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Abstract. A hypersymplectic structure on a Lie algebroid determines several
Poisson-Nijenhuis, ΩN and PΩ structures on that Lie algebroid. We show that

these Poisson-Nijenhuis (respectively, ΩN , PΩ) structures on the Lie algebroid,
are pairwise compatible.

Introduction

Pairs of tensor fields on manifolds, which are compatible in a certain sense,
were studied by Magri and Morosi [7], in view of their application to integrable
hamiltonian systems. These pairs determine Poisson-Nijenhuis (PN for short),
ΩN and PΩ structures on the manifold where they are defined. The extension of
these concepts to the Lie algebroid framework was done in [1] and [6]. Other related
structures on Lie algebroids are the complementary forms [8] and the Hitchin pairs
[4]. In [2], we studied the compatibility of pairs of these structures, where being
compatible means that the sum of two structures of a certain type is still a structure
of the same type.

Hypersymplectic structures on Lie algebroids were introduced in [1]. They are
triples of symplectic forms on the Lie algebroid, satisfying some conditions. Taking
the inverse of each symplectic form we get three Poisson bivectors and, if we consider
the composition of the Poisson bivectors with the symplectic forms, we obtain (1, 1)-
tensors on the Lie algebroid, that turn to be Nijenhuis. In [1] it is proved that
these symplectic forms, Poisson bivectors and Nijenhuis tensors, when considered
in pairs, define PN , ΩN and PΩ structures on the Lie algebroid and that the
symplectic forms ωi are complementary forms. The aim of this Note is to show
that the structures that we can derive from a given hypersymplectic structure on
a Lie algebroid are, in most cases, pairwise compatible.

1. Pairs of tensors on Lie algebroids

Let (A, [·, ·], ρ) be a Lie algebroid over a manifold M . Frequently, we shall denote
this Lie algebroid simply by A. Given a bivector π and a 2-form ω on A, we consider
the usual bundle maps π# : A∗ → A and ω♭ : A → A∗ and the induced morphisms
on sections, denoted by the same symbols, which are defined, for all α, β ∈ Γ(A∗)
and X,Y ∈ Γ(A), respectively by

〈β, π#(α)〉 = π(α, β) and 〈Y, ω♭(X)〉 = ω(X,Y ).
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A bivector π on a Lie algebroid (A, [·, ·], ρ) is a Poisson bivector if [π, π] = 0.
Every bivector π on a Lie algebroid A defines a bracket on Γ(A∗):

(1) [α, β]π = Lπ#(α)β − Lπ#(β)α− d(π(α, β)),

where d is the differential of the Lie algebroid A and L is the Lie derivative de-
termined by d. In the case where π is a Poisson bivector on A, the bracket [·, ·]π,
given by (1), is a Lie bracket and (A∗, [·, ·]π, ρ ◦ π

#) is a Lie algebroid.
Let π be a Poisson bivector on (A, [·, ·], ρ). A 2-form ω on A is said to be

a complementary form of π if [ω, ω]π = 0 ([8]). In other words, ω is a Poisson
bivector on the Lie algebroid (A∗, [·, ·]π, ρ ◦ π

#).
Let N be a (1, 1)-tensor on (A, [·, ·], ρ) and consider the deformed bracket [·, ·]N

on Γ(A),

(2) [X,Y ]N = [NX,Y ] + [X,NY ]−N [X,Y ].

The Nijenhuis torsion of N is the (1, 2)-tensor T N given by

T N(X,Y ) = [NX,NY ]−N [X,Y ]N , X, Y ∈ Γ(A).

When the Nijenhuis torsion vanishes, N is said to be a Nijenhuis tensor on A.
Let π be a bivector on A and N a (1, 1)-tensor, seen as a vector bundle map

N : A → A. If N ◦ π# = π# ◦N∗, where N∗ denotes the transpose of N , πN given
by πN (α, β) = π(N∗α, β), α, β ∈ Γ(A∗), is a bivector on A. Analogously, if ω is a
2-form on A such that ω♭ ◦N = N∗ ◦ω♭, then ωN given by ωN (X,Y ) = ω(NX,Y ),
X,Y ∈ Γ(A), is a 2-form on A.

