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Abstract. The intensity-modulated radiation therapy (IMRT) treat-
ment planning is usually a sequential process where initially a given
number of beam directions are selected followed by the fluence map op-
timization (FMO) considering those beam directions. The beam angle
optimization (BAO) problem consists on the selection of appropriate ra-
diation incidence directions in radiation therapy treatment planning and
may be decisive for the quality of the treatment plan, both for appropri-
ate tumor coverage and for enhancement of better organs sparing. This
selection must be based on the optimal value of the FMO problem oth-
erwise the resulting beam angle set has no guarantee of optimality and
has questionable reliability. Pattern search methods (PSM) have been
used successfully to address the BAO problem driven by the optimal
fluence value of the FMO problem. PSM are iterative methods gener-
ating a sequence of non-increasing iterates such that iterate progression
is solely based on a finite number of function evaluations in each itera-
tion, without explicit or implicit use of derivatives. Typically, in IMRT
optimization, the quality of the solutions obtained is not simply related
to the final value of an objective function but rather judged by dose-
volume histograms or considering a set of physical dose metrics. These
dose metrics can be simply described as obtaining a minimum prescribed
dose for the target volumes (the regions that have to be irradiated) and
a maximum or mean tolerance dose values for the remaining surrounding
structures (the regions that should be spared). The goal of this paper
is to present a non-descent PSM that can be guided both by an ob-
jective function formulation of the FMO problem and by physical dose
metrics. Four retrospective treated cases of head-and-neck tumors at the
Portuguese Institute of Oncology of Coimbra are used to discuss the
benefits of non-descent PSM for the optimization of the BAO problem.
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1 Introduction

Radiation therapy is with surgery and chemotherapy one of the three main
treatment approaches for cancer, used for around 50% of all patients. With this
modality, patients are irradiated with beams of ionizing radiation attempting to
sterilize all cancer cells while minimizing the collateral effects on the surrounding
healthy organs and tissues. An important type of radiation therapy is intensity-
modulated radiation therapy (IMRT), a modern technique where the radiation
beam is modulated by a multileaf collimator allowing the irradiation of the
patient using non-uniform radiation fields from selected angles. The ionizing
radiation is generated by a linear accelerator mounted on a gantry that can
rotate along a central axis and is delivered with the patient immobilized on a
couch that can rotate. The rotation of the couch combined with the rotation of
the gantry allows radiation from almost any angle around the tumor. Despite
that fact, the use of angles that lay in the plane of rotation of the gantry, i.e.
coplanar angles, is predominant. The selection of appropriate radiation incidence
directions in radiation therapy treatment planning – beam angle optimization
(BAO) problem – is important for the quality of the treatment plan [5,13], both
for appropriate tumor coverage and for better organ sparing. However, in clinical
practice, the beam angle number and directions are typically selected in a time-
consuming trial-and-error procedure by a dosimetrist. The fact that the BAO
problem is a highly non-convex optimization problem with many local minima
[4], yet to be solved in a satisfactory way within a clinically acceptable time
frame, helps explaining the current clinical practice.

The BAO problem is the first problem that arises in treatment planning, but
its optimal solution is highly dependent on the optimal solution of the fluence
map optimization (FMO) problem – the problem of deciding what are the opti-
mal radiation intensities associated with each set of beam angles. When the BAO
problem is not based on the optimal FMO solutions, the resulting beam angle set
has no guarantee of optimality and has questionable reliability since it has been
extensively reported that optimal beam angles for IMRT are often non-intuitive
[21]. Obtaining the optimal solution for a beam angle set is time costly and even
if only one beam angle is changed in that set, it is necessary to calculate the ra-
diation dose that is being deposited in the patient’s tissues – organs and tumors.
Therefore, methods that avoid being easily trapped in local minima and that re-
quire few function value evaluations to progress and converge are advantageous.
The pattern search methods (PSM) framework has been used by us to address
the BAO problem successfully due to its ability to avoid local entrapment and
its need for few function value evaluations to converge [16,17,18,19].

