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Keywords: Nijenhuis, L∞-algebra, Lie n-algebra, Courant algebroid, Lie algebroid.

Introduction

L∞-algebras, introduced by Lada and Stasheff [16], who called them strongly
homotopy Lie algebras, are collections of n-ary operations, assumed to satisfy some
homogeneous relations that reduce to the Jacobi identity when only the binary
operation is not trivial. These structures gained notoriety when Kontsevitch used
L∞-morphisms to prove the existence of star-products on Poisson manifolds [11].
derived an L∞-algebra from a Poisson element and an abelian subalgebra of a differ-
ential graded Lie algebra. For instance, an L∞-algebra encodes a Poisson structure
in a neighborhood of a coisotropic submanifold, provided that a linear transversal is
given, see [7] and [6]. This makes L∞-algebras a central tool for studying Poisson
brackets, but there are more occurences. Roytenberg and Weinstein [24] gave a
description of the so-called Courant algebroids in terms of Lie 2-algebras. In the
same vein, Rogers [21] encodes n-plectic manifolds by Lie n-algebras and Frégier,
Rogers and Zambon [8] used this formalism to construct moment maps of those.

In this paper we develop a theory of Nijenhuis forms on L∞-algebras. Here, by
Nijenhuis forms, we mean a generalization of the notion of Nijenhuis (1, 1)-tensors
on manifolds, i.e., (1, 1)-tensors whose Nijenhuis torsion vanishes. On manifolds,
Nijenhuis tensors are unary operations on the Lie algebra of vector fields. Since,
when dealing with L∞-algebras, one has to replace Lie algebra brackets by collec-
tions of n-ary brackets for all integers n ≥ 1, we also want to define Nijenhuis forms
that are collections of n-ary operations for all integers n ≥ 1. Our main idea is
based on the fact that, given a Lie algebra (g, [., .]) and a linear endomorphism N
of g, N is Nijenhuis if deforming twice by N the original bracket yields the original
bracket deformed by N2. We translate this idea to L∞-algebras, where the brackets
to be deformed are their n-ary brackets.

We present several examples of Nijenhuis forms on L∞-algebras. The first exam-
ple is universal, in the sense that every L∞-structure admits it: the Euler map S,
that multiplies an element by its degree. Nijenhuis operators on ordinary graded
Lie algebras are among the most trivial examples. Poisson elements, and more
generally, Maurer-Cartan elements of differential graded Lie algebras are also ex-
amples, which are not purely made of vector valued 1-forms, but which are the sum
of a vector valued 1-form with a vector valued 0-form. Less trivial examples are
given on Lie n-algebras. On those, we have Nijenhuis forms which are the sum of
a family of vector valued k-forms. An interesting case is when the Lie n-algebra is
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associated to an n-plectic manifold [21]. The case of Lie 2-algebras is treated sep-
arately, and we have Nijenhuis forms which are the sum of a vector valued 1-form
with a vector valued 2-form.

We discuss how Nijenhuis tensors on Courant algebroids [5, 13, 2, 3] fit in our
defintion of Nijenhuis forms on some L∞-algebras. In order to include Lie algebroids
in our examples, we recall the concept of multiplicative L∞-algebras (related to P∞-
algebras in [6]). In the last part of the paper, our examples come from well-known
structures on Lie algebroids, defined by pairs of compatible tensors [15, 1, 3], such
as ΩN -, Poisson-Nijenhuis [14] and PΩ-structures.

Very recently, while we were about to finish this paper, a notion of Nijenhuis
operator on Lie 2-algebras was introduced in [19], using a different perspective.
That definition is a particular case of ours, as we explain in Remark 4.14.

The paper is organized in seven sections. In Section 1 we introduce a bracket
of graded symmetric vector valued forms on a graded vector space that we call
Richardson-Nijenhuis bracket, because it reduces to the usual Richardson-Nijenhuis
bracket of vector valued forms on a (non-graded) vector space. With this graded
bracket, we characterize L∞-structures as Poisson elements on the graded Lie al-
gebra of graded symmetric vector valued forms. In Section 2, we present our main
definition of Nijenhuis vector valued form with respect to an L∞-algebra, or more
generally, with respect to a vector valued form of degree 1. Relaxing a bit the
definition of Nijenhuis vector valued form, yields the notions of weak Nijenhuis and
co-boundary Nijenhuis forms, which provide interesting examples to be discussed in
the next sections. Section 2 also contains the first examples of Nijenhuis forms on
symmetric graded Lie algebras and symmetric differential graded Lie algebras: the
Euler map, Poisson and Maurer-Cartan elements. Section 3 is devoted to Nijenhuis
forms on Lie n-algebras. We construct examples of Nijenhuis forms on general Lie
n-algebras, in particular on those defined by n-plectic manifolds. The case n = 2
is treated separately, in Section 4. There, we find necessary and sufficient condi-
tions to have a Nijenhuis form which is the sum of a vector valued 1-form with a
vector valued 2-form which is, in fact, the most general case. The importance of
Lie 2-algebras appears in Section 5, where we focus on Courant algebroids. Using
a construction established in [24], we associate a Lie 2-algebra to each Courant al-
gebroid and we relate (1, 1)-tensors with vanishing Nijenhuis torsion on a Courant
algebroid, with Nijenhuis forms on the corresponding associated Lie 2-algebra. In
Section 6, we study multiplicative L∞-algebras and its relation with pre-Lie and
Lie algebroids. We introduce the notions of extension by derivation of (1, 1)-tensors
and of k-forms on a Lie algebroid, needed to construct examples of Nijenhuis forms
on Lie algebroids in the last section. In Section 7, the last one, we obtain, out of
ΩN -, Poisson-Nijenhuis and PΩ-structures on a Lie algebroid, examples of weak
Nijenhuis and co-boundary Nijenhuis vector valued forms.

