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Abstract

The aim of this paper is to study a finite difference method for quasilinear coupled prob-
lems of partial differential equations that presents numerically an unexpected second order
convergence rate. The error analysis presented allow us to conclude that the finite differ-
ence method is supraconvergent. As the method studied in this paper can be seen as a
fully discrete piecewise linear finite element method, we conclude the supercloseness of our
approximations.
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1 Introduction

In this paper we study finite difference approximations for the solution of the coupled system

−
(

a(c)px
)

x
= q1 in (0, 1) × (0, T ], (1)

ct +
(

b(c, px)c
)

x
−

(

d(c, px)cx
)

x
= q2 in (0, 1) × (0, T ], (2)

with the following boundary conditions

p(0, t) = pℓ(t), p(1, t) = pr(t), t ∈ (0, T ], (3)

c(0, t) = cℓ(t), c(1, t) = cr(t), t ∈ (0, T ], (4)

and initial conditions

c(x, 0) = c0(x), x ∈ (0, 1), p(x, 0) = p0(x), x ∈ (0, 1). (5)

The initial boundary value problem (IBVP) (1)-(5) can be used to describe miscible displace-
ment of one incompressible fluid (resident fluid) by another (injected fluid) in one dimensional
porous media. In this case, a(c) = Kµ(c)−1, b(c, px) = 1

φv, d(c, px) = Dm + Dd
1
φ |v|, and

v = −Kµ(c)−1px denotes the Darcy velocity of the fluid mixture, p the pressure of the fluid
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mixture, c the concentration of the injected fluid, K the permeability of the medium, Dm the
molecular diffusion coefficient, Dd the dispersion coefficient and φ represents the porosity. The
viscosity of the mixture µ(c) is determined by the commonly used rule µ(c) = µ0((1−c)+M

1

4 c)−4,
where M denotes the mobility ratio and µ0 represents the viscosity of the resident fluid. The
two-dimensional or three dimensional versions of this problem with Dirichlet boundary condi-
tions or with Neumann or Robin boundary conditions were largely considered in the literature
to study the miscible displacement of one incompressible fluid by another in a porous medium
(see for instance [10], [17], [18], [20]).

Piecewise linear finite element method for (1) leads to a first order approximation for the
space derivative of p in the L2-norm. This accuracy deteriorates the numerical approximation
for c obtained from (2) if the same method is considered. Several approaches have been consid-
ered in the literature to increase the convergence order of the numerical approximation for the
velocity. Without be exhaustive we mention the use of cell centered schemes ([21]), mixed finite
element methods ([2], [5], [12], [19]), gradient recovery technique ([7] and [16]) and mimetic finite
difference approximations which can be seen as a mixed finite element methods with convenient
quadrature rules ([4]).

Finite difference methods that can be seen as fully discrete piecewise linear Galerkin methods
that allow to obtain a second order approximation for the gradient of the solution of elliptic
problems have been studied in [3], [8], [9], [13] and [14].

In the present paper we introduce for the IBVP (1)-(5) a finite difference method belonging
to the class of methods analysed in the last mentioned works that enable us to compute second
order approximations for the pressure, for its gradient and for the concentration. As such finite
difference scheme can be seen as a fully discrete Galerkin method based on piecewise linear
approximation and convenient quadrature rules, our results can be also seen as supercloseness
results.

In the convergence analysis we do not follow the approach introduced by Wheeler in [22] and
largely followed by a huge number of authors in the study of numerical methods for parabolic
problems (finite difference methods or Ritz-Galerkin methods). In the present paper we treat
in an adequately way the error considering the error equation. We point out that our approach
avoids the smoothness requirements imposed when Wheeler’s approach is used.

The paper is organized as follows. In Section 2 we introduce the semi-discretization of
problem (1)-(5) and its convergence analysis is presented in Section 3. In the main result of this
paper - Theorem 1-presented in this section we establish that the semi-discrete approximations
introduced for the pressure, velocity and concentration are second order accurate. This result is
illustrated numerically in Section 4. Finally in Section 5 we draw some conclusion. We remark
that for the implicit-explicit method used in the numerical illustration we can show that a fully
discrete version of Theorem 1 holds.

2 The semi-discrete approximation

In what follows we introduce the variational formulation of the IBVP (1)-(5). To simplify we
assume homogeneous boundary conditions. By L2(0, 1), H1(0, 1) and H1

0 (0, 1) we denote the
usual Sobolev spaces where we consider the usual inner products (., .)0, (., .)1 and the corre-
sponding norms ‖.‖0, ‖.‖1. respectively. Let Ω ⊆ R

n and r ∈ N. For p ∈ [1,∞) we represent by
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W r,p(Ω) the space of functions v : Ω → R such that Dαv ∈ Lp(Ω) for |α| ≤ r and in this space

we consider the following norm ‖v‖W r,p(Ω) =
(

∫

Ω
|Dαv(x)|p dx

)1/p
. In this definition we use the

notation Dαv =
∂|α|v

∂xα1

1 . . . xαn
n

, |α| = α1 + · · · + αn, αi ∈ N0, i = 1, . . . , n. As usual, for p = 2 we

use the notation W r,2(Ω) = Hr(Ω).
By W r,∞(Ω) we represent the space of functions v : Ω → R such that

‖v‖W r,∞(Ω) = max
|α|≤r

ess sup
Ω

|Dαv| is finite. Let V be a Banach space. By L2(0, T ;V ) we denote

the space of functions v : (0, T ) → V such that ‖v‖L2(0,T ;V ) =
(

∫ T

0
‖v(t)‖2V dt

)1/2
is finite. Let

L∞(0, T ;V ) be the space of functions v : (0, T ) → V such that ‖v‖L∞(0,T ;V ) = ess sup
[0,T ]

‖v(t)‖V

is finite. The space os function v : (0, T ) → V such that its derivatives v(j) : (0, T ) → V ,
j = 0, . . . , r, r ∈ N, with v(0) = v, defined in distributional sense satisfy

