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Abstract. Location problems are, by nature, strategic decisions since facilities 
will usually be in operation in the medium and long terms. It is necessary to de-
cide today, given the available information, knowing that the consequences of 
today’s decisions will remain in time. Having to include in the decision making 
process data that will only be known with certainty in the future does not advise 
the use of deterministic models: the existing uncertainty should be explicitly in-
cluded in the models. The notion of optimal solution becomes fragile: it will be 
difficult to find a single solution that is the best in all possible future realiza-
tions of uncertainty. In this paper we consider a dynamic simple plant location 
problem, where uncertainty is explicitly considered through the use of scenari-
os. We advocate the use of a multiobjective approach as a valuable tool in guid-
ing the decision-making process, iteratively or as an off-line generation proce-
dure.  

Keywords: Location Problems, Uncertainty, Scenarios, Multiobjective, Pareto-
efficient 

1 Introduction 

Plant location problems are strategic problems by nature, usually associated with 
significant investments, and with medium to long term consequences. Whenever a 
decision-maker (DM) has to decide where to locate a warehouse, a plant, a store, the 
amount of data that should be considered in the decision making process is not only 
huge but often not known with certainty at the time the decision has to be made. Fur-
thermore, location decisions are often associated with other problems like inventory 
management, transportation or assignment problems. As a simple example, let us 
consider the problem of locating a warehouse that will serve as supplier for a set of 
customers. There are only two potential locations for the warehouse: one location has 
very low construction and other fixed costs, but  it is very far away from any of the 
customers (implying important transportation costs); the other location is near most 
customers, but the fixed costs incurred are very high. When deciding, we cannot split 
the location and transportation/assignment problems in two distinct problems, or we 



would end up with a suboptimal solution. They have to be considered simultaneously 
in the decision making process. However, dealing with those two problems at the 
same time is not as straightforward as it might seem, especially when we are consider-
ing that the facility to be located will be in operation during a given time horizon. 
Although it is not easy to change the location of warehouses or other facilities from 
one time period to the next, because of the direct and indirect costs incurred, it is not 
that difficult to change the way the demands of customers are being satisfied and the 
goods transported. If there is a change in the road infrastructure, or an important in-
crease or decrease in fuels’ prices, or there is a road that became tolled, the decision 
maker will be able to adjust the assignment/transportation decisions to the new reality. 
A similar reasoning could be made if we were thinking of other problems like inven-
tory management or production scheduling. 

In plant location problems we are thus faced with having to simultaneously make 
decisions that are deeply interconnected but that have very different natures: on one 
hand, location decisions that are strategic by nature and difficult to reverse, on the 
other hand, other related decisions that can be easily reverted whenever new infor-
mation is available. The strategic nature of location problems is clearly described and 
emphasized in [1], where not only the classical static and deterministic models are 
defined, but also dynamic and stochastic location problems are discussed. 

In this paper a dynamic simple plant location problem under uncertainty is consid-
ered. There is a set of potential locations for opening facilities, and there is a set of 
clients with a given demand that has to be satisfied by opened facilities. There is a 
planning horizon, and it will be necessary to decide which facilities to open and when 
to open them. The only data that is known for sure is the one related with the present 
moment: if the facilities are opened today, and the assignment of clients to facilities is 
made today, then all fixed location costs and assignment costs for the present time 
period are known with certainty. However, for all other future time periods, fixed 
opening costs are not known for sure, as well as assignment costs. In the future, even 
the set of clients or the potential locations for new facilities can be uncertain. In the 
present work, uncertainty is represented through a set of possible future scenarios. 
Two different stages for decision-making are considered: on one hand, location deci-
sions determining when and where facilities should be opened during the planning 
horizon are set at the present moment and cannot be changed throughout the planning 
horizon (first stage); on the other hand, the assignment of clients to facilities that is 
made in each time period considering the existing opened facilities and the assign-
ment costs for that particular period and for the scenario that came to occur (second 
stage).  