PSM are iterative methods generating a sequence of non-increasing iterates
such that iterate progression is solely based on a finite number of function evalu-
ations in each iteration, without explicit or implicit use of derivatives. In IMRT,
the final value of an objective function is not a complete and unique measure
of the quality of the solution obtained. In clinical practice, the quality of the
solution obtained is rather judged by dose-volume histograms or considering a
set of physical dose metrics. These dose metrics can be simply described as ob-



taining a minimum prescribed dose for the target volumes (the regions that have
to be irradiated) and a maximum or mean tolerance dose values for the remain-
ing surrounding structures (the regions that should be spared). The goal of this
paper is to present a non-descent PSM that can be guided both by the objective
function of the FMO problem and by the dose metrics. Typically, the progres-
sion of PSM is determined by the decrease in the objective function value. In
this paper, small increases of the objective function value are allowed whenever
some physical feature of the problem is improved at the cost of other feature(s)
that still remain within the limit(s) prescribed. Four retrospective treated cases
of head-and-neck tumors at the Portuguese Institute of Oncology of Coimbra
are used to discuss the benefits of non-descent PSM for the optimization of the
BAO problem. The paper is organized as follows. In the next section we describe
the BAO problem. Non-descent PSM framework is presented in section 3. Com-
putational tests using clinical examples of head-and-neck cases are presented in
section 4. In the last Section we have the conclusions.

2 Beam Angle Optimization in IMRT Treatment

Planning

The BAO problem is a quite difficult problem to solve since it is a highly
non-convex optimization problem with many local minima – see Fig. 1. In most
of the previous works on BAO, the entire range [0◦, 360◦] of gantry angles is dis-
cretized into equally spaced beam directions with a given angle increment, such
as 5 or 10 degrees, where exhaustive searches are performed directly or guided
by a variety of different heuristics including simulated annealing [3], genetic al-
gorithms [10], particle swarm optimization [12] or other heuristics incorporating
a priori knowledge of the problem [15]. Although those global heuristics can the-
oretically avoid local optima, globally optimal or even clinically better solutions
can not be obtained without a large number of objective function evaluations.
On the other hand, the use of single-beam metrics has been a popular approach
to address the BAO problem as well, e.g., the concept of beam’s-eye-view [14].
Despite the computational time efficiency of these approaches, the quality of the
solutions proposed cannot be guaranteed since the interplay between the selected
beam directions is ignored.

In order to model the BAO problem as a mathematical programming prob-
lem, a quantitative measure to compare the quality of different sets of beam
angles is required. For the reasons presented in Section 1, our approach for mod-
eling the BAO problem uses the optimal solution value of the FMO problem as
the measure of the quality for a given beam angle set. Thus, we will present the
formulation of the BAO problem followed by the formulation of the FMO prob-
lem we used. Here, we will assume that the number of beam angles is defined a
priori by the treatment planner and that all the radiation directions lie on the
same plane.



Fig. 1. 2-beam BAO surface (left) and truncated surface (right) to highlight the many
local minima.

2.1 BAO Model

Let us consider n to be the fixed number of (coplanar) beam directions, i.e., n
beam angles are chosen on a circle around the CT-slice of the body that contains
the isocenter (usually the center of mass of the tumor). In our formulation,
instead of a discretized sample, all continuous [0◦, 360◦] gantry angles will be
considered. Since the angle −1◦ is equivalent to the angle 359◦ and the angle
361◦ is the same as the angle 1◦, we can avoid a bounded formulation. A simple
formulation for the BAO problem is obtained by selecting an objective function
such that the best set of beam angles is obtained for the function’s minimum:

min f(θ1, . . . , θn)

s.t. (θ1, . . . , θn) ∈ R
n.

(1)

Here, for the reasons stated before, the objective f(θ1, . . . , θn) that measures
the quality of the set of beam directions θ1, . . . , θn is the optimal value of the
FMO problem for each fixed set of beam directions. The FMO model used is
presented next.

2.2 FMO Model

In order to solve the FMO problem, i.e., to determine optimal fluence maps,
the radiation dose distribution deposited in the patient needs to be assessed
accurately. Each structure’s volume is discretized into small volume elements
(voxels) and the dose is computed for each voxel considering the contribution of
each beamlet. Typically, a dose matrix D is constructed from the collection of
all beamlet weights, by indexing the rows of D to each voxel and the columns to
each beamlet, i.e., the number of rows of matrix D equals the number of voxels
(Nv) and the number of columns equals the number of beamlets (Nb) from all
beam directions considered. Therefore, using matrix format, we can say that the



total dose received by the voxel i is given by
∑Nb

j=1
Dijwj , with wj the weight

of beamlet j. Usually, the total number of voxels is large, reaching the tens of
thousands, which originates large-scale problems. This is one of the main reasons
for the difficulty of solving the FMO problem.

