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Abstract. Location problems are, by nature, strategic deessigince facilities
will usually be in operation in the medium and Idegns. It is necessary to de-
cide today, given the available information, knogvihat the consequences of
today’s decisions will remain in time. Having tainde in the decision making
process data that will only be known with certaimyhe future does not advise
the use of deterministic models: the existing utadety should be explicitly in-
cluded in the models. The notion@ftimal solutionbecomes fragile: it will be
difficult to find a single solution that is the bes all possible future realiza-
tions of uncertainty. In this paper we consideryaaic simple plant location
problem, where uncertainty is explicitly considetetbugh the use of scenari-
0s. We advocate the use of a multiobjective appreaca valuable tool in guid-
ing the decision-making process, iteratively oraa®ff-line generation proce-
dure.

Keywords: Location Problems, Uncertainty, Scenarios, Mujtgbive, Pareto-
efficient

1 Introduction

Plant location problems are strategic problems dtyine, usually associated with
significant investments, and with medium to longrteconsequences. Whenever a
decision-maker (DM) has to decide where to locateaeehouse, a plant, a store, the
amount of data that should be considered in thésidecmaking process is not only
huge but often not known with certainty at the tithe decision has to be made. Fur-
thermore, location decisions are often associatiéld ether problems like inventory
management, transportation or assignment probléssa simple example, let us
consider the problem of locating a warehouse thlitserve as supplier for a set of
customers. There are only two potential locatiangtie warehouse: one location has
very low construction and other fixed costs, btisivery far away from any of the
customers (implying important transportation cqstisg other location is near most
customers, but the fixed costs incurred are vegh.hiWhen deciding, we cannot split
the location and transportation/assignment problents/o distinct problems, or we



would end up with a suboptimal solution. They htwde considered simultaneously
in the decision making process. However, dealinth whose two problems at the
same time is not as straightforward as it mightrsezspecially when we are consider-
ing that the facility to be located will be in opépbn during a given time horizon.

Although it is not easy to change the location affehouses or other facilities from
one time period to the next, because of the daadtindirect costs incurred, it is not
that difficult to change the way the demands otamers are being satisfied and the
goods transported. If there is a change in the fofrdstructure, or an important in-

crease or decrease in fuels’ prices, or therertsad that became tolled, the decision
maker will be able to adjust the assignment/trarigfion decisions to the new reality.

A similar reasoning could be made if we were thiigkof other problems like inven-

tory management or production scheduling.

In plant location problems we are thus faced wilihg to simultaneously make
decisions that are deeply interconnected but thae lvery different natures: on one
hand, location decisions that are strategic byreatund difficult to reverse, on the
other hand, other related decisions that can bikyeaserted whenever new infor-
mation is available. The strategic nature of laragproblems is clearly described and
emphasized in [1], where not only the classicalistand deterministic models are
defined, but also dynamic and stochastic locatimblems are discussed.

In this paper a dynamic simple plant location peoblunder uncertainty is consid-
ered. There is a set of potential locations fornimg facilities, and there is a set of
clients with a given demand that has to be satidfig opened facilities. There is a
planning horizon, and it will be necessary to deaidich facilities to open and when
to open them. The only data that is known for ssirthe one related with the present
moment: if the facilities are opened today, andatgignment of clients to facilities is
made today, then all fixed location costs and assént costs for the present time
period are known with certainty. However, for ather future time periods, fixed
opening costs are not known for sure, as well agasent costs. In the future, even
the set of clients or the potential locations fewnfacilities can be uncertain. In the
present work, uncertainty is represented througtetaof possible future scenarios.
Two different stages for decision-making are comstd: on one hand, location deci-
sions determining when and where facilities shdaddopened during the planning
horizon are set at the present moment and cannchidr®yed throughout the planning
horizon (first stage); on the other hand, the asaint of clients to facilities that is
made in each time period considering the existipgned facilities and the assign-
ment costs for that particular period and for tbensirio that came to occur (second
stage).