Whenever uncertainty is explicitly considered, the notion of both feasible and op-
timal solution becomes very fragile (see, for instance, [2]). Regarding feasibility, it 
can be the case that it is not possible to guarantee feasibility under all possible realiza-
tions of the uncertain parameters. In the present work, as we are dealing with an un-
capacitated problem, a solution that is feasible for one scenario will be feasible for all 
others. Regarding optimality, it is often the case that no single solution will be opti-
mal under all possible future scenarios. A possible approach would be to consider a 
single objective function that would represent the expected objective function value 



over all scenarios. Optimizing the expected value of a given objective function can be 
the best thing to do if we are facing a decision making process that has to be repeated 
over and over again, always under uncertainty. Only in this case does the expected 
value represent the DM’s payoff in the long run. Location problems do not fit this 
profile. Most of the times they are “once in a lifetime” decisions. Furthermore, we 
cannot talk about uncertainty without thinking about risk, and different DMs have 
different attitudes towards risk [3]. If a DM is neutral towards risk, then an expected 
value approach could be defendable. But if the DM is averse to risk, then he will 
probably be concerned with the worst of all scenarios only: he would be interested in 
making the worst possible outcome the best possible. This approach is known as the 
min-max approach. Many other possible ways of dealing with uncertainty can be 
disguised, some under an umbrella usually known as robust optimization. A review of 
facility location under uncertainty can be found in [4].  

There is a whole set of publications dedicated to multiobjective stochastic pro-
gramming, usually tackling the problem by reducing it to a single objective stochastic 
program or transforming it to a deterministic multiobjective program (see, for in-
stance, [5, 6, 7, 8, 9, 10, 11]). The approach described in this paper is different: we 
tackle a single objective location problem under uncertainty by resorting to a multi-
objective approach. The concept of Pareto-efficiency is thus applied in the context of 
a single objective problem under uncertainty. Without making any kind of assump-
tions regarding the attitude of the decision maker towards risk, it is possible to con-
sider the dynamic plant location problem under uncertainty as a multiobjective prob-
lem, where each scenario will give rise to one objective. The DM will only be inter-
ested in Pareto-efficient solutions. A Pareto-efficient solution can be understood as a 
solution where it is not possible to improve one objective without deteriorating at 
least one other. In this context, a solution will be Pareto-efficient if it is not possible 
to improve the objective function value under one scenario without deteriorating its 
value under at least one other scenario. The multiobjective approach can be used em-
bedded in an interactive decision-making process or as an off-line generation proce-
dure, where the whole set of efficient solutions is calculated.  

Actually, it is very difficult to find the concept of Pareto efficiency being applied 
in this context. Iancu and Trichakis [12] have, in a recent paper, introduced the Pareto 
efficiency concept in robust optimization, showing that some robust solutions are not 
efficient, and apply their methodology to portfolio optimization, inventory manage-
ment and project management. Nevertheless, their focus is solely on Pareto efficient 
worst-case solutions. Kaläi et al [13] introduces the concept of lexicographic α-
robustness, that can be seen as an extension of lexicographic programming used to 
tackle multiobjective problems. 

This paper is organized as follows: the next section presents the mathematical 
model, and introduces the main concepts used throughout the text. Section 3 describes 
the multiobjective approach, and shows how some “robust solutions” can be, in fact, 
Pareto-efficient solutions. Section 4 illustrates the procedure through the use of some 
illustrative examples. In Section 5 the main conclusions are stated, and paths for fu-
ture research are delineated. 



2 Mathematical Modelling 

Consider the set of potential locations for facilities denoted by {1,..., ,..., }J j M= , 

and the set of possible customers’ locations denoted by {1,..., ,..., }I i N= .  The plan-

ning horizon is defined as a set of time periods {1,..., ,..., }t TΓ = . There are fixed costs 

associated with opening a facility at a given location and keeping this facility open 
until the end of the planning horizon. There are also assignment costs related to the 
assignment of customers to opened facilities during the planning horizon. The uncer-
tainty considered in this problem is present not only in the fixed and assignment costs, 
but also in the existence of each possible client in each time period, and in the possi-
bility of opening a facility in each potential location in the beginning of each time 
period. The uncertainty is represented by a set of possible future scenarios 

{1,..., ,... }s SΦ = . Suppose that each scenario s will occur with probability sp  such 

that 1s
s

p
∈Φ

=∑ . The decision maker can be aware of these probabilities or not. Con-

sider the following notation: 
1,  if customer  has a demand to be fulfilled during