For a given beam angle set, an optimal IMRT plan is obtained by solving
the FMO problem - the problem of determining the optimal beamlet weights for
the fixed beam angles. Many mathematical optimization models and algorithms
have been proposed for the FMO problem, including linear models [20], mixed
integer linear models [11] and nonlinear models [2]. Here, we will use this later
approach that penalizes each voxel according to the square difference of the
amount of dose received by the voxel and the amount of dose desired/allowed
for the voxel. This formulation yields a quadratic programming problem with
only linear non-negativity constraints on the fluence values [20]:

minw
Nv
∑

i=1

1

vS



λi

(

Ti −
Nb
∑

j=1

Dijwj

)2

+

+ λi

(

Nb
∑

j=1

Dijwj − Ti

)2

+





s.t. wj ≥ 0, j = 1, . . . , Nb,

where Ti is the desired dose for voxel i of the structure vS , λi and λi are the
penalty weights of underdose and overdose of voxel i, and (·)+ = max{0, ·}.
This nonlinear formulation implies that a very small amount of underdose or
overdose may be accepted in clinical decision making, but larger deviations from
the desired/allowed doses are decreasingly tolerated [2].

The FMO model is used as a black-box function and the conclusions drawn
regarding BAO coupled with this nonlinear model are valid also if different FMO
formulations are considered.

3 Non-descent Pattern Search Methods

PSM framework will be briefly described followed by the presentation of the
proposed non-descent PSM algorithm tailored for the BAO problem.

3.1 Pattern Search Methods Framework

PSM use the concept of positive bases (or positive spanning sets) to move
towards a direction that would produce a function decrease. A positive basis for
R

n can be defined as a set of nonzero vectors of Rn whose positive combinations
span R

n (positive spanning set), but no proper set does. A positive spanning set
contains at least one positive basis. It can be shown that a positive basis for Rn

contains at least n+1 vectors and cannot contain more than 2n [8]. Positive bases
with n+1 and 2n elements are referred to as minimal and maximal positive basis,
respectively. Commonly used minimal and maximal positive bases are [I − e],
with I being the identity matrix of dimension n and e = [1 . . . 1]⊤, and [I − I],



respectively. The motivation for directional direct search methods such as PSM
is given by one of the main features of positive basis (or positive spanning sets)
[8]: there is always a vector vi in a positive basis (or positive spanning set) that
is a descent direction unless the current iterate is at a stationary point, i.e., there
is an α > 0 such that f(xk +αvi) < f(xk). This is the core of directional direct
search methods and in particular of PSM. The notions and motivations for the
use of positive bases, its properties and examples can be found in [1,8].

PSM are iterative methods generating a sequence of non-increasing iterates
{xk}. Given the current iterate xk, at each iteration k, the next point xk+1,
aiming to provide a decrease of the objective function, is chosen from a finite
number of candidates on a given mesh Mk defined as

Mk = {xk + αkVz : z ∈ Z
p
+},

where αk is the mesh-size (or step-size) parameter, Z+ is the set of nonnegative
integers and V denote the n × p matrix whose columns correspond to the p

(≥ n+ 1) vectors forming a positive spanning set.
PSM are organized around two steps at every iteration. The first step consists

of a finite search on the mesh, free of rules, with the goal of finding a new iterate
that decreases the value of the objective function at the current iterate. This
step, called the search step, has the flexibility to use any strategy, method or
heuristic, or take advantage of a priori knowledge of the problem at hand, as
long as it searches only a finite number of points in the mesh. The search step
provides the flexibility for a global search since it allows searches away from
the neighborhood of the current iterate, and influences the quality of the local
minimizer or stationary point found by the method.