‖v‖W r,∞(0,T ;V ) = max
j=0,...,r

ess sup
[0,T ]

‖v(j)(t)‖V < ∞,

is denoted by W r,∞(0, T ;V ).
We replace the IBVP (1)-(5) by the following variational problem: find p ∈

L∞(0, T ;H1(0, 1)), c ∈ L2(0, T ;H1(0, 1)) such that c′ ∈ L2(0, T ;L2(0, 1)), conditions (3), (4)
hold a.e. and

(a(c(t))px(t), w
′)0 = (q1(t), w)0 a.e. in (0, T ),∀w ∈ H1

0 (0, 1), (6)

(c′(t), w)0 +(d(c(t), px(t))cx(t), wx)0 − (b(c(t), px(t))c(t), wx)0

= (q2(t), w)0 a.e. in (0, T ),∀w ∈ H1
0 (0, 1).

(7)

LetH be a sequence of vectors h = (h1, . . . , hN ) such that

N
∑

i=1

hi = 1 and hmax = max
i

hi → 0.

Let Ih = {xi, i = 0, . . . , N, x0 = 0, xN = 1, xi−xi−1 = hi, i = 1, . . . , N} be a nonuniform partition
of [0, 1]. By Wh we represent the space of grid functions defined on Ih and by Wh,0 we represent
the subspace of Wh of functions null on the boundary points. Let Phuh be the piecewise linear
interpolator of a grid function uh ∈ Wh. The space of piecewise linear functions induced by the
partition Ih is denoted by Sh.

The piecewise linear approximations for the pressure and for the concentration are solutions
of the finite dimensional coupled variational problem: find Phph ∈ L∞(0, T ;Sh) and Phch ∈
L2(0, T ;Sh) such that Phc

′
h ∈ L2(0, T ;Sh), boundary conditions (3), (4) hold a.e. and

(a(Phch(t))(Phph)x(t),Phw
′
h)0 = (q1(t),Phwh)0 a.e. in (0, T ),∀wh ∈ Wh,0, (8)

((Phch)t(t),Phwh)0 + (d(Phch(t), (Phph)x(t))(Phch)x(t),Phw
′
h)0

−(b(Phch(t), (Phph)x(t))Phch(t),Phw
′
h)0 = (q2(t),Phwh)0 a.e. in (0, T ),∀wh ∈ Wh,0.

(9)

In the space Wh we consider the norm

‖uh‖
2
1,h = ‖uh‖

2
h + ‖D−xuh‖

2
h,+, (10)
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where D−x denotes the backward finite difference operator with respect to the space variable,
‖.‖h is the norm induced by the inner product

(wh, vh)h =

N
∑

i=1

hi
2

(

wh(xi−1)vh(xi−1) + wh(xi)vh(xi)
)

, wh, vh ∈ Wh, (11)

and ‖wh‖h,+ =
(

N
∑

i=1

hiwh(xi)
2
)1/2

. In what follows we use the notation

(wh, vh)h,+ =

N
∑

i=1

hiwh(xi)vh(xi), wh, vh ∈ Wh.

The fully discrete (in space) approximations for the pressure and for the concentration are so-
lutions of the following coupled variational problem: find ph ∈ L∞(0, T ;Wh), ch ∈ L2(0, T ;Wh)
such that c′h ∈ L2(0, T ;Wh), and

(ah(t)D−xph(t),D−xwh)h,+ = (q1,h(t), wh)h a.e. in (0, T ),∀wh ∈ Wh,0, (12)

(c′h(t), wh)h + (dh(t)D−xch(t),D−xwh)h,+ − (Mh(bh(t)ch(t)),D−xwh)h,+
= (q2,h(t), wh)h a.e. in (0, T ),∀wh ∈ Wh,0,

(13)

ph(x0, t) = pℓ(t), ph(xN , t) = pr(t) a.e. in (0, T ), (14)

ch(x0, t) = cℓ(t), ch(xN , t) = cr(t) a.e. in (0, T ), (15)

ch(xi, 0) = c0,h(xi), ph(xi, 0) = p0,h(xi), i = 1, . . . , N − 1. (16)

In (12), (13) the following notations were used

qℓ,h(xi, t) =
1

hi+1/2

∫ xi+1/2

xi−1/2

qℓ(x, t) dx, i = 1, . . . , N − 1, ℓ = 1, 2, (17)

hi+1/2 = 1
2 (hi + hi+1), Mh(wh)(xi) =

1

2
(wh(xi−1) + wh(xi)), i = 1, . . . , N. The coefficient func-

tions ah(t) and dh(t) are defined by

ah(xi, t) = a(Mh(ch(t))(xi)), (18)

dh(xi, t) = d(Mh(ch(t))(xi),D−xph(xi, t)) (19)

and the grid function bh(t) is given by

bh(xi, t) =























b(ch(x0, t),Dxph(x0, t)), i = 0,

b(ch(xi, t),Dhph(xi, t)), i = 1, . . . , N − 1,

b(ch(xN , t),D−xph(xN , t))), i = N,

(20)

with

Dhph(xi, t) =
1

hi + hi+1

(

hiD−xph(xi+1, t) + hi+1D−xph(xi, t)
)

. (21)
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In what follows we establish an ordinary differential algebraic coupled system equivalent to
the variational problem (12)-(16). In order to do that we introduce the following finite difference
operators

(Dcwh)i =
wi+1 − wi−1

hi + hi+1
, (Dxwh)i+1/2 =

wi+1 − wi

hi+1
, (D1/2

x wh)i =
wi+1/2 − wi−1/2

hi+1/2
,

where wj := wh(xj) and wj±1/2 are used as far as it makes sense. In order to simplify the
presentation we also consider that ah(xi±1/2, t) = ah(xi±1, t), dh(xi±1/2, t) = dh(xi±1, t).

