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Abstract. Radiation incidences (angles) that are used imsitte Modulated
Radiation Therapy (IMRT) treatments have a signifidafiuence in the treat-
ment clinical outcome. In clinical practice, thegbes are usually chosen after a
lengthy trial and error procedure that is signifity dependent on the planner’s
experience and time availability. The use of optation models and algo-
rithms can be an important contribution to the ttremt planning, improving
the quality of the solution reached and decreatiagime spent on the process.
This paper describes a Dynamically Dimensioned eféDDS) approach for
IMRT beam angle optimization. Several different sdtparameters and search
options were analyzed. Computational tests show tta final outcome is
strongly influenced by these choices. This motidatee use of a cross-
validation based procedure for choosing the algor$ configuration, consid-
ering a set of ten retrospective treated casesad{and-neck tumors at the Por-
tuguese Institute of Oncology of Coimbra.

Keywords: Dynamically Dimensioned Search, IMRT, Beam Anglei@jza-
tion, Derivative-Free Methods

1 I ntroduction

Radiation therapy is one of the treatments useddacer patients. Its aim is to de-
stroy cancer cells through radiation, but at theeséime spare healthy tissue that can
also be damaged by radiation. The patient is usiralinobilized on a coach that can
rotate. The radiation is delivered through the afsa linear accelerator mounted on a
gantry that can rotate along a central axis pdrtdléhe couch. The rotation of the
couch combined with the rotation of the gantry alaadiation from almost any an-
gle around the tumor. Intensity Modulated Radiafidverapy is one type of radiation
therapy where it is possible to modulate the ramtiaintensities that are delivered to
the patient from each radiation incidence. This uataiibn is achieved through the use
of a multileaf collimator. The collimator has lefind right leaves that can block radia-



tion. By moving these leaves it is possible to treafifferent intensity profiles (Fig. 1

and Fig. 2). Conceptually, this is equivalent tomsider that, instead of having one
single radiation beam from each radiation incidensed in the treatment, we can
have a discretization of this beam into beamleasheone with a given radiation in-
tensity.

|$

Fig. 1. lllustration of a multileaf collimator Fig. 2. lllustration of a beamlet intensity map
(with nine pairs of leaves) (9%9)

The possibility of modulating the radiation intetiess increases the precision of the
treatment and can be very important in diminishireatment’s side effects as it is
possible to better spare cells that we do not wantadiate. Nevertheless, it requires
a complex planning procedure where many differemdt mterconnected decisions
have to be made by the planner, beginning by degilow many and which angles
to use in the treatment (the best angles can biearon-intuitive).

Whenever a patient is referred to an IMRT treatm#r@ medical doctor will de-
lineate in the patient's computed tomographies (@iE) structures of interest: areas
that should be treated plus a safety margin (Ptenmarget Volumes — PTV) and also
the organs that should be spared (Organs at RiIEKAR). The medical doctor will
also establish the medical prescription (Tabled&fining the desired dose for PTVs
and mean or maximum doses to OARs (that sometineesd possible to achieve). It
is then up to the medical physicists to plan teatment, by interacting with a Treat-
ment Planning System (TPS) that simulates the behat the linear accelerator and
calculates the radiation dose that will be depdsitethe patient. By a trial and error
procedure, several different treatment parameterdreed until a treatment plan that
is considered admissible by the planner and thatptanner thinks it is hard to im-
prove is reached.

Table 1. Prescribed doses for all the structures consideredIRT optimization

Structure M ean dose Maximum Dose Prescribed Dose
Spinal cord - 45 Gy -
Brainstem - 54 Gy -

Left parotid 26 Gy - -
Right parotid 26 Gy - -
PTV1 - - 70.0 Gy
PTV2 - - 59.4 Gy

Body — 80 Gy —




Most of the times, the quality of the treatmentnpis. dependent on the planner’s
experience and time availability.