If the search step fails to produce a decrease in the objective function, a
second step, called the poll step, is performed around the current iterate. The
poll step follows stricter rules and, using the concepts of positive bases, attempts
to perform a local search in a mesh neighborhood around xk, N (xk) = {xk +
αkv : for all v ∈ Pk} ⊂ Mk, where Pk is a positive basis chosen from the
finite positive spanning set V. For a sufficiently small mesh-size parameter αk,
the poll step is guaranteed to provide a function reduction, unless the current
iterate is at a stationary point [1]. So, if the poll step also fails to produce
a function reduction, the mesh-size parameter αk must be decreased. On the
other hand, if both the search and poll steps fail to obtain an improved value for
the objective function, the mesh-size parameter is increased or held constant.
The most common choice for the mesh-size parameter update is to halve the
mesh-size parameter at unsuccessful iterations and to keep it or double it at
successful ones. The PSM framework is summarized in Algorithm 1.

3.2 Non-descent Pattern Search Methods for BAO

PSM are derivative-free optimization algorithms widely used for the mini-
mization of non-convex functions such that iterate progression is solely based
on a finite number of function evaluations in each iteration, without explicit



Algorithm 1 Pattern search methods framework

Initialization:

– Set k = 0.
– Choose x0 ∈ R

n, α0 > 0, and a positive spanning set V.

Iteration:

1. Search step: evaluate f at a finite number of points in Mk with the goal of de-
creasing the objective function value at xk. If xk+1 ∈ Mk is found satisfying
f(xk+1) < f(xk), go to step 4 and expand Mk. Both search step and itera-
tion are declared successful. Otherwise, go to step 2 and search step is declared
unsuccessful.

2. Poll step: this step is only performed if the search step is unsuccessful. If f(xk) ≤
f(x) for every x in the mesh neighborhood N (xk), go to step 3 and shrink Mk.
Both poll step and iteration are declared unsuccessful. Otherwise, choose a point
xk+1 ∈ N (xk) such that f(xk+1) < f(xk), go to step 4 and expand Mk. Both
poll step and iteration are declared successful.

3. Mesh reduction: let αk+1 = 1

2
× αk. Set k ← k + 1 and return to step 1 for a

new iteration.
4. Mesh expansion: let αk+1 = αk (or αk+1 = 2 × αk). Set k ← k + 1 and return

to step 1 for a new iteration.

or implicit use of derivatives. In IMRT, the objective function value is not a
unique measure of the quality of a given solution. For the assessment of the
clinical expected outcome, dose-volume histograms and a set of physical dose
metrics should be considered. The tumor to be treated plus some safety margins
is called planning target volume (PTV). For PTV, an important dose metric is
the volume of PTV that receives 95% of the prescribed dose. Typically, 95% of
the PTV volume is required. Mean and/or maximum doses are usually the most
important dose metrics for the organ’s at risk (OARs). There are many different
ways to incorporate these dose metrics in a flexible PSM framework. They can
be used within the poll step to decide which point to choose when more than one
point improves the best objective function value. They can be used to accept
a trial point if it improves the best objective function value and also improves
the dose metrics. Our strategy, based on extensive numerical experiments, is
to accept a trial point if it improves the best objective function value or if it
improves the dose metrics and the objective function value is within a radius
of the best objective function value. This proposal considers that the choice of
beam angle sets with similar objective function value of the current beam angle
set, i.e. f(xk+1) < f(xk) + ǫ, should be made using dose metrics, directing the
algorithm to regions of the search space where better dose metrics are obtained.

Deciding which set of beam angles have the best dose metrics is not straight-
forward. For the PTV we consider the dose metric fulfilled if 95% of the PTV
volume receives more than 95% of the prescribed dose. For an OAR the dose
metric is fulfilled if the maximum dose (or the mean dose depending on the type



of organ) is under the prescribed values. In the context of the BAO process, we
consider that a beam angle set improves the dose metrics of the current beam
angle set when all the dose metrics already fulfilled remain fulfilled and one or
more dose metrics yet to be fulfilled are improved. For example, for a current
beam angle set that satisfies dose metrics for all structures except one OAR, a
beam angle set is considered as improving the dose metrics if it improves the
dose metric of the OAR yet to be fulfilled and all the other structure’s dose met-
rics remain fulfilled. Necessarily some of the already fulfilled dose metrics will
be deteriorated but the prescribed dose limits will continue to be assured. When
and while all structures have dose metrics fulfilled, the BAO process progression
is only determined by decreases on the objective function value, meaning that
structures considered more important in the objective function value will be
better spared/irradiated. The strategy adopted here attempts to maximize the
number of structures with the dose metrics fulfilled which roughly correspond to
fulfill the prescribed doses by the medical doctor. It should be highlighted that,
in our tests, most of the times, we could not obtain a treatment plan that fulfill
the prescribed doses for all structures. The strategy sketched for non-descent
PSM to address the BAO problem is presented in Algorithm 2.

