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18 Abstract

Electing irradiation directions to use in IMRT treatmestsne of the first decisions to make in treatment
21 planning. Beam angle optimization (BAO) is a difficult probleém tackle from the mathematical
23 optimization point of view. It is highly non-convex, and optimiaati approaches based on
gradient-descent methods will probably get trapped in one ofntaey local minima. Simulated
26 Annealing (SA) is a local search probabilistic procedure thiatasvn to be able to deal with multimodal
28 problems. SA for BAO was retrospectively applied to ten diniexamples of treated cases of
head-and-neck tumors signalized as complex cases where prayeir daverage and organ sparing
31 proved dfficult to obtain. The number of directions to use was consideradi dix¢ equal to 5 or 7. It is
33 shown that SA can lead to solutions that significantly impaygan sparing, even considering a reduced

number of angles, without jeopardizing tumor coverage.
38 Keywords: beam angle optimization; simulated annealing; metaheuristics

41 Introduction

43 Beam angle optimization (BAO) for IMRT treatments is knowrbé a very challenging problem: it is
45 highly non-convex, non-linear, and with many local minima. Many diffeegagiroaches have been
46 proposed to tackle BAO, from linear programming and gradientlséakcto neighborhood search and
48 metaheuristics approaches (see, for instance, [2-10]). Theralsw commercial treatment planning
50 systems (TPS) that already include some BAO functiona(iigs Eclipse from Varian or Oncentra from
Sl Elekta).

53 Simulated Annealing (SA) can be interpreted as a local ls@aobabilistic procedure that will try to find
55 a global minimum of a cost function even in the presence of toagay minima [11]. SA is inspired by
56 the thermal process for obtaining low energy states ofié isoh heat bath in condensed matter physics
58 [12]. It is possible to prove the asymptotic convergence of Sthdaset of globally optimal solutions
60 under some conditions [12]. Detailed descriptions of SA can be found in [11-15].


http://ees.elsevier.com/ejmp/viewRCResults.aspx?pdf=1&docID=1665&rev=1&fileID=62722&msid={DE165E33-CE36-4CD3-B94B-A1AE28652972}

O©CO~NOOOTA~AWNPE

SA has been applied before to radiation treatment planning. Viébhi 7] applied SA to 3D-Conformal
treatment planning. Morrilet al [18] use constrained SA, where the assessment of a giveiosakit
done resorting to the objective function value but checking whetheot the solution satisfies a set of
predetermined constraints. They test different objective tifume (maximizing the probability of
complication-free treatment and maximizing the dose to the rigggesubject to some dose-volume
constraints). Rosest al [19] compare four different SA algorithms for conformal tipgrareatment
planning, concluding that Very Fast Simulated Reannealing g&@ the best results. Djajapuétaal

[21] describe a fast dose calculation engine that uses an approximatenhaetelkd is embedded in a SA
algorithm for BAO. Bertsimast al [22] propose a hybrid heuristic where simulated annealing is
combined with gradient information for BAO.

In this paper we describe an application of SA for IMRT beengle optimization. One of the most
important features of SA is the neighborhood structure it uséisisimork, we consider several different
neighborhood structures, and make several computational tests cowgsaleset of ten head-and-neck
cancer patients using 5 or 7 angles. The results obtained allowv am¢lude that the neighborhood
structure that seems to be most promising is the dynamidiafignsioned neighborhood [23]. This is a
neighborhood with a random and dynamic structure that changes agdhith@al progresses. As far as
the authors know, it is the first time that a SA with a dyraity dimensioned neighborhood is
considered for BAO, and it is also the first time that thbalbir of SA with different underlying
neighborhood structures for BAO is studied.

In the rest of this paper we describe in detail the SAralgn and the neighborhood structures
considered. We describe the computational tests that were medopresenting and discussing the

results.

Methods

SA is a local search procedure that begins with any admissihlgéon to the problem. This is called the
current solution. It then randomly selects a solution in the neighborbfotte current solution. If this
solution is better than the current one, it becomes the cuplemipa and the process is repeated. If this
solution is worse than the current one, it can still becomeuh®nt solution with a given probability.
This is one of the SA features that allows the algorithmsta@e from local minima. By allowing the
deterioration of the objective function value at some pointsghne algorithm’s execution, it is possible
to jump to interesting regions of the searchable surface.