1. Richardson-Nijenhuis bracket and L∞-algebras

In this section we extend the usual Richardson-Nijenhuis bracket of vector valued
forms on vector spaces [10] to graded symmetric vector valued forms on graded
vector spaces. Then, we use it to characterize L∞-structures on graded vector
spaces. We start by fixing some notations on graded vector spaces.

Let E be a graded vector space over a field K = R or C, that is, a vector
space of the form ⊕i∈ZEi. For a given i ∈ Z, the vector space Ei is called the
component of degree i, elements of Ei are called homogeneous elements of degree i,
and elements in the union ∪i∈ZEi are called the homogeneous elements. We denote
by |X| the degree of a non-zero homogeneous element X. Given a graded vector
space E = ⊕i∈ZEi and an integer p, one may shift all the degrees by p to get a new
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grading on the vector space E. We use the notation E[p] for the graded vector space
E after shifting the degrees by p, that is, the graded vector space whose component
of degree i is Ei+p.

We denote by S(E) the symmetric space of E which is, by definition, the quotient
space of the tensor algebra⊗E by the two-sided ideal I ⊂ ⊗E generated by elements
of the type X⊗Y −(−1)|X||Y |Y ⊗X, with X and Y arbitrary homogeneous elements
in E. For a given k ≥ 0, Sk(E) is the image of ⊗kE through the quotient map
⊗E 7→ ⊗E

I = S(E) and one has the following decomposition

S(E) = ⊕k≥0S
k(E),

where S0(E) is simply the field K. Moreover, when all the components in the
graded space E are of finite dimension, the dual of Sk(E) is isomorphic to Sk(E∗),
for all k ≥ 0. In this case, there is a one to one correspondence between

(i) graded symmetric k-linear maps on the graded vector space E,
(ii) linear maps from the space Sk(E) to E,
(iii) Sk(E∗)⊗ E.

Elements of the space Sk(E∗) ⊗ E are called symmetric vector valued k-forms.
Notice that S0(E∗)⊗E, the space of vector valued zero-forms, is isomorphic to the
space E.

Having the decomposition S(E) = ⊕k≥0S
k(E), every element in S(E) is the

sum of finitely many elements in Sk(E), k ≥ 0. We absolutely need to consider
also infinite sums, which is often referred in the literature as taking the completion
of S(E). By a formal sum, we mean a sequence φ : N

⋃
{0} → S(E) mapping an

integer k to an element ak ∈ Sk(E): we shall, by a slight abuse of notation, denote

by
∑∞
k=0 ak such an element. We denote the set of all formal sums by S̃(E). The

algebra structure on S(E) extends in an unique manner to S̃(E). For two formal
sums a =

∑∞
k=0 ak and b =

∑∞
k=0 bk we define a + b to be

∑∞
k=0(ak + bk), while

the product of a and b is the infinite sum
∑∞
k=0 ck with ck =

∑k
i=0 ai · bk−i (with ·

being the product of S(E)).
When all the components in the graded space E are of finite dimension, there is

a one to one correspondence between

(i) collections indexed by k ≥ 0 of graded symmetric k-linear maps on the
graded vector space E,

(ii) collections indexed by k ≥ 0 of linear maps from Sk(E) to E,

(iii) S̃(E∗)⊗ E.

Elements of the space S̃(E∗) ⊗ E are called symmetric vector valued forms and
shall be written as infinite sums

∑
Ki with Ki ∈ Si(E∗)⊗ E.

Let E be a graded vector space, E = ⊕i∈ZEi. The insertion operator of a
symmetric vector valued k-form K is an operator

ιK : S(E∗)⊗ E → S(E∗)⊗ E

defined by

(1) ιKL(X1, ..., Xk+l−1) =
∑

σ∈Sh(k,l−1)

ε(σ)L(K(Xσ(1), ..., Xσ(k)), ..., Xσ(k+l−1)),

for all L ∈ Sl(E∗) ⊗ E, l ≥ 0 and X1, · · · , Xk+l−1 ∈ E, where Sh(i, j − 1) stands
for the set of (i, j − 1)-unshuffles and ε(σ) is the Koszul sign which is defined as
follows

Xσ(1) ⊗ · · · ⊗Xσ(n) = ε(σ)X1 ⊗ · · · ⊗Xn,
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for all X1, · · · , Xn ∈ E. If L is an element in S0(E∗)⊗ E ' E, then (1) should be
understood as meaning that ιKL = 0, for all vector valued forms K and

ιLK(X1, ..., Xk−1) = K(L,X1, ..., Xk−1),

for all vector valued k-form K.
Allowing L and K to be symmetric vector valued forms, that is, L =

∑
i≥0 Li

and K =
∑
i≥0Ki, with Li and Ki vector valued i-forms, the previous definition

of insertion operator extends in the obvious way.
If K is an element in Si(E∗), i.e. a linear form on Si(E), i ≥ 0, one may define ιK

by a formula similar to (1). Moreover, ιK : S̃(E∗)→ S̃(E∗), with K ∈ S̃(E∗)⊗E,
is the zero map if and only if K = 0.