Algorithm 2 Non-descent PSM for BAO

Initialization:

– Set k = 0.
– Choose x0 ∈ R

n, α0 > 0, ǫ > 0 and a positive spanning set V.
– Compute f(x0) and the dose metrics for the beam angle set x0.

Iteration:

1. Search step: evaluate f at a finite number of points in Mk with the goal of
improving the current beam angle set. If xk+1 ∈Mk is found satisfying f(xk+1) <
f(xk) or f(xk+1) < f(xk) + ǫ and the dose metrics of xk+1 improve the dose
metrics of xk, go to step 4, expand Mk and compute the dose metrics of the
new best beam angle set. Both search step and iteration are declared successful.
Otherwise, go to step 2 and search step is declared unsuccessful.

2. Poll step: this step is only performed if the search step is unsuccessful. If there
is a point xk+1 ∈ N (xk) such that f(xk+1) < f(xk) or f(xk+1) < f(xk) + ǫ and
the metrics of xk+1 improve the metrics of xk, both poll step and iteration are
declared successful, go to step 4 and compute the dose metrics of the new best
beam angle set. Otherwise, if every x in the mesh neighborhood N (xk), fail to
improve the current beam angle set then go to step 3 and shrink Mk. Both poll
step and iteration are declared unsuccessful.

3. Mesh reduction: let αk+1 = 1

2
× αk. Set k ← k + 1 and return to step 1 for a

new iteration.
4. Mesh expansion: let αk+1 = αk (or αk+1 = 2 × αk). Set k ← k + 1 and return

to step 1 for a new iteration.



The efficiency of PSM improved significantly by reordering the poll directions
according to descent indicators built from simplex gradients [7]. Adding to the
efficiency provided by an insightful reordering of the poll directions, the search
step was recently provided with the use of minimum Frobenius norm quadratic
models to be minimized within a trust region, which can lead to a significant
improvement of direct search for smooth, piecewise smooth, and noisy problems
[6]. For implementation and comparison of the non-descent PSM algorithm for
the BAO problem, we use as basis the last version of SID-PSM [6,7] which is a
MATLAB implementation of the PSM.

4 Computational Results for Head-and-Neck Clinical

Examples

The non-descent PSM algorithm was tested using four clinical examples of
retrospective treated cases of head-and-neck tumors at the Portuguese Institute
of Oncology of Coimbra (IPOC). In general, the head-and-neck region is a com-
plex area to treat with radiotherapy due to the large number of sensitive organs
in this region (e.g., eyes, mandible, larynx, oral cavity, etc.). For simplicity, in
this study, the OARs used for treatment optimization were limited to the spinal
cord, the brainstem and the parotid glands. The spinal cord and the brainstem
are some of the most critical OARs in the head-and-neck tumor cases. These are
serial organs, i.e., organs such that if only one subunit is damaged, the whole
organ functionality is compromised. Therefore, if the tolerance dose is exceeded,
it may result in functional damage to the whole organ. Thus, it is extremely
important not to exceed the tolerance dose prescribed for these type of organs.
Other than the spinal cord and the brainstem, the parotid glands are also im-
portant OARs. The parotid gland is the largest of the three salivary glands. A
common complication due to parotid glands irradiation is xerostomia (the med-
ical term for dry mouth due to lack of saliva). This decreases the quality of life
of patients undergoing radiation therapy of head-and-neck, causing difficulties
to swallow. The parotids are parallel organs, i.e., if a small volume of the organ
is damaged, the rest of the organ functionality may not be affected. Their tol-
erance dose depends strongly on the fraction of the volume irradiated. Hence, if
only a small fraction of the organ is irradiated the tolerance dose is much higher
than if a larger fraction is irradiated. Thus, for these parallel structures, the
organ mean dose is generally used instead of the maximum dose as an objective
for inverse planning optimization. For the head-and-neck cases in study, PTV
was separated in two parts with different prescribed doses: PTV1 and PTV2.
The prescription dose for the target volumes and tolerance doses for the OARs
considered in the optimization are presented in Table 1.