Another approach is to consider inverse plannirigere the trial and error proce-
dure is totally or partially replaced by the usemadthematical models and optimiza-
tion algorithms. The mathematical models are charaed by being large-scale,
non-linear and multi-modal, with objective functiothat are computationally expen-
sive to calculate. Global optimization algorithrhsitt are derivative-based can easily
be trapped in one of the many existing local minima

In this paper we are concerned with the definitiddrthe best radiation angles to
use, considering the number of angles fixegriori (Beam Angle Optimization —
BAO). The BAO problem has been tackled using seéwaifferent methodologies:
scoring methods ([1]); methods based on the conockEpeam’s eye view ([2, 3, 4,
5]); response surface approaches ([6]); derivdtige-approaches ([7]); mixed integer
programming approaches ([8]); simulated annealjagq, 10]); particle swarm opti-
mization ([11]); genetic algorithms ([12, 13, 14fnhong others (see, for instance, [15,
16, 17, 18]).

In this paper, we consider an approach based oamigally Dimensioned Search
(DDS). Several computational tests were done t@rstdnd the influence of the algo-
rithm’s configuration in the final outcome. The at®of the best configuration to use
is not trivial, and we propose the use of a cradgtation procedure. This work fol-
lows a first preliminary experiment, where only aset of parameters was tested and
that showed encouraging results [19].

The next section describes the mathematical moskad.uSection 3 describes the
DDS algorithm. Computational results are shown disdussed in section 4. Section
5 states the main conclusions and presents futégearch ideas.

2 BAO Mathematical M odel

The treatment planning process consists in detémgifor a given patient, the an-
gles that will be used in the treatment (BAO), thdiation intensities (fluences) for
each of the angles (fluence map optimization - FMEDd the way that the multileaf
collimator leaves should move to produce the ddditeence patterns (segmentation).

In this paper we are concerned with the BAO problerd we consider that the
number of angles to usk, will be fixeda priori by the planner. This means that we
aim at finding out which is the best setkadngles out of every possible combination.
For each beam angle set, we have to find a wawlctitating the quality of this set.
This can only be done after performing the flueopgmization, where the best radia-
tion intensities for each of the angles considerdét be calculated. To solve this
FMO, the patient is discretized into voxels (smvallume elements) and the radiation
dose that is deposited in each of the patient’®lgis computed using the superposi-
tion principle, i.e., considering the contributiof each beamlet. Typically, a dose
matrix D is constructed from the collection of all beanitgénsities, by indexing the
rows ofD to each voxel and the columns to each beamletthe number of rows of
matrix D equals the number of voxel¥)(and the number of columns equals the



number of beamletd\j from all beam directions considered. Thereforecan say

N
that the total dose received by the vaxisl given byz D;w; , with w; the weight of
j=1
beamletj. Usually, the total number of voxels consideredches the tens of thou-
sands. If we defin® as the set of all possible angles, then a basiouiation for the
BAO problem can be defined as follows:

min f (6.,6,,-.6,) 1)
subject tod,,---,6, 0O (2)

Many mathematical optimization models and algorghinave been proposed for
the FMO problem and it is out of the scope of ffaper to discuss the pros and cons
of those models. In this paper, a convex penaltgtion voxel-based nonlinear model
is used [20], such that, each voxel is penalizetsiciering the square ftérence of
the amount of dose received by the voxel and theuatnof dose desired/allowed for
the voxel. This formulation yields a quadratic pagming problem with only linear
nonegativity constraints on the fluence values [P&}.T, be desired dose for voxel

A and A the penalty weights of underdose and overdosexdélv, respectively, and
(+), =maxX{ Os} . Then the model can be defines as follows:

Minwi[di (TI _ZN:Dijo) +/T|[ZN: Dijo _le } (3)

=1
stw 20,j=1 N (4)

Although this formulation allows unique weights feach voxel, weights are as-
signed by structure only so that every voxel inigey structure has the weight as-
signed to that structure divided by the number afels of the structure [21]. This
nonlinear formulation implies that a very small ambof underdose or overdose may
be accepted in clinical decision making, but largiviations from the de-
sired/allowed doses are decreasingly toleratede@bg function (1) is calculated by

(3), considering only beamlets that belong(égé? ,---,6’k).This objective function is

computationally expensive to calculate, taking e tfew minutes, depending on the
patient itself and the number of angles considered.

3 DDS Algorithm

Considering the BAO problem, the DDS algorithm hasnain advantages the fact
that it is derivative-free, being able to escapenftocal minima, and the fact that it is
possible to defina priori the number of objective function evaluations thdt be



performed. This is especially important when deplvith a computationally expen-
sive objective function.