Now, we define a bracket on the space S̃(E∗)⊗E as follows. Given a symmetric
vector valued k-form K ∈ Sk(E∗) ⊗ E and a symmetric vector valued l-form L ∈
Sl(E∗)⊗E, the Richardson-Nijenhuis bracket of K and L is the symmetric vector
valued (k + l − 1)-form [K,L]

RN
, given by

(2) [K,L]
RN

= ιKL− (−1)K̄L̄ιLK,

where K̄ is the degree of K as a graded map, that is K(X1, · · · , Xk) ∈ E1+···+k+K̄ ,
for all Xi ∈ Ei. For an element X ∈ E, X̄ = |X|, that is, the degree of a vector
valued 0-form, as a graded map, is just its degree as an element of E.

Proposition 1.1. The space S̃(E∗) ⊗ E, equipped with the Richardson-Nijenhuis
bracket, is a graded (skew-symmetric) Lie algebra.

If K ∈ Sk(E∗)⊗ E is a vector valued k-form, an easy computation gives

(3) K(X1, · · · , Xk) = [Xk, · · · , [X2, [X1,K]
RN

]
RN
· · · ]

RN
,

for all X1, · · · , Xk ∈ E.

In [17], the authors defined a multi-graded Richardson-Nijenhuis bracket, in a
graded vector space, but their approach is different from ours.

Next, we recall the notion of L∞-algebra, following [9].

Definition 1.2. An L∞-algebra is a graded vector space E = ⊕i∈ZEi together with
a family of symmetric vector valued forms (li)i≥1 of degree 1, with li : ⊗iE → E
satisfying the following relation:

(4)
∑

i+j=n+1

∑
σ∈Sh(i,j−1)

ε(σ)lj(li(Xσ(1), · · · , Xσ(i)), · · · , Xσ(n)) = 0,

for all n ≥ 1 and all homogeneous X1, · · · , Xn ∈ E, where ε(σ) is the Koszul sign.
The family of symmetric vector valued forms (li)i≥1 is called an L∞-structure on
the graded vector space E. Usually, we denote this L∞-structure by µ :=

∑
i≥1 li

and we say, by an abuse of language, that µ has degree 1.

A slight generalization of an L∞-algebra is the so-called curved L∞-algebra. In
this case, the family of symmetric vector valued forms is (li)i≥0 that is, there is
an extra symmetric vector valued 0-form l0 ∈ E1, called the curvature, such that
l1(l0) = 0 and Equation (4) is replaced by

ln+1(l0, X1, · · · , Xn)+
∑

i+j=n+1

∑
σ∈Sh(i,j−1)

ε(σ)lj(li(Xσ(1), · · · , Xσ(i)), · · · , Xσ(n)) = 0.

There is an equivalent definition of L∞-algebra in terms of graded skew-symmetric
vector valued forms l′i of degree i− 2. This was, in fact, the original definition in-
troduced in [16]. The equivalence of both definitions is established by the so-called
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décalage isomorphism

li(X1, · · · , Xi) 7→ (−1)(i−1)|X1|+(i−2)|X2|+···+|Xi−1|l′i(X1, · · · , Xi),

X1, · · · , Xi ∈ E. The family of graded skew-symmetric brackets (l′i)i≥1 defines an
L∞-structure on the graded vector space E[−1] if each l′i has degree i− 2 and∑
i+j=n+1

∑
σ∈Sh(i,j−1)

(−1)i(j−1)ε(σ) sign(σ)lj(li(Xσ(1), · · · , Xσ(i)), · · · , Xσ(n)) = 0,

for all n ≥ 1 and allX1, · · · , Xn ∈ E, with sign(σ) being the sign of the permutation
σ.

Next, we see that some well-known structures on (graded) vector spaces are
examples of L∞-algebras.

We start with a symmetric graded Lie algebra, which is a graded vector space
E = ⊕i∈ZEi endowed with a binary graded symmetric bracket [., .] = µ of degree
1, satisfying the graded Jacobi identity i.e.

(5) [X, [Y, Z]] = (−1)|X|+1[[X,Y ], Z] + (−1)(|X|+1)(|Y |+1)[Y, [X,Z]],

for all homogeneous elements X,Y, Z ∈ E. Note that when the graded vector space
is concentrated on degree −1, that is, all the vector spaces Ei are zero, except
E−1, then (5) is the usual Jacobi identity and we get a Lie algebra with symmetric
bracket. We would like to remark that (5) can be written as

(6) µ(µ(X,Y ), Z) + (−1)|Y ||Z|µ(µ(X,Z), Y ) + (−1)|X|(|Y |+|Z|)µ(µ(Y,Z), X) = 0,

for all homogeneous elements X,Y, Z ∈ E. This means that a symmetric graded
Lie algebra is simply an L∞-algebra such that all the multi-brackets are zero except
the binary one. From this, we also conclude that a Lie algebra is an L∞-algebra
on a graded vector space concentrated on degree −1, for which all the brackets are
zero except the binary bracket.