Whenever uncertainty is explicitly considered, tiition of both feasible and op-
timal solution becomes very fragile (see, for insg [2]). Regarding feasibility, it
can be the case that it is not possible to guaedatesibility under all possible realiza-
tions of the uncertain parameters. In the presemkwas we are dealing with an un-
capacitated problem, a solution that is feasibteofee scenario will be feasible for all
others. Regarding optimality, it is often the cHs& no single solution will be opti-
mal under all possible future scenarios. A possiproach would be to consider a
single objective function that would represent éxpected objective function value



over all scenarios. Optimizing the expected value given objective function can be
the best thing to do if we are facing a decisiorkin process that has to be repeated
over and over again, always under uncertainty. @mlthis case does the expected
value represent the DM’s payoff in the long runcation problems do not fit this
profile. Most of the times they are “once in aftiiffiee” decisions. Furthermore, we
cannot talk about uncertainty without thinking aboigk, and different DMs have
different attitudes towards risk [3]. If a DM is uteal towards risk, then an expected
value approach could be defendable. But if the BMaverse to risk, then he will
probably be concerned with the worst of all scevsadnly: he would be interested in
making the worst possible outcome the best possiliiss approach is known as the
min-max approach. Many other possible ways of dgalvith uncertainty can be
disguised, some under an umbrella usually knowmlasst optimization. A review of
facility location under uncertainty can be found4h

There is a whole set of publications dedicated tdtiobjective stochastic pro-
gramming, usually tackling the problem by reduding a single objective stochastic
program or transforming it to a deterministic mafifiective program (see, for in-
stance, [5, 6, 7, 8, 9, 10, 11]). The approachrilest in this paper is different: we
tackle a single objective location problem undecartainty by resorting to a multi-
objective approach. The concept of Pareto-effigieadhus applied in the context of
a single objective problem under uncertainty. Withmaking any kind of assump-
tions regarding the attitude of the decision makerards risk, it is possible to con-
sider the dynamic plant location problem under wadety as a multiobjective prob-
lem, where each scenario will give rise to one dibje. The DM will only be inter-
ested in Pareto-efficient solutions. A Pareto-@ffit solution can be understood as a
solution where it is not possible to improve ongeotive without deteriorating at
least one other. In this context, a solution wél Pareto-efficient if it is not possible
to improve the objective function value under onergrio without deteriorating its
value under at least one other scenario. The nbjgtitive approach can be used em-
bedded in an interactive decision-making procesasoanoff-line generation proce-
dure, where the whole set of efficient solutionsakulated.

Actually, it is very difficult to find the concepif Pareto efficiency being applied
in this context. lancu and Trichakis [12] haveairecent paper, introduced the Pareto
efficiency concept in robust optimization, showithgt some robust solutions are not
efficient, and apply their methodology to portfoliptimization, inventory manage-
ment and project management. Nevertheless, theirsfes solely on Pareto efficient
worst-case solutions. Kalai et al [13] introducée ttoncept of lexicographie-
robustness, that can be seen as an extensioniobdeaphic programming used to
tackle multiobjective problems.

This paper is organized as follows: the next sacpioesents the mathematical
model, and introduces the main concepts used thautghe text. Section 3 describes
the multiobjective approach, and shows how sombusb solutions” can be, in fact,
Pareto-efficient solutions. Section 4 illustrates procedure through the use of some
illustrative examples. In Section 5 the main cosiduos are stated, and paths for fu-
ture research are delineated.