The DDS algorithm begins with any admissible solutbdf the problem that be-
comes the current solution. In each iteration tg@réhm finds a new solution by
randomly perturbing the current one. Whenever &ebsblution is found, it becomes
the current solution that, in turn, will be pertedo The DDS algorithm can be inter-
preted as a random search process, consideringhagde neighborhoods that will
decrease in size as the algorithm iterates. THispnomote a more global search at
the beginning of the search and a more local seiarthe final iterations. In each
iteration, each variable (angle) will be perturlvéth a given probability. This proba-
bility decreases with the increase in the numbeiteyhtions, so that less and less
angles are changed as the algorithm progressesmabaitudes of the perturbations
are randomly sampled from a normal distributionhwitean 0. It is not necessary to
consider an upper or lower bound for each variasilece an angle of -10°, for in-
stance, is equal to 350° or an angle of 370° iglemul0°®. In our implementation of
the algorithm we followed [22], considering somepidtions described in [23]. The
algorithm’s parameters are as follows:

— r_init represents the initial standard deviation consitere

— r_max andr_min represent the maximum and minimum admissible staindiewvi-
ations considered;

— N represents the maximum number of iterations (greupmit to the number of
objective function evaluations, since in each tieraat most one solution is evalu-
ated);

— |_success and|_failure determine a change in the current standard dewialie to
successive successful or unsuccessful iteratiosadeess meaning that the objec-
tive function value has improved).

The algorithm has as input an admissible solutiothé problem (that can be ran-
domly generated) and returns as output an impraddissible solution (it is not
possible to guarantee that it is optimal). The algm behavior can be described as
follows:

1. Set counter — 1; Define the initial admissible solutior current and evaluate this
solution €_current). f_best —f _current; x_best — x_current; success— 0; failure~0;
r—r_min,

2. Calculate the probability of any given variable ) be perturbed as

p(i) =1~ InG)/In(N)_ For each decision varialsebest(j), j=1,... k, add the varia-
ble to the sed with probabilityp(i).

3. For every variablex_best(j), j0J, perturb randomly this variable considering a
normal distribution N(Or). This perturbed solution will constitute the new
x_current.

4. Evaluate  x_current. If f current<f_best, then f best—f current;
X_best — x_current ; success— success +1 andfailure—0. Else success—0 and
failure~ failuret+l.



5. If failure= |_failure thenr - min(r/2,r_min).
6. If success=l_success thenr — max(2,r_max).
7.1« i+1.Ifi = Nthen stop, else go to 2.

Steps 2 and 3 of the algorithm are responsible#étrulating a new current solu-
tion in a random manner (by randomly deciding whacigles to perturb and the mag-
nitude of the perturbation). Given the specifigt@ the BAO problem, we also guar-
antee that the current solution does not have tjacant angles that are too near each
other. From a clinical point of view, angles tha¢ $ess than 4° apart are considered
the same. The evaluation of the current solutioat@ép 4 is done by resorting to the
optimization of the FMO problem, considering thglas defined by the current solu-
tion. Step 5 introduces a dynamic in the DDS atbari considering that after some
failed trials it is time to look for solutions in marrower neighborhood, and when
there are successful trials the searchable neigbbdrcan be wider.

4 Computational Experiments

The DDS algorithm was tested considering ten dinexamples of retrospective
treated cases of head-and-neck tumors at the Redaginstitute of Oncology of
Coimbra (IPOC). A typical head-and-neck treatmdahonsists of radiation deliv-
ered from 5 to 9 equally spaced coplanar oriemateround the patient. The optimi-
zation of the angles has an increased importan@n égwer angles are used. Being
able to deliver a high quality treatment with feveargles is beneficial for both the
patient and the health institution. From the imgiin point of view, fewer angles
mean faster treatment times, so that more patieanisbe treated. From the patient
point of view, the faster the treatment the bebecause it is more likely that the pa-
tient does not change his position significantlyinly the treatment, which contrib-
utes to more accurate treatment results. For ttezsmns, treatments with 5 coplanar
beams were considered.