Another special case of an L∞-algebra is a symmetric differential graded Lie
algebra. It is an L∞-structure on E = ⊕i∈ZEi, with all the brackets, except l1
and l2, being zero. In other words, a symmetric differential graded Lie algebra
is a symmetric graded Lie algebra (⊕i∈ZEi, [., .] = l2) endowed with a differential
d = l1, that is, a linear map d : ⊕i∈ZEi → ⊕i∈ZEi of degree 1 and squaring to zero,
satisfying the compatibility condition

d[X,Y ] + [d(X), Y ] + (−1)|X|[X, d(Y )] = 0,

for all homogeneous elements X,Y ∈ E. We shall denote a symmetric differential
graded Lie algebra by (E, d, [., .]) or by (E, l1 + l2).

We may also consider two particular cases of a curved L∞-algebra, that is to say,
a curved symmetric graded Lie algebra and a curved symmetric differential graded
Lie algebra. More precisely, a curved symmetric differential graded Lie algebra on
a graded vector space E = ⊕i∈ZEi is a symmetric differential graded Lie algebra
(E, d, [., .]) together with an element C ∈ E1 such that:

d(C) = 0 and [C, X] + d2X = 0, for all X ∈ E.

We shall denote the curved symmetric differential graded Lie algebra by (E,C, d, [., .])
or by (E,C + l1 + l2). When d = 0, the curved symmetric differential graded Lie
algebra is simply a curved symmetric graded Lie algebra.

The Richardson-Nijenhuis bracket on graded vector spaces, introduced previ-
ously, is intimately related to L∞-algebras. In the next theorem, that appears in
an implicit form in [23], we use the Richardson-Nijenhuis bracket to characterize a
(curved) L∞-structure on a graded vector space E as a homological vector field on
E.
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Theorem 1.3. Let E = ⊕i∈ZEi be a graded vector space, (li)i≥1 : ⊗iE → E
be a family of symmetric vector valued forms on E of degree 1 and l0 ∈ E1 be a
symmetric vector valued 0-form. Set µ =

∑
i≥1 li and µ′ =

∑
i≥0 li. Then,

i) µ is an L∞-structure on E if and only if [µ, µ]
RN

= 0;
ii) µ′ is a curved L∞-structure on E if and only if [µ′, µ′]

RN
= 0.

Proof. (i) It is a direct consequence of the following equalities that can be obtained
from (1) and (2):

[µ, µ]
RN

=
∑
n≥1

(
∑

i+j=n+1

[li, lj ]RN ) = 2
∑
n≥1

(
∑

i+j=n+1

ιli lj).

The proof of (ii) is easy. �

Notice that for the case of symmetric graded Lie algebras, the statement of
Theorem 1.3 appears in a natural way, since equation (6) is equivalent to

(ιµµ+ ιµµ)(X,Y, Z) = [µ, µ]
RN

(X,Y, Z) = 0.

2. Nijenhuis forms on L∞-algebras: definition and first examples

In this section we define a Nijenhuis vector valued form with respect to a given
vector valued form µ and deformation of µ by a Nijenhuis vector valued form. We
show that deforming an L∞-structure by a Nijenhuis vector valued form, one gets
an L∞-structure. Then, we present the first examples of Nijenhuis vector valued
forms on some L∞-algebras.

Definition 2.1. Let E be a graded vector space and µ be a symmetric vector
valued form on E of degree 1. A vector valued form N of degree zero is called

• weak Nijenhuis with respect to µ if[
µ,
[
N , [N , µ]

RN

]
RN

]
RN

= 0,

• co-boundary Nijenhuis with respect to µ if there exists a vector valued form
K of degree zero, such that[

N , [N , µ]
RN

]
RN

= [K, µ]
RN

,

• Nijenhuis with respect to µ if there exists a vector valued form K of degree
zero, such that[

N , [N , µ]
RN

]
RN

= [K, µ]
RN

and [N ,K]
RN

= 0.

Such a K is called a square of N . If N contains an element of the underlying
graded vector space, that is, N has a component which is a vector valued
zero form, then N is called Nijenhuis (respectively, co-boundary Nijenhuis)
vector valued form with curvature.

It is obvious that the following implications hold:

N Nijenhuis ⇒ N co-boundary Nijenhuis ⇒ N weak Nijenhuis

Remark 2.2. It would be of course tempting to choose K = ιNN in Defintion 2.1,
having in mind what happens for manifolds, and the fact that ιNN = N 2 for vector
valued 1-forms. However, it is not what examples show to be a reasonable definition.
Also, for N a vector valued 2-form we do not have, in general, [ιNN ,N ]

RN
= 0,

which says ιNN is not a good candidate for the square, except maybe for vector
valued 1-forms.

Proposition 2.3. Let (E,µ) be a (curved) L∞-algebra and N be a symmetric
vector valued form on E of degree zero. Then N is weak Nijenhuis with respect to
µ if and only if [N , µ]

RN
is a (curved) L∞-algebra.
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Proof. Using the Jacobi identity, we get

[µ, [N , [N , µ]
RN

]
RN

]
RN

= [[µ,N ]
RN
, [µ,N ]

RN
]
RN

+ [N , [µ, [N , µ]
RN

]
RN

]
RN

= [[µ,N ]
RN
, [µ,N ]

RN
]
RN

= [[N , µ]
RN
, [N , µ]

RN
]
RN
,

which concludes the proof. �

Given an L∞-structure µ and a symmetric vector valued form of degree zero N
on a graded vector space, we call [N , µ]

RN
the deformation of µ by N and denote

the deformed structure by µN . When µ is deformed k times by N , the deformed

structure is denoted by µN ,
k...,N or simply µk if there is no danger of confusion.