It can be shown that the approximations ph(t) and ch(t) are solutions of the following discrete
problem:

−D1/2
x (ah(t)Dxph(t)) = q1,h(t) in Ih − {0, 1} a. e. in (0, T ] (22)

c′h(t)−D1/2
x (dh(t)Dxph(t)) +Dc(bh(t)ch(t)) = q2,h(t) in Ih − {0, 1} a. e. in (0, T ], (23)

with the conditions (14), (15) and (16).

3 Supraconvergent result

3.1 Auxiliary results

The stability analysis the coupled variational problem (12), (13), or equivalently the stability of
the coupled finite difference problem (22), (23), under homogeneous Dirichlet boundary condi-
tions, that is, pℓ(t) = pr(t) = cℓ(t) = cr(t) = 0, was presented in [15]. In the analysis that we
present in what follows we need to assume that the semi-discrete approximation for the pressure
satisfies the following

max
i=1,...,N

|D−xph(xi, t)| ≤ Cp, (24)

for some positive constant Cp. We remark that this assumption can be assumed provided that
q1 satisfies

‖q1(t)‖0 ≤ Cq1 , t ∈ [0, T ]. (25)

In fact, as we have

a(Mh(ch(t))(xi+1))D−xph(xi+1, t)=
i

∑

j=1

hj+1/2D
(1/2)
x (ah(t)D−xph(t))(xj)

+a(Mh(ch(t))(x1))D−xph(x1, t) = −
i

∑

j=1

hj+1/2q1,h(xj , t) + a(Mh(ch(t))(x1))D−xph(x1, t),

for i = 1, . . . , N − 1, using (25) we deduce

max
i=2,...,N

|a(Mh(ch(t))(xi))D−xph(xi, t)| ≤ Cq1 + |a(Mh(ch(t))(x1))|D−xph(x1, t)|.

It is then effectively plausible to admit that (24) holds for some positive constant Cp.
We start by introducing two auxiliary problems. We assume that a ∈ W 1,∞(R), d ∈

W 1,∞(R2) and b ∈ W 2,∞(R2). Let p̃h(t), c̃h(t) ∈ Wh,0 be solutions of the discrete variational
problems

(ãh(t)D−xp̃h(t),D−xwh)h,+ = (q1,h(t), wh)h, wh ∈ Wh,0, (26)
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(d̃h(t)D−xc̃h(t),D−xwh)h,+ − (Mh(b̃h(t)c̃h(t)),D−xwh)h,+ = (q̃2,h(t), wh)h , wh ∈ Wh,0, (27)

with q̃2,h(t) defined by (17) with q2(t) replaced by q2(t)− c′(t). In (26) and (27) the coefficient
functions ãh and d̃h are defined by

ãh(xi, t) = a(c(xi−1/2, t)), d̃h(xi, t) = d(c(xi−1/2, t), px(xi−1/2, t)), i = 1, . . . , N,

and b̃h(xi, t)c̃h(xi, t) = b(c(xi, t), px(xi, t))c̃h(xi, t), i = 1, . . . , N − 1, b̃h(xi, t)c̃h(xi, t) = 0, i =
0, N.

It can be shown that p̃h(t) and c̃h(t) are solutions of a coupled finite difference problem
analogous to system (22), (23).

An error bound for p̃h(t) is established now considering Theorem 3.1 of [3]. By Rh we denote
the restriction operatorRh :C[0, 1] →Wh, Rhv(x) = v(x), x∈Ih.

Proposition 1 If 0 < a0 ≤ a then, for p̃h(t) defined by (26) and for h ∈ H with hmax small
enough, holds the following error estimate

‖Ph

(

p̃h(t)−Rhp(t)
)

‖21 ≤ Cp̃

N
∑

i=1

h2si ‖p(t)‖2Hs+1(Ii)
(28)

provided that p(t) ∈ Hs+1(0, 1) ∩H1
0 (0, 1), s ∈ {1, 2}. In (28) Ii = (xi−1, xi) and Cp̃ denotes a

positive constant which does not depend on h.

As a consequence of this result, we conclude that, for h ∈ H with hmax small enough, we
have

max
i=1,...,N

|D−xp̃h(xi, t)| ≤ Cp̃, (29)

for some positive constant Cp̃. In fact, from (28) we obtain |D−x(p̃(xi, t)− p(xi, t))| ≤ Ch
s− 1

2
max,

for some positive constant C. Then

|D−xp̃h(xi, t)|≤ |D−x(p̃(xi, t)− p(xi, t))|+ |
1

hj

∫ xj

xj−1

px(x, t) dx|≤ Ch
s− 1

2
max + ‖px(t)‖∞,

that leads to (29) provided that p ∈ L∞(0, T ;Hs+1(0, 1) ∩ H1
0 (0, 1)),

s ∈ {1, 2}.
In order to obtain an upper bound for the error of c̃h(t) we need to guarantee the stability

of the bilinear form

ac̃h(vh, wh) = (d̃h(t)D−xvh,D−xwh)h,+ − (Mh(b̃h(t)vh),D−xwh)h,+, vh, wh ∈ Wh,0.

In the next proposition we specify conditions that allow us to conclude such stability (see
Proposition 3.1 of [3]).