Our tests were performed on a 2.66Ghz Intel Core Duo PC with 3 GB RAM.
The patients’ CT sets and delineated structures are exported via Dicom RT to
a freeware computational environment for radiotherapy research – CERR [9].
We used CERR 3.2.2 version and MATLAB 7.4.0 (R2007a). An automatized
procedure for dose computation for each given beam angle set was developed,



Table 1. Prescribed doses for all the structures considered for IMRT optimization.

Structure Mean dose Max dose Prescribed dose

Spinal cord – 45 Gy –
Brainstem – 54 Gy –
Left parotid 26 Gy – –
Right parotid 26 Gy – –
PTV1 – – 70.0 Gy
PTV2 – – 59.4 Gy
Body – 80 Gy –

instead of the traditional dose computation available from IMRTP module acces-
sible from CERR’s menubar. This automatization of the dose computation was
essential for integration in our BAO algorithm. To address the convex nonlin-
ear formulation of the FMO problem we used a trust-region-reflective algorithm
(fmincon) of MATLAB 7.4.0 (R2007a) Optimization Toolbox.

We choose to implement the non-descent PSM algorithm taking advantage of
the availability of an existing PSM framework implementation used successfully
by us to tackle the BAO problem [16,17,18,19] – the last version of SID-PSM
[6,7]. The spanning set used was the positive spanning set ([e − e I − I].
Each of these directions corresponds to, respectively, the rotation of all incidence
directions clockwise, the rotation of all incidence directions counter-clockwise,
the rotation of each individual incidence direction clockwise, and the rotation of
each individual incidence direction counter-clockwise.

Treatment plans with five to nine equispaced coplanar beams are used at
IPOC and are commonly used in practice to treat head-and-neck cases [2]. We
considered plans with five coplanar beams because the importance of BAO in-
creases when a lower number of beam directions is considered. Therefore, treat-
ment plans of five coplanar orientations were obtained using SID-PSM and using
non-descent PSM algorithm denoted ND-PSM. These plans were compared with
the typical 5-beam equispaced coplanar treatment plans denoted equi. Since we
want to improve the quality of the typical equispaced treatment plans, the start-
ing point considered is the equispaced coplanar beam angle set.

The history of the BAO comparing the objective function value decrease
versus the number of function evaluations for the four clinical cases of head-and-
neck tumors using SID-PSM and ND-PSM are displayed in Fig. 2. Due to its
non-descent nature, ND-PSM required a larger number of function evaluations
to converge. However, most of the times, it lead to better results in terms of
objective function value obtained. The main purpose of the strategy delineated
for the non-descent PSM algorithm was to obtain solutions with better dose
metrics results regardless of the final objective function obtained. Nevertheless,
the strategy of directing the search to neighborhoods with better dose metrics
apparently also benefits the obtention of improvements in the final objective
function value.
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Fig. 2. History of the 5-beam angle optimization process using SID-PSM and ND-

PSM, considering the equispaced configuration (equi) as starting point, for cases 1 to
4, 2(a) to 2(d) respectively.

Despite the improvement in FMO value, as referred previously, the quality
of the results can be perceived considering a variety of metrics. A metric usually
used for plan evaluation is the volume of PTV that receives 95% of the prescribed
dose. Typically, 95% of the PTV volume is required. The occurrence of coldspots,
less than 93% of PTV volume receives the prescribed dose, and the existence of
hotspots, the percentage of the PTV volume that receives more than 110% of
the prescribed dose, are other measures usually used to evaluate target coverage.
Mean and/or maximum doses of OARs are usually displayed to verify organ
sparing.

The results regarding targets coverage are presented in Table 2. Using only 5
beam directions makes harder to obtain a satisfactory target coverage. We can
verify that optimized treatment plans consistently obtained slightly better target
coverage numbers compared to equi treatment plans. On the other hand, target
coverage numbers are favorable to ND-PSM treatment plans compared to SID-



Table 2. Target coverage obtained by treatment plans.