2 Mathematical M odelling

Consider the set of potential locations for fagfitdenoted byl ={1,..., j,....M },
and the set of possible customers’ locations dehbyel ={1,...,i,...N }. The plan-
ning horizon is defined as a set of time periéds{l,...,t,....T }. There are fixed costs

associated with opening a facility at a given laratand keeping this facility open
until the end of the planning horizon. There aoassignment costs related to the
assignment of customers to opened facilities duttregplanning horizon. The uncer-
tainty considered in this problem is present ndy amthe fixed and assignment costs,
but also in the existence of each possible cliergach time period, and in the possi-
bility of opening a facility in each potential Id@an in the beginning of each time
period. The uncertainty is represented by a setpo$sible future scenarios
®={,...,s,...5}. Suppose that each scenasiovill occur with probability p, such

that Z p, =1. The decision maker can be aware of these pratiabibr not. Con-
so

sider the following notation:

1, if customel has a demand to be fulfilled during

O, =4 periodt under scenarf A0t 0OrsOo;
0, otherwise
1, if it is possible to open facilify at the beging

By =1 of periodt under scenars ,jd3,tar,sgo;
0, otherwise

f,s =fixed cost of opening facility in the beginning of periotiplus operation and

maintenance costs until the end of the planningzbar(and possibly closing costs if
the facility is to be closed aftd@) under scenaris, j0J,t0r,sOd;

Gy = cost of assigning customerto facility j during periodt under scenaris,
ignjoltorsto.

The decision variables to be considered are defisddliows:
= {1, if faCI|It¥j is opened at the beginning of pceﬂo,j 0J.t0r
0, otherwise
1, if customei is assigned to faciljty in pertod
Yis =1 under scenaris do0rtarsgo.
0, otherwise

Notice that location decisions representedxpydo not depend on the realizations

of the uncertain parameters, but the assignmerisidas do: their values are only
determined when the uncertainty is resolved forooktt



Representing location variableg by a vectox and assignment variables by a
vector y, the simple dynamic location problem under undetyacan be formulated

as follows.

SDLPU:

"min" G(X, y) 1)
Subject to:

> Vi =0, 101t 00 ,sO0 @)

j0

t
X, 2y, i01,j0J,t0r s00  (3)
=1

D% <1,j0J (4)
tar

X, < B, 03,t0O7,sO® (5)
x, 0{0,4 ,jOJ.tor (6)

Vi 0{0,3,i01,jOJ tOr sO® (7

Constraints (2) guarantee that each client withatehwill be assigned to a facility
in each period and scenari®. Constraints (3) guarantee that clients can oerla®
signed to opened facilities. Constraints (4) sthet a facility can only be opened
once during the whole planning horizon. ConstraB)sguarantee that it is only pos-
sible to open facilities in a given time periodhft is allowed by all scenarios. If we
consider that i3, is equal to 0 therf, is equal to+eo , then constraints (5) can be

dropped.
After fixing variablesX, , a simple assignment problem has to be solve@doh

time periodt and scenarie. We assume that the assignment problem is solugd o
when we know what was the scenario that came tarodtis worth noticing that
these assignment problems will always have a feasidution as long as at least one
facility is open at each time period, since the alatbes not consider capacity con-
straints.

Although the meaning of constraints is clear, frisblem is still not well-defined.
Since we are in the presence of possible futureasies, how should we interpret
“min”? Let us consider that we are interested imimizing total costs. Even so, dif-
ferent decision makers will have different intetpt®ns of (1).

When a decision has to be taken under uncertaamty,the consequences of that
decision depend on the realization of uncertaiht tomes to occur, the objective
function to consider is not independent of the ps&file of the DM. DMs that are
risk averse will tend to look for min-max solutiors®lutions that minimize the worst



possible outcome. DMs that like to take risks coptdfer making a decision that
could lead to the most advantageous payoff, evehisif‘best of all” payoff only has a

tiny change of occurring. One way of interpretirig €ould be to consider the ex-
pected value of a given objective function oversaknarios. If this is the case, and
we are interested in the minimization of the expédbtal cost, then (1) could be
interpreted as (8).

minY. 37> P fXet 2 23 PG Y ®)

SO r joJ <o or pJ ol

It is also possible to imagine that we are inter@sh guaranteeing that the worst
payoff is the best possible (min-max approach):

minf xS 5, + 5 T Ty ©

tor jod tor joJ il

We can also think that what really matters is tosider the minimization of the to-
tal cost for the most probable scenafio