The probability of accepting a solution that is worse than themone is defined by a non-increasing

function usually known agemperature. This name is related to the physical thermal process thateidsp



O©CO~NOOOTA~AWNPE

the development of SA. Thtemperature decreases as the algorithm progresses, meaning that the

probability of accepting a worse solution decreases with thhedse in the nhumber of iterations of the
algorithm.

To be able to implement the SA algorithm, it is necessadefine: a data structure to represent a given
solution to the problem; the neighborhood; a way of determining thityqo& a given solution; a

temperature function.

Representation of the solutions

In this work we considered a very simple data structure teesept a solution: a vectd® with n
elements, whera is the total number of angles used in the IMRT treatment. &achent of this vector
(a variable) will belong to the interval [0°,360°[, and fosee& the exposition it is considered that all
elements of@are in ascending order. When dealing with the BAO problem, twaeliffénterpretations
of the problem can be considered. It can be interpreted as anatamizl problem, where we want to find
the best combination afi angles out of the set of all possible combinations. Thimllysimplies a
discretization of the interval [0°,360°[. It can also be int#gat as a problem with continuous variables.
The approach followed in this paper is the latter. Despite d@bethat each variable has to belong to
[0°,360°], it is not even necessary to consider an upper or lower bound for galte yvaince an angle of

-10°, for instance, is equal to 350° or an angle of 370° is equal to 10°.

Neighborhood Structures

Two solutions are said to tkeneighbors if they have at most different angles. Given a current solution,
a k-neighborhood solution is calculated by randomly generating at knioséger values belonging to
[1,n], and then randomly generating values in the interval [0°,360%itdte used to perturb the current
values of the chosek variables. These perturbation values can be randomly genesitep different
probability distributions: following a normal distribution with are0 and a given standard deviatioor
following a uniform distribution in [0°,360°, for instance. If using a normalidigion, it is also possible
to dynamically adjust the standard deviation.

The value ok can be defined priori and be constant throughout the algorithm’s execution, or it can be
dynamically and randomly determined. Both approaches were considlerda: latter case, we have
decided to test a dynamically dimensioned neighborhood [23, 24]. In swibhdborhood structure, the
value ofk is randomly determined in each iteration. In reality, each anglés or is not changed based
on a given probability. This probability is determined by a nore@sing function, that guarantees that

neighborhoods of greater dimension are considered in the beginnirte adlgorithm’s execution,
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decreasing the size of the neighborhoods as the algorithm pexjriEsthe present work, this probability

function is given by the temperature function.

Assessment of the solutions
The assessment of a given solution to BAO can only be done after calculatipgjried uence map for
the set of angles represented by the solution. This means that this assesgmires the resolution of the
fluence map optimization (FMO) problem, where the treatment anglesms&lered as an input.
There are many ways of optimizing IMRT fluence maps. It tsobthe scope of this work to describe the
pros and cons of the existing models and methods. We have dioosee a convex penalty function
voxel-based nonlinear model based on [25] where each voxel is pdnabmsidering the square
difference of the amount of dose received by the voxel and the amadwgeotiesired/allowed for the
voxel. This formulation yields a programming problem with onlydmeonegativity constraints on the
fluence values.
Considering that equals the number of voxell, equals the number of beamlets (considering only
angles ing) andD represents the dose matrix, such atepresents the contribution of beanjléd the
total dose deposited in voxel we can say that the total dose received by vioiebiven byZN: D,w,

j=1

with w; representing the weight of beanjlet
Let T, be the desired dose for voxel), and A the penalty weights of underdose and overdose of voxel

i, respectively, and:), =max{ Os} . Then the FMO model can be defined as follows:

f(e):MinWiZ:F [Ti —zi;Dijwj JZ +/Ti(ZN:D”WJ. —Tiﬂ 1)

j=1 ¥ i=1 +

stw,20,j=1 N (2

Although this formulation allows unique weights for each voxel, Wtsigre assigned by structure only
so that every voxel in a given structure has the weigigraess to that structure divided by the number of
voxels of the structure. This nonlinear formulation implies thatery small amount of underdose or
overdose may be accepted, but larger deviations from the debowdd doses are decreasingly
tolerated.

For every solution considered, the FMO is performed, and the ponding objective function value is
used as a measure of the quality of the solution (the lower the better).