, , , ;   period  under scenario 

0,  otherwise
its

i

i I t st sδ

= ∈ ∈ Γ ∈ Φ



  

1,  if it is possible to open facility  at the beginning 

, , , ;   of period  under scenario 

0,  otherwise
jts

j

j J t st sβ

= ∈ ∈ Γ ∈ Φ



 

jtsf = fixed cost of opening facility j in the beginning of period t plus operation and 

maintenance costs until the end of the planning horizon (and possibly closing costs if 
the facility is to be closed after T) under scenario s, , , ;j J t s∈ ∈ Γ ∈ Φ  

ijtsc = cost of assigning customer i to facility j during period t under scenario s, 

, , , .i I j J t s∈ ∈ ∈ Γ ∈ Φ  

 
The decision variables to be considered are defined as follows: 

1,  if facility  is opened at the beginning of period 
, , ;

0,  otherwiseji

j t
x j J t


= ∈ ∈ Γ


 

1,  if customer  is assigned to facility  in period 

, , , .   under scenario 

0,  otherwise
ijts

i j t

y i I t ss


= ∈ ∈ Γ ∈ Φ



 

 
Notice that location decisions represented by jix  do not depend on the realizations 

of the uncertain parameters, but the assignment decisions do: their values are only 
determined when the uncertainty is resolved for period t. 



Representing location variables jix  by a vectorx and assignment variables by a 

vector y , the simple dynamic location problem under uncertainty can be formulated 

as follows. 
SDLPU: 

"min" ( , )G x y  (1) 

Subject to: 

, , ,ijts its
j J

y i I t sδ
∈

= ∈ ∈ Γ ∈ Φ∑  (2) 

1

, , , ,
t

j ijtsx y i I j J t sτ
τ =

≥ ∈ ∈ ∈ Γ ∈ Φ∑  (3) 

1,jt
t

x j J
∈Γ

≤ ∈∑  (4) 

, , ,jt jtsx j J t sβ≤ ∈ ∈Γ ∈Φ  (5) 

{ }0,1 , ,jtx j J t∈ ∈ ∈ Γ  (6) 

{ }0,1 , , , ,ijtsy i I j J t s∈ ∈ ∈ ∈ Γ ∈ Φ  (7) 

Constraints (2) guarantee that each client with demand will be assigned to a facility 
in each period t and scenario s. Constraints (3) guarantee that clients can only be as-
signed to opened facilities. Constraints (4) state that a facility can only be opened 
once during the whole planning horizon. Constraints (5) guarantee that it is only pos-
sible to open facilities in a given time period if that is allowed by all scenarios. If we 
consider that if jtsβ  is equal to 0 then jtsf  is equal to +∞ , then constraints (5) can be 

dropped. 
After fixing variables jtx , a simple assignment problem has to be solved for each 

time period t and scenario s. We assume that the assignment problem is solved only 
when we know what was the scenario that came to occur. It is worth noticing that 
these assignment problems will always have a feasible solution as long as at least one 
facility is open at each time period, since the model does not consider capacity con-
straints. 

Although the meaning of constraints is clear, this problem is still not well-defined. 
Since we are in the presence of possible future scenarios, how should we interpret 
“min”? Let us consider that we are interested in minimizing total costs. Even so, dif-
ferent decision makers will have different interpretations of (1).  

When a decision has to be taken under uncertainty, and the consequences of that 
decision depend on the realization of uncertainty that comes to occur, the objective 
function to consider is not independent of the risk profile of the DM. DMs that are 
risk averse will tend to look for min-max solutions: solutions that minimize the worst 



possible outcome. DMs that like to take risks could prefer making a decision that 
could lead to the most advantageous payoff, even if this “best of all” payoff only has a 
tiny change of occurring. One way of interpreting (1) could be to consider the ex-
pected value of a given objective function over all scenarios. If this is the case, and 
we are interested in the minimization of the expected total cost, then (1) could be 
interpreted as (8). 

min s jts jt s ijts ijts
s t j J s t j J i I

p f x p c y
∈Φ ∈Γ ∈ ∈Φ ∈Γ ∈ ∈

+∑∑∑ ∑∑∑∑  (8) 