Z Z fjts’ Xjt + Z Z Z Cijts‘ yijts‘ (10)

tor joJ tor joJ io

Or minimize the maximum regret, wheF¢ represents the optimal objective func-
tion value when considering only scenasio

mgn{m S kY Gy - F*]} an

tor joJ tor joJ iol

In reality, the DM will be interested in compromiselutions: it is seldom the case
where a single solution will be the best undeipabsible realizations of uncertainty.
Making a decision will always give a better resutider some circumstances than
under others, and the DM is not capable of comtigpiivhat these circumstances will
be. If it is not possible to do any kind of assuioqs regarding the risk profile of the
decision maker, or about his preferences, thenpassible approach could be to in-
terpret (1) not as one single objective functiom ds1a set of objective functions in-
stead. LetF (X, y)represent the total cost incurred under scenamidhen solution

(X,y) is considered (12).

FS(X' y):zz fjtszt +ZZZ Cljts ths' SDCD (12)

tor joo tor joJ ol

SDLPU would then become a multiobjective proble@(BU_ MO), where (1) is
interpreted as (13).



SDLPU_MO:
min{ F, (X,y), - ,F, (x,y);+- Fs .y } (13)
Subject to: (2)-(7)

Independently of the preferences or profile of Bdd and assuming only that the
DM is rational, he will only be interested in saduts such that it is not possible to
improve the objective function of one given scemavithout deteriorating the objec-
tive function of at least one other scenario. Theans that the DM will only be inter-
ested in Pareto-efficient solutions (known as nomiated solutions if we consider
the objective space).

Definition 1: Consider(x, y) an admissible solution for SDLPU_MQ@x, y) is a
Pareto efficient solution if and only if there i® wther solution(x',y) such that
F.(x',y)<F,(x,y) and F,(X',y) <F/(x,y)for at least one scenar® The image
of an efficient solution in the objective spac&i®wn as anon-dominated solution

3 M ultiobjective Approach

There are several different ways of dealing witimaltiobjective programming
problem. One such way is the so-called interacmgroach. The interactive approach
considers interchanging calculation and dialoguasphk. In the calculation phase a
non-dominated solution is calculated and showetthedDM. The DM will then react
by giving some new information that will guide tlealculation of the new non-
dominated solution to be calculated in the nexatten. The process continues until
the DM is satisfied with a given solution or théaloset of non-dominated solutions is
found (see, for instance, [14]). The major drawbatkhis approach has to do with
the possibility of having calculation phases takiog much computational time, not
promoting a real-time interaction and making thecpss not attractive to the DM.
The main advantage has to do with the ability afreking areas of the solutions’
surface that are interesting to the DM, not wastimg or resources calculating solu-
tions that the DM will simply discard. Moreover, girever a non-dominated solution
is encountered, there is a region in the objectipace that is no longer interesting
(the one that is dominated by this solution), anatlaer region where there cannot be
any admissible solutions (or else this solution Moot be non-dominated). So, it is
possible, in each iteration, to eliminate regiaasf further searches.

Another way of dealing with multiobjective problerosnsiders the priori and
off-line calculation of the whole set (or a significant rer) of non-dominated solu-
tions. The solutions can then be presented to Medll at the same time, or using an
interactive approach similar to the one previoudgscribed. The set of non-
dominated solutions can even be analyzed by usinljianiteria decision-making
techniques ([15, 16]). One of the advantages sfdpproach is that the computational
burden of calculating the solutions is madpriori, promoting a faster action-reaction



interaction with the decision maker since no optatibns will be done. Furthermore,
it will be possible to show more information to tBd/, like statistics or the fulfill-
ment of other criteria not explicitly considerediw model.