Case Target coverage ND-PSM SID-PSM equi

1

PTV1 at 95 % volume 67.07 Gy 67.32 Gy 67.22 Gy
PTV1 % > 93% of Rx (%) 99.32 99.52 99.39
PTV1 % > 110% of Rx (%) 0.00 0.00 0.00
PTV2 at 95 % volume 56.82 Gy 56.12 Gy 55.47 Gy
PTV2 % > 93% of Rx (%) 96.93 96.07 95.26
PTV2 % > 110% of Rx (%) 6.07 5.96 6.24

2

PTV1 at 95 % volume 65.77 Gy 65.07 Gy 64.57 Gy
PTV1 % > 93% of Rx (%) 95.18 94.88 93.64
PTV1 % > 110% of Rx (%) 0.00 0.00 0.02
PTV2 at 95 % volume 56.57 Gy 56.72 Gy 56.32 Gy
PTV2 % > 93% of Rx (%) 96.59 96.54 96.16
PTV2 % > 110% of Rx (%) 24.88 25.19 25.03

3

PTV1 at 95 % volume 67.27 Gy 66.97 Gy 66.97 Gy
PTV1 % > 93% of Rx (%) 99.21 99.08 99.21
PTV1 % > 110% of Rx (%) 0.00 0.00 0.00
PTV2 at 95 % volume 55.02 Gy 55.07 Gy 54.17 Gy
PTV2 % > 93% of Rx (%) 94.88 94.85 94.19
PTV2 % > 110% of Rx (%) 12.43 12.30 12.16

4

PTV1 at 95 % volume 65.27 Gy 64.97 Gy 64.42Gy
PTV1 % > 93% of Rx (%) 95.23 94.73 93.93
PTV1 % > 110% of Rx (%) 0.00 0.00 0.00
PTV2 at 95 % volume 58.07 Gy 58.22 Gy 58.22 Gy
PTV2 % > 93% of Rx (%) 98.61 98.52 98.20
PTV2 % > 110% of Rx (%) 37.15 37.37 37.64

PSM treatment plans, particularly when 95% of the prescribed dose of PTV1
(66.5 Gy) or PTV2 (56.43 Gy) is not fulfilled. Organ sparing results are shown
in Table 3. All the treatment plans fulfill the maximum dose requirements for
the spinal cord and the brainstem. However, as expected, the main differences
reside in parotid sparing. The optimized treatment plans clearly improve the
usually clinically used equispaced treatment plans. The equi treatment plans
could never fulfill parotid sparing while ND-PSM treatment plans always fulfill
the parotid’s mean dose requirements except for the right parotid in case 3.
Although SID-PSM treatment plans reduced the parotid’s mean dose as well,
it does not manage to fulfill the dose limits prescribed as many times as ND-

PSM treatment plans. Curiously, despite the final objective function value being
worse for ND-PSM, case 1 illustrates the benefits of the non-descent strategy
with respect to parotid sparing.



Table 3. OARs sparing obtained by treatment plans.

Mean Dose (Gy) Max Dose (Gy)

Case OAR ND-PSM SID-PSM equi ND-PSM SID-PSM equi

1

Spinal cord – – – 44.10 40.05 41.32
Brainstem – – – 53.18 51.90 51.86
Left parotid 25.85 25.81 26.63 – – –
Right parotid 24.68 26.60 26.32 – – –

2

Spinal cord – – – 39.59 41.26 40.30
Brainstem – – – 43.78 40.34 39.49
Left parotid 25.72 26.31 26.58 – – –
Right parotid 25.11 24.34 26.45 – – –

3

Spinal cord – – – 37.96 37.94 38.10
Brainstem – – – 50.43 50.68 50.20
Left parotid 24.43 24.37 27.02 – – –
Right parotid 26.74 29.00 29.44 – – –

4

Spinal cord – – – 39.37 40.14 38.68
Brainstem – – – 52.94 52.12 52.26
Left parotid 22.29 23.32 26.86 – – –
Right parotid 21.39 24.07 26.96 – – –

