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Abstract 

Electing irradiation directions to use in IMRT treatments is one of the first decisions to make in treatment 

planning. Beam angle optimization (BAO) is a difficult problem to tackle from the mathematical 

optimization point of view. It is highly non-convex, and optimization approaches based on 

gradient-descent methods will probably get trapped in one of the many local minima. Simulated 

Annealing (SA) is a local search probabilistic procedure that is known to be able to deal with multimodal 

problems.  SA for BAO was retrospectively applied to ten clinical examples of treated cases of 

head-and-neck tumors signalized as complex cases where proper target coverage and organ sparing 

proved difficult to obtain. The number of directions to use was considered fixed and equal to 5 or 7. It is 

shown that SA can lead to solutions that significantly improve organ sparing, even considering a reduced 

number of angles, without jeopardizing tumor coverage.  

 

Keywords: beam angle optimization; simulated annealing; metaheuristics 

 

Introduction 

Beam angle optimization (BAO) for IMRT treatments is known to be a very challenging problem: it is 

highly non-convex, non-linear, and with many local minima. Many different approaches have been 

proposed to tackle BAO, from linear programming and gradient search [1], to neighborhood search and 

metaheuristics approaches (see, for instance, [2-10]). There are also commercial treatment planning 

systems (TPS) that already include some BAO functionalities (e.g. Eclipse from Varian or Oncentra from 

Elekta). 

Simulated Annealing (SA) can be interpreted as a local search probabilistic procedure that will try to find 

a global minimum of a cost function even in the presence of many local minima [11]. SA is inspired by 

the thermal process for obtaining low energy states of a solid in a heat bath in condensed matter physics 

[12]. It is possible to prove the asymptotic convergence of SA to the set of globally optimal solutions 

under some conditions [12]. Detailed descriptions of SA can be found in [11-15].  
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SA has been applied before to radiation treatment planning. Webb [16, 17] applied SA to 3D-Conformal 

treatment planning. Morrill et al [18] use constrained SA, where the assessment of a given solution is 

done resorting to the objective function value but checking whether or not the solution satisfies a set of 

predetermined constraints. They test different objective functions (maximizing the probability of 

complication-free treatment and maximizing the dose to the isocenter, subject to some dose-volume 

constraints). Rosen et al [19] compare four different SA algorithms for conformal therapy treatment 

planning, concluding that Very Fast Simulated Reannealing  [20] gave the best results. Djajaputra et al 

[21] describe a fast dose calculation engine that uses an approximate dose kernel and is embedded in a SA 

algorithm for BAO. Bertsimas et al [22] propose a hybrid heuristic where simulated annealing is 

combined with gradient information for BAO.  

 

In this paper we describe an application of SA for IMRT beam angle optimization. One of the most 

important features of SA is the neighborhood structure it uses. In this work, we consider several different 

neighborhood structures, and make several computational tests considering a set of ten head-and-neck 

cancer patients using 5 or 7 angles. The results obtained allow us to conclude that the neighborhood 

structure that seems to be most promising is the dynamically dimensioned neighborhood [23]. This is a 

neighborhood with a random and dynamic structure that changes as the algorithm progresses. As far as 

the authors know, it is the first time that a SA with a dynamically dimensioned neighborhood is 

considered for BAO, and it is also the first time that the behavior of SA with different underlying 

neighborhood structures for BAO is studied. 

In the rest of this paper we describe in detail the SA algorithm and the neighborhood structures 

considered. We describe the computational tests that were performed, presenting and discussing the 

results.  

 

Methods 

SA is a local search procedure that begins with any admissible solution to the problem. This is called the 

current solution. It then randomly selects a solution in the neighborhood of the current solution. If this 

solution is better than the current one, it becomes the current solution and the process is repeated. If this 

solution is worse than the current one, it can still become the current solution with a given probability. 

This is one of the SA features that allows the algorithm to escape from local minima. By allowing the 

deterioration of the objective function value at some points during the algorithm’s execution, it is possible 

to jump to interesting regions of the searchable surface. 

The probability of accepting a solution that is worse than the current one is defined by a non-increasing 

function usually known as temperature. This name is related to the physical thermal process that inspired 
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the development of SA. The temperature decreases as the algorithm progresses, meaning that the 

probability of accepting a worse solution decreases with the increase in the number of iterations of the 

algorithm. 

To be able to implement the SA algorithm, it is necessary to define: a data structure to represent a given 

solution to the problem; the neighborhood; a way of determining the quality of a given solution; a 

temperature function. 

 

Representation of the solutions  

In this work we considered a very simple data structure to represent a solution: a vector θθθθ with n 

elements, where n is the total number of angles used in the IMRT treatment. Each element of this vector 

(a variable) will belong to the interval [0º,360º[, and for ease in the exposition it is considered that all 

elements of θθθθ are in ascending order. When dealing with the BAO problem, two different interpretations 

of the problem can be considered. It can be interpreted as a combinatorial problem, where we want to find 

the best combination of n angles out of the set of all possible combinations. This usually implies a 

discretization of the interval [0º,360º[. It can also be interpreted as a problem with continuous variables. 