Let π be a bivector and N a (1, 1)-tensor on a Lie algebroid A such that N ◦π# =
π#◦N∗. Recall that the Magri-Morosi concomitant C(π,N) of π andN is the (2, 1)-
tensor on A defined by [5, 7]:

(3) C(π,N)(α, β) = ([α, β]π)N∗ − [α, β]πN
, α, β ∈ Γ(A∗),

where [·, ·]πN
is the bracket (1) determined by the bivector πN and ([·, ·]π)N∗ denotes

the bracket [·, ·]π deformed by N∗. From (1), (2) and (3), it is obvious that

(4) C(π + π′, N +N ′) = C(π,N) + C(π,N ′) + C(π′, N) + C(π′, N ′),

for all bivectors π, π′ and (1, 1)-tensors N,N ′ on A.

Let (A, [·, ·], ρ) be a Lie algebroid, π a bivector, ω a 2-form and N a (1, 1)-
tensor on A. The tensor fields N , π and ω, when taken in pairs, define well known
structures on the Lie algebroid A. Next, we recall some of these structures.

A pair (π,N) is a Poisson-Nijenhuis structure (PN structure, for short) on
(A, [·, ·], ρ) if π is Poisson, N is Nijenhuis, N ◦ π# = π# ◦N∗ and C(π,N) = 0.

A pair (ω,N) is an ΩN structure on (A, [·, ·], ρ) if ω is closed, N is Nijenhuis,
ω♭ ◦N = N∗ ◦ ω♭ and ωN is closed. If ω is symplectic, ω♭ ◦N = N∗ ◦ ω♭ and ωN is
closed, the pair (ω,N) is a Hitchin pair [4].

A pair (π, ω) is a PΩ structure on (A, [·, ·], ρ) if π is Poisson, ω is closed and ωN

is closed, where N is the (1, 1)-tensor on A defined by N = π# ◦ ω♭.
A PΩ structure on a Lie algebroid determines a PN and an ΩN structure on this

Lie algebroid and is equivalent to a closed complementary form. More precisely, we
have:

Proposition 1.1. [3, 6] Let π and ω be, respectively, a Poisson bivector and a
2-form on a Lie algebroid (A, [·, ·], ρ) and consider the (1, 1)-tensor N = π# ◦ ω♭.
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(i) If (π, ω) is a PΩ structure on A, then (π,N) and (ω,N) are, respectively,
a PN and an ΩN structure on A.

(ii) The pair (π, ω) is a PΩ structure on A if and only if ω is a closed comple-
mentary form of π.

Let N and N ′ be two (1, 1)-tensors on a Lie algebroid (A, [·, ·], ρ) and [N,N ′]
FN

their Frölicher-Nijenhuis bracket which is defined, for all sections X and Y of A, by

(5) [N,N ′]
FN

(X,Y ) = [NX,N ′Y ]−N [X,N ′Y ]−N ′[NX,Y ] +NN ′[X,Y ]

+ [N ′X,NY ]−N ′[X,NY ]−N [N ′X,Y ] +N ′N [X,Y ].

Notice that [N,N ′]
FN

= [N ′, N ]
FN

and if N = N ′, then [N,N ′]
FN

= 2T N . So, if
N and N ′ are Nijenhuis tensors on A, we get

(6) T (N +N ′) = 0 ⇔ [N,N ′]
FN

= 0.

When the Nijenhuis tensors N and N ′ satisfy (6), they are said to be compatible.

2. Hypersymplectic structures on Lie algebroids

In this section we recall, from [1] and [3], the notion of hypersymplectic structure
on a Lie algebroid as well as their main properties, needed in the sequel.