Weak Nijenhuis forms do not, in general, give hierarchies in any sense. However,
Nijenhuis forms do.

Theorem 2.4. Let N be a Nijenhuis vector valued form with respect to a (curved)
L∞-structure µ with square K, on a graded vector space E. Then,

(i) for all integers k ≥ 1, µk is a (curved) L∞-structure on E and N is Nijen-
huis with square K, with respect to µk;

(ii) for all integers k, l ≥ 1, [µk, µl]RN = 0.

Proof. (i) For the case k = 1, Proposition 2.3 together with the observation
that if N is Nijenhuis then it is also weak Nijenhuis with respect to µ, yields
that µ1 = [N , µ]

RN
is a (curved) L∞-algebra. Since N is Nijenhuis with

respect to µ with square K, we have

(7) [N , [N , [N , µ]
RN

]
RN

]
RN

= [N , [K, µ]
RN

]
RN
.

Applying the Jacobi identity on the right hand side of (7) and using the as-
sumption that N and K commute with respect to the Richardson-Nijenhuis
bracket, we get

[N , [N , µ1]
RN

]
RN

= [K, µ1]
RN
.

Thus, N is Nijenhuis with respect to µ1, with square K.
Assume, by induction, thatN is Nijenhuis with respect to µk with square

K. Then, we have

[N , [N , [N , µk]
RN

]
RN

]
RN

= [N , [K, µk]
RN

]
RN
,

or, equivalently,

[N , [N , µk+1]
RN

]
RN

= [K, µk+1]
RN

which shows that N is Nijenhuis with respect to µk+1, with square K.
Assuming, by induction, that µk is a (curved) L∞-structure, i.e. [µk, µk]

RN
=

0, we get
[[N , µk]

RN
, [N , µk]

RN
]
RN

= 0

by using the Jacobi identity, which means that µk+1 is a (curved) L∞-
structure. Thus, µk is a (curved) L∞-structure, for all k ≥ 1.

(ii) Let k and l be two positive integers with k ≥ l. The case k = l was proved
in i). For the case k > l, assume by induction that [µk, µn]

RN
= 0 for all

integers k ≥ n ≥ l. Then, the Jacobi identity gives

[µk+1, µl]RN = [[N , µk]
RN
, µl]RN

= [N , [µk, µl]RN ]
RN
− [µk, [N , µl]RN ]

RN
(8)

and by the induction assumption, both terms in (8) vanish. So, we get
[µk+1, µl]RN = 0. This completes the induction and shows that [µk, µl]RN =
0, for all k, l ≥ 1.
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�

Remark 2.5. Theorem 2.4 implies that:

(9) µ(t) =

∞∑
i=0

ti

i!
µi,

with t a formal parameter, satisfies the relation:

(10)

[
dk

dtk
µ(t),

dl

dtl
µ(t)

]
RN

= 0,

for all pair of positive integers k, l. Let us prove this point: (9) implies that

dk

dtk
µ(t) =

∞∑
i=0

ti

i!
µk+i.

Hence, [
dk

dtk
µ(t),

dl

dtl
µ(t)

]
RN

=

∞∑
i,j=0

ti+j

i!j!
[µk+i, µl+j ]

RN
.

Thus, (10) holds for all pair of positive integers k, l if item (ii) in Theorem 2.4 holds.
Now, recall from [20] that a symmetric vector valued form ν extends in a unique

manner to a coderivation ν̃ of the symmetric algebra S(E). The Richardson-
Nijenhuis bracket can be seen as being the graded commutator of coderivations

of S(E): said otherwise, the relation ˜[µ, ν]
RN

= [µ̃, ν̃] holds. In particular, for µ a
L∞-structure, the coderivation ν̃ squares to zero.

Recall also that given two L∞-structures µ and ν, a coalgebra endomorphism Φ
of S(E) that satisfies Φ ◦ µ̃ = ν̃ ◦Φ is called an L∞-morphisms from µ to ν. When
Φ is invertible, we speak of L∞-isomorphism. These facts extend to the algebra
S(E)⊗K[[t]], with K being the base field and t a formal parameter.

By definition of µk, µ(t) can be expressed as

µ(t) = eadtN (µ),

where e stands for the exponential (which makes sense since t is a formal parameter)
and ad refers to the adjoint action with respect to the Richardson-Nijenhuis bracket.
By usual abstract non-sense, the previous relation implies:

µ̃(t) = etÑ ◦ µ̃ ◦ e−tÑ

where µ̃ is the coderivation of the symmetric algebra S(E) associated to µ. Since

etÑ is an invertible coalgebra morphism, the L∞-structures µ(t) and µ are L∞-
isomorphic. This point should be interpreted as meaning that µ1 = d

dt

∣∣
t=0

µ(t) is a
trivial deformation of the L∞-structure µ. As usual in deformation theory, trivial
deformations are defined as being those which are the first derivatives at t = 0
of a parameter depending deformation µ(t) of a L∞-structure µ such that µ(t) is
L∞-isomorphic to µ. This is parallel to what happens for Nijenhuis deformations of
Poisson structures. Notice, however, that µ2 is not, a priori, a trivial deformation
of µ.