The approach followed in this paper is the latter. Despite the fact that each variable has to belong to 

[0º,360º[,  it is not even necessary to consider an upper or lower bound for each variable, since an angle of 

-10º, for instance, is equal to 350º or an angle of 370º is equal to 10º. 

 

Neighborhood Structures 

Two solutions are said to be k-neighbors if they have at most k different angles. Given a current solution, 

a k-neighborhood solution is calculated by randomly generating at most k integer values belonging to 

[1,n], and then randomly generating values in the interval [0º,360º[ that will be used to perturb the current 

values of the chosen k variables. These perturbation values can be randomly generated using different 

probability distributions: following a normal distribution with mean 0 and a given standard deviation r or 

following a uniform distribution in [0º,360º[, for instance. If using a normal distribution, it is also possible 

to dynamically adjust the standard deviation. 

The value of k can be defined a priori and be constant throughout the algorithm’s execution, or it can be 

dynamically and randomly determined. Both approaches were considered. In the latter case, we have 

decided to test a dynamically dimensioned neighborhood [23, 24].  In such a neighborhood structure, the 

value of k is randomly determined in each iteration. In reality, each angle in θθθθ is or is not changed based 

on a given probability. This probability is determined by a non-increasing function, that guarantees that 

neighborhoods of greater dimension are considered in the beginning of the algorithm’s execution, 
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decreasing the size of the neighborhoods as the algorithm progresses. In the present work, this probability 

function is given by the temperature function. 

 

Assessment of the solutions 

The assessment of a given solution to BAO can only be done after calculating the optimal fluence map for 

the set of angles represented by the solution. This means that this assessment requires the resolution of the 

fluence map optimization (FMO) problem, where the treatment angles are considered as an input. 

There are many ways of optimizing IMRT fluence maps. It is out of the scope of this work to describe the 

pros and cons of the existing models and methods. We have chosen to use a convex penalty function 

voxel-based nonlinear model based on [25] where each voxel is penalized considering the square 

difference of the amount of dose received by the voxel and the amount of dose desired/allowed for the 

voxel. This formulation yields a programming problem with only linear nonegativity constraints on the 

fluence values. 

Considering that V equals the number of voxels, N equals the number of beamlets (considering only 

angles in θθθθ) and D represents the dose matrix, such that Dij represents the contribution of beamlet j to the 

total dose deposited in voxel i , we can say that the total dose received by voxel i is given by 
1

N

ij j
j

D w
=
∑  

with jw  representing the weight of beamlet j. 

Let iT  be the desired dose for voxel i, iλ  and iλ  the penalty weights of underdose and overdose of voxel 

i, respectively, and ( ) { }max 0,
+

=i i . Then the FMO model can be defined as follows: 

 ( )
2 2

1 1 1

V N N

w i i ij j i ij j i
i j j

f Min T D w D w Tλ λ
= = =+ +

    
 = − + −   
     

∑ ∑ ∑θθθθ  (1) 

 s.t. 0, 1, ,jw j N≥ = ⋯  (2) 

 

Although this formulation allows unique weights for each voxel, weights are assigned by structure only 

so that every voxel in a given structure has the weight assigned to that structure divided by the number of 

voxels of the structure. This nonlinear formulation implies that a very small amount of underdose or 

overdose may be accepted, but larger deviations from the desired/allowed doses are decreasingly 

tolerated. 

For every solution considered, the FMO is performed, and the corresponding objective function value is 

used as a measure of the quality of the solution (the lower the better). 

Temperature function 
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The temperature function, that will help 

solution at each iteration of the algorithm,

with a very simple logarithmic function of the form 

maximum number of iterations (Figure 

accepting a worse solution than the current one is determined not only by the temperature function but 

also by the difference between the two objective function values. This probability is calculated as 

( )( )
( ) ( )

( _ ) _

_

f new f current

T i f currente

θ θ
θ

− −

 . This means that solutions with an objective function value that is much worse than 

the current one will have a lower probability of being accepted as the current solution when compared 

with a solution that has an objective function value close to the cu

Figure 1 Temperature function and Probability of accepting a worse solution

 

The SA algorithm 

The SA algorithm will receive as input an initial solution 

return the best solution calculated (θθθθ_best

1. Set counter i ←1.  Define the initial solution 

( )f θ_current ; θθθθ_best ←←←←θθθθ_current

2. Generate randomly a new solution 

( )f θ_new . 