The choice between an interactive or a generapipnoach should be done consid-
ering several aspects of the problem: What is iheedsion of the problem? How
long does it take to calculate a solution? Whatévéhe choice in a particular situa-
tion, there has to be some kind of procedure toutatle non-dominated solutions.
There are several auxiliary programming problenas gan be used to calculate non-
dominated solutions, mostly relying on the optirtima of some mono-objective
programming problem, being the most well known to@sideration of a weighted
sum of the objective functions. When dealing witteger or mixed-integer problems,
care has to be taken to guarantee that the chaserdure is capable of calculating
non-supported non-dominated solutions (lying insldelity gaps).

In this paper we resort to a result due to RossSoidnd [17], considering an aux-
iliary mono-objective programming problem AUX, weed, > 0is a weight associat-

ed with scenaric such thatZ/lS =1, andM, is an upper bound to the objective
so

function related to scenar®

AUX:
minzzz/]sfjtsxjt +ZZZZ/]SCijtsyijts (14)
S0 T j0d RN T

Subject to: (2)-(7)

ZZ fjtsxjt +ZZZths y|jts < Ms' SDCD (15)

tor jod tor j0J ol

Let M OO°represent the vector d¥_ values.

Proposition 1 (based on [17]):For any vectorA such thatZ/lszl and
sto

A, >0,s0@, (x,y) is an efficient solution of SDLPU_MO if and onlyit is the
optimal solution of AUX for some vectawl 005,

Based on Proposition 1, it is now possible to yerifhether some of the most
common interpretations of (1) will lead to effictesolutions or not. Considering ob-
jective function (8), if constraints (15) are added5DLPU, we can guarantee that the
corresponding solution will be an efficient solutio

Proposition 2: If A, = p,,0s, then AUX will calculate a solution consideringeth

minimization of the expected total cost over akrsrios. This solution is a non-
dominated solution to SDLPU_MO.



Proof: The proof follows directly from Proposition 1. K = p,,0s and if My is

made large enough, then we are actually minimitirggexpected total cost. We can
thus conclude that this solution is a non-dominat@dtion of SDLPU_MO.

Let us define a solution asrobust ,0< a <1, if and only if the objective function
value under any of the scenarios is not more #n&# worst than the best possible
solution for that particular scenario [18]. M are properly chosen, then AUX can
be used to calculate anrobust solution, and it is possible to guarantes thea-
robust solution is indeed efficient. L& be the optimal objective function value if
only scenaria is considered.

Proposition 3: The solution obtained by solving AUX such that
M, =(l+a)F,,s0® and 0<a<1, is a a-robust non-dominated solution of

SDLPU_MO.
Proof: The result follows directly from Proposition 1.

It has been proven that the solution obtained sickering the minimization of
the worst outcome can be dominated [12]. NeverdiselAUX could also be used to
calculate an efficient min-max solution. In a fistage, it would be necessary to solve
the problem of minimizing the maximum cost undérsakénarios. This could be done
by solving the following programming problem:

MIN-MAX:

mind (16)
Subject to:

(2)-(7)

DN F X+ D DD Gs Vs < I, STP (17)

tor jod tor joJ io

After solving this problem, it will be possible gmarantee the calculation of an ef-
ficient solution that is also min-max optimal bynstdering appropriate values for
M,.
Proposition 4: Let O represent the worst case objective function, ¢aled by
solving MIN-MAX. If Mis defined such thaM  =J,s0®, then AUX will gener-

ate an efficient min-max solution.

Proof: After solving MIN_MAX, o will represent the worst case objective that we
are willing to accept. This means that we will oblyinterested in solutions such that
the objective function value for any scenasiwill be less than or equal to . Com-
paring (17) with (15), it is easy to see thatf,is defined such thaw, =J,s0®,

then any efficient solution calculated will alsod@enin-max solution.



A similar reasoning could be applied if we are iegted in minimizing the maxi-
mum regret. Consider the following restrictions:

Zz fjlsxjt +zzz ths yljts - F; < 5’ SDCD (18)

tor j0J tor joJ icl

Proposition 5: Let d represent the maximum allowed regret calculateddbying
MIN-MAX, with restriction (17) replaced by (18). IM_is defined such that
M, =F.+0,s0®, then AUX will generate an efficient solution thatinimizes
maximum regret.