Proposition 2 Let d̃(t) and b̃(t) be defined by d̃(t) = d(c(t), px(t)), b̃(t) = b(c(t), px(t)), where
p, c are the solutions of the coupled variational problem (6), (7) with homogeneous Dirichlet
boundary conditions. If the variational problem: find u ∈ H1

0 (0, 1) such that (d̃(t)vx, wx)0 −
(b̃(t)v,wx)0 = 0 for w ∈ H1

0 (0, 1), has only the null solution, then there exists a positive constant
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αe,c which does not depend on h such that, for h ∈ H with hmax small enough, holds the following
stability inequality

‖Phvh‖1 ≤ αe,c sup
06=wh∈Wh,0

|ac̃h(vh, wh)|

‖Phwh‖1
, vh ∈ Wh,0. (30)

Using now Theorem 3.1 of [3] we can state the error estimate for c̃h. Considering this result,
it suffices to estimate

Td =

N
∑

i=1

hidi−1/2

(

D−xc(xi, t)− cx(xi−1/2, t)
)

D−xwh(xi), (31)

Tb =

N
∑

i=1

hi

(

b(xi−1/2, t)−
b(xi−1, t) + b(xi, t)

2

)

D−xwh(xj) (32)

with

di−1/2 = (c(xi−1/2, t), px(xi−1/2, t)), and b(xℓ, t) = b(c(xℓ, t), px(xℓ, t)), ℓ = i− 1, i− 1/2, i.

Using Bramble-Hilbert Lemma in Td we get

|Td| ≤ C‖d(c(t), px(t))‖∞

(

N
∑

i=1

h2si ‖c(t)‖2Hs+1(Ii)

)1/2
‖D−xwh‖h,+, (33)

provided that c(t) ∈ Hs+1(0, 1) ∩H1
0 (0, 1), for s ∈ {1, 2}.

To estimate Tb we apply Bramble-Hilbert Lemma again. In this case we obtain, for s ∈ {1, 2},

|Tb| ≤ C
(

N
∑

i=1

h2si |b(c(t), px(t))c(t)|
2
Hs(Ii)

)1/2
‖D−xwh‖h,+. (34)

As the imbedding of Hj+1(0, 1) into Cj
B(0, 1) is continuous, where C

j
B(0, 1) denotes the space of

functions having bounded, continuous derivatives up to order j on (0, 1) (Theorem 4.12 of [1]),
we deduce for s = 1

|Tb| ≤ C
(

N
∑

i=1

h2i ‖c(t)‖
2
∞

(

‖c(t)‖2H1(Ii)
+ ‖p(t)‖2H2(Ii)

))1/2
‖D−xwh‖h,+ (35)

and for s = 2

|Tb|≤ C
(

N
∑

i=1

h4j

(

‖cx(t)‖
2
∞

(

‖c(t)‖2∞ + 1
)(

‖cx(t)‖
2
L2(Ii)2

+ ‖px2(t)‖2L2(Ii)

)

+‖c(t)‖2∞
(

‖px2(t)‖2∞‖px2‖2L2(Ii)
+ ‖px3‖2L2(Ii)

)

+ ‖cx2‖2L2(Ii)

))1/2
‖D−xwh‖h,+.

(36)

We summarize the previous error estimates in the following proposition.
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Proposition 3 Under the assumptions of Proposition 2, for c̃h(t) defined by (27) and for h ∈ H
with hmax small enough, holds the following error estimate

‖Ph(c̃h(t)−Rhc(t))‖
2
1 ≤ Cc̃

N
∑

i=1

h2si

(

‖c(t)‖2Hs+1(Ii)
+ ‖p(t)‖2Hs+1(Ii)

)

, (37)

provided that c(t), p(t) ∈ Hs+1(0, 1) ∩ H1
0 (0, 1). In (37), s ∈ {1, 2} and Cc̃ denotes a positive

constant which does not depend on h.

Under the assumptions of Proposition 2, it is clear that ‖c̃h(t)‖1,h ≤ Cc̃, for some positive
Cc̃, which implies that

‖c̃h(t)‖∞ ≤ Cc̃, (38)

provided that c, p ∈ L∞(0, T ;H2(0, 1) ∩H1
0 (0, 1)), for some positive constant Cc̃ and for h ∈ H

with hmax small enough.
As for p̃h(t), it is plausible to assume that

max
i=1,...,N

|D−xc̃h(xi, t)| ≤ Cc̃, (39)

for h ∈ H with hmax small enough.
In the next proposition we establish an upper bound for ‖Ph(ph(t)− p̃h(t))‖1.

Proposition 4 If 0 < a0 ≤ a, then, for h ∈ H with hmax small enough, we have

‖Ph(ph(t)− p̃h(t))‖1 ≤ Cp,p̃

(

‖ch(t)−Rhc(t)‖h +
(

N
∑

i=1

h2si ‖c(t)‖2Hs(Ii)

)1/2)

, (40)

provided that c(t) ∈ Hs(0, 1) ∩H1
0 (0, 1). In (40), s ∈ {1, 2} and Cp,p̃ denotes a positive constant

which does not depend on h.

Proof: From (12) and (26) it can be shown that, for wh ∈ Wh,0, holds the following

(ah(t)D−x(ph(t)− p̃h(t)),D−xwh)h,+

= ((ãh(t)− a∗h(t))D−xp̃h(t),D−xwh)h,+ + ((a∗h(t)− ah(t))D−xp̃h(t),D−xwh)h,+,
(41)

where a∗h(t) is defined as ah(t) but with ch(t) replaced by Rhc(t).
For the second term of the second member of (41) we have

|((a∗h(t)− ah(t))D−xp̃h(t),D−xwh)h,+| ≤ C‖ch(t)−Rhc(t)‖h‖D−xwh‖h,+, (42)

for wh ∈ Wh,0.
Considering now the Bramble-Hilbert Lemma in the first term of the second member of (41) we
deduce

|((ãh(t)− a∗h(t))D−xp̃h(t),D−xwh)h,+|≤ C
(

N
∑

i=1

h2si ‖c(t)‖2Hs(Ii)

)1/2
‖D−xwh‖h,+, (43)

for wh ∈ Wh,0.
Taking (42) and (43) in (41), we conclude the proof of (40) choosing wh = ph(t)− p̃h(t).
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Corollary 1 If 0 < a0 ≤ a, then for ph(t) and ch(t) defined by (12), (13) and for h ∈ H with
hmax small enough, holds the following

‖Ph(ph(t)−Rhp(t))‖1 ≤ C
(

‖ch(t)−Rhc(t)‖h

+
(

N
∑

i=1

h2si ‖c(t)‖2Hs(Ii)

)1/2
+

(

N
∑

i=1

h2si ‖p(t)‖2Hs+1(Ii)

)1/2)

,
(44)

provided that c(t) ∈ Hs(0, 1) ∩H1
0 (0, 1), p(t) ∈ Hs+1(0, 1) ∩H1

0 (0, 1), s ∈ {1, 2}.