3. If ( ) ( )f f≤θ_new θ_current , then 

( )f θ_new , θθθθ_best ←←←←θθθθ_new .  

help determining the probability of accepting a worse neighboring 

solution at each iteration of the algorithm, can be any non-increasing function. We have chosen to work 

with a very simple logarithmic function of the form ( )( ) 1 log( ) log( )T i i N= − , where N represents

Figure 1) and i represents the current iteration.  The probability of 

accepting a worse solution than the current one is determined not only by the temperature function but 

een the two objective function values. This probability is calculated as 

. This means that solutions with an objective function value that is much worse than 

the current one will have a lower probability of being accepted as the current solution when compared 

with a solution that has an objective function value close to the current one. 

 

Temperature function and Probability of accepting a worse solution  

The SA algorithm will receive as input an initial solution θθθθ_current and a temperature function

best). The SA algorithm can be formally described as follows:

Define the initial solution θθθθ_current and calculate (f θ_current

_current . 

Generate randomly a new solution θθθθ_new belonging to the neighborhood of θθθθ_current

, then θθθθ_current←←←←θθθθ_new. If ( ) ( )f f≤θ_new θ_best

 

( _ ) 70; _ 50f new f currentθ θ= =( )( _ ) 90; _ 50f new f currentθ θ= =  

the probability of accepting a worse neighboring 

easing function. We have chosen to work 

represents the 

The probability of 

accepting a worse solution than the current one is determined not only by the temperature function but 

een the two objective function values. This probability is calculated as 

. This means that solutions with an objective function value that is much worse than 

the current one will have a lower probability of being accepted as the current solution when compared 

 

a temperature function T. It will 

described as follows: 

)_current  . f_best← 

_current. Calculate 

)_best ,  f_best← 

( )( _ ) 70; _ 50f new f currentθ θ= =  
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4. If ( ) ( )f f>θ_new θ_current , then calculate ( )T i  and 
( )( )

( ) ( )
( _ ) _

_

f new f current

T i f currentaux e

θ θ
θ

− −

= . Generate 

randomly p ∈[0,1] using a uniform distribution. If p aux>=  then θθθθ_current←←←←θθθθ_new. 

5. i←i+1. If the stopping criteria are met stop, else go to 2. 

  

Step 1 initializes the iteration counter and the current solution.  In Step 2, a solution is randomly selected 

from the neighborhood of the current solution. If this new generated solution is better than the current  

one, it will become the current solution. If it is also better than the best solution known so far, it will 

become the best solution and the best known value of the objective function is updated (Step 3).  If this 

new solution is worse than the current solution, it can still be considered the current one in the next 

iteration with a given probability given by the temperature function (Step 4). The procedure is repeated 

until the stopping criteria are met (in the present case the stopping criterion was a maximum number of 

iterations).  

A set of ten examples of clinical cases of head-and-neck tumors already treated at the Portuguese Institute 

of Oncology of Coimbra (IPOC) were used for computational tests. The selected clinical examples were 

signalized at IPOC as complex cases where proper target coverage and organ sparing, in particular parotid 

sparing (parotid glands are in close proximity to or even overlapping with the PTV), proved to be difficult 

to obtain.  Figure 2 depicts the contoured structures for one CT slice of one representative patient. For 

simplicity, in this study, the OARs used for treatment optimization were limited to the spinal cord, the 

brainstem and the parotid glands. For the head-and-neck cases in study the PTV was separated in two 

parts with different prescribed doses: PTV1 and PTV2. The prescription dose for the target volumes and 

tolerance doses for the OARs considered in the optimization are presented in Table 1. 

Table 1. Prescribed doses for all the structures considered for IMRT SA optimization 

Structure Mean dose Maximum Dose Prescribed Dose 

Spinal cord – 45 Gy – 
Brainstem – 54 Gy – 
Left parotid 26 Gy – – 
Right parotid 26 Gy – – 
PTV1 – – 70.0 Gy 
PTV2 – – 59.4 Gy 
Body – 80 Gy – 

 

Our tests were performed on a Intel Core i7 CPU 2.8 GHz computer with 4GB RAM and Windows 7. We 

used CERR 3.2.2 version ([26]) and MATLAB 7.4.0 (R2007a). The dose was computed using CERR’s 

pencil beam algorithm (QIB), with corrections for heterogeneities. For each of the ten head-and-neck 

cases, the sample rate used for Body was 32 and for the remaining structures was 4 (meaning that each set 

of 32 Body voxels was considered as one voxel in the optimization procedure and, for all other structures, 
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one out of 4 voxels was used in the optimization procedure). To address the convex nonlinear formulation 

of the FMO problem we used a trust-region-reflective algorithm (fmincon) of MATLAB 7.4.0 (R2007a) 

Optimization Toolbox. Weights associated with the different structures were defined a priori, are the 

same for all patients, and were considered fixed during the algorithm’s execution. 