Temperature function
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The temperature function, that whielp determiningthe probability of accepting a worse neighbol

solution at each iteration of the algoritl can be any non-ineasing function. We have chosen to w

with a very simple logarithmic function of the forT (i) =(1— log(i )/ log(N )), whereN represent the

maximum number of iterationgmigure 1) andi represents the current iterationfThe probability o
accepting a worse solution than the current orgeiermined not only by the temperature function
also by the difference betgn the two objective function values. This proligbis calculated a

(7 (8_new)- (& _current))
T(i)f(6_current)

e . This means that solutions with an objective fimcwvalue that is much worse th
the current one will have a lower probability ofifgeaccepted as the current solution when comg

with a solution that has an objective function eatlose to the arent one.
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Figure 1 Temperature function and Probability of accepting aworse solutior

The SA algorithm
The SA algorithm will receive as input an initialstion 8 current anda temperature functic T. It will
return the best solution calculate Ifest). The SA algorithm can be formaltiescribed as follow
1. Set countei 1. Define the initial solutiord current and calculatef (6_current) . f_best
f (0_current); 8 best — @ current .
2. Generate randomly a new soluti@ new belonging to the neighborhood 8fcurrent. Calculate
f (0_new).
3. If f(6_new)< f(6_current), then @ current— @ new. If f(6_new)< f(60_best), f best

f (0_new), @ best — & new .
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~(f (6_new)-f (8 _current))
T(i) f(6_current)

4. If f(6_new)> f(6_current), then calculateT (i) and aux=e . Generate

randomlyp [J[0,1] using a uniform distribution. Ip >=aux then@ current - 8 new.

5. i«i+1. If the stopping criteria are met stop, else go to 2.

Step 1 initializes the iteration counter and the current solutin Step 2, a solution is randomly selected
from the neighborhood of the current solution. If this new generaletian is better than the current
one, it will become the current solution. If it is also bettemn the best solution known so far, it will
become the best solution and the best known value of the objéatigtion is updated (Step 3). If this
new solution is worse than the current solution, it can stiltdmesidered the current one in the next
iteration with a given probability given by the temperature tionc(Step 4). The procedure is repeated
until the stopping criteria are met (in the present cassttping criterion was a maximum number of
iterations).

A set of ten examples of clinical cases of head-and-neotrtuatready treated at the Portuguese Institute
of Oncology of Coimbra (IPOC) were used for computational .t@$ts selected clinical examples were
signalized at IPOC as complex cases where proper target coverage ansbarigsy, in particular parotid
sparing (parotid glands are in close proximity to or even ovgirigpwith the PTV), proved to beféicult

to obtain. Figure 2 depicts the contoured structures for ondi€&ETo one representative patient. For
simplicity, in this study, the OARs used for treatment optitiozawere limited to the spinal cord, the
brainstem and the parotid glands. For the head-and-neck casadyirttet PTV was separated in two
parts with dfferent prescribed doses: PTV1 and PTV2. The prescription dose fiargle¢ volumes and
tolerance doses for the OARs considered in the optimization are f@ckgeiable 1.

Table 1. Prescribed doses for all the structures consideredIRT SA optimization

Structure Mean dost Maximum Dose Prescribed Dos!
Spinal cord - 45 Gy -
Brainstem - 54 Gy -

Left parotid 26 Gy - -
Right parotid 26 Gy - -
PTV1 - - 70.0 Gy
PTV2 - - 59.4 Gy
Body — 80 Gy —

Our tests were performed on a Intel Core i7 CPU 2.8 GHz compiitedGB RAM and Windows 7. We
used CERR 3.2.2 version ([26]) and MATLAB 7.4.0 (R2007a). The dose was comysingdCERR’s
pencil beam algorithm (QIB), with corrections for heterogeeitiFor each of the ten head-and-neck
cases, the sample rate used for Body was 32 and for the remaining structut§sn@asing that each set
of 32 Body voxels was considered as one voxel in the optimization precawld, for all other structures,
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one out of 4 voxels was used in the optimization procedure). To adlaeessnvex nonlinear formulation
of the FMO problem we used a trust-region-reflective algarifmincon) of MATLAB 7.4.0 (R2007a)
Optimization Toolbox. Weights associated with the different strast were definea priori, are the

same for all patients, and were considered fixed during the algorithntstiexe

. B Sag: 128/256

Cor: 128/256

Figure 2 Contoured structures in one CT slice for ne representative patient

In a first step, several different versions of the Sgodthm, considering different neighborhood
structures, were tested considering IMRT treatments wiinfry angles. Simple local search procedures
using the same neighborhood structures as the SA algorithm lserested and compared with the SA
approach, in a total of 12 different search procedures. Aftelyzing the results, the local search
procedure that was considered the best one for the 5 angles BA@npnobk then applied to the same

set of patients but considering IMRT treatments with 7 angles.