Lemma 1 Let c̃h(t) be defined by (27) and p(t), c(t) ∈ Hs+1(0, 1) ∩ H1
0 (0, 1),

s ∈ {1, 2}. Under the assumptions of Proposition 2 and Corollary 1, for the functional

τd(t, wh) = (d̃h(t)D−xc̃h(t),D−xwh)h,+ − (dh(t)D−xch(t),D−xwh)h,+,

defined on Wh,0 and for h ∈ H with hmax small enough, holds the following

τd(t, wh) = (dh(t)D−x(Rhc(t)− ch(t)),D−xwh)h,+ + τd,h(t, wh), (45)

where

|τd,h(t, wh)| ≤ Cd

(

‖ch(t)−Rhc(t)‖h +
(

N
∑

i=1

h2si ‖p(t)‖2Hs+1(Ii)

)1/2

+
(

N
∑

i=1

h2si ‖c(t)‖2Hs+1(Ii)

)1/2)

‖D−xwh‖h,+, wh ∈ Wh,0.

(46)

Proof: For τd(t, wh) holds the representation (45) with τd,h(t, wh) given by

τd,h(t, wh) = τ
(1)
d,h(t, wh) + τ

(2)
d,h(t, wh) + τ

(3)
d,h(t, wh) (47)

where
τ
(1)
d,h(t, wh) = ((d̃h(t)− d∗h(t))D−xc̃h(t),D−xwh)h,+,

τ
(2)
d,h(t, wh) = ((d∗h(t)− dh(t))D−xc̃h(t),D−xwh)h,+,

τ
(3)
d,h(t, wh) = (dh(t)D−x

(

c̃h(t)−Rhc(t)
)

,D−xwh)h,+,

and d∗h is defined as dh with ch and ph replaced by Rhc and Rhp, respectively. Using the Bramble-

Hilbert Lemma it can be shown that for τ
(1)
d,h(t, wh), for wh ∈ Wh,0 and for h ∈ H with hmax

small enough, holds the following

|τ
(1)
d,h(t, wh)| ≤ C

((

N
∑

i=1

h2si ‖c(t)‖2Hs(Ii)

)1/2
+

(

N
∑

i=1

h2si ‖p(t)‖2Hs+1(Ii)

)1/2)

‖D−xwh‖h,+, wh ∈ Wh,0.

For τ
(2)
d,h(t, wh) we have, for wh ∈ Wh,0,

|τ
(2)
d,h(t, wh)|≤ C

(

‖Rhc(t)− ch(t)‖h + ‖D−x(ph(t)−Rhp(t))‖h,+

)

‖D−xwh‖h,+.

9



Considering Corollary 1 we get

|τ
(2)
d,h(t, wh)| ≤ C

(

‖ch(t)−Rhc(t)‖h +
(

N
∑

i=1

h2si ‖c(t)‖2Hs(Ii)

)1/2

+
(

N
∑

i=1

h2si ‖p(t)‖2Hs+1(Ii)

)1/2)

‖D−xwh‖h,+, wh ∈ Wh,0.

Taking into account Proposition 3, for τ
(3)
d,h(t, wh) we deduce, for wh ∈ Wh,0 and for h ∈ H with

hmax small enough,

|τ
(3)
d,h(t, wh)| ≤ C

((

N
∑

i=1

h2si ‖c(t)‖2Hs+1(Ii)

)1/2
+

(

N
∑

i=1

h2si ‖p(t)‖2Hs+1(Ii)

)1/2)

‖D−xwh‖h,+.

From the estimates established for τ
(ℓ)
d,h(t, wh), ℓ = 1, 2, 3, we conclude (46).

Lemma 2 Let c̃h(t) be defined by (27) and c(t), p(t) ∈ Hs+1(0, 1) ∩ H1
0 (0, 1), s ∈ {1, 2}. If

0 < a0 ≤ a, condition (24) holds and the coefficient function b satisfies

|b(x, y)| ≤ Cb|y|, (x, y) ∈ R
2, (48)

then, under the assumptions of Proposition 2, for the functional

τb(t, wh) = (Mh(bh(t)ch(t)),D−xwh)h,+ − (Mh(b̃h(t)c̃h(t)),D−xwh)h,+,

defined on Wh,0 and for h ∈ H with hmax small enough, holds the following

τb(t, wh) = (Mh(bh(t)(ch(t)−Rhc(t))),D−xwh)h,+ + τb,h(t, wh), (49)

where

|τb,h(t, wh)| ≤ Cb,2

(

‖ch(t)−Rhc(t)‖h +
(

N
∑

i=1

h2si ‖c(t)‖2Hs+1(Ii)

)1/2

+
(

N
∑

i=1

h2si ‖p(t)‖2Hs+1(Ii)

)1/2)

‖D−xwh‖h,+, wh ∈ Wh,0.