 
Figure 2 Contoured structures in one CT slice for one representative patient 

 

In a first step, several different versions of the SA algorithm, considering different neighborhood 

structures, were tested considering IMRT treatments with 5 gantry angles. Simple local search procedures 

using the same neighborhood structures as the SA algorithm were also tested and compared with the SA 

approach, in a total of 12 different search procedures. After analyzing the results, the local search 

procedure that was considered the best one for the 5 angles BAO problem was then applied to the same 

set of patients but considering IMRT treatments with 7 angles. 

 

Different local search procedures, 12 in total, were tested (Table 2).  

Table 2. Local search procedures tested 

Version of the 

algorithm 

Description 

1 SA with k-neighborhoods defined by k constant and equal to 1. Angles are changed by considering a perturbation that is 

randomly generated following a normal distribution with mean 0 and standard deviation r. 

2 SA with k-neighborhoods defined by k constant and equal to 2. Angles are changed by considering a perturbation that is 
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randomly generated following a normal distribution with mean 0 and standard deviation r. 

3 SA with k-neighborhoods defined by k constant and equal to 5. Angles are changed by considering a perturbation that is 

randomly generated following a normal distribution with mean 0 and standard deviation r. 

4 Local search procedure without SA. k-neighborhoods defined by k constant and equal to 1. Angles are changed by considering a 

perturbation that is randomly generated following a normal distribution with mean 0 and standard deviation r. 

5 Local search procedure without SA. k-neighborhoods defined by k constant and equal to 2. Angles are changed by considering a 

perturbation that is randomly generated following a normal distribution with mean 0 and standard deviation r. 

6 Local search procedure without SA. k-neighborhoods defined by k constant and equal to 5. Angles are changed by considering a 

perturbation that is randomly generated following a normal distribution with mean 0 and standard deviation r. 

7 SA with k-neighborhoods defined by k constant and equal to 1. Angles are changed by considering a perturbation that is 

randomly generated following a uniform distribution in the interval [0º,360º[. 

8 SA with k-neighborhoods defined by k constant and equal to 2. Angles are changed by considering a perturbation that is 

randomly generated following a uniform distribution in the interval [0º,360º[. 

9 Local search procedure without SA. k-neighborhoods defined by k constant and equal to 1. Angles are changed by considering a 

perturbation that is randomly generated following a uniform distribution in the interval [0º,360º[. 

10 Local search procedure without SA. k-neighborhoods defined by k constant and equal to 2. Angles are changed by considering a 

perturbation that is randomly generated following a uniform distribution in the interval [0º,360º[. 

11 SA with dynamically dimensioned neighborhood. 

12 Dynamically dimensioned search without SA. 

 

Considering previous computational experiments [24, 27], whenever using a normal distribution, we have 

decided to dynamically change the standard deviation r as follows: 

1. If there are l_success successful successive iterations (iterations where the best objective 

function is improved) then { }min 2 ,r r rmax← . 

2. If there are l_failure unsuccessful successive iterations (iterations where the best objective 

function is not improved) then { }max 2,r r rmin← . 

The standard deviation is initialized as 360º (4* )r n← . rmax is considered equal to 90 and rmin is 

considered equal to 3.  

Considering the random behavior of these procedures, each one was executed five times for each patient. 

A maximum of 200 iterations were considered. The obtained solutions were compared with the 5 angles 

equidistant solution used in clinical practice. 

 

Results 

BAO considering 5 angles 

The average improvement in the objective function value is depicted in Table 3, where the best result for 

each patient is highlighted. 
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The interpretation of these results is not straightforward. As a matter of fact, it is not possible to execute 

all optimization procedures for each patient and then choose the best solution found. This would take a 

prohibitive computational time. So, how should we choose what algorithm to use? 

Table 3. Improvement in the objective function value for the different algorithms tested (Mean values). Shadow values show the 
best results for each patient. 

patient 1 2 3 4 5 6 7 8 9 10 11 12 
1 4,65% 4,81% 4,45% 4,26% 4,04% 5,07% 3,87% 4,06% 4,08% 2,96% 4,22% 4,37% 
2 5,31% 6,00% 5,59% 5,10% 5,14% 4,22% 5,92% 4,24% 5,78% 4,45% 6,44% 5,15% 
3 3,48% 3,56% 4,08% 4,23% 3,94% 3,85% 3,78% 3,07% 3,06% 3,16% 3,75% 3,43% 
4 5,46% 5,14% 5,26% 5,23% 5,51% 4,88% 4,03% 3,38% 4,50% 4,00% 4,96% 4,87% 
5 10,23% 9,92% 10,07% 10,05% 9,80% 9,25% 9,17% 9,01% 10,61% 9,37% 10,46% 9,77% 
6 6,07% 6,25% 5,81% 6,63% 6,78% 5,62% 5,93% 5,88% 5,87% 5,95% 5,78% 6,24% 
7 9,89% 7,99% 8,80% 11,01% 10,96% 10,10% 10,35% 9,30% 8,25% 10,39% 12,09% 9,92% 
8 9,09% 6,99% 8,77% 9,30% 8,08% 9,21% 7,26% 6,86% 8,48% 9,78% 9,14% 8,44% 
9 9,52% 8,06% 9,06% 9,02% 8,49% 9,08% 8,13% 7,22% 9,61% 10,12% 9,10% 8,06% 
10 1,96% 1,34% 1,48% 1,66% 1,39% 1,23% 0,84% 0,53% 0,93% 0,20% 3,04% 2,19% 