Proof: It follows the previous proof.

It is quite easy to embed the use of AUX in bothrderactive and anff-line gen-
eration procedure. In an interactive approach,dibéogue phase with the DM con-
sists in defining newM _values. Notice that, in reality, these values domme no

less than defining a region of search. In a geimgraapproachM  values can be

automatically generated in a way that guaranteas ttte whole objective space is
explored. The automatic generation of veckdican be done resorting to two simple
data structures: a binary tree, with as much leaslshe number of scenarios, and a
matrix. Each time a new solution is calculated Hase a given vectoM , a binary
tree is generated such that it will define all ploiesfuture vectorsM . These vectors
are then saved in a matrix so that they can b&vett in future iterations. To give a
simple example of this procedure, imagine a situatith three scenarios. The initial

vector M is equal to[Mj,M;,MQ]. By using this vector, we obtain a non-

dominated solution with the following values forchaof the 3 objective function
values:[ F',F,,F}], with F' <M},F; <M}, F/< M Based on these two vectors,
a binary tree can be built (Fig. 1), where 8 pdessiearch regions are defined.

M2

1 1 1 1 1
Fig. 1. Binary tree for automatic generation of vectdr.

The path from the root to each node of the treédeiline a new future vecto¥ .
These values can be stored in a matrix, so thgtdhe be retrieved in a future itera-
tion of the algorithm (Table 1). Whenever a newusioh is calculated, a new binary
tree is built and the corresponding vectors addethé matrix. In each iteration, vec-



tor M will be determined by the next column of this matSome of the problems
will be unfeasible and should not be considereithénmatrix. Using{ FLF,, F31] , for

instance, will not be interesting because it cqoesls to an unfeasible problem (if
that was not soEFll, le,Fgl} would not be a non-dominated solution). Other @&t
will end up with optimal solutions that are alreakiyown ((M;,M;,M;], for in-

stance, is not an interesting vector). Furthermknewing that one given problem is
impossible will allow us to conclude that othit vectors will also lead to impossi-

ble problems (if M}, F,},M}] leads to a problem that is impossible, then indg

worth to explore region 1", F;, F; ], for instance). This search method is easily
implementable and will guarantee that the wholesctje space is explored.

Table 1. Example of a table for automatic definition of t@cM .

M M M; R R R
M, R R M, M K
;o Mg R Mg ROM

It should be stressed that the weights vectothat is used in (14) does not repre-
sent any kind of DM’s preferences. These weightsarad should be changed in ac-
cordance with vectoM in order to help decreasing the computational tireeded to
calculate a solution [14]. IM is more demanding for a given scenario, meaning tha

M, is close to the best objective function valBe, then the respective objective

S

function weight should be increased. One simple whyloing this is settingl as
follows:

g =1-MoF ohe
Fs
; (19)
As :_S,SDQ)
PIZH
sto

Actually, the AUX formulation presented can resulta computationally heavy
integer programming problem. It is a NP-hard prohlend the computational time
needed to calculate a given solution will be hgag@pendent on the dimension of the
problem, especially the number of scenarios andhtimber of potential locations for
facilities.To solve AUX we can resort to generalses or use dedicated procedures,
both exact and heuristic procedures. Although #tied will not be able to guarantee
the optimality of the calculated solution, they daa very good choice especially in
the presence of an interactive procedure, wherarthgt important thing will be to
define a region of interest for the DM. It is evawssible to think of using a heuristic
procedure in a first stage, and then an exact pgroeeto actually guarantee the opti-
mality of the solution of interest. Although anymier of scenarios can be consid-



ered, in many real life situations DMs look at shmaimber of possible future realiza-
tions of uncertainty (usually the worst, best arastprobable scenarios).