It is also possible to imagine that we are interested in guaranteeing that the worst 
payoff is the best possible (min-max approach): 

min max jts jt ijts ijts
s

t j J t j J i I

f x c y
∈Γ ∈ ∈Γ ∈ ∈

 
+ 

 
∑∑ ∑∑∑  (9) 

We can also think that what really matters is to consider the minimization of the to-
tal cost for the most probable scenario*s : 

* * *jtjts ijts ijts
t j J t j J i I

f x c y
∈Γ ∈ ∈Γ ∈ ∈

+∑∑ ∑∑∑  (10) 

Or minimize the maximum regret, where *sF  represents the optimal objective func-

tion value when considering only scenario s: 

*min max jts jt ijts ijts s
s

t j J t j J i I

f x c y F
∈Γ ∈ ∈Γ ∈ ∈

   + −  
   

∑∑ ∑∑∑  (11) 

In reality, the DM will be interested in compromise solutions: it is seldom the case 
where a single solution will be the best under all possible realizations of uncertainty. 
Making a decision will always give a better result under some circumstances than 
under others, and the DM is not capable of controlling what these circumstances will 
be. If it is not possible to do any kind of assumptions regarding the risk profile of the 
decision maker, or about his preferences, then one possible approach could be to in-
terpret (1) not as one single objective function but as a set of objective functions in-
stead. Let ( , )sF x y represent the total cost incurred under scenario s when solution

( , )x y  is considered (12).  

( , )sF x y = ,jts jt ijts ijts
t j J t j J i I

f x c y s
∈Γ ∈ ∈Γ ∈ ∈

+ ∈ Φ∑∑ ∑∑∑  (12) 

SDLPU would then become a multiobjective problem (SDLPU_MO), where (1) is 
interpreted as (13).   

 
 
 



SDLPU_MO:  

{ }1min ( , ), , ( , ), , ( , )s SF F F⋯ ⋯x y x y x y (13) 

Subject to: (2)-(7) 
 
Independently of the preferences or profile of the DM and assuming only that the 

DM is rational, he will only be interested in solutions such that it is not possible to 
improve the objective function of one given scenario without deteriorating the objec-
tive function of at least one other scenario. This means that the DM will only be inter-
ested in Pareto-efficient solutions (known as non-dominated solutions if we consider 
the objective space). 

 
Definition 1: Consider ( , )x y an admissible solution for SDLPU_MO. ( , )x y   is a 

Pareto efficient solution if and only if there is no other solution ( , )' 'x y  such that 

( , ) ( , )s sF ' ' F≤x y x y  and ( , ) ( , )s sF ' ' F<x y x y for at least one scenario s. The image 

of an efficient solution in the objective space is known as a non-dominated solution.  

3 Multiobjective Approach 

There are several different ways of dealing with a multiobjective programming 
problem. One such way is the so-called interactive approach. The interactive approach 
considers interchanging calculation and dialogue phases. In the calculation phase a 
non-dominated solution is calculated and showed to the DM. The DM will then react 
by giving some new information that will guide the calculation of the new non-
dominated solution to be calculated in the next iteration. The process continues until 
the DM is satisfied with a given solution or the total set of non-dominated solutions is 
found (see, for instance, [14]). The major drawback of this approach has to do with 
the possibility of having calculation phases taking too much computational time, not 
promoting a real-time interaction and making the process not attractive to the DM. 
The main advantage has to do with the ability of searching areas of the solutions’ 
surface that are interesting to the DM, not wasting time or resources calculating solu-
tions that the DM will simply discard. Moreover, whenever a non-dominated solution 
is encountered, there is a region in the objective space that is no longer interesting 
(the one that is dominated by this solution), and another region where there cannot be 
any admissible solutions (or else this solution would not be non-dominated). So, it is 
possible, in each iteration, to eliminate regions from further searches. 

Another way of dealing with multiobjective problems considers the a priori and 
off-line calculation of the whole set (or a significant number) of non-dominated solu-
tions. The solutions can then be presented to the DM, all at the same time, or using an 
interactive approach similar to the one previously described. The set of non-
dominated solutions can even be analyzed by using multicriteria decision-making 
techniques ([15, 16]). One of the advantages of this approach is that the computational 
burden of calculating the solutions is made a priori, promoting a faster action-reaction 



interaction with the decision maker since no optimizations will be done. Furthermore, 
it will be possible to show more information to the DM, like statistics or the fulfill-
ment of other criteria not explicitly considered in the model. 