Different local search procedures, 12 in total, were tested (Table 2).

Table 2.Local search procedures tested

Version of the Description
algorithm
1 SA with k-neighborhoods defined by constant and equal to 1. Angles are changed bgidening a perturbation that is

randomly generated following a normal distributieith mean 0 and standard deviation

2 SA with k-neighborhoods defined by constant and equal to 2. Angles are changed bgidenng a perturbation that is
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randomly generated following a normal distributieith mean 0 and standard deviation

3 SA with k-neighborhoods defined by constant and equal to 5. Angles are changed bgidenng a perturbation that is
randomly generated following a normal distributieith mean 0 and standard deviation

4 Local search procedure without SAneighborhoods defined tyconstant and equal to 1. Angles are changed bsiderng a
perturbation that is randomly generated followingpamal distribution with mean 0 and standard déwier.

5 Local search procedure without SAneighborhoods defined yconstant and equal to 2. Angles are changed bsiderng a
perturbation that is randomly generated followingoamal distribution with mean 0 and standard déwia .

6 Local search procedure without SAneighborhoods defined yconstant and equal to 5. Angles are changed bsiderng a
perturbation that is randomly generated followingoamal distribution with mean 0 and standard déwia .

7 SA with k-neighborhoods defined by constant and equal to 1. Angles are changed bgidenng a perturbation that is
randomly generated following a uniform distributiorthe interval [0°,360°[.

8 SA with k-neighborhoods defined by constant and equal to 2. Angles are changed bgidenng a perturbation that is
randomly generated following a uniform distributiorthe interval [0°,360°[.

9 Local search procedure without SAneighborhoods defined yconstant and equal to 1. Angles are changed bsiderng a
perturbation that is randomly generated followingn&€orm distribution in the interval [0°,360°[.

10 Local search procedure without SAneighborhoods defined yconstant and equal to 2. Angles are changed bsiderng a
perturbation that is randomly generated followingn&€orm distribution in the interval [0°,360°[.

11 SA with dynamically dimensioned neighborhood.

12 Dynamically dimensioned search without SA.

Considering previous computational experiments [24, 27], whenever usorgal distribution, we have
decided to dynamically change the standard deviatamfollows:
1. If there arel_success successful successive iterations (iterations where tise digective

function is improved) them — min{ 2r ,rmax} .
2. If there arel failure unsuccessful successive iterations (iterations wherebdisé objective

function is not improved) then — max{r/ 2 rmin} .

The standard deviation is initialized ras- 3609 (4*n). rmax is considered equal to 90 amghin is

considered equal to 3.

Considering the random behavior of these procedures, each ongemated five times for each patient.
A maximum of 200 iterations were considered. The obtained solutieres compared with the 5 angles
equidistant solution used in clinical practice.

Results
BAO considering 5 angles
The average improvement in the objective function value istiepin Table 3, where the best result for

each patient is highlighted.
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The interpretation of these results is not straightforwasda Anatter of fact, it is not possible to execute
all optimization procedures for each patient and then choodeetttesolution found. This would take a

prohibitive computational time. So, how should we choose what algorithm to use?

Table 3.Improvement in the objective function value foe tiifferent algorithms tested (Mean values). Shadalwes show the
best results for each patient.

patient 1 2 3 4 5 6 7 8 9 10 11 12
1 465% 4,81%  4,45%  4,26%  4,04% KLY 3.87% 4,06% 4,08% 2,96% 422% 4,37%
2 531% 6,00% 559% 510% 514% 4,22% 592% 4,24% 8%,7 4,45% 5,15%
3 3,48% 3,56%  4,08% 3,94%  3,85% 3,78% 3,07% 3,06% 3,16%  3,75% 3,43%
4 546% 514% 526%  5,23% 488%  4,03% 338% 450%  4,00% 4,96% 4,87%
5 10,23% 9,92% 10,07% 10,05%  9,80%  9,25%  9,17% 9, 0fMXI 9,37% 10,46%  9,77%
6 6,07% 6,25% 581%  6,63% 562% 593% 588% 587% 595% 578% 6,24%
7 9,89% 7,99%  8,80% 11,01% 10,96% 10,10% 10,35%  9,30%,25% 10,39% 9,92%
8 9,09% 6,99% 8,77%  9,30% 8,08% 9,21%  7,26% 6,86% 80/8,4 9,14%  8,44%
9 9,52% 8,06%  9,06%  9,02% 849% 908% 8,13% 7,22% 19,6k 9,10% 8,06%
10 1,96% 1,34%  1,48%  1,66%  1,39% 123%  0,84% 0,53% 3%,9 0,20% 2,19%
_Average oo 601% 6,33% 6,65% 641% 625% 593% 535% 612% 604% 690%  6,24%
Improvement