Average 
improvement 6,56% 6,01% 6,33% 6,65% 6,41% 6,25% 5,93% 5,35% 6,12% 6,04% 6,90% 6,24% 

 
There are several different ways of choosing a given algorithm from a set of possible algorithms. One 

possibility is by looking at the average improvements and choosing the algorithm that presents the best 

average behavior over the set of 10 patients. Applying this criterion, SA with dynamically dimensioned 

search would be the best choice. The problem of choosing an algorithm looking at average values is that a 

very bad result for a given patient could be compensated by medium quality results in other patients. So, 

another possibility could be to iteratively eliminate the algorithm that leads to the worst result for most 

patients (and choosing the one with the worst average value in case of a tie). Following this procedure, we 

would first eliminate procedure 8, since it leads to the worst result for 4 out of the 10 patients. We would 

then eliminate procedure 10, then 7, and so on. We would end up by also choosing procedure 11. 

Still another possibility would be to use a kind of cross-validation procedure to select the best algorithm 

for a given patient. We would partition the set of patients such that one patient at a time is considered the 

“new” patient for which an algorithm will have to be chosen. The algorithm chosen would be the one with 

the best average results for the remaining 9 patients. If this procedure is applied here, we would choose 

algorithm 11 for all patients.  

Although the SA with dynamically dimensioned search is not the best algorithm for all patients, it seems 

to be the one that would most probably be chosen to be applied to a new patient since it is the one chosen 

under different criteria. 

 

Although we are assessing each solution using the optimal objective function of the FMO problem, more 

important than the objective function value is the dosimetric outcome of the generated plans. Table 4 and 

Table 5 summarize the dosimetric results. A metric usually used for plan evaluation is the dose in 95% of 

the PTV’s volume. Typically, we would like that 95% of the volume receives at least 95% of the 
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prescribed dose.  In order to verify parotids’ sparing, mean doses are usually considered. For spinal cord 

and brainstem, maximum doses cannot be exceeded. These metrics are displayed for the ten cases, 

considering the equidistant solution and the best and worst solutions out of the 5 solutions generated for 

each patient. The choice of the best and worst solutions is done resorting to the best and worst value of 

the corresponding FMO objective function. As this function is a weighted sum of deviations, there is no 

guarantee that the best solution is indeed better than the worst solution considering the dose metrics. The 

SA generated solutions do not present huge differences from the equidistant solution. However, we can 

see a better tumor dosimetry, and a better sparing especially of the left parotids. This is sometimes 

achieved by higher levels of maximum dose to the spinal cord and brainstem, but the achieved values are 

still within the tolerance doses for all but one patient. 

Table 4. Comparison of  dose-volume metrics using SA with dynamically dimensioned neighborhoods and 5 equidistant angles 
treatment plans 

 D95% (PTV70)/Gy D95%  (PTV59.4)/Gy 

patient Equi SA_best SA_worst Equi SA_best SA_worst 

1 65,7 65,9 65,9 57,5 57,3 57,3 

2 67,0 67,1 67,1 55,8 56,3 56,2 

3 66,3 66,5 66,5 56,7 56,9 56,7 

4 65,4 65,2 65,4 55,3 55,7 55,9 

5 66,7 67,0 67,1 55,7 56,2 55,9 

6 65,8 66,0 65,9 56,9 57,4 57,4 

7 68,0 68,2 68,1 57,5 57,8 57,8 

8 67,4 67,7 67,7 56,5 56,9 56,9 

9 67,2 67,0 67,0 57,2 57,5 57,5 

10 66,0 66,3 66,1 56,9 57,0 56,9 

 

Table 5. Comparison of  OARs dose  metrics using SA with dynamically dimensioned neighborhoods and 5 equidistant angles 
treatment plans 

 Dmean (Righ Parotid)/Gy Dmean (Left Parotid)/Gy Dmax (Spinal Cord)/Gy Dmax (Brainstem)/Gy 

patient Equi SA_best SA_worst Equi SA_best SA_worst Equi SA_best SA_worst Equi SA_best SA_worst 