(50)

Proof: For τb(t, wh) holds the representation (49) with

τb,h(t, wh) = τ
(1)
b,h (t, wh) + τ

(2)
b,h (t, wh) + τ

(3)
b,h (t, wh),

τ
(1)
b,h (t, wh) = (Mh(bh(t)(Rhc(t)− c̃h(t))),D−xwh)h,+,

τ
(2)
b,h (t, wh) = (Mh((bh(t)− b∗h(t))c̃h(t)),D−xwh)h,+,

10



τ
(3)
b,h (t, wh) = (Mh((b

∗
h(t)− b̃h(t))c̃h(t)),D−xwh)h,+,

being b∗h defined as bh with ch and ph replaced by Rhc and Rhp, respectively.
Considering Proposition 3 and condition (24), under the assumptions (48) for b it can be shown

that for τ
(1)
b,h (t, wh) and for h ∈ H with hmax small enough, holds the following

|τ
(1)
b,h (t, wh)| ≤ C

((

N
∑

i=1

h2si ‖c(t)‖2Hs+1(Ii)

)1/2
+

(

N
∑

i=1

h2si
(

‖p(t)‖2Hs+1(Ii)

)1/2)

‖D−xwh‖h,+,

provided that c(t), p(t) ∈ Hs+1(0, 1) ∩H1
0 (0, 1), for s ∈ {1, 2}.

As c̃h(t) satisfies (38), we can establish for τ
(2)
b,h (t, wh) the upper bound

|τ
(2)
b,h (t, wh)|≤ C

(

‖ch −Rhc‖h + ‖D−x(ph(t)−Rhp(t))‖h,+

)

‖D−xwh‖h,+.

Considering now Corollary 1, for h ∈ H with hmax small enough, we conclude

|τ
(2)
b,h (t, wh)| ≤ C

(

‖ch(t)−Rhc(t)‖h +
(

N
∑

i=1

h2si ‖c(t)‖2Hs(Ii)

)1/2

+
(

N
∑

i=1

h2si ‖p(t)‖2Hs+1(Ii)

)1/2)

‖D−xwh‖h,+,

provided that c(t) ∈ Hs(0, 1) ∩ H1
0 (0, 1), p(t) ∈ Hs+1

0 (0, 1) ∩ H1
0 (0, 1),

s ∈ {1, 2}.

To estimate τ
(3)
b,h (t, wh) we start by remarking that px(xi, t)−Dhp(xi, t) =

1

hi + hi+1
λ(v),

with λ(v) = vξ(ρ)− ρ̂(v(1) − v(ρ)) −
1

ρ̂
(v(ρ) − v(0), and v(ξ) = p(xi−1 + ξ(hi + hi+1, t)),

ρ =
hi

hi + hi+1
, ρ̂ =

hi
hi+1

. Applying Bramble-Hilbert Lemma to λ(v) we obtain, for s ∈ {1, 2},

|λ(v)| ≤ C

∫ 1

0
|vξs(ξ)| dx ≤ C(hi + hi+1)

s−1

∫ xi+1/2

xi−1/2

|pxs(x, t)| dx.

Then, for h ∈ H with hmax small enough, we have

|τ
(3)
b,h (t, wh)| ≤ C

(

N
∑

i=1

h2si ‖p(t)‖2Hs+1(Ii)

)1/2
‖Dxwh‖h,+,

provided that p(t) ∈ Hs+1(0, 1) ∩H1
0 (0, 1), for s ∈ {1, 2}.

From the upper bounds obtained for τ
(ℓ)
b,h(t, wh), ℓ = 1, 2, 3, we conclude the proof.

The following result was proved in [3] and has an important role in the proof of the main
result of this paper - Theorem 1.
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Lemma 3 If g ∈ H2(0, 1) and gh is defined by (17) with qℓ replaced by g, then there exits a
positive constant Cin which does not depend on h such that

|(gh −Rhg,wh)h| ≤ Cin

(

N
∑

i=1

h4i ‖g‖
2
H2(Ii)

)1/2
‖wh‖1,h, wh ∈ Wh,0, (51)

for h ∈ H with Hmax small enough.

3.2 Main convergence result

Let ec,h(t) = ch(t)−Rhc(t) ep,h(t) = ph(t)−Rhp(t) be the semi-discretization error induced by
the discretization (12), (13), (14) and (15). An estimate for ‖Phep,h(t)‖1 depending on ‖ec,h(t)‖h
was established in Corollary 1. In the next result we establish an estimate for ‖ec,h(t)‖h that
allow us to obtain with Corollary 1 an estimate for ‖Phep,h(t)‖1.

Theorem 1 Let c and p be the solutions of the coupled quasi-linear problem (6), (7), c ∈
L2(0, T ;Hs+1(0, 1) ∩ H1

0 (0, 1)) ∩ H1(0, T ;H2(0, 1)), p ∈ L∞(0, T ;Hs+1(0, 1) ∩ H1
0 (0, 1)), s ∈

{1, 2}, and let ch and ph be their approximations defined by (12), (13). We assume that the
variational problem: find v ∈ H1

0 (0, 1) such that (d̃(t)vx, wx)0−(b̃(t)v,wx)0 = 0 for w ∈ H1
0 (0, 1),

has only the null solution, where d̃(t) = d(c(t), px(t)) and b̃(t) = b(c(t), px(t)).
If 0 < a0 ≤ a, 0 < d0 ≤ d, b satisfies (48), then, under the assumption (24), there exists

positive constant Ce such that, for h ∈ H with hmax small enough, holds the following

‖ec,h(t)‖
2
h +

∫ t

0
‖D−xec,h(µ)‖

2
h,+ dµ ≤

1

min{1, 2(d0 − 4ǫ2)}
eωt

(

‖ec,h(0)‖
2
h

+Ce

N
∑

i=1

∫ t

0

(

h2si
(

‖p(µ)‖2Hs+1(Ii)
+ ‖c(µ)‖2Hs+1(Ii)

)

+ h4i ‖c
′(µ)‖2H2(Ii)

)

dµ
)

≤
1

min{1, 2(d0 − 4ǫ2)}
eωt

(

‖ec,h(0)‖
2
h + Ce

(

h2smax

(

‖c‖2L2(0,T ;Hs+1(0,1))

+‖p‖2L2(0,T ;Hs+1(0,1))

)

+ h4max‖c‖
2
H1(0,T ;H2(0,1))

))

,

(52)

where ǫ is nonzero constant such that d0 − 4ǫ2 > 0, ω is given by

ω =
1

ǫ2

(

C2
d + C2

b,2 +
1

2
C2
bC

2
p

)

+ 2ǫ2 (53)

and Cd, Cb, Cb,2, Cin were introduced before.