There are several different ways of choosing a given #gorfrom a set of possible algorithms. One
possibility is by looking at the average improvements and chodsinglgorithm that presents the best
average behavior over the set of 10 patients. Applying therion, SA with dynamically dimensioned
search would be the best choice. The problem of choosing an algorithmgl@bkiverage values is that a
very bad result for a given patient could be compensated by megliality results in other patients. So,
another possibility could be to iteratively eliminate thgoathm that leads to the worst result for most
patients (and choosing the one with the worst average value in case oFallb®ying this procedure, we
would first eliminate procedure 8, since it leads to the wessilt for 4 out of the 10 patients. We would
then eliminate procedure 10, then 7, and so on. We would end up by also choosing procedure 11.
Still another possibility would be to use a kind of cross-vébdaprocedure to select the best algorithm
for a given patient. We would partition the set of patients shahone patient at a time is considered the
“new” patient for which an algorithm will have to be chosen. The algoritiwmsen would be the one with
the best average results for the remaining 9 patients. Iptbiedure is applied here, we would choose
algorithm 11 for all patients.

Although the SA with dynamically dimensioned search is not thieabgarithm for all patients, it seems
to be the one that would most probably be chosen to be appligtet® patient since it is the one chosen

under different criteria.

Although we are assessing each solution using the optimal igbjéanction of the FMO problem, more
important than the objective function value is the dosimetriicome of the generated plans. Table 4 and
Table 5 summarize the dosimetric results. A metricliysuaed for plan evaluation is the dose in 95% of
the PTV’s volume. Typically, we would like that 95% of the voluneeeives at least 95% of the
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prescribed dose. In order to verify parotids’ sparing, mean dwsassually considered. For spinal cord
and brainstem, maximum doses cannot be exceeded. Theses maetridisplayed for the ten cases,
considering the equidistant solution and the best and worst solotibiag the 5 solutions generated for
each patient. The choice of thest andworst solutions is done resorting to the best and worst value of
the corresponding FMO objective function. As this function ise@ghted sum of deviations, there is no
guarantee that thigest solution is indeed better than thwerst solution considering the dose metrics. The
SA generated solutions do not present huge differences froegthdistant solution. However, we can
see a better tumor dosimetry, and a better sparing espeafalhe left parotids. This is sometimes
achieved by higher levels of maximum dose to the spinal cortbramastem, but the achieved values are
still within the tolerance doses for all but one patient.

Table 4. Comparison of dose-volume metrics using SA withainically dimensioned neighborhoods and 5 equadisingles
treatment plans

Dosy (PTV70)/Gy Dosow (PTVs9.4/Gy
patient | Equi SA _best SA worst| Equi SA_best SA_worst
1 65,7 65,9 659 57,5 57,3 57,3
2 67,0 67,1 67,1 55,8 56,3 56,2
3 66,3 66,5 66,5 56,7 56,9 56,7
4 65,4 65,2 65,4 55,3 55,7 55,9
5 66,7 67,0 67,1 55,7 56,2 55,9
6 65,8 66,0 65,9 56,9 57,4 57,4
7 68,0 68,2 68,1| 57,5 57,8 57,8
8 67,4 67,7 67,7 56,5 56,9 56,9
9 67,2 67,0 67,0 57,2 57,5 57,5
10 66,0 66,3 66,1| 56,9 57,0 56,9

Table 5. Comparison of OARs dose metrics using SA withadgically dimensioned neighborhoods and 5 equidistagles
treatment plans