4 [llustrative Examples

In this section we will illustrate the multiobjeati approach to the simple plant lo-
cation problem under uncertainty by resorting t® temall examples of randomly
generated problems. The problems were generated tis¢ algorithm described in
[19]. All AUX problem instances were solved by angeal solver (Cplex V12.6). In
the first example, we consider a problem with 2&ptal locations for facilities, 100
potential clients, 10 time periods and 2 scenaties.us consider the use of an inter-
active procedure based on [14]. The first thingldois to calculate the optimal solu-
tion for both scenarios. The best possible valuéhefobjective function for each
scenario will delineate the region of interest. §hsolutions are shown in Fig. 2, in
the objective space. The DM is free to set thearebt as he wishes. Let us assume
that he does not want to explore any particulaioregso he decides to define
M, =21819%and M, =1533123. These limits are defined by the two non-dominated

solutions already calculated (that correspond ¢oadptimum solution of each scenar-
i0). The weights are considered to Bhe=0.8and A, =0.2 (according to (19)). The

solution reached is shown in Fig. 3.

$ 138023;153313 4% 138023;153313
151800 151800
149800 149800
3 147800 S 147800
:
§ 145800 § 145800
@ A
143800 143800
141500 [ 138902142526
=2 218195; 139854 218195;139854
139800 * 130800
138000 158000 178000 198000 218000 138000 158000 173000 198000 218000
Scenario1 Scenario 1

Fig. 2. Optimal solutions for each scenario.  Fig. 3. The first non-dominated solution
calculated.

Let us look at more detail at Fig. 3. Considerimg thewly calculated non-
dominated solution, it is easy to see that twoaegiof the objective space are no
longer interesting. This is shown in Fig. 4. Reglowill only have solutions that are
dominated by the solution calculated. Region B bialy non-admissible solutions.
The decision-maker can now decide whether to egplegion C or region D. Let us
suppose that he would explore region D. Tipwill remain equal to 218195 and

M, will be set to 142526 (given by the new non-dortedasolution just calculated).

Fig. 5 shows the new solution calculated. The pitooe would be repeated until the
DM is satisfied, or the whole objective space hasrbexplored. The whole set of
non-dominated solutions found is shown in Fig.t@s Ipossible to observe the com-
promises that exist between the two scenarios. M@ it is also possible to calcu-



late the non-dominated solution that minimizesrttaximum regret or that minimizes
the maximum cost under both scenarios. These sobkitire highlighted in Fig. 7.

145800

144800 -

143800

142800

Scenario 2

138902; 142526

141800

D

140800

139800 T T T T T T T T 1
138000 138500 139000 139500 140000 140500 141000 141500 142000 142500 143000
Scenario 1

Fig. 4. The shaded areas A and B are no longer of interest

& 138902; 142526 .
142300 1 151800 -
141800 A 141836; 141936 145800 [ ]
& 5
_g 141300 - o 147800 -
H § 145800 *
& 140800 - A
143800 -
140300 - ht
218195; 139854, 14100 ¥
139800 . * 130800 - . . : ®
138000 158000 178000 198000 218000 138000 158000 178000 198000 218000
Scenario 1 Scenario1
Fig. 5. A new non-dominated solution. Fig. 6. The set of non-dominated solutions.
4
151800
140800 | 4=
~ 147800 -
g
kS
£
& 145800 A
§
143800
A u [ | A a
141800 - ‘ ‘
139800 T T T T T T T
138000 138500 139000 139500 140000 140500 141000 141500
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Fig. 7. The Min-Max and Min-Max Regret Solutions



It can also be interesting to analyze the solutimndooking at the opened facili-
ties. In this problem, a set of 7 facilities is opd exactly in the same time period in
all solutions calculated. Table 2 shows, for eash-dominated solution, which are
the facilities to be opened and when should thegdened.

Table 2. Time period in which each facility is opened irtleaolution.