1 25,6 23,1 23,1 26,4 25,1 24,7 38,9 40,6 40,9 52,6 52,3 51,9 

2 25,2 26,7 24,4 26,4 26,2 25,6 45,0 44,9 40,8 55,2 55,0 54,8 

3 26,2 25,4 24,8 27,3 27,4 26,0 42,5 39,6 43,5 40,6 45,4 46,6 

4 28,2 29,0 28,4 27,1 26,1 26,2 40,1 42,5 42,3 50,0 49,2 50,2 

5 29,1 30,7 29,5 26,5 23,3 25,0 38,5 39,1 39,9 50,3 51,6 51,9 

6 25,7 22,2 22,4 24,9 22,7 23,5 38,7 40,7 40,3 52,0 52,9 53,0 

7 26,4 27,4 26,6 26,4 26,9 27,5 41,0 41,9 40,5 52,3 51,6 51,3 

8 27,1 23,2 27,2 25,3 24,7 24,2 39,7 40,3 38,4 52,4 52,6 54,0 

9 20,8 21,1 20,0 25,2 25,1 24,2 39,4 40,9 42,7 51,4 50,4 50,7 

10 26,4 25,1 26,2 24,9 25,4 25,2 41,1 39,7 40,4 50,4 52,8 49,8 
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BAO considering 7 angles 

The algorithm considered as the best one for the 5 angle BAO problem (SA with dynamically 

dimensioned neighborhoods) was applied to the same set of patients, but considering 7 beams. The 

algorithm was executed 5 times for each patient, and the results were then compared with the 7 angles 

equidistant solution. Figure 3 presents a boxplot comparing the results obtained for the PTVs in the 5 

executions of the SA algorithm and the equidistant solution. The horizontal lines represent 95% of the 

prescribed dose. Satisfactory treatment plans should obtain results above these lines. In average, the 

optimized SA solutions present slightly better tumor coverage.  Figure 4 presents similar charts 

considering dosimetric results for the parotids. The horizontal lines represent the  desirable maximum 

mean dose for the corresponding structure. Satisfactory treatment plans should obtain results below these 

lines. This is a difficult goal to achieve and, in this study, it is was only possible to obtain treatments plans 

complying with this objective in about half the patients.  It was possible to improve parotids’ sparing in 6 

out of 10 patients. For all generated plans it was possible to comply with the medical prescription for the 

brainstem and spinal cord organs in 9 out of 10 patients (Figure 5).  

 

Figure 3 Comparison of  dose-volume metrics using SA with dynamically dimensioned neighborhoods and 7 equidistant angles 
treatment plans 
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Figure 4 Comparison of parotids’ dosimetry metrics using SA with dynamically dimensioned neighborhoods and 7 
equidistant angles treatment plans  

 

Figure 5 Comparison of spinal cord and brainstem dose using SA with dynamically dimensioned neighborhoods and 7 
equidistant angles treatment plans  

 

For patient 10, the parotids dose volume histograms of one of the SA solutions are compared with the 7 

equidistant angles solution (Figure 6). Dose volume histograms are also shown for PTVs (Figure 7), 

spinal cord and brainstem (Figure 8). As can be seen, the irradiation of the PTVs achieved by the SA 

solution and the equidistant solution are almost the same. 
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Figure 6 Dose Volume Histogram for Parotids 

 
Figure 7 Dose Volume Histogram for PTVs 
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Figure 8 Dose Volume Histogram for Spinal Cord and Brainstem 

 

Regarding computational times needed to run the SA algorithm, most of the computational time is spent 

solving the FMO problem for each solution. So, the computational time does not present significant 

differences for different neighborhood structures. For this set of patients and with the described 

computational resources, each instance of the FMO problem can take from 56 seconds to 350 seconds to 

be calculated, depending on the patient and on the set of beam angles considered. This corresponds to a 

mean total computational time of approximately 6 hours, and a maximum computational time of 11 hours. 

This computational time would be significantly decreased with the use of more powerful computational 

resources and parallel programming. It should be noticed that the SA procedure does not need any type of 

human intervention, so it can be run during night periods, or when the planner is occupied with other 

tasks. 

 

Discussion 

The computational results show that it is possible to improve organ sparing without jeopardizing tumor 

coverage by applying BAO. SA was able to generate solutions that lead to better plans than the usual 

equidistant solution. SA has as main advantages the fact that it is based on a simple algorithm, easy to 

translate into computational programming, it does not require many computational resources (like 

memory), and it is very flexible in the sense that it is possible to consider very different ways of assessing 
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the quality of a solution. Its main drawback, especially important for the IMRT BAO problem, is the 

computational time needed if the objective function considered is computationally expensive (as is the 

case with the FMO). This drawback made us consider a maximum number of iterations as the termination 

criterion. Further improvements can be obtained by parallelizing the SA implementation. This will make 

it possible to visit more than one neighboring solution in each iteration, or to apply a multi-start search, 

where several SA algorithms are run in parallel, each one having a different initial solution. This will 

contribute to a significant improvement in the obtained results. 