The choice between an interactive or a generation approach should be done consid-
ering several aspects of the problem: What is the dimension of the problem? How 
long does it take to calculate a solution? Whatever is the choice in a particular situa-
tion, there has to be some kind of procedure to calculate non-dominated solutions. 
There are several auxiliary programming problems that can be used to calculate non-
dominated solutions, mostly relying on the optimization of some mono-objective 
programming problem, being the most well known the consideration of a weighted 
sum of the objective functions. When dealing with integer or mixed-integer problems, 
care has to be taken to guarantee that the chosen procedure is capable of calculating 
non-supported non-dominated solutions (lying inside duality gaps).  

In this paper we resort to a result due to Ross and Soland [17], considering an aux-
iliary mono-objective programming problem AUX, where 0sλ > is a weight associat-

ed with scenario s such that 1s
s

λ
∈Φ

=∑ , and sM  is an upper bound to the objective 

function related to scenario s.  
AUX: 

min s jts jt s ijts ijts
s t j J s t j J i I

f x c yλ λ
∈Φ ∈Γ ∈ ∈Φ ∈Γ ∈ ∈

+∑∑∑ ∑∑∑∑  (14) 

Subject to: (2)-(7) 

,jts jt ijts ijts s
t j J t j J i I

f x c y M s
∈Γ ∈ ∈Γ ∈ ∈

+ ≤ ∈ Φ∑∑ ∑∑∑  (15) 

Let S∈ ℜM represent the vector of sM  values. 

 
Proposition 1 (based on [17]): For any vector λλλλ such that 1s

s

λ
∈Φ

=∑  and 

0,s sλ > ∈ Φ , ( , )x y  is an efficient solution of SDLPU_MO if and only if it is the 

optimal solution of AUX for some vector .S∈ ℜM  
 
Based on Proposition 1, it is now possible to verify whether some of the most 

common interpretations of (1) will lead to efficient solutions or not. Considering ob-
jective function (8), if constraints (15) are added to SDLPU, we can guarantee that the 
corresponding solution will be an efficient solution. 

 
Proposition 2: If ,s sp sλ = ∀ , then AUX will calculate a solution considering the 

minimization of the expected total cost over all scenarios. This solution is a non-
dominated solution to SDLPU_MO.  



Proof: The proof follows directly from Proposition 1. If ,s sp sλ = ∀  and if sM  is 

made large enough, then we are actually minimizing the expected total cost. We can 
thus conclude that this solution is a non-dominated solution of SDLPU_MO.  

 
Let us define a solution as α-robust , 0 1α< < , if and only if the objective function 

value under any of the scenarios is not more than %α  worst than the best possible 
solution for that particular scenario [18]. If sM  are properly chosen, then AUX can 

be used to calculate an α-robust solution, and it is possible to guarantee that the α-
robust solution is indeed efficient. Let *sF be the optimal objective function value if 

only scenario s is considered. 
 
Proposition 3: The solution obtained by solving AUX such that  

*(1 ) ,s sM F sα= + ∈Φ  and 0 1α< < , is a α-robust non-dominated solution of 

SDLPU_MO.  
Proof: The result follows directly from Proposition 1. 
 
It has been proven that the solution obtained by considering the minimization of 

the worst outcome can be dominated [12]. Nevertheless, AUX could also be used to 
calculate an efficient min-max solution. In a first stage, it would be necessary to solve 
the problem of minimizing the maximum cost under all scenarios. This could be done 
by solving the following programming problem: 
MIN-MAX: 

minδ  (16) 

Subject to: 

(2)-(7) 

,jts jt ijts ijts
t j J t j J i I

f x c y sδ
∈Γ ∈ ∈Γ ∈ ∈

+ ≤ ∈ Φ∑∑ ∑∑∑ (17) 

After solving this problem, it will be possible to guarantee the calculation of an ef-
ficient solution that is also min-max optimal by considering appropriate values for 

sM . 