Dmean(Righ Parotid)/Gy Dmean(Left Parotid)/Gy D max(Spinal Cord)/Gy Dmax (Brainstem)/Gy
patient [ Equi SA_best SA worst| Equi SA_best SA_worsf Equi SA_best SA_worst| Equi SA_best SA_ wors
1 25,6 23,1 23,1| 26,4 25,1 24,7| 38,9 40,6 40,9| 52,6 52,3 51,9
2 25,2 26,7 24,41 26,4 26,2 25,6| 45,0 44,9 40,8| 55,2 55,0 54,8
3 26,2 25,4 24,8| 27,3 27,4 26,01 425 39,6 43,5| 40,6 454 46,6
4 28,2 29,0 28,4| 27,1 26,1 26,2| 40,1 42,5 42,3 50,0 49,2 50,2
5 29,1 30,7 29,5| 26,5 23,3 25,0 385 39,1 39,9| 50,3 51,6 51,9
6 25,7 22,2 22,4| 249 22,7 23,5| 38,7 40,7 40,3| 52,0 52,9 53,0
7 26,4 27,4 26,6| 26,4 26,9 27,5| 41,0 41,9 40,5| 52,3 51,6 51,3
8 27,1 23,2 27,2| 253 24,7 24,2| 39,7 40,3 38,4| 524 52,6 54,0
9 20,8 21,1 20,0| 25,2 25,1 2421 39,4 40,9 42,71 51,4 50,4 50,7
10 26,4 25,1 26,2| 24,9 25,4 252| 411 39,7 40,41 50,4 52,8 49,8
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BAO considering 7 angles

The algorithm considered as the best one for the 5 angle BABlepr (SA with dynamically
dimensioned neighborhoods) was applied to the same set of patiehtspnsidering 7 beams. The
algorithm was executed 5 times for each patient, and the resarésthen compared with the 7 angles
equidistant solution. Figure 3 presents a boxplot comparingethdts obtained for the PTVs in the 5
executions of the SA algorithm and the equidistant solution. Thedmbail lines represent 95% of the
prescribed dose. Satisfactory treatment plans should obtailbsrabove these lines. In average, the
optimized SA solutions present slightly better tumor coveragégure 4 presents similar charts
considering dosimetric results for the parotids. The horizontas Inepresent the desirable maximum
mean dose for the corresponding structure. Satisfactoryneaaplans should obtain results below these
lines. This is a difficult goal to achieve and, in this study, it is evag possible to obtain treatments plans
complying with this objective in about half the patients. It p@ssible to improve parotids’ sparing in 6
out of 10 patients. For all generated plans it was possible to gavithlthe medical prescription for the
brainstem and spinal cord organs in 9 out of 10 patients (Figure 5).
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Figure 5 Comparison of spinal cord and brainstem dse using SA with dynamically dimensioned neighbortazls and 7

equidistant angles treatment plans

For patient 10, the parotids dose volume histograms of one of the @fosslare compared with the 7
equidistant angles solution (Figure 6). Dose volume histogesalso shown for PTVs (Figure 7),
spinal cord and brainstem (Figure 8). As can be seen, theaticadof the PTVs achieved by the SA
solution and the equidistant solution are almost the same.
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Regarding computational times needed to run the SA algorithm, mtst ecbmputational time is spent
solving the FMO problem for each solution. So, the computational dioes not present significant
differences for different neighborhood structures. For this adepatients and with the described
computational resources, each instance of the FMO problem cafidak&6 seconds to 350 seconds to
be calculated, depending on the patient and on the set of beam@ngietered. This corresponds to a
mean total computational time of approximately 6 hours, and a maximum computatienad 11 hours.
This computational time would be significantly decreased withudgeof more powerful computational
resources and parallel programming. It should be noticed th8#tlpeocedure does not need any type of
human intervention, so it can be run during night periods, or whepldhaer is occupied with other

tasks.

Discussion

The computational results show that it is possible to improve ofgming without jeopardizing tumor
coverage by applying BAO. SA was able to generate solutiomdethc to better plans than the usual
equidistant solution. SA has as main advantages the faat itkdtased on a simple algorithm, easy to
translate into computational programming, it does not require ncanyputational resources (like
memory), and it is very flexible in the sense that it is possiblerisider very different ways of assessing
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the quality of a solution. Its main drawback, especially ingrarfor the IMRT BAO problem, is the
computational time needed if the objective function consideredrigutationally expensive (as is the
case with the FMQO). This drawback made us consider a maximum nofriterations as the termination
criterion. Further improvements can be obtained by parallelthiedsA implementation. This will make
it possible to visit more than one neighboring solution in eaehtion, or to apply a multi-start search,
where several SA algorithms are run in parallel, each onendnavidifferent initial solution. This will
contribute to a significant improvement in the obtained results.