5 Conclusions

The ultimate goal of treatment planning is to be able to obtain a treatment
plan that is in accordance with the medical prescription in terms of radiation
dose distribution. Usually, the medical prescription will define prescribed doses
to the target volumes, and mean or maximum tolerance doses to the organs at
risk. This paper proposes an alternative approach to the BAO problem whose
optimization process is simultaneously guided by dose metric goals and by an
objective fucntion value. The PSM framework had already proved to be a suit-
able approach for the resolution of the non-convex BAO problem. For the clinical
cases retrospectively tested, the use of dose metrics as decision criteria in our tai-
lored approach showed a positive influence on the quality of the local minimizer
found. The improvement of the solutions for the head-and-neck cases tested lead
to high quality treatment plans with better target coverage and with improved
organ sparing.
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7. Custódio, A.L., Vicente, L.N.: Using sampling and simplex derivatives in pattern
search methods. SIAM J. Optim. 18, 537–555 (2007)

8. Davis, C.: Theory of positive linear dependence. Am. J. Math. 76, 733–746 (1954)
9. Deasy, J.O., Blanco, A.I., Clark, V.H.: CERR: A Computational Environment for

Radiotherapy Research. Med. Phys. 30, 979–985 (2003)
10. Dias, J., Rocha, H., Ferreira, B.C., Lopes, M.C.: A genetic algorithm with neural

network fitness function evaluation for IMRT beam angle optimization. Cent. Eur.
J. Oper. Res. (in press) doi:10.1007/s10100-013-0289-4

11. Lee, E.K., Fox, T., Crocker, I.: Integer programming applied to intensity-modulated
radiation therapy treatment planning. Ann. Oper. Res. 119, 165–181 (2003)

12. Li, Y., Yao, D., Yao, J., Chen, W.: A particle swarm optimization algorithm for
beam angle selection in intensity modulated radiotherapy planning. Phys. Med.
Biol. 50, 3491–3514 (2005)

13. Liu, H.H., Jauregui, M., Zhang, X., Wang, X., Dongand, L., Mohan, R.: Beam angle
optimization and reduction for intensity-modulated radiation therapy of non-small-
cell lung cancers. Int. J. Radiat. Oncol. Biol. Phys. 65, 561–572 (2006)

14. Pugachev, A., Xing, L.: Computer-assisted selection of coplanar beam orientations
in intensity-modulated radiation therapy. Phys Med Biol. 46, 2467–2476 (2001)

15. Pugachev, A., Xing, L.: Incorporating prior knowledge into beam orientation op-
timization in IMRT. Int. J. Radiat. Oncol. Biol. Phys. 54, 1565–74 (2002)

16. Rocha, H., Dias, J.M., Ferreira, B.C., Lopes, M.C.: Incorporating Radial Basis
Functions in Pattern Search Methods: Application to Beam Angle Optimization
in Radiotherapy Treatment Planning. Proceedings of ICCSA 2012, Lecture Notes
in Computer Science 7335, 1–16 (2012)

17. Rocha, H., Dias, J.M., Ferreira, B.C., Lopes, M.C.: Beam angle optimization for
intensity-modulated radiation therapy using a guided pattern search method. Phys.
Med. Biol. 58, 2939–2953 (2013)

18. Rocha, H., Dias, J.M., Ferreira, B.C., Lopes, M.C.: Selection of intensity modulated
radiation therapy treatment beam directions using radial basis functions within a
pattern search methods framework. J. Glob. Optim. 57, 1065–1089 (2013)

19. Rocha, H., Dias, J.M., Ferreira, B.C., Lopes, M.C.: Pattern search methods frame-
work for beam angle optimization in radiotherapy design. Appl. Math. Comput.
219, 10853–10865 (2013)



20. Romeijn, H.E., Ahuja, R.K., Dempsey, J.F., Kumar, A., Li, J.: A novel linear pro-
gramming approach to fluence map optimization for intensity modulated radiation
therapy treatment planing. Phys. Med. Biol. 48, 3521–3542 (2003)

21. Stein, J., Mohan, R., Wang, X.H., Bortfeld, T., Wu, Q., Preiser, K., Ling, C.C.,
Schlegel, W.: Number and orientation of beams in intensity-modulated radiation
treatments. Med. Phys. 24, 149160 (1997)