The random behavior of the SA algorithm can cause some concerns if applied to clinical practice. It is not 

acceptable that a plan has unexpected changes after re-optimization because of a random behavior of the 

algorithm. Actually, computers can only generate pseudo-random numbers. This makes it possible to 

guarantee the calculation of exactly the same treatment plan every time the algorithm is executed, being 

only necessary to consider a constant seed when initializing the random numbers generator. We did not 

choose to do that in this paper, because it could lead to biased results: showing  results for several runs is 

the correct thing to do in this context. 

In this paper, we decided to fix the weights used in the FMO a priori. Furthermore, these weights are the 

same for all patients considered. It would be possible to improve considerably the results of the SA 

algorithm if the choice of weights was patient dependent. Considering the particular features of each 

patient, and after some trial-and-error attempts, it would be possible to define weights that would 

guarantee better organ sparing and/or better target irradiation. Nevertheless, as the focus of this paper is to 

compare different neighborhood structures for SA, and compare SA solutions with the equidistant 

solution, working with different weights for different patients could introduce bias in the results, and 

would certainly favor the SA approach over the equidistant solution. We are presently working in 

automated ways for determining the weights to use in FMO. 

Comparing the different solutions obtained makes it clear that the assessment of a given solution is 

difficult to make looking only at a single objective function value. Further developments of this work will 

consider incorporating a multiobjective approach in SA optimization. 

 

As it is not possible to elect one single optimization algorithm as the best one for all patients, and is also 

not possible to run several different optimization algorithms for every incoming patient due to time 

constraints, a selection procedure based on cross-validation could be an interesting approach. In such an 

approach, the optimization algorithm to be applied would be chosen considering the one that gave the best 

average results in a set of already known patients. This set of already known patients could be chosen by 

applying clustering techniques that would select the set of patients most similar to the incoming patient. 

This would require the creation of a library of optimization algorithms, that would be applied to all known 
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patients so that all resulting data could be saved in a database. It should be noted that there is not enough 

time to run several optimization algorithms for a new patient that has to have a treatment plan as soon as 

possible. But it is possible to run several optimization algorithms, only for database recording purposes, 

for each patient in the database since time is no longer important in this context (Figure 9). 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

Figure 9 Selection of optimization algorithm based on a cross-validation procedure 

 

Conclusions 

In this paper several different neighborhoods to be used in a SA algorithm applied to BAO were tested. It 

was possible to conclude that the best neighborhood to use was the dynamically dimensioned 

neighborhood, that is characterized by considering larger neighborhoods in the beginning of the 

algorithm’s execution, progressing towards smaller neighborhoods. It is also possible to conclude that the 

major advantages of using SA applied to BAO are related more to organs’ sparing than to a better 

irradiation of the PTVs. 
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Table 1. Prescribed doses for all the structures considered for IMRT SA optimization 

Structure Mean dose Maximum Dose Prescribed Dose 

Spinal cord – 45 Gy – 

Brainstem – 54 Gy – 

Left parotid 26 Gy – – 

Right parotid 26 Gy – – 

PTV1 – – 70.0 Gy 

PTV2 – – 59.4 Gy 

Body – 80 Gy – 
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Table 2. Local search procedures tested 

Version of the 

algorithm 

Description 

1 SA with k-neighborhoods defined by k constant and equal to 1. Angles are randomly generated following a normal distribution 
with mean 0 and standard deviation r. 

2 SA with k-neighborhoods defined by k constant and equal to 2. Angles are randomly generated following a normal distribution 

with mean 0 and standard deviation r. 

3 SA with k-neighborhoods defined by k constant and equal to 5. Angles are randomly generated following a normal distribution 
with mean 0 and standard deviation r. 

4 Local search procedure without SA. k-neighborhoods defined by k constant and equal to 1. Angles are randomly generated 

following a normal distribution with mean 0 and standard deviation r. 

5 Local search procedure without SA. k-neighborhoods defined by k constant and equal to 2. Angles are randomly generated 
following a normal distribution with mean 0 and standard deviation r. 

6 Local search procedure without SA. k-neighborhoods defined by k constant and equal to 5. Angles are randomly generated 

following a normal distribution with mean 0 and standard deviation r. 

7 SA with k-neighborhoods defined by k constant and equal to 1. Angles are randomly generated following a uniform distribution 
in the interval [0º,360º[. 

8 SA with k-neighborhoods defined by k constant and equal to 2. Angles are randomly generated following a uniform distribution 

in the interval [0º,360º[. 

9 Local search procedure without SA. k-neighborhoods defined by k constant and equal to 1. Angles are randomly generated 
following a uniform distribution in the interval [0º,360º[. 