Objective Function Opened Facilities
s=1 =2 2 3 4 5 6 7 9 11 14 16 18 20 22 24 25
138023 153313 1 1 - 7 6 4 2 2 3 2 4 6 3 2 -
138228 150276 1 1 - 7 6 4 2 2 3| 2 4 6 3] 2 1
138237 150257 1 1 - 7 6 4 2 2 3 3 4 6 3 2 1
138360 150238 1 1 - 7 6 4 2 2 3| 3 4 - 3| 2 1
138384 150093 1 1 - - 6 4 2 2 3 2 4 6 3 2 1
138393 150074 1 1 - - 6 4 2 2 3 3 4 6 3 2 1
138564 145957 1 1 - 7 6 4 2 5 3| 2 4 6 3] 2 -
138720 145827 1 1 - - 6 4 2 5 3 2 4 6 3 2 -
138746 142709 1 1 - 7 6 4 2 5 3| 2 4 6 3] 2 1
138869 142690 1 1 - 7 6 4 2 5 3 2 4 - 3 2 1
138902 142526 1 1 - - 6 4 2 5 3| 2 4 6 3| 2 1
139281 142430 1 1 7 - 6 4 2 5 3 2 4 6 3 2 1
141238 142389 - 1 - 7 6 4 2 5 3| 2 4 6 3| 2 1
141457 142365 1 - - 6 4 2 5 3 2 4 6 3 2 1
141695 142200 1 7 - 6 4 2 5 3| 2 1 6 3| 2 1
141836 141936 - 1 7 - 6 4 2 5 3 2 4 6 3 2 1
145742 140500 1 1 - - 6 4 2 5 3| 2 4 2 3| 2 1
146121 140404 1 1 7 - 6 4 2 5 3 2 4 2 3 2 1
147507 140307 - 1 7 6 4 2 5 3 2 4 2 3 2 1
218195 139854 1 7 - 6 4 2 5 3l 2 4 2 Sl 2 1

In Fig. 8, the non-dominated solutions calculatgdubing theoff-line generation
procedure are shown, considering a randomly gesanatoblem with 10 potential
locations for facilities, 50 potential clients,iBhe periods and 3 scenarios. With more
than 3 scenarios, the visualization of non-domihatgutions in the objective space is
no longer possible, and it could be better to rtefsnthe use of multicriteria analysis
tools.

Fig. 8. Non-dominated solutions in 3D objective space

5 Conclusions

In this paper we describe a multiobjective apprdactdecision-making applied to
a simple dynamic location problem under uncertaiftyis approach has several ad-



vantages when compared with the more traditionalisbapproaches. Regarding the
DM, the only assumption made is that the DM isoradi, thus will only be interested
in Pareto-efficient solutions. It is not necesstryestimate any kind of probabilities
associated with the possible future scenarios.tfAfeolutions is calculated, instead
of only one. The DM will thus have a much broadew of the compromises that
exist among the possible scenarios. Many of thesaetarobust solutions, like mini-
mizing the worst result or the maximum regret cancbnsidered as special cases.
Making available to the DM a set of solutions wilake it possible to apply other
robustness measures that are more difficult torpaate directly in a mathematical
programming problem (like, for instance, th&-robustness measure [20]).

The major drawback of the described approach ha® taith the fact that it im-
plies the sequential optimization of NP-hard praide Depending on the problem’s
dimension, this can be computationally expensivee @vay of circumventing the
problem is through the use of efficient heuristita first stage, and the use of exact
procedures in a second phase where the prefergazhris already delineated. Anoth-
er possibility is the use of metaheuristics thatkmeith populations of solutions (like
genetic algorithms) and that are capable of geingratets of efficient solutions in
each generation (see, for instance, [21]).

In the problem considered, any solution that is iadilnle for one given scenario
will be admissible for all others. This situationed not always occur. Defining the
concept of Pareto-efficiency for single objectivndmic location problems where
feasibility can also be affected by uncertaintgrisinteresting path of research.

Although we have applied this approach to a sindgigamic location problem un-
der uncertainty, it can easily be generalized toynather linear, integer or mixed-
integer programming problems.
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