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Abstract

Compton scatter imaging (CSI) is well establish one-sided imaging approach, where the image is formed using

photons that are singly scattered in a region of the object. However, the measured data includes also photons that are

multiply scattered and is also affected by the fact that incoming and outgoing beams are attenuated. In this paper, the

EGS4 code system is used to gain some insight into the physics that constrains CSI. The yields of singly and multiply

scattered photons, obtained with monochromatic and X-ray tube inspecting beams, were assessed for a variety of media

and depths.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

The use of ionising radiations in imaging ap-

plications is nowadays a well-established technique

in medical, industrial and security applications

[1,2]. Techniques like conventional radiography or

computed tomography specifically rely on the fact
that photon absorption is highly dependent on the

density and atomic number of the material under

consideration. These imaging techniques are lim-

ited if access to both sides of an object is restricted,

or when the thickness is such that very few pho-
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tons are transmitted through it. In such cases, an

alternative approach is to use a single-sided

imaging method in which source and detector are

placed on the same side of the object.

One such method is Compton scatter imaging

(CSI) [3] where an image is formed by exploiting

those photons that are singly scattered in the ac-
cessible regions of the object. Although this

method is well suited for material discrimination,

some difficulties may arise due to the fact that the

measured data includes additional photons that

are multiply scattered, and also because incoming

and outgoing beams are attenuated in the sample.

The use of Monte Carlo methods to simulate

the transport of ionising radiation in matter is
acknowledged as a powerful and versatile tech-

nique [4], and the EGS4 code system [5] is one of

the packages that can be used to model coupled

electron/photon interactions in matter. Originally
ved.
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developed for high energy physics applications,

this tool can nowadays be used down to energies

of the order of a few keV, offering the possibility of

defining arbitrary geometries and score a wide
range of output tallies.

This communication describes the results ob-

tained with the EGS4 Monte Carlo code in the

simulation of Compton scattering experiments.

The yields of singly scattered photons and ratios of

single-to-multiple scattered radiation are presented

for different inspecting beams, penetration depths

and media.
2. Compton scattering imaging

Upon interacting with matter, photons may

experience a Compton scattering collision. This

can be described as a billiard-ball type of collision

between an incident photon and an electron of the
target atom. The probability of a photon under-

going a single collision that results in a scattering

angle h is given, to a good approximation, by the
Klein–Nishina differential cross section [6]. This

distribution is fairly isotropic for photon energies

of a few tens of keV, but strongly peaks in the

forward direction as the photon energy increases.

Therefore, higher energy photons are more likely
to be scattered in the forward direction.

The basic geometry for a CSI experiment, in

which the measured signal is composed of photons

that are backscattered at a depth d in the object
under examination, is presented in Fig. 1. In this

kind of configuration both the photon source and

the detector are placed on the same side of the

sample.
Scattered
beam

θ

Inspecting
beam

d
α

Fig. 1. Configuration for Compton backscatter imaging.
2.1. Arrangement optimisation

The first question that arises concerns the rela-
tive positions of the radiation source and detector

with respect to the sample. In other words, for a

given scattering angle h, how should the system be

arranged in order to minimise the attenuation of

the incident and outgoing beams? From Fig. 1, the

problem can be mathematically stated in the fol-

lowing terms: for a certain depth d, and given the
quantity

Tr ¼ T inr � T outr

¼ exp½�l1d= cosðh � aÞ� � exp½�l2d= cosðaÞ�;
ð1Þ

where l1 and l2 are, respectively, the linear at-
tenuation coefficients for the inspecting and scat-
tered beams and T inr , T outr are the transmission

factors for the incident and scattered beams, what

value of a maximises Tr?
The maximisation of Tr can only be carried out

numerically, but that turns out to be a rather

straightforward process. Indeed, the equation

dðTrÞ=da ¼ 0 has been solved using Newton�s
method [7] in a simple worksheet, and the ‘‘opti-
mum’’ value of a was determined for different

materials at incident energies of 150 and 300 keV

and h ¼ 150�. Although the ‘‘most favourable

angle’’ a is independent of the depth under in-

spection d, the factor Tr is not. The results ob-
tained, using photon attenuation data from

XCOM [8] are presented in Table 1 for some ma-

terials of special interest. These data make it clear
that, as the scattered beam is more strongly at-

tenuated than the incoming beam, the system
Table 1

Values of a that minimise beam attenuation in different samples

(representing common building materials and others), for

beams with different energies

Material Density

(g/cm3)

Optimum angle (deg.)