Proof: It can be shown that ec,h(t) is solution of the variational problem

(e′c,h(t), wh)h = −(dh(t)D−xch(t),D−xwh)h,+ + (Mh(bh(t)ch(t)),D−xwh)h,+

+(q2,h(t), wh)h − (Rhc
′(t), vh)h.
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As c̃h(t) satisfies (27) we obtain

(e′c,h(t), wh)h = (d̃h(t)D−xc̃h(t),D−xwh)h,+ − (dh(t)D−xch(t),D−xwh)h,+

+(Mh(bh(t)ch(t)),D−xwh)h,+ − (Mh(b̃h(t)c̃h(t)),D−xwh)h,+ + (ĉ′h(t), wh)h − (Rhc
′(t), wh)h,

(54)
where ĉ′h(t) is given by (17) with qℓ replaced by c′(t).
From (54) with wh = ec,h(t), taking into account Lemmas 1 and 2, we deduce the inequality

(e′c,h(t), ec,h(t))h ≤ −(dh(t)D−xec,h(t),D−xec,h(t))h,+ + (Mh(bh(t)ec,h(t)),D−xec,h(t))h,+

+(ĉ′h(t)−Rhc
′(t), ec,h(t))h + τd,h(t, ec,h(t)) + τb,h(t, ec,h(t)).

(55)
We estimate in what follows the quantities (ĉth(t) − Rhct(t), ec,h(t))h, τd,h(t, ec,h(t)) and

τb,h(t, ec,h(t)). From Lemma 3 we have

|(ĉ′h(t)−Rhc
′(t), ec,h(t))h| ≤

1

4σ2
C2
in

N
∑

i=1

h4i ‖c
′(t)‖2H2(Ii)

+ σ2‖ec,h(t)‖
2
1,h, (56)

provided that c′(t) ∈ H2(0, 1). In the previous inequality σ 6= 0 is an arbitrary constant.
We remark that for τd,h(t, ec,h(t)) and τb,h(t, ec,h(t)) hold the estimates (46) and (50), respec-
tively. Consequently

|τd,h(t, ec,h(t))| ≤
1

2ǫ2
C2
d‖ec,h(t)‖

2
h + ǫ2‖D−xec,h(t)‖

2
h,+

+
1

2ǫ2
C2
d

N
∑

i=1

h2si

(

‖p(t)‖2Hs+1(Ii)
+ ‖c(t)‖2Hs+1(Ii)

)

,
(57)

and

|τb,h(t, ec,h(t))| ≤
1

2η2
C2
b,2‖ec,h(t)‖

2
h + η2‖D−xec,h(t)‖

2
h,+

+
1

2η2
C2
b,2

N
∑

i=1

h2si

(

‖p(t)‖2Hs+1(Ii)
+ ‖c(t)‖2Hs+1(Ii)

)

,
(58)

where ǫ 6= 0, η 6= 0 are arbitrary constants.
Considering estimates (56), (57) and (58) in (55) we obtain

1

2

d

dt
‖ec,h(t)‖

2
h+(dh(t)D−xec,h(t),D−xec,h(t))h,+ − (Mh(bh(t)ec,h(t)),D−xec,h(t))h,+

−
( 1

2ǫ2
C2
d +

1

2η2
C2
b,2 + σ2

)

‖ec,h(t)‖
2
h − (ǫ2 + η2 + σ2)‖D−xec,h(t)‖

2
h,+ ≤ τh(t)

2,

(59)

where

τh(t)
2 ≤

( 1

2ǫ2
C2
d +

1

2η2
C2
b,2

)(

N
∑

i=1

h2si
(

‖p(t)‖2Hs+1(Ii)
+ ‖c(t)‖2Hs+1(Ii)

)

)

+
1

4σ2
C2
in

N
∑

i=1

h4i ‖c
′(t)‖2H2(Ii)

.
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In what concerns (dh(t)(D−xec,h(t),D−xec,h(t))h,+ and (Mh(bh(t)ec,h(t)),D−xec,h(t))h,+, we
have

(dh(t)(D−xec,h(t),D−xec,h(t))h,+ ≥ d0‖D−xec,h(t)‖
2
h,+, (60)

and

|(Mh(bh(t)ec,h(t)),D−xec,h(t))h,+| ≤
1

4γ2
C2
bC

2
p‖ec,h(t)‖

2
h + γ2‖D−xec,h(t)‖

2
h,+, (61)

where γ 6= 0 is an arbitrary constants.
Considering now in (59) the estimates (60) and (61) for ǫ = η = γ = σ, we conclude

d

dt
‖ec,h(t)‖

2
h + 2(d0 − 4ǫ2)‖D−xec,h(t)‖h,+ ≤ ω‖ec,h(t)‖

2
h + τh(t)

2 (62)

with ω defined by (53).
Inequality (62) implies

‖ec,h(t)‖
2
h + 2(d0 − 4ǫ2)

∫ t

0
‖D−xec,h(s)‖

2
h,+ ds ≤ ‖ec,h(0)‖

2
h + ω

∫ t

0
‖ec,h(µ)‖

2
h dµ+

∫ t

0
τh(µ)

2 dµ

that leads to (52).

Theorem 1 and Corollary 1 imply the error estimate for the pressure.