Let (A, [·, ·], ρ) be a Lie algebroid and consider 3 symplectic forms ω1, ω2 and
ω3 on A with inverse Poisson bivectors π1, π2 and π3, respectively. Then, for all

i ∈ {1, 2, 3}, we have ω♭
i ◦π

#
i = IdA∗ and π

#
i ◦ω♭

i = IdA. These ωi and πi determine
the transition (1, 1)-tensors N1, N2 and N3 on A, defined by

(7) Ni = π
#
i−1 ◦ ω

♭
i+1,

where the indices of π# and ω♭ are considered as elements of Z3.

Definition 2.1. A triple (ω1, ω2, ω3) of symplectic structures is an ε-hypersymplectic
structure on a Lie algebroid (A, [·, ·], ρ) if the transition (1, 1)-tensors Ni, i = 1, 2, 3,
given by (7), satisfy N2

i = εiIdA, where the parameters εi = ±1 form the triple
ε= (ε1, ε2, ε3).

Notice that N−1
i = εiNi, for all i ∈ {1, 2, 3} and that

(8) π
#
i−1 ◦ ω

♭
i = εi+1Ni+1,

with the indices in Z3.

Proposition 2.2. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on a Lie al-
gebroid (A, [·, ·], ρ). Then, [Ni, Nj ]FN

= 0 for all i, j ∈ {1, 2, 3}. In particular,
T Ni = 0, i = 1, 2, 3.

Recall that two Poisson bivectors π and π′ on a Lie algebroid A are compatible
if π + π′ is a Poisson bivector on A or, equivalently, if [π, π′] = 0. The Poisson
bivectors πi, i = 1, 2, 3, of an ε-hypersymplectic structure are pairwise compatible,
i.e.,

(9) [πi, πj ] = 0, i, j ∈ {1, 2, 3}.

Having an ε-hypersymplectic structure (ω1, ω2, ω3) on a Lie algebroid A, we may

define g ∈
⊗2

A∗, through the vector bundle map g♭, by setting

(10) g♭ = εi−1εi+1 ω
♭
i−1 ◦ π

#
i ◦ ω♭

i+1,
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where the indices are taken in Z3. Moreover, (g♭)∗ = −ε1ε2ε3 g
♭, which means that,

in the case where ε1ε2ε3 = 1, g is a 2-form on A and, consequently, g−1 is a bivector
on A. Notice that

(11) (g−1)# = εi−1εi+1 π
#
i+1 ◦ ω

♭
i ◦ π

#
i−1,

with the indices taken in Z3.

Proposition 2.3. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on a Lie al-
gebroid (A, [·, ·], ρ), with ε1ε2ε3 = 1. Then,

i) g is a symplectic form on A;
ii) g−1 is a Poisson bivector on A;
iii) g−1 is compatible with πi, i.e., [πi, g

−1] = 0, i = 1, 2, 3.

From an ε-hypersymplectic structure on a Lie algebroid, we may derive several
PN , ΩN and PΩ structures on that Lie algebroid, according to the next theorem.

Theorem 2.4. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on a Lie algebroid
(A, [·, ·], ρ). Then, for all i, j ∈ {1, 2, 3},

i) the pairs (πi, Nj), with i 6= j, are PN structures on A;
ii) the pairs (ωi, Nj), with i 6= j, are ΩN structures on A;
iii) the pairs (πi, ωj), are PΩ structures on A.

Moreover, when ε1ε2ε3 = 1,

iv) the pairs (πi, Ni) and (g−1, Ni), are PN structures on A;
v) the pairs (ωi, Ni) and (g,Ni), are ΩN structures on A;
vi) the pairs (πi, g) and (g−1, ωi), are PΩ structures on A.