 
Proposition 4: Let δ  represent the worst case objective function, calculated by 

solving MIN-MAX. If sM is defined such that ,sM sδ= ∈ Φ , then AUX will gener-

ate an efficient min-max solution.  
Proof: After solving MIN_MAX, δ will represent the worst case objective that we 

are willing to accept. This means that we will only be interested in solutions such that 
the objective function value for any scenario s will be less than or equal to δ . Com-
paring (17) with (15), it is easy to see that if sM is defined such that ,sM sδ= ∈ Φ , 

then any efficient solution calculated will also be a min-max solution. 



 
A similar reasoning could be applied if we are interested in minimizing the maxi-

mum regret. Consider the following restrictions: 

* ,jts jt ijts ijts s
t j J t j J i I

f x c y F sδ
∈Γ ∈ ∈Γ ∈ ∈

+ − ≤ ∈ Φ∑∑ ∑∑∑  (18) 

Proposition 5: Let δ  represent the maximum allowed regret calculated by solving 
MIN-MAX, with restriction (17) replaced by (18). If sM is defined such that 

* ,s sM F sδ= + ∈Φ , then AUX will generate an efficient solution that minimizes 

maximum regret.  
 
Proof: It follows the previous proof.  
 
It is quite easy to embed the use of AUX in both an interactive and an off-line gen-

eration procedure. In an interactive approach, the dialogue phase with the DM con-
sists in defining new sM values. Notice that, in reality, these values do no more no 

less than defining a region of search. In a generating approach, sM  values can be 

automatically generated in a way that guarantees that the whole objective space is 
explored. The automatic generation of vector M can be done resorting to two simple 
data structures: a binary tree, with as much levels as the number of scenarios, and a 
matrix. Each time a new solution is calculated based on a given vector M , a binary 
tree is generated such that it will define all possible future vectors M . These vectors 
are then saved in a matrix so that they can be retrieved in future iterations. To give a 
simple example of this procedure, imagine a situation with three scenarios. The initial 

vector M  is equal to 1 1 1
1 2 3, ,M M M   . By using this vector, we obtain a non-

dominated solution with the following values for each of the 3 objective function 

values: 1 1 1
1 2 3, ,F F F   , with 1 1 1 1 1 1

1 1 2 2 3 3, ,F M F M F M≤ ≤ ≤ . Based on these two vectors, 

a binary tree can be built (Fig. 1), where 8 possible search regions are defined. 
 
 
 
 
 
 
 
 

Fig. 1. Binary tree for automatic generation of vector M . 

The path from the root to each node of the tree will define a new future vector M . 
These values can be stored in a matrix, so that they can be retrieved in a future itera-
tion of the algorithm (Table 1). Whenever a new solution is calculated, a new binary 
tree is built and the corresponding vectors added to the matrix. In each iteration, vec-

1
1M 1

1F

1
2M 1

2F

1
3M 1

3F 1
3M 1

3F

1
2M 1

2F

1
3M 1

3F 1
3M 1

3F

1
1M 1

1F

1
2M 1

2F

1
3M 1

3F 1
3M 1

3F

1
2M 1

2F

1
3M 1

3F 1
3M 1

3F



tor M  will be determined by the next column of this matrix. Some of the problems 

will be unfeasible and should not be considered in the matrix. Using 1 1 1
1 2 3, ,F F F   , for 

instance, will not be interesting because it corresponds to an unfeasible problem (if 

that was not so, 1 1 1
1 2 3, ,F F F    would not be a non-dominated solution). Other vectors 

will end up with optimal solutions that are already known ( 1 1 1
1 2 3, ,M M M   , for in-

stance, is not an interesting vector). Furthermore, knowing that one given problem is 
impossible will allow us to conclude that other M  vectors will also lead to impossi-

ble problems (if [ 1
1M , 1

2F , 1
3M ] leads to a problem that is impossible, then it is not 

worth to explore region [ 1
1M , 1

2F , 1
3F ], for instance). This search method is easily 

implementable and will guarantee that the whole objective space is explored.  

Table 1. Example of a table for automatic definition of vector M . 