In order to facilitate convenient access, visudilimaand analysis of patient treat-
ment planning data, as well as dosimetric datatifiputreatment plan optimization
research, the computational tools developed with&XTLAB and CERR — computa-
tional environment for radiotherapy research ([224® used widely for IMRT treat-
ment planning research. The ORART - operationsareleapplications in radiation
therapy ([25]) collaborative working group develdpa series of software routines
that allow access to influence matrices, which glethe necessary dosimetry data to
perform optimization in IMRT. CERR was elected hs tnain software platform to
embody our optimization research. Our tests wertopwaed on a Intel Core i7 CPU
2.8 GHz computer with 4GB RAM and Windows 7. We di€eERR 3.2.2 version
and MATLAB 7.4.0 (R2007a). The dose was computddgu€ERR’s pencil beam
algorithm (QIB). For each of the ten head-and-neages, the sample rate used for
Body was 32 and for the remaining structures waedulting in 20,874 to 24,158
voxels and 948 to 1,283 beamlets for the 5-bearispgeoed coplanar treatment plans.
An automatized procedure for dose computation &mhegiven beam angle set was



developed, instead of the traditional dose comjmriavailable from IMRTP module
accessible from CERR’s menubar. This automatizatiothe dose computation was
essential for integration in our DDS algorithm. address the convex nonlinear for-
mulation of the FMO problem we used a trust-regieftective algorithm f(nincon)

of MATLAB 7.4.0 (R2007a) Optimization Toolbox. Fahis set of patients, each
instance of the FMO problem can take from 56 sesda®50 seconds to be calculat-
ed, depending on the patient and on the set of laewhes considered.

4.1  Clinical Examples

The selected clinical examples were signalizedP@Q as complex cases where
proper target coverage and organ sparing, in patigarotid sparing, proved to be
difficult to obtain. The patients’ CT sets and delingateuctures were exported via
Dicom RT to CERR. Since the head-and-neck regica ¢®@mplex area where, e.g.,
the parotid glands are usually in close proximéyt even overlapping with the tar-
get volume, careful selection of the radiation diesice directions can be determinant
to obtain a satisfying treatment plan.

The spinal cord and the brainstem are some of tbst mritical organs at risk
(OARs) in the head-and-neck tumor cases. Thesseaial organs, i.e., organs such
that if only one subunit is damaged, the whole nrfyactionality is compromised.
Therefore, if the tolerance dose is exceeded, it maault in functional damage to the
whole organ. Thus, it is extremely important notetaceed the tolerance dose pre-
scribed for these types of organs. Other than piveak cord and the brainstem, the
parotid glands are also important OARs. The pargléahd is the largest of the three
salivary glands. A common complication due to pdrgtands irradiation is xerosto-
mia (the medical term for dry mouth due to lacksaliva). This decreases the quality
of life of patients undergoing radiation therapyhefad-and-neck, causingfttulties
to swallow. The parotids are parallel organs, ifea small volume of the organ is
damaged, the rest of the organ functionality maytmodfected. Their tolerance dose
depends strongly on the fraction of the volumediated. Hence, if only a small frac-
tion of the organ is irradiated the tolerance dssauch higher than if a larger frac-
tion is irradiated. Thus, for these parallel staues, the organ mean dose is generally
used instead of the maximum dose as an objectivenf@rse planning. In general,
the head-and-neck region is a complex area to Wwithtradiotherapy due to the large
number of sensitive organs in this region (e.geseynandible, larynx, oral cavity,
etc.). For simplicity, in this study, the OARs usked treatment optimization were
limited to the spinal cord, the brainstem and thmpd glands. For the head-and-neck
cases in study the PTV was separated in two patts different prescribed doses:
PTV1 and PTV2. The prescription dose for the tavgdimes and tolerance doses for
the OARs considered in the optimization are presknt Table 1. The parotid glands
are in close proximity to or even overlapping witle PTV which helps explaining
the dificulty of parotid sparing. Adequate beam directiocas help on the overall
optimization process and in particular in paropdrng.