Recall from [14] that a Nijenhuis operator on a graded Lie algebra (E,µ = [., .])
is a linear map N : E → E such that its Nijenhuis torsion with respect to µ, defined
by

(11) TµN(X,Y ) := µ(NX,NY )−N(µ(NX,Y ) + µ(X,NY )−N(µ(X,Y ))),

for all X, Y ∈ E, is identically zero. For a binary bracket µ = [., .], the deformed
bracket by N is denoted by [., .]N and is given by [X,Y ]N = [NX,Y ] + [X,NY ]−
N [X,Y ]. It has been shown in [14] that if N is Nijenhuis on a Lie algebra (E, [., .]),
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then (E, [., .]N ) is also a Lie algebra andN is a morphism of Lie algebras. Also, it has
been shown that N is Nijenhuis if and only if deforming the original bracket of the
Lie algebra twice by N is equivalent to deform it once by N2, that is ([X,Y ]N )N =
[X,Y ]N2 . This can be stated using the notion of Richardson-Nijenhuis bracket on
the space of vector valued forms on a graded vector space E, as follows:

[N, [N,µ]
RN

]
RN

= [N2, µ]
RN
.

So, we conclude that Nijenhuis operators in the usual and traditional sense are, of
course, Nijenhuis in our sense also.

Next, we present the first examples of Nijenhuis vector valued forms on L∞-
algebras. We start by introducing the Euler map S, the map that simply counts
the degree of homogeneous elements in a graded vector space. More precisely, given
a graded vector space E = ⊕i∈ZEi, S : E → E is defined by S(X) = −|X|X, for
all homogeneous elements X ∈ E of degree |X|.

Notice that S, as a graded map, has degree zero, S̄ = 0. By a simple computa-
tion, using the definition of S, we get the following result.

Lemma 2.6. Let E = ⊕i∈ZEi be a graded vector space. Then,

[S, α]
RN

= ᾱ α,

for every symmetric vector valued form α on E of degree ᾱ.

Proposition 2.7. Let µ be a vector valued form of degree 1 on a graded vector
space E = ⊕i∈ZEi. The Euler map S is a Nijenhuis vector valued form with respect
to µ with square S.

Proof. Let µ =
∑∞
i=1 li. Applying Lemma 2.6 to each li, 1 ≤ i ≤ ∞, and taking the

sum we get:

[S, µ]
RN

=

∞∑
i=1

[S, li]RN =

∞∑
i=1

li = µ.

Therefore

[S, [S, µ]
RN

]
RN

= [S, µ]
RN
.

Since S̄ = 0, Lemma 2.6 implies that [S, S]
RN

= 0 and this completes the proof. �

Of course, the result can be enlarged for every µ-cocycle, that is, a vector valued
form α such that [µ, α]

RN
= 0.

Proposition 2.8. Let µ be a vector valued form of degree 1 on a graded vector
space E. Then, for every element α of degree 0 in S̃(E∗) ⊗ E with [µ, α]

RN
= 0,

S + α is Nijenhuis with respect to µ, with square S.

Next, we give some examples of Nijenhuis forms on symmetric graded and sym-
metric differential graded Lie algebras. For that, we need to introduce the notions
of Maurer-Cartan and Poisson elements.

A Maurer-Cartan element in a symmetric differential graded Lie algebra (E, d, [., .])
is an element e ∈ E0 such that

d(e)− 1

2
[e, e] = 0.

A Maurer-Cartan element in a symmetric curved differential graded Lie algebra
(E, C, d, [., .]) is an element e ∈ E0 such that

(d(e)− C)− 1

2
[e, e] = 0.

A Poisson element in a curved L∞-algebra (E,µ =
∑
i≥0 li) is an element π ∈

E0, such that l2(π, π) = 0.
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The next proposition provides an example of a Nijenhuis vector valued form on
a symmetric differential graded Lie algebra.

Proposition 2.9. Let µ = C + l1 + l2 be a curved symmetric differential graded
Lie algebra structure on a graded vector space E = ⊕i∈ZEi and π ∈ E0. Then,
N = π + S is a Nijenhuis vector valued form (with curvature π) with respect to µ
and with square 2π + S if, and only if, π is a Poisson element.

In this case, the deformed structure is the curved symmetric differential graded
Lie algebra (E, (C + l1(π)) + (l1 + l2(π, .)) + l2).

Proof. The proof of the equivalence follows from:

(12) [π + S,C + l1 + l2]
RN

= C + l1(π) + (l2(π, .) + l1) + l2,

[π + S, [π + S,C + l1 + l2]
RN

]
RN

= [π + S,C + l1 + l2 + l1(π) + l2(π, .)]
RN

= C + l1 + l2 + 2l1(π) + 2l2(π, .) + l2(π, π)
= [2π + S,C + l1 + l2]

RN
+ l2(π, π)

and

[π + S, 2π + S]
RN

= 2[π, π]
RN

+ [π, S]
RN

+ 2[S, π]
RN

+ [S, S]
RN

= 0.

The last statement follows directly from (12) and Theorem 2.4. �

Notice that, in Proposition 2.9, if we start with a symmetric differential graded
Lie algebra without curvature, that is, if C = 0, then, the deformed structure is a
curved symmetric differential graded Lie algebra with curvature l1(π). Moreover,
if l1 = 0, Proposition 2.9 provides an example of Nijenhuis vector valued form on a
symmetric graded Lie algebra.

Proposition 2.10. Let µ = C + l1 + l2 be a curved symmetric differential graded
Lie algebra structure on a graded vector space E = ⊕i∈ZEi and π ∈ E0. Then,
N = IdE + π is a Nijenhuis vector valued form (with curvature π) with respect to
µ and with square IdE + π if, and only if, π is a Maurer-Cartan element.