10 Local search procedure without SA. k-neighborhoods defined by k constant and equal to 2. Angles are randomly generated 

following a uniform distribution in the interval [0º,360º[. 

11 SA with dynamically dimensioned neighborhood. 

12 Dynamically dimensioned search without SA. 
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Table 3. Improvement in the objective function value (Mean values) 

patient 1 2 3 4 5 6 7 8 9 10 11 12 

1 4,65% 4,81% 4,45% 4,26% 4,04% 5,07% 3,87% 4,06% 4,08% 2,96% 4,22% 4,37% 

2 5,31% 6,00% 5,59% 5,10% 5,14% 4,22% 5,92% 4,24% 5,78% 4,45% 6,44% 5,15% 

3 3,48% 3,56% 4,08% 4,23% 3,94% 3,85% 3,78% 3,07% 3,06% 3,16% 3,75% 3,43% 

4 5,46% 5,14% 5,26% 5,23% 5,51% 4,88% 4,03% 3,38% 4,50% 4,00% 4,96% 4,87% 

5 10,23% 9,92% 10,07% 10,05% 9,80% 9,25% 9,17% 9,01% 10,61% 9,37% 10,46% 9,77% 

6 6,07% 6,25% 5,81% 6,63% 6,78% 5,62% 5,93% 5,88% 5,87% 5,95% 5,78% 6,24% 

7 9,89% 7,99% 8,80% 11,01% 10,96% 10,10% 10,35% 9,30% 8,25% 10,39% 12,09% 9,92% 

8 9,09% 6,99% 8,77% 9,30% 8,08% 9,21% 7,26% 6,86% 8,48% 9,78% 9,14% 8,44% 

9 9,52% 8,06% 9,06% 9,02% 8,49% 9,08% 8,13% 7,22% 9,61% 10,12% 9,10% 8,06% 

10 1,96% 1,34% 1,48% 1,66% 1,39% 1,23% 0,84% 0,53% 0,93% 0,20% 3,04% 2,19% 

Average 

improvement 
6,56% 6,01% 6,33% 6,65% 6,41% 6,25% 5,93% 5,35% 6,12% 6,04% 6,90% 6,24% 
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Table 4. Comparison of  dose-volume metrics using SA with dynamically dimensioned neighborhoods and 5 

equidistant angles treatment plans 

 D95% (PTV70)/Gy D95%  (PTV59.4)/Gy 

patient Equi SA_best SA_worst Equi SA_best SA_worst 

1 65,7 65,9 65,9 57,5 57,3 57,3 

2 67,0 67,1 67,1 55,8 56,3 56,2 

3 66,3 66,5 66,5 56,7 56,9 56,7 

4 65,4 65,2 65,4 55,3 55,7 55,9 

5 66,7 67,0 67,1 55,7 56,2 55,9 

6 65,8 66,0 65,9 56,9 57,4 57,4 

7 68,0 68,2 68,1 57,5 57,8 57,8 

8 67,4 67,7 67,7 56,5 56,9 56,9 

9 67,2 67,0 67,0 57,2 57,5 57,5 

10 66,0 66,3 66,1 56,9 57,0 56,9 
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Table 5. Comparison of  OARs dose  metrics using SA with dynamically dimensioned neighborhoods and 5 

equidistant angles treatment plans 

 Dmean (Righ Parotid)/Gy Dmean (Left Parotid)/Gy Dmax (Spinal Cord)/Gy Dmax (Brainstem)/Gy 

patient Equi SA_best SA_worst Equi SA_best SA_worst Equi SA_best SA_worst Equi SA_best SA_worst 

1 25,6 23,1 23,1 26,4 25,1 24,7 38,9 40,6 40,9 52,6 52,3 51,9 

2 25,2 26,7 24,4 26,4 26,2 25,6 45,0 44,9 40,8 55,2 55,0 54,8 

3 26,2 25,4 24,8 27,3 27,4 26,0 42,5 39,6 43,5 40,6 45,4 46,6 

4 28,2 29,0 28,4 27,1 26,1 26,2 40,1 42,5 42,3 50,0 49,2 50,2 

5 29,1 30,7 29,5 26,5 23,3 25,0 38,5 39,1 39,9 50,3 51,6 51,9 

6 25,7 22,2 22,4 24,9 22,7 23,5 38,7 40,7 40,3 52,0 52,9 53,0 

7 26,4 27,4 26,6 26,4 26,9 27,5 41,0 41,9 40,5 52,3 51,6 51,3 

8 27,1 23,2 27,2 25,3 24,7 24,2 39,7 40,3 38,4 52,4 52,6 54,0 

9 20,8 21,1 20,0 25,2 25,1 24,2 39,4 40,9 42,7 51,4 50,4 50,7 

10 26,4 25,1 26,2 24,9 25,4 25,2 41,1 39,7 40,4 50,4 52,8 49,8 
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