From Proposition 1.1 ii) we immediately deduce:

Corollary 2.5. If (ω1, ω2, ω3) is an ε-hypersymplectic structure on (A, [·, ·], ρ),
then ωi is a complementary form of πj, for all i, j ∈ {1, 2, 3}. In the case where
ε1ε2ε3 = 1, g is a complementary form of πi and each ωi is a complementary form
of g−1, i = 1, 2, 3.

Remark 2.6. Notice that the 2-forms of the ΩN structures in Theorem 2.4 ii) and
v) are symplectic. So, besides being ΩN structures, the pairs in the statements ii)
and v) of that theorem, are also Hitchin pairs.

3. Compatibility of structures

The compatibility of structures that are defined by pairs of tensors on a Lie
algebroid was studied in [2].

Definition 3.1. Two PN (respectively, ΩN , PΩ) structures on a Lie algebroid A

are said to be compatible if their sum is still a PN (respectively, ΩN , PΩ) structure
on A. Two complementary forms of a given Poisson bivector on A are compatible
if their sum is still a complementary form of the same Poisson bivector.

In what follows, we show that the PN , ΩN and PΩ structures determined
by an ε-hypersymplectic structure on a Lie algebroid provide many examples of
compatibility. In some cases, we also have the compatibility of complementary
forms.
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3.1. The general case. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on a

Lie algebroid (A, [·, ·], ρ). Set, as before, π#
i = (ω♭

i )
−1 and Ni = π

#
i−1 ◦ ω

♭
i+1.

We start with the general case, i.e., the product ε1ε2ε3 can be either 1 or −1.
In this case we know, from Theorem 2.4, that for i, j ∈ {1, 2, 3}, with i 6= j, the
pairs (πi, Nj), (ωi, Nj) and (πi, ωj) are, respectively, PN , ΩN and PΩ structures
on A. So, we have six structures of each type determined by the ε-hypersymplectic
structure. Notice that the pairs (πi, ωi), i = 1, 2, 3, are also PΩ structures, but

they are trivial in the sense that π
#
i ◦ ω♭

i = IdA, so that they are not interesting
from our point of view.

Proposition 3.2. With the indices taken in Z3, we have:

i) the PN structures (πi, Ni−1) and (πi, Ni+1) are compatible;
ii) the PN structures (πi−1, Ni) and (πi+1, Ni) are compatible.

Proof. i) From Proposition 2.2 and equation (6), we have that Ni−1 + Ni+1 is a
Nijenhuis tensor on A. Since the pairs (πi, Ni−1) and (πi, Ni+1) are PN structures

on A, it is obvious that the equality (Ni−1 + Ni+1) ◦ π
#
i = π

#
i ◦ (Ni−1 + Ni+1)

∗

holds and also that C(πi, Ni−1 +Ni+1) = 0, see (4). Thus, i) is proved.
ii) We use (9) to get that πi−1 + πi+1 is a Poisson bivector. Since the conditions

Ni ◦ (πi−1 +πi+1)
# = (πi−1+πi+1)

# ◦N∗

i and C(πi−1+πi+1, Ni) = 0 hold because
(πi−1, Ni) and (πi+1, Ni) are PN structures on A, the proof is complete. �

Proposition 3.3. With the indices taken in Z3, we have:

i) the ΩN structures (ωi, Ni−1) and (ωi, Ni+1) are compatible;
ii) the ΩN structures (ωi−1, Ni) and (ωi+1, Ni) are compatible.