In this case, the deformed structure is the curved symmetric differential graded
Lie algebra (E, (l1(π)− C) + l2(π, .) + l2).

Proof. First notice that

(13) [π + IdE ,C + l1 + l2]
RN

= (l1(π)− C) + l2(π, .) + l2

and

[π + IdE , [π + IdE ,C + l1 + l2]
RN

]
RN

= l2(π, π) + l2(π, .)− l1(π) + C + l2

= −C− 2((l1(π)− C)− 1

2
l2(π, π)) + l1(π) + l2(π, .) + l2

= −2((l1(π)− C)− 1

2
l2(π, π)) + [π + IdE ,C + l1 + l2]

RN
.

This, together with the fact that [π+ IdE , π+ IdE ]
RN

= 0, imply that IdE +π is a
Nijenhuis vector valued form with respect to µ if, and only if, π is a Maurer-Cartan
element of the curved symmetric differential graded Lie algebra (E,µ). The last
statement follows from (13) and Theorem 2.4. �

3. Nijenhuis forms on Lie n-algebras

Lie n-algebras are particular cases of L∞-algebras for which only n+ 1 brackets
may be non-zero. We define Nijenhuis forms for this special case and we analyze,
in particular, the Lie n-algebra defined by an n-plectic manifold.

A graded vector space E = ⊕i∈ZEi is said to be concentrated in degrees p1, · · · pk,
with p1, · · · , pk ∈ Z, if Ep1 , · · · , Epk are the only non-zero components of E.
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Definition 3.1. A symmetric Lie n-algebra is a symmetric L∞-algebra whose
underlying graded vector space is concentrated on degrees −n, · · · ,−1.

Remark 3.2. Note that, by degree reasons, any vector valued k-form of degree 1
has to vanish for k ≥ n + 2. So, the only non-zero symmetric vector valued forms
(multi-brackets) on a symmetric Lie n-algebra are l1, · · · , ln+1.

Proposition 3.3. Let (E = E−n⊕· · ·⊕E−1, µ = l1 + · · ·+ln+1) be a Lie n-algebra.
Let N1, · · · , Nl be a family of symmetric vector valued k1, · · · , kl-forms, respectively,

of degree zero on E, with n+3
2 ≤ k1 ≤ · · · ≤ kl ≤ n+ 1. Then, N = S +

∑l
i=1Ni is

a Nijenhuis vector valued form with respect to µ, with square S + 2
∑l
i=1Ni. The

deformed Lie n-algebra structure is[
S +

∑l
i=1Ni, µ

]
RN

= µ+
[∑l

i=1Ni, l1

]
RN

+ · · ·+
[∑l

i=1Ni, ln−kl+2

]
RN

+
[∑

i 6=lNi, ln−kl+3

]
RN

+ · · ·+
[∑

i 6=lNi, ln−kl−1+2

]
RN

+
[∑

i 6=l,l−1Ni, ln−kl+3

]
RN

+ · · ·+
[∑

i 6=l,l−1Ni, ln−kl−1+2

]
RN

+ · · ·+
+ [N1, ln−k2+3]

RN
+ · · ·+ [N1, ln−k1+2]

RN
.

Proof. Let 1 ≤ i, j ≤ l. By Remark 3.2, any vector valued (m + ki − 1)-form of
degree 1, with m ≥ n− ki + 3, is identically zero; hence,

(14) [Ni, lm]
RN

= 0,

for all m ≥ n− ki + 3. Also, any vector valued (ki + kj +m− 2)-form, with m ≥ 1
is identically zero, because out of the conditions n+3

2 ≤ k1 ≤ · · · ≤ kl ≤ n+ 1 and
m ≥ 1 we get ki + kj +m− 2 ≥ n+ 2. Thus,

(15)
[
Ni, [Nj , lm]

RN

]
RN

= 0,

for all m ≥ 1. From Equations (14) and (15), we get[
S +

∑l
i=1Ni, µ

]
RN

= µ+
[∑l

i=1Ni, l1

]
RN

+ · · ·+
[∑l

i=1Ni, ln−kl+2

]
RN

+
[∑

i 6=lNi, ln−kl+3

]
RN

+ · · ·+
[∑

i 6=lNi, ln−kl−1+2

]
RN

+
[∑

i 6=l,l−1Ni, ln−kl+3

]
RN

+ · · ·+
[∑

i 6=l,l−1Ni, ln−kl−1+2

]
RN

+ · · ·+
+ [N1, ln−k2+3]

RN
+ · · ·+ [N1, ln−k1+2]

RN

andS +

l∑
i=1

Ni,

[
S +

l∑
i=1

Ni, µ

]
RN


RN

= µ+2

[
l∑
i=1

Ni, µ

]
RN

=

[
S + 2

l∑
i=1

Ni, µ

]
RN

.

It follows from the conditions n+3
2 ≤ k1 ≤ · · · ≤ kl ≤ n + 1 that, for 1 ≤ i, j ≤ l,

we have ki + kj − 1 ≥ n+ 2. By degree reasons, any vector valued k-form of degree
zero has to vanish for k ≥ n + 1. Hence, [Ni, Nj ]

RN
= 0 for all 1 ≤ i, j ≤ l, which

implies that [
S +

l∑
i=1

Ni, S + 2

l∑
i=1

Ni

]
RN

= 0.