150 keV 300 keV

Steel 7.93 10.4 10.8

RDX (C3H6N6O6) 1.76 14.1 13.1

Clay 2 13.7 13.1

Wood 0.6 14.1 13.3

Foam (C8H8) 0.002 15.1 13.4
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should be positioned with an angle a of the order
of only a few degrees.
2.2. Dependence of the scattering yield on the

photon energy

The dependence of the backscattering yield ðY Þ
on the energy of incident beam can be roughly

estimated from

Y ¼ T in
r � Nele

dr
dX

� �
� T outr ; ð2Þ

where Nele is electron density of the medium, T inr ,
T outr represent the transmission fractions of inci-

dent/scattered beams, and ðdr
dXÞh is the Compton

differential cross section.

As the energy of the incident beam increases,

the same happens with the energy of the scattered

radiation, thus increasing T inr and T outr . However,

since photons increasingly scatter in the forward

direction as their energy increases, a compromise
between the quantities in (2) should result in an
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Fig. 2. Dependence of Y (Eq. (2)) on the beam energy for different mat

All sets were normalised to the same maximum value.
‘‘optimum’’ energy where Y is maximum. The

factor Y has been calculated for different materials,
at a depth of 1 cm and h ¼ 150�, and the results
obtained are presented in Fig. 2.
3. Simulated Compton backscattering yields

The yield of singly scattered photons has been

determined with the EGS4 code using the basic

set-up presented in Fig. 1, with a ¼ 0. The mate-

rials considered are those listed in Table 1, with
inspecting beams of different energies probing

several average target depths.

In the first set of studies, EGS4 was used to

determine singly scattered photon yields for an

average inspection depth of 1 cm. The detector was

assumed to be at a distance of 30 cm from the

sample surface with a 1-cm-collimator, in a ge-

ometry in which source and detector beams were
collimated to focus a voxel of 1 cm3. The results

obtained are presented in Fig. 4, showing a very

good agreement with curves presented in Fig. 3.
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erials, at a depth of 1 cm, calculated using the XCOM database.
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Fig. 3. Single scattering yields versus beam energy. Theoretical estimations and corresponding Monte Carlo data (triangles – RDX;

squares – clay) have been normalised to the same maximum value.
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The dependence of the scattering yield on the

mean depth being probed has also been deter-

mined for the same arrangement, and the results

are presented in Fig. 4 for different photon ener-

gies. These data demonstrate that, as a direct

consequence of incident and outgoing beams being
more attenuated, going deeper into the sample

results in a reduction of the scattering signals. It

was also observed that scattered photon spectra

from denser materials and deeper locations have

higher multiple scattering contributions.

Tungsten target X-ray tube spectra, generated

using EGS4/GOS [9], have also been considered in

this study as photon sources. Scattered photon
spectra, obtained using a 300 kVp inspecting beam

and for d ¼ 1 cm, are presented in Fig. 5(a) and (b)

for RDX and steel, showing an increased fraction

of multiply scattered photons from higher Z ma-

terials. The number of singly scattered X-ray

photons has been logged at different depths and
the results are presented in Fig. 6, for a tube op-

erated at 150 kVp.
4. Conclusions

EGS4 has been used to study the yield of single

and multiple scattered photons in simulations of

Compton backscatter imaging experiments, for

different materials and various beam energies.

Firstly, the arrangement of source and detector

has been analysed leading to the practical sugges-

tion that, in order to reduce the overall attenuation

of the signals, the outgoing radiation should
emerge from the sample along a path closely per-

pendicular to the sample surface. The incident

photon energies that maximise single scattering

yields have also been determined for different

materials, showing good agreement with some

rough theoretical estimates.
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Fig. 4. Single scattering yields versus depth for (a) 60 keV and (b) 100 keV incident beams.
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It has also been shown that, due to the in-

creased attenuation and multiple scattering, yields
and image contrast (single/multiple scatter ratio)

are reduced when deeper regions are being probed.
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Fig. 5. Scattered photon energy spectra from (a) RDX and (b) steel.
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Accordingly, this effect is more penalising for

materials of higher density and higher atomic
numbers, which may result in situations where the
single scattering signals emerging from a given

depth in materials with lower electron densities
exceed those from denser samples.
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Fig. 6. Yield versus depth using a 150 kVp W-target X-ray tube spectra as the interrogating beam.
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