right parotid 30.37 28.89 30.54 – – –

4

Spinal cord – – – 39.27 39.99 40.63
Brainstem – – – 48.05 47.45 47.31
Left parotid 27.16 25.74 27.43 – – –
Right parotid 27.07 25.75 27.26 – – –

Table 3: OARs sparing obtained by treatment plans.

verify that 7 PSM treatment plans consistently obtained slightly better target
coverage numbers compared to 7 equi treatment plans. On the other hand,
target coverage numbers are unfavorable to 5 PSM treatment plans compared
to 7 equi treatment plans. Nevertheless, in average, the differences are small.
Organ sparing results are shown in Table 3. All the treatment plans fulfill the
maximum dose requirements for the spinal cord and the brainstem. However, as
expected, the main differences reside in parotid sparing. The 7 equi treatment
plans could never enhance parotid sparing while 7 PSM treatment plans always
fulfill the parotid’s mean dose requirements except for case 3. In average, 7 PSM
treatment plans reduced the parotid’s mean dose irradiation in 2.69 Gy com-
pared to the 7 equi treatment plans. The differences between 5 PSM treatment
plans and 7 equi treatment plans, concerning parotid sparing, are small, with
advantage for the 5 PSM treatment plans, namely for case 1 where the mean
dose limits were achieved. DVH results illustrating the numbers presented in
Tables 2 and 3 are displayed in Figures 5 and 6. Since parotids are the most
difficult organs to spare, as shown in Table 3, for clarity, the DVHs only include
the targets and the parotids. The asterisks indicate 95% of PTV volumes versus
95% of the prescribed doses. In Figure 5 the comparison of 7 equi treatment
plans and the 7 PSM treatment plans is displayed. We can observe that tar-
get coverage is very similar to both treatment plans while parotid sparing is
clearly better for 7 PSM treatment plans. Focusing in Figure 6, where 7 equi
treatment plans and 5 PSM treatment plans are compared, despite the slight
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Figure 5: Cumulative dose volume histogram comparing the results obtained by 7 PSM and
7 equi for cases 1 to 4, 5(a) to 5(d) respectively.

better target coverage presented by 7 equi treatment plans and similar parotid
sparing, we can verify that 5 PSM treatment plans are very competitive with 7
equi treatment plans.

The pattern search methods approach seems to be similar to neighborhood
search approaches in which the neighborhood is constructed using the pattern
search method. However, local neighborhood search approaches are only similar
to the poll step of the pattern search methods framework. The existence of a
search step with the flexibility to use any strategy, method or heuristic, or take
advantage of a priori knowledge of the problem at hand, is an advantage that can
be even further explored in future work. The search step provides the flexibility
for a global search since it allows searches away from the neighborhood of the
current iterate which perspectives a potential improvement of the method.
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Figure 6: Cumulative dose volume histogram comparing the results obtained by 5 PSM and
7 equi for cases 1 to 4, 6(a) to 6(d) respectively.

6. Conclusions and future work

The BAO problem is a continuous global highly non-convex optimization
problem known to be extremely challenging and yet to be solved satisfactorily.
A new approach for the resolution of the BAO problem, using a pattern search
methods framework, was proposed and tested using a set of clinical head-and-
neck cases. We have shown that a beam angle set can be locally improved in
a continuous manner using pattern search methods. Moreover, it was shown
that, for head-and-neck cases, 7-beam treatment plans can be obtained with
better target coverage of the typical 7-beam equidistant treatment plans and
with improved organ sparing, in particular better parotid sparing. Further-
more, high-quality coplanar beam directions can be obtained and compete with
equispaced beam directions in larger number within a clinically acceptable time
frame. Pattern search methods framework is a suitable approach for the resolu-
tion of the non-convex BAO problem due to their structure, organized around
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two phases at every iteration. The poll step, where convergence to a local min-
ima is assured, and the search step, where flexibility is conferred to the method
since any strategy can be applied. The search step is provided with the use
of minimum Frobenius norm quadratic models to be minimized within a trust
region, which can lead to a significant improvement of direct search for the
type of problems at hand. Nevertheless, in future work, the search step im-
provement will be tested with the incorporation of tailored strategies previously
developed to address the BAO problem. Adding to the search step flexibility,
and similarly to other derivative-free optimization methods, when minimizing
non-convex functions with a large number of local minima, pattern search meth-
ods have the ability to avoid being trapped by the closest local minima of the
starting iterate, and find a local minima in lowest regions. Moreover, we have to
highlight the low number of function evaluations required to obtain locally opti-
mal solutions, which is a major advantage compared to other global heuristics.
This advantage should be even more relevant when considering non-coplanar
directions since the number of possible directions to consider increase signifi-
cantly. The efficiency on the number of function value computation is of the
utmost importance, particularly when the BAO problem is modeled using the
optimal values of the FMO problem.
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