The random behavior of the SA algorithm can cause some concapmiéd to clinical practice. It is not
acceptable that a plan has unexpected changes after re-ofpimizcause of a random behavior of the
algorithm. Actually, computers can only generate pseudo-randorbaramrhis makes it possible to
guarantee the calculation of exactly the same treatmanteslery time the algorithm is executed, being
only necessary to consider a constant seed when initializingutidem numbers generator. We did not
choose to do that in this paper, because it could lead to bemdtsr showing results for several runs is
the correct thing to do in this context.

In this paper, we decided to fix the weights used in the E\pDori. Furthermore, these weights are the
same for all patients considered. It would be possible to improwsiderably the results of the SA
algorithm if the choice of weights was patient dependent. Considthe particular features of each
patient, and after some trial-and-error attempts, it would beibi@s® define weights that would
guarantee better organ sparing and/or better target irradiation. Néa&stlaes the focus of this paper is to
compare different neighborhood structures for SA, and compare ofkioss with the equidistant
solution, working with different weights for different patiertould introduce bias in the results, and
would certainly favor the SA approach over the equidistant soluthm.are presently working in
automated ways for determining the weights to use in FMO.

Comparing the different solutions obtained makes it clear tlleatassessment of a given solution is
difficult to make looking only at a single objective functionuea Further developments of this work will
consider incorporating a multiobjective approach in SA optimization.

As it is not possible to elect one single optimization algoriisnthe best one for all patients, and is also
not possible to run several different optimization algorithmsevery incoming patient due to time
constraints, a selection procedure based on cross-validation coaldiléeresting approach. In such an
approach, the optimization algorithm to be applied would be chosen considering the gagdltthe best
average results in a set of already known patients. Thif sdready known patients could be chosen by
applying clustering techniques that would select the set ofnpatigost similar to the incoming patient.

This would require the creation of a library of optimization algorithheg, would be applied to all known
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patients so that all resulting data could be saved in aatsalt should be noted that there is not enough
time to run several optimization algorithms for a new patibat has to have a treatment plan as soon as
possible. But it is possible to run several optimization #&lyms, only for database recording purposes,

for each patient in the database since time is no longer important aotiéxt (Figure 9).

Figure 9 Selection of optimization algorithm base@n a cross-validation procedure

Conclusions

In this paper several different neighborhoods to be used in a 8Atlahg applied to BAO were tested. It
was possible to conclude that the best neighborhood to use wadytlaenically dimensioned
neighborhood, that is characterized by considering larger neighborhioot®e beginning of the
algorithm’s execution, progressing towards smaller neighborhoodsalka possible to conclude that the
major advantages of using SA applied to BAO are related noogans’ sparing than to a better
irradiation of the PTVs.
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Table

Table 1. Prescribed doses for all the structures considered for IMRT SA optimization

Structure Mean dose Maximum Dose Prescribed Dose
Spinal cord - 45 Gy -
Brainstem - 54 Gy -

Left parotid 26 Gy - -

Right parotid 26 Gy - -

PTV1 - - 70.0 Gy
PTV2 - - 59.4 Gy
Body — 80 Gy —
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Table 2. Local search procedures tested

Version of the Description
algorithm

1 SA with k-neighborhoods defined by k constant and equal to 1. Angles are randomly generated following a normal distribution
with mean 0 and standard deviation r.

2 SA with k-neighborhoods defined by k constant and equal to 2. Angles are randomly generated following a normal distribution
with mean 0 and standard deviation r.

3 SA with k-neighborhoods defined by k constant and equal to 5. Angles are randomly generated following a normal distribution
with mean 0 and standard deviation r.

4 Local search procedure without SA. k-neighborhoods defined by k constant and equal to 1. Angles are randomly generated
following a normal distribution with mean 0 and standard deviation r.

5 Local search procedure without SA. k-neighborhoods defined by k constant and equal to 2. Angles are randomly generated
following a normal distribution with mean 0 and standard deviation r.

6 Local search procedure without SA. k-neighborhoods defined by k constant and equal to 5. Angles are randomly generated
following a normal distribution with mean 0 and standard deviation r.

7 SA with k-neighborhoods defined by k constant and equal to 1. Angles are randomly generated following a uniform distribution
in the interval [0°,360°[.

8 SA with k-neighborhoods defined by k constant and equal to 2. Angles are randomly generated following a uniform distribution
in the interval [0°,360°[.