4.2 Resaults

For each BAO problem, the DDS algorithm was exeatutensidering different
configurations for the algorithm. The parameteiat tre expected to have a greater
impact in the algorithm’s outcome are the initirslard deviationr(init), |_failure
and|_success. The last two are responsible for the evolutionhefr parameter. How-
ever, after some preliminary tests, it was possibleonclude that there are seldom
two consecutive successful iterations, so thatdficcess takes values greater than 1
this is equivalent to never changingccording to step 6 of the algorithm. Parameters
r_max andr_min can and should be defined considering the spéfoof the prob-
lem. In this case it was considenednax equal to 90° and min equal to 3°. As we
are randomly perturbing an angle using a normatibdigion of mean 0 and standard
deviationr, we know that there is 95% of probability of geaterg a perturbation
value that belongs to the interval f;2r]. Notice that the greatest perturbation that is
interesting to consider is 180°. Table 2 presamtsvialues that were considered for
parameters_init andl_failure. Regarding_success, it was considered to be fixed to
1 for the reasons exposed. The choice of tlwit values was motivated by the num-
ber of angles considered and the equidistant soluthere all angles are 72° apart.

Table 2. Values of the Parameters

r init 18 36 72
| failure 5 20

It is also interesting to consider the DDS algaritivhenr stays constant through-
out the algorithm’s execution. This means thatstepnd 6 are not considered.

The choice of increasingin successive successful iterations and decre#<sifigr
a sequence of failed iterations is an option that lse as justifiable as doing exactly
the opposite. Notice that the algorithm’s convergeis being guaranteed by the fact
that the probability of perturbing each variablem@ases iteration after iteration. So,
we chose to also test this different version of élgorithm (Steps 5 and 6 will be
replaced by Steps 5a and 6a).

5 a. Iffailure=|_failure thenr= max(2,r_max).
6 a. Ifsuccess>|_success thenr= min(r/2,r_min).

We have also tested a simpler rule, wheis randomly generated afterfailure
successive failed iterations (Steps 5 and 6 alaceg by Step 5b).

5 b. Iffailure > |_failure thenr is randomly generated using a uniform distribuiion
[r_min, r_max].

For each of the ten patients, and for each versidae algorithm, five different
runs were considered because of the random nafutfee aalgorithm. A total oiN
equal to 200 iterations was considered. The irsidlition considered was always the
equidistant solution, as this is most of the tiraB® the solution used in clinical prac-



tice. So, we are interested in measuring the ingm@nt of the objective function
value of the final solutioffDDS) when compared with the equidistant initial one
(fequi). This improvement is calculated &fequi - fDDS)/ fequi . Before showing
the global computational results, it is also wdrdHhook at the influence of each pa-
rameter in the algorithm’s behavior.

When the standard deviationis kept constant, then we should expect a smooth
behavior with smaller_init values. Fig. 3 depicts the situation for a rurihef algo-

rithm considering patient 5. This patient was ranijoselected, and similar behaviors
are observed in the other patients.
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(a)r_init=18 (b) r_init=36 (c) r_init=72

Fig. 3. Algorithm’s behavior for different_init values

A similar behavior can be seen even wheimit is indeed only an initialization pa-
rameter. Smaller initial values are associated witioother objective function values
transitions. As the change iiris considered as dividing or multiplying its valiog 2,
the influence of _init is present in all iterations. This can be sedrign 4 and Fig. 5.
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Fig. 5. Algorithm’s behavior for different_init values)_failure=20



The impact of theé failure parameter is more visible with greater values_afit.
By inspection of Fig. 4 and Fig. 5, we can see shadller values df failure promote
a faster convergence of the algorithm wheimit is equal to 36 or 72.

The option of using Step 5a and Step 6a allowsepsist descent in early itera-
tions, but diminishes the successful search iwmatas the algorithm progresses. This
behavior is more pronounced for greater values ioit.
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Fig. 6. Algorithm’s behavior considering Step 5a and S&ap

The algorithm was run 5 times for each configurattonsidered. The BAO prob-
lem is characterized by having multiple local miainso it is expected that in each
run of the algorithm a different solution is fourfthis is illustrated in Fig. 7, where
the equidistant solution is shown [black solid Jitegether with 5 other solutions that
were calculated in each of the algorithm’s runs.