Proof. As we already observed in the proof of Proposition 3.2 i), Ni−1 + Ni+1 is
a Nijenhuis tensor on A. We have ω♭

i ◦ (Ni−1 + Ni+1) = (Ni−1 + Ni+1)
∗ ◦ ω♭

i ,

because ω♭
i ◦Ni−1 = N∗

i−1 ◦ ω
♭
i and ω♭

i ◦ Ni+1 = N∗

i+1 ◦ ω
♭
i . Since (ωi)Ni−1+Ni+1

=
(ωi)Ni−1

+ (ωi)Ni+1
and the 2-forms (ωi)Ni−1

and (ωi)Ni+1
are closed, the 2-form

(ωi)Ni−1+Ni+1
is also closed. This completes the proof of i). The proof of ii) is

similar. �

According to the observation in Remark 2.6, all the pairs in Proposition 3.3 are
Hitchin pairs. Moreover, from i), we have that the Hitchin pairs (ωi, Ni−1) and
(ωi, Ni+1) are compatible in the sense that (ωi, Ni−1 +Ni+1) is still a Hitchin pair.

Proposition 3.4. The PΩ structures (πi−1, ωi) and (πi+1, ωi) are compatible,
where the indices are taken in Z3.

Proof. The sum πi−1 + πi+1 is a Poisson bivector on A (see (9)). From (7) and
(8), we have (πi+1 + πi−1)

# ◦ (ωi)
♭ = Ni−1 + εi+1Ni+1. It remains to prove that

(ωi)Ni−1+εi+1Ni+1
is closed. Since, from Theorem 2.4 ii), the pairs (ωi, Ni−1) and

(ωi, Ni+1) are ΩN structures, the 2-forms (ωi)Ni−1
and (ωi)Ni+1

are closed. Thus,
(ωi)Ni−1+εi+1Ni+1

= (ωi)Ni−1
+ εi+1(ωi)Ni+1

is closed. �

3.2. The case ε1ε2ε3 = 1. Now, we consider the case where we have an ε-
hypersymplectic structure on a Lie algebroid (A, [·, ·], ρ), with ε1ε2ε3 = 1. In this
case, we know from Theorem 2.4 iv) that the pairs (πi, Ni) and (g−1, Ni), i = 1, 2, 3,
are PN structures on (A, [·, ·], ρ) and so the total number of PN structures deter-
mined by the ε-hypersymplectic structure is twelve.

We may improve Proposition 3.2.
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Proposition 3.5. For all indices i, j, k, l ∈ {1, 2, 3},
i) the PN structures (πi, Nj) and (πk, Nl) are compatible;
ii) the PN structures (g−1, Ni) and (g−1, Nj) are compatible;
iii) the PN structures (g−1, Ni) and (πj , Nk) are compatible.

Proof. i) As before, πi+πk is a Poisson bivector and Nj +Nl is a Nijenhuis tensor.

Since Ni◦π
#
j = π

#
j ◦N∗

i , the equality (Nj+Nl)◦(πi+πk)
# = (πi+πk)

#◦(Nj+Nl)
∗

holds for all i, j, k, l ∈ {1, 2, 3}. Finally, from (4), we get C(πi + πk, Nj + Nl) = 0
and the proof is complete.

ii) The proof is similar to Proposition 3.2 i).
iii) From Proposition 2.3, g−1 + πj is a Poisson bivector on A. The rest of the

proof is similar to case i). �

Summarizing, we have:

Theorem 3.6. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on a Lie algebroid
(A, [·, ·], ρ), with ε1ε2ε3 = 1. Then, the twelve PN structures (πi, Nj), (g

−1, Nk),
i, j, k ∈ {1, 2, 3}, on A, are pairwise compatible.

Concerning the ΩN structures obtained from an ε-hypersymplectic structure,
with ε1ε2ε3 = 1, we know, from Theorem 2.4 v), that the pairs (ωi, Ni) and (g,Ni),
i = 1, 2, 3, are ΩN structures. Thus, the total number of ΩN structures is twelve
and we have:

Proposition 3.7. For all indices i, j, k, l ∈ {1, 2, 3},

i) the ΩN structures (ωi, Nj) and (ωk, Nl) are compatible;
ii) the ΩN structures (g,Ni) and (g,Nj) are compatible;
iii) the ΩN structures (g,Ni) and (ωj , Nk) are compatible.