9 Local search procedure without SA. k-neighborhoods defined by k constant and equal to 1. Angles are randomly generated
following a uniform distribution in the interval [0°,360°[.

10 Local search procedure without SA. k-neighborhoods defined by k constant and equal to 2. Angles are randomly generated
following a uniform distribution in the interval [0°,360°[.

11 SA with dynamically dimensioned neighborhood.

12 Dynamically dimensioned search without SA.




Table

Table 3. Improvement in the objective function value (Mean values)

patient 1 2 3 4 5 6 7 8 9 10 11 P
1 465% 481%  445%  426%  4,04% 387% 406%  408%  296%  422%  437%
2 531% 6,00% 559%  510% 514%  422%  592% 424%  578% 445% [RER  5.15%
3 348% 356%  4,08% 394%  385% 378% 307% 306%  3,16%  3,75%  3,43%
4 546% 514% 526% 523% [FER  488%  4,03% 338% 450%  400%  4,96% 4,87%
5 10,23% 992% 10,07% 10,05%  9,80%  9,25%  9,17%  9,01% 9,37% 10,46%  9,77%
6 607% 625% 581% 663% [REER  562% 593% 588% 587% 595% 578%  624%
7 989% 7,99%  880% 11,01% 1096% 10,10% 10,35% 9,30%  825%  10,39% 9,92%
8 9,09% 6,99%  877%  930% 808% 921%  7,26% 686% 848% [NGR  9.14% 844%
9 952% 806%  9,06%  902%  849%  908%  813% 7,22%  9,61% [UNEMA 9.10% 8,06%
10 196% 134%  148%  166% 139%  123%  084% 053%  093%  020% 2,19%

Average 656% 601% 633% 665% 641% 625% 593% 535% 6,129 6,04%  690%  6,24%

improvement
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Table 4. Comparison of dose-volume metrics using SA with dynamically dimensioned neighborhoods and 5
equidistant angles treatment plans

Dgsy, (PTV50)/Gy Dgsy, (PTVs9.4)/Gy
patient Equi SA_best SA_worst | Equi SA_best SA_worst
1 65,7 65,9 659 | 57,5 57,3 57,3
2 67,0 67,1 67,1| 55,8 56,3 56,2
3 66,3 66,5 66,5 56,7 56,9 56,7
4 65,4 65,2 65,4 55,3 55,7 55,9
5 66,7 67,0 67,1| 55,7 56,2 55,9
6 65,8 66,0 659 | 56,9 57,4 57,4
7 68,0 68,2 68,1| 57,5 57,8 57,8
8 67,4 67,7 67,7| 56,5 56,9 56,9
9 67,2 67,0 67,0| 57,2 57,5 57,5
10 66,0 66,3 66,1| 56,9 57,0 56,9
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Table 5. Comparison of OARs dose metrics using SA with dynamically dimensioned neighborhoods and 5

equidistant angles treatment plans

Dmean (Righ Parotid)/Gy Dpmean (Left Parotid)/Gy Drmax (Spinal Cord)/Gy Drmax (Brainstem)/Gy
patient | Equi SA_best SA_worst | Equi SA_best SA_worst | Equi SA_best SA_worst | Equi SA_best SA_worst
1 25,6 23,1 23,1 264 25,1 24,7 389 40,6 409 | 52,6 52,3 51,9
2 25,2 26,7 24,41 264 26,2 25,6 | 45,0 44,9 40,8 | 55,2 55,0 54,8
3 26,2 25,4 24,8 27,3 27,4 26,0 42,5 39,6 43,5 40,6 45,4 46,6
4 28,2 29,0 284 271 26,1 26,2| 401 42,5 42,3| 50,0 49,2 50,2
5 29,1 30,7 29,5( 26,5 23,3 25,0| 385 39,1 399| 50,3 51,6 51,9
6 25,7 22,2 22,4 24,9 22,7 23,5 38,7 40,7 40,3 52,0 52,9 53,0
7 26,4 27,4 26,6 264 26,9 27,5| 41,0 41,9 40,5| 52,3 51,6 51,3
8 27,1 23,2 27,2 25,3 24,7 24,2 39,7 40,3 38,4 52,4 52,6 54,0
9 20,8 21,1 20,0 25,2 25,1 24,2 39,4 40,9 42,7 51,4 50,4 50,7
10 26,4 25,1 26,2 249 25,4 252 411 39,7 40,4 | 50,4 52,8 49,8
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