1
1M  1

1M  1
1M  1

1F  1
1F  1

1F  
1
2M  1

2F  1
2F  1

2M  1
2M  1

3F  
1
3F  1

3M  1
3F  1

3M  1
3F  1

3M  

 
It should be stressed that the weights vector λλλλ  that is used in (14) does not repre-

sent any kind of DM’s preferences. These weights can and should be changed in ac-
cordance with vector M in order to help decreasing the computational time needed to 
calculate a solution [14]. If M is more demanding for a given scenario, meaning that 

sM  is close to the best objective function value *
sF , then the respective objective 

function weight should be increased. One simple way of doing this is setting λλλλ  as 
follows: 

*

*
1 ,

,

s s
s

s

s
s

s
s

M F
s

F

s

λ

λλ
λ

∈Φ

−
= − ∈ Φ

= ∈ Φ
∑

 (19) 

 Actually, the AUX formulation presented can result in a computationally heavy 
integer programming problem. It is a NP-hard problem, and the computational time 
needed to calculate a given solution will be heavily dependent on the dimension of the 
problem, especially the number of scenarios and the number of potential locations for 
facilities.To solve AUX we can resort to general solvers or use dedicated procedures, 
both exact and heuristic procedures. Although the latter will not be able to guarantee 
the optimality of the calculated solution, they can be a very good choice especially in 
the presence of an interactive procedure, where the most important thing will be to 
define a region of interest for the DM. It is even possible to think of using a heuristic 
procedure in a first stage, and then an exact procedure to actually guarantee the opti-
mality of the solution of interest. Although any number of scenarios can be consid-



ered, in many real life situations DMs look at small number of possible future realiza-
tions of uncertainty (usually the worst, best and most probable scenarios).   

4 Illustrative Examples 

In this section we will illustrate the multiobjective approach to the simple plant lo-
cation problem under uncertainty by resorting to two small examples of randomly 
generated problems. The problems were generated using the algorithm described in 
[19]. All AUX problem instances were solved by a general solver (Cplex V12.6). In 
the first example, we consider a problem with 25 potential locations for facilities, 100 
potential clients, 10 time periods and 2 scenarios. Let us consider the use of an inter-
active procedure based on [14]. The first thing to do is to calculate the optimal solu-
tion for both scenarios. The best possible value of the objective function for each 
scenario will delineate the region of interest. These solutions are shown in Fig. 2, in 
the objective space. The DM is free to set the vector M as he wishes. Let us assume 
that he does not want to explore any particular region, so he decides to define 

1 218195M = and 2 153313M = . These limits are defined by the two non-dominated 

solutions already calculated (that correspond to the optimum solution of each scenar-
io). The weights are considered to be 1 0.8λ = and 1 0.2λ =  (according to (19)). The 

solution reached is shown in Fig. 3.  
 

  

Fig. 2. Optimal solutions for each scenario. Fig. 3. The first non-dominated solution 
calculated. 

Let us look at more detail at Fig. 3. Considering the newly calculated non-
dominated solution, it is easy to see that two regions of the objective space are no 
longer interesting. This is shown in Fig. 4. Region A will only have solutions that are 
dominated by the solution calculated. Region B has only non-admissible solutions. 
The decision-maker can now decide whether to explore region C or region D. Let us 
suppose that he would explore region D. Then 1M  will remain equal to 218195 and 

2M  will be set to 142526 (given by the new non-dominated solution just calculated). 

Fig. 5 shows the new solution calculated. The procedure would be repeated until the 
DM is satisfied, or the whole objective space has been explored. The whole set of 
non-dominated solutions found is shown in Fig. 6. It is possible to observe the com-
promises that exist between the two scenarios. Moreover, it is also possible to calcu-



late the non-dominated solution that minimizes the maximum regret or that minimizes 
the maximum cost under both scenarios. These solutions are highlighted in Fig. 7. 

 

 
 

Fig. 4. The shaded areas A and B are no longer of interest. 
 

  

Fig. 5. A new non-dominated solution. Fig. 6. The set of non-dominated solutions. 

 

Fig. 7. The Min-Max and Min-Max Regret Solutions 



It can also be interesting to analyze the solutions by looking at the opened facili-
ties. In this problem, a set of 7 facilities is opened exactly in the same time period in 
all solutions calculated. Table 2 shows, for each non-dominated solution, which are 
the facilities to be opened and when should they be opened. 