Corollary 2 Under the assumption of Theorem 1, for the pressure we have

‖Phep,h(t)‖
2
1 ≤ Cp,n

(

‖ch(0) − c(0)‖2h + Ce

N
∑

i=1

∫ t

0

(

h2si
(

‖p(µ)‖2Hs+1(Ii)

+ ‖c(µ)‖2Hs+1(Ii)

)

+ h4i ‖c
′(µ)‖2H2(Ii)

)

dµ
)

≤ Cp,n

(

‖ch(0) − c(0)‖2h + Ce

(

h2smax

(

‖c‖2L2(0,T ;Hs+1(0,1))

+ ‖p‖2L2(0,T ;Hs+1(0,1))

)

+ h4max‖c‖
2
H1(0,T ;H2(0,1))

)

, (63)

for some positive constants Cp,n and Ce which do not depend on h and for h ∈ H with hmax

small enough.

4 Numerical illustration

We illustrate in what follows the estimates (52) and (63). To do that we next introduce an
implicit-explicit method for the IBVP (1)-(5) defining in [0, T ] a uniform grid {tn} with t0 =
0, tM = T and tj − tj−1 = ∆t. By D−t we denote the backward finite difference operator with
respect to t. Let us suppose that the numerical approximations pnh(xi) and cnh(xi) for p(xi, tn)
and c(xi, tn), respectively, are known. By pn+1

h (xi) and cn+1
h (xi) we represent the numerical

approximations for p(xi, tn+1) and c(xi, tn+1), respectively, defined by the following system

(anhD−xp
n+1
h ,D−xwh)h,+ = (qn+1

1,h , wh)h, wh ∈ Wh,0, (64)
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(D−tc
n+1
h , wh)h + (dn,n+1

h D−xc
n+1
h ,D−xwh)h,+ − (Mh(b

n,n+1
h cn+1

h ),D−xwh)h,+

= (qn+1
2,h , wh)h, wh ∈ Wh,0,

(65)

with the boundary conditions pn+1
h (x0) = pℓ(tn+1), pn+1

h (xN ) = pr(tn+1), c
n+1
h (x0) = cℓ(tn+1),

cn+1
h (xN ) = cr(tn+1), and with the initial conditions c0h(xi) = c0,h(xi), p

0
h(xi) = p0,h(xi), i =

1, . . . , N − 1.
In (64) and (65), qn+1

ℓ,h is obtained from qℓ,h(t) taking t = tn+1, (ℓ = 1, 2), the coefficient anh is

obtained from ah(t) replacing ch(t) by cnh, d
n,n+1
h and bn,n+1

h are obtained from dh(t) and bh(t),
respectively, replacing ch(t) and ph(t) by cnh and pn+1

h , respectively.
Let us consider (1)-(5) with a(c) = 1 + c, b(c, px) = (cpx)

2, d(c, px) = c + px + 2, where
q1, q2, the initial and boundary conditions are such that this IBVP has the following solution :
p(x, t) = etx(x− 1), c(x, t) = et(1− cos(2πx))sin(x), x ∈ [0, 1], t ∈ [0, T ].

The numerical approximations cnh and pnh were obtained with the IMEX method (64)-(65)
with nonuniform grids in [0, 1] and with T = 0.1 and ∆t = 10−6. The first spatial grid is arbitrary
and the new grid is obtained from the previous one introducing in [xi, xi+1] the midpoint. In
Table 1 we present the errors

Errorc = max
n=1,...,M

(

‖enc,h‖
2
h +∆t

n
∑

j=0

‖D−xe
j
c,h)‖

2
h,+

)1/2
, Errorp = max

n=1,...,M
‖D−xe

n
p,h‖h,+

and the rates Ratec, Ratep that were computed by the formula Rate =
ln

(

Errorhmax,1

Errorhmax,2

)

ln
(

hmax,1

hmax,2

) , where

hmax,1 and hmax,2 are the maximum step sizes of two consecutive partitions.

hmax Errorc Errorp Ratec Ratep
1.3174 × 10−1 5.5435 × 10−2 1.1099 × 10−2 1.9492 1.5048
6.5869 × 10−2 1.4355 × 10−2 3.9113 × 10−3 2.0010 1.5808
3.2934 × 10−2 3.5863 × 10−3 1.3075 × 10−3 2.0024 1.8337
1.6467 × 10−2 8.9511 × 10−4 3.6682 × 10−4 2.0008 1.9296
8.2336 × 10−3 2.2366 × 10−4 9.6288 × 10−5 2.0029 1.9671
4.1168 × 10−3 5.5804 × 10−5 2.4628 × 10−5 2.0109 1.9866
2.0584 × 10−3 1.3846 × 10−5 6.2144 × 10−6 2.0301 2.0015
1.0292 × 10−3 3.3899 × 10−6 1.5520 × 10−6 - -

Table 1: Convergence rates for the numerical approximations defined by the IMEX method
(64)-(65).

The numerical results presented in Table 1 show that Errorp = O(h2max) and Errorc = O(h2max).

5 Conclusions

The behavior of the pressure and concentration of an incompressible fluid in a one dimensional
porous media is described by an elliptic equation for the pressure and a parabolic equation for
the concentration linked by the Darcy’s law for the velocity. Quasilinear coupled problems that
have as a particular case the previous problem were considered in this paper.
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The use of piecewise linear finite element method for the pressure and concentration of a
incompressible fluid in a porous media leads to a first order approximation to the velocity.
Consequently, the concentration is of first order in the L2-norm. This behavior is observed for
uniform and nonuniform partitions of the spatial domain. Semi-discretizations based on the
piecewise linear finite element method with special quadrature formulas were studied in this
paper. For such semi-discrete approximations error estimates were established that allow us to
conclude second order accuracy for the pressure and its gradient and for the concentration.

A common approach in the convergence analysis of the spatial discretization of parabolic
equations is the split of the semi-discretization error into two terms ([22]) considering the corre-
spondent discretization of an auxiliary elliptic problem. Such approach was largely followed in
the literature and implies an increasing in the smoothness requirements of the solution for the
parabolic problem. In this paper a different approach was followed that avoids such smoothness
requirements.
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