Thus, we get the following:

Theorem 3.8. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on a Lie alge-
broid (A, [·, ·], ρ), with ε1ε2ε3 = 1. Then, the twelve ΩN structures on A, (ωi, Nj),
(g,Nk), i, j, k ∈ {1, 2, 3}, are pairwise compatible.

Lastly we discussed the PΩ structures. It is known that, in the case of an ε-
hypersymplectic structure with ε1ε2ε3 = 1, the pairs (πi, g) and (g−1, ωi) are PΩ
structures, for all i ∈ {1, 2, 3} (see Theorem 2.4 vi)). Thus, the total number of
nontrivial PΩ structures is twelve. Notice that the pair (g−1, g) is a trivial PΩ
structure.

Proposition 3.9. For all indices i, j, k, l ∈ {1, 2, 3},

i) the PΩ structures (πi, g) and (πj , g) are compatible;
ii) the PΩ structures (πi, g) and (g−1, ωj) are compatible;
iii) the PΩ structures (πi, g) and (πj , ωk) are compatible;
iv) the PΩ structures (g−1, ωi) and (g−1, ωj) are compatible;
v) the PΩ structures (g−1, ωi) and (πj , ωk) are compatible;
vi) the PΩ structures (πi, ωj) and (πk, ωl) are compatible;
vii) the trivial PΩ structure (g−1, g) is compatible with all the other PΩ struc-

tures.

Proof. i) From equation (9), πi +πj is a Poisson bivector on A. We have π#
i ◦ g♭ =

εi−1εi+1Ni+1◦π
#
i ◦ω♭

i+1 = εi−1π
#
i−1◦ω

♭
i+1 = εi−1Ni. The 2-forms g

π
#

i ◦g♭ = εi−1gNi

being closed, it is obvious that g(π#

i +π
#

j )◦g♭ = εi−1gNi
+ εj−1gNj

is also closed.
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ii) From Proposition 2.3, πi+g−1 is a Poisson bivector on A. From (11), (7) and
(8) we get (g−1)#◦ ω♭

j = εj−1Nj−1◦Nj+1, which implies Nj◦(g
−1)#◦ ω♭

j = εj−1IdA,

because Nj ◦ Nj−1 ◦ Nj+1 = IdA. But, since N−1
j = εjNj , we get (g−1)# ◦ ω♭

j =

εj−1εjNj . The pairs (g, εi−1Ni) and (ωj , εjNj) being compatible ΩN structures
(see Proposition 3.7), the 2-form (g+ωj)π#

i ◦g♭+(g−1)#◦ω♭
j
= (g+ωj)εi−1Ni+εj−1εjNj

is closed and the proof of ii) is complete.
iii) As in i), we have that πi + πj is a Poisson bivector on A. For the rest of

the proof, just notice that π#
j ◦ ωk is equal to IdA if j = k, or is equal to Nj−1, if

k = j + 1, or εj+1Nj+1, if k = j − 1. We also have π
#
i ◦ g♭ = εi−1Ni. In any case,

the 2-form (ωk + g)
π
#

i ◦g♭+π
#

j ◦ω♭
k
is closed because the pairs (g,Ni) and (ωj , Nk) are

compatible ΩN structures.
The proofs of iv) – vi) are similar. �

The Proposition 3.9 can be summarized as follows:

Theorem 3.10. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on a Lie alge-
broid (A, [·, ·], ρ), with ε1ε2ε3 = 1. Then, the sixteen PΩ structures (πi, ωj), (πk, g),
(g−1, ωl) and (g−1, g), i, j, k, l ∈ {1, 2, 3}, on A, are pairwise compatible.

From Proposition 1.1, we get the following:

Corollary 3.11. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on a Lie alge-
broid (A, [·, ·], ρ), with ε1ε2ε3 = 1. Then, the complementary forms g, ω1, ω2 and
ω3 of π1, (respectively of π2, of π3 and of g−1) are pairwise compatible.
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