Table 2. Time period in which each facility is opened in each solution.  

 
 
In Fig. 8, the non-dominated solutions calculated by using the off-line generation 

procedure are shown, considering a randomly generated problem with 10 potential 
locations for facilities, 50 potential clients, 5 time periods and 3 scenarios.  With more 
than 3 scenarios, the visualization of non-dominated solutions in the objective space is 
no longer possible, and it could be better to resort to the use of multicriteria analysis 
tools.  

 

Fig. 8. Non-dominated solutions in 3D objective space 

5 Conclusions 

In this paper we describe a multiobjective approach for decision-making applied to 
a simple dynamic location problem under uncertainty. This approach has several ad-

s=1 s=2 2 3 4 5 6 7 9 11 14 16 18 20 22 24 25
138023 153313 1 1 - 7 6 4 2 2 3 2 4 6 3 2 -
138228 150276 1 1 - 7 6 4 2 2 3 2 4 6 3 2 1
138237 150257 1 1 - 7 6 4 2 2 3 3 4 6 3 2 1
138360 150238 1 1 - 7 6 4 2 2 3 3 4 - 3 2 1
138384 150093 1 1 - - 6 4 2 2 3 2 4 6 3 2 1
138393 150074 1 1 - - 6 4 2 2 3 3 4 6 3 2 1
138564 145957 1 1 - 7 6 4 2 5 3 2 4 6 3 2 -
138720 145827 1 1 - - 6 4 2 5 3 2 4 6 3 2 -
138746 142709 1 1 - 7 6 4 2 5 3 2 4 6 3 2 1
138869 142690 1 1 - 7 6 4 2 5 3 2 4 - 3 2 1
138902 142526 1 1 - - 6 4 2 5 3 2 4 6 3 2 1
139281 142430 1 1 7 - 6 4 2 5 3 2 4 6 3 2 1
141238 142389 - 1 - 7 6 4 2 5 3 2 4 6 3 2 1
141457 142365 - 1 - - 6 4 2 5 3 2 4 6 3 2 1
141695 142200 - 1 7 - 6 4 2 5 3 2 1 6 3 2 1
141836 141936 - 1 7 - 6 4 2 5 3 2 4 6 3 2 1
145742 140500 1 1 - - 6 4 2 5 3 2 4 2 3 2 1
146121 140404 1 1 7 - 6 4 2 5 3 2 4 2 3 2 1
147507 140307 - 1 7 6 4 2 5 3 2 4 2 3 2 1
218195 139854 - 1 7 - 6 4 2 5 3 2 4 2 3 2 1

Opened FacilitiesObjective  Function



vantages when compared with the more traditional robust approaches. Regarding the 
DM, the only assumption made is that the DM is rational, thus will only be interested 
in Pareto-efficient solutions. It is not necessary to estimate any kind of probabilities 
associated with the possible future scenarios. A set of solutions is calculated, instead 
of only one. The DM will thus have a much broader view of the compromises that 
exist among the possible scenarios. Many of the classic robust solutions, like mini-
mizing the worst result or the maximum regret can be considered as special cases. 
Making available to the DM a set of solutions will make it possible to apply other 
robustness measures that are more difficult to incorporate directly in a mathematical 
programming problem (like, for instance, the bw-robustness measure [20]). 

The major drawback of the described approach has to do with the fact that it im-
plies the sequential optimization of NP-hard problems. Depending on the problem’s 
dimension, this can be computationally expensive. One way of circumventing the 
problem is through the use of efficient heuristics in a first stage, and the use of exact 
procedures in a second phase where the preferred region is already delineated. Anoth-
er possibility is the use of metaheuristics that work with populations of solutions (like 
genetic algorithms) and that are capable of generating sets of efficient solutions in 
each generation (see, for instance, [21]). 

In the problem considered, any solution that is admissible for one given scenario 
will be admissible for all others. This situation does not always occur. Defining the 
concept of Pareto-efficiency for single objective dynamic location problems where 
feasibility can also be affected by uncertainty is an interesting path of research. 

Although we have applied this approach to a simple dynamic location problem un-
der uncertainty, it can easily be generalized to many other linear, integer or mixed-
integer programming problems. 
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