Fig. 7. Different runs of the algorithm usually end uphwiifferent solutions



Table 3. Improvement in the objective function value (Mefues)

Patients

r_init | failure  Steps 1 2 3 4 5 6 7 8 9 10 Aver age improvement
18 - - 275% 6,74% 1AV EERY 728% b588% 1465% 722 KB 2.93% 6.69%
36 - - 3.14% |IEERY 803% 438% 756% 559% 1548% 833% 558% 242% 6.76%
72 - - 324% 6,17% 867% 378% 78o)gERRY 1416% 836% 543% 204% 6.66%
18 5 56  300% 558% 7.22% 452% 7,77% 4,75% 24,946,67% 554% 2,46% 6.25%
18 20 56  324% 576% 7,71% 4,88% 815% 641% 004 JCREN 6,63% 1,96% 6.84%
36 5 56  322% 587% 874% 441% 7.85% 528% 24437,12% 592% 3,30% 6.61%
36 20 56  325% 595% 882% 472% 7.64% 643% 7845 7,95% 595% K 6.89%
72 5 56  271% 659% 7,.32% 456% 694% 570% 95316,62% 510% 1,73% 6.26%
72 20 56  293% 700% 7,03% 435% 7,99% 604% 9282 7.91% 617% 2,47% 6,520
18 5 5a,6a  305% 622% 7.17% 476% 732% 6 EKIRA 7.94% 539% 3,57% 6.85%
18 20 5a,6a 319% 619 CERY 456% 7.46% 504% 1644% 6,98% 520%  2,28% 6.63%
36 5 5a,6a  3,06% 697% 7,39% 429% 7,56% 566% 719, 9,18% 525%  3,19% 6.82%
36 20 sa, ol AREY 674% 6.90% 500% 7.20% 563% 14,77% 7.25% 6,51%97%, 6.62%
36 - 5b 322% 640% 7.23% 4 70fCRIEHY 594% 1452% 7,08% 574% 2,39% 6.56%

Average 309% 638% 7,76% 457% 7,64% 582% 14,96%71% 580% 2,67%

maximum 327% 7,05% 892% 512% 837% 6,83% 16,81%29% 6,82%  3,65%

minimum 2,71% 558% 690% 3,78% 6,94% 4,75% 13,29%62% 510% 1,73%




Table 3 shows the average improvement achieveleirobjective function value.
For each patient, the highest mean improvemeniraatas highlighted. We see that
the choice of the algorithm’s configuration can éan important impact in the quali-
ty of the solution reached. There is no single igumétion that appears as being the
best one for a significant part of the patientsstradgorithms are the best for one or
two patients at the most. In clinical practice, dn¢ime constraints, it is not possible
to run the algorithm with different configuratioasd then choose the best solution
reached. So, how should we decide which configumato consider? One trivial
choice would be to consider the one that wouldawerage, be the best one over all
the patients tested. This approach can, howevanifleading.

The approach proposed in this paper is to congidess-validation. This means
that we select a set of patients, and with thisofgtatients all versions of the algo-
rithm are ran. The best configuration, on averdgethis set of patients, is then ap-
plied to the rest of the patients not belonginghis “cross-validation set”. We have
choserleave-one-out cross-validation:

1. Select one patieftat a time. Consider a set constituted by all p&tibntj.

2. Run all versions of the algorithm, 5 times eachc@ate the mean improvement
over all patients for each version of the algorithm

3. Choose the version of the algorithm that presemésihiest objective value im-
provement. Apply this version of the algorithm tatipntj, running the algorithm
5 times and recording the results.

4. Repeat the process for every available patient.

This leave-one-out cross-validation procedure can be implementedadlinécal set-
ting, since the time constraints that exist arenfgaioncerned with guaranteeing that
new patients are treated as soon as possiblet 8ould be feasible to run several
times the algorithm for each already treated pgtikeeping a database with these
results, and resorting to this database whenevemiécessary to choose a given ver-
sion of the algorithm to apply to a new patiente et of patients to include in this
set could even consider some measures of similaeityeen patients.

Applying this procedure with our set of 10 patierite results are as depicted in
Table 4.

Table 4. Computational results when parameters are choserokg-validation

. L . . ) % Standard

patient  r_init |_failure algorithm fequi meanfDDS improvement _ deviation
1 36 20 Steps 5,6 387,28 374,70 3,25% 1,07
2 36 20 Steps 5,7 72,93 68,59 5,95% 1,28
3 18 5 Step 5a, 6a 187,65 174,20 7,17% 3,61
4 36 20 Steps 5,6 156,37 148,99 4,72% 1,30
5 36 20 Steps 5,7 277,60 256,40 7,64% 2,25
6 36 5 Step 5a, 6a 165,58 156,21 5,66% 1,36
7 36 20 Steps 5,6 40,35 34,48 14,57% 0,72
8 36 20 Steps 5,7 166,08 152,87 7,95% 2,10
9 18 5 Step 5a, 6a 124,25 117,55 5,39% 1,65
10 18 20 Steps 5,7 186,44 182,77 1,96% 2,06




On average we are able to improve the objectivetion value 6,43%. For many
other optimization problems, this would seem asaglest improvement. However,
IMRT optimization problems have specificities thmake the improvement in the
objective function only one amongst several othiéeiga that can be used to assess
the quality of the proposed optimization algorithvore than the value of an objec-
tive function, the impact on the quality of theatmaent for each patient is what really
matters. The objective function is just a way ofdguy the search for a better solu-
tion, but it cannot represent the whole set of demfeatures that have to be taken
into account when assessing and considering adii@ssigiven treatment plan.

A metric usually used for plan evaluation is théumee of PTV that receives 95%
of the prescribed dose. Typically, 95% of the PTolume is required as a minimum.
These metrics are displayed for the ten casesgn &iconsidering the equidistant
solution and the best and worst solutions out ef Shsolutions generated for each
patient. The horizontal lines represent 95% ofgrescribed dose. Satisfactory treat-
ment plans should obtain results above these IBygsimple inspection we can veri-
fy the advantage of DDS treatment plans that havérgroved tumor irradiation
metric for most cases compared to equidistantrtreat plans.
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Fig. 8. Comparison of target irradiation metrics using D&rfl equidistartreatment plans

In order to verify organ sparing, mean and/or maxmdoses of OARs are usually
displayed. These metrics are displayed for thecéees in Fig. 9. The horizontal lines
represent the tolerance mean or maximum dose éocdlresponding structures. Sat-
isfactory treatment plans should obtain resultsearilese lines. For spinal cord, all
treatment plans satisfy the maximum dose toleraRoe.brainstem, treatment plans
fulfill the maximum dose tolerance in almost abted cases. Considering the mean
dose limit for parotids, it was achieved less timeasoking at the right parotid, about
half the patients receive an amount of radiatioavabwhat is desired. For the left
parotid, the DDS optimized solutions guarantee sardile level of radiation for 8 of
the patients. Observing Fig. 9, it is perceivablat tDDS treatment plans outperform
equidistant treatment plans in terms of mean dosaired.
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Fig. 9. Comparison of organ sparing metrics

Fig. 8 and Fig. 9 allow us also to illustrate thmitations of using a single objec-
tive function value to assess the quality of thkutsmn. Looking at the results for
patient 2, for instance, we can see that the swiutiat has the worst objective func-
tion value out of the 5 runs of the algorithm isfact, better when looking at the dose
deposited in the patient. For some of these patieratmely those that are not getting a
sufficient coverage of the PTV even with the opfied solutions, the next step would
be to plan treatments with an increased numbeaidifition angles.

5 Conclusions

BAO problem is a very difficult global optimizatiggroblem, characterized by be-
ing a large, non-linear and multi-modal problemhwét computationally expensive
objective function. The DDS approach presentedhis paper has as major ad-
vantages the fact that it is easily implementeds fiossible to determine the number
of function evaluations that are performed and deavative-free search strategy that
will not get easily trapped in a local minimum. Qmuational results show that the
approach is capable of improving the equidistamaitem. The calculation of opti-
mized solutions are important not only contributiogthe improvement of the treat-
ment delivered to the patient considering the nunabeadiation incidences usually



determinedh priori, but also allowing the planner to conclude thatilt be necessary
to increase the number of angles in order to reacidmissible treatment plan.
Further work will consider some changes in the psagl algorithm, namely em-
bedding the DDS concept of neighborhood into a &ited Annealing approach. It
will also be necessary to consider the calculatibeets of solutions, instead of one
single solution, that can illustrate the multioltjee inherent nature of this problem.
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