�

Remark 3.4. In Proposition 3.3 one may replace each vector valued ki-form Ni by a
family of symmetric vector valued ki-forms. Also, we should stress that Proposition
3.3 is not a generalization of Proposition 2.9. Looking at π ∈ E0 in Proposition 2.9
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as a vector valued 0-form of degree zero, the assumptions of Proposition 3.3 do not
apply to π because they are not satisfied for n = 1, l = 1 and k1 = 0. Besides, notice
that in Proposition 2.9 E = ⊕i∈ZEi, while in Proposition 3.3 E = E−n⊕· · ·⊕E−1,
i.e., the degrees are concentrated in −n, · · · ,−1.

Next, we consider a particular class of Lie n-algebras, those associated to n-
plectic manifolds. Let us recall some definitions from [21].

Definition 3.5. An n-plectic manifold is a manifold M equipped with a non-
degenerate and closed (n+ 1)-form ω. It is denoted by (M,ω).

An (n− 1)-form α on an n-plectic manifold (M,ω) is said to be a Hamiltonian
form if there exists a smooth vector field χα on M such that dα = −ιχαω. The
vector field χα is called the Hamiltonian vector field associated to α. The space of
all Hamiltonian forms on an n-plectic manifold (M,ω) is denoted by Ωn−1

Ham(M).
Given two Hamiltonian forms α, β on an n-plectic manifold (M,ω), with Hamil-

tonian vector fields χα and χβ , respectively, one may define a bracket {., .} by
setting

{α, β} := ιχαιχβω.

It turns out that {α, β} is a Hamiltonian form with associated Hamiltonian vector
field [χα, χβ ], see [21].

Following [21], we may associate to an n-plectic manifold (M,ω) a symmetric
Lie n-algebra.

Theorem 3.6. Let (M,ω) be an n-plectic manifold. Set

Ei =

{
Ωn−1
Ham(M), if i = −1,

Ωn+i(M), if − n ≤ i ≤ −2

and E = ⊕−1
i=−nEi. Let the collection lk : E × k. . . × E → E, k ≥ 1, of symmetric

multi-linear maps be defined as

l1(α) =

{
(−1)|α|dα, if α 6∈ E−1,

0, if α ∈ E−1,

lk(α1, · · · , αk) =


0, if αi 6∈ E−1 for some 1 ≤ i ≤ k,
(−1)

k
2 +1ιχα1

· · · ιχαkω, if αi ∈ E−1 for all 1 ≤ i ≤ k and k is even,

(−1)
k−1
2 ιχα1

· · · ιχαkω, if αi ∈ E−1 for all 1 ≤ i ≤ k and k is odd,

for k ≥ 2, where χαi is the Hamiltonian vector field associated to αi. Then,
(E, (lk)k≥1) is a symmetric Lie n-algebra.

In the next proposition we give an example of a Nijenhuis vector valued form,
with respect to the L∞-algebra (Lie n-algebra) structure associated to a given n-
plectic manifold, which is the sum of a symmetric vector valued 1-form with a
symmetric vector valued i-form, with i = 2, · · · , n.

Proposition 3.7. Let (M,ω) be an n-plectic manifold with the associated symmet-
ric Lie n-algebra structure µ = l1 + · · · + ln+1. For any n-form η on the manifold
M , and any i = 2, . . . , n, define η̃i to be the symmetric vector valued i-form of
degree zero given by

(16) η̃i(β1, · · · , βi) =

{
ιχβ1 · · · ιχβi η, if βi ∈ E−1,

0, otherwise,

where χβ1 , · · · , χβn are the Hamiltonian vector fields of β1, · · · , βn, respectively.
Then, S+η̃i is a Nijenhuis vector valued form with respect to µ, with square S+2η̃i.
The deformed structure is

[S + η̃i, µ]
RN

= µ+ [η̃i, l1]
RN

+ [η̃i, l2]
RN
.
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The proof of Proposition 3.7 is based on the following lemma.

Lemma 3.8. For all 2 ≤ i ≤ n, and all homogeneous elements α1, · · · , αi ∈ E, we
have:

(1) η̃i(l1(α1), α2, · · · , αi) = 0,

(2) [η̃i, lm]
RN

=


0, m ≥ 3

−ιl2 η̃i, m = 2

d ◦ η̃i, m = 1

(3) [η̃i, [η̃i, lm]
RN

]
RN

= 0, m ≥ 1.

Proof. We start by noticing that from its definition, η̃i vanishes on ⊕−2
i=−nEi and

Im η̃i ⊂ E−i, i ≥ 2. So, to prove item (1), the only case we have to investigate is
when α1 ∈ E−2 and l1(α1), α2, · · · , αi are all Hamiltonian forms. Let χl1(α1) be the
Hamiltonian vector field associated to l1(α1). Then, we have

ιχl1(α1)
ω = −d(l1(α1)) = −d2α1 = 0,

thus χl1(α1) = 0, by the non-degeneracy of ω. This proves item (1).
Let us now compute [η̃i, lm]

RN
. When m ≥ 3, from the definitions of lm and η̃i,

we get
lm(η̃i(α1, · · · , αi), · · · , αm+i−1) = 0

and
η̃i(lm(α1, · · · , αm), · · · , αm+i−1) = 0,

for all α1, · · · , αi+m−1 ∈ E, i ≥ 2, so that [η̃i, lm]
RN

= 0. Since η̃i takes value in
E−i, we have ιη̃i l2 = 0, hence [η̃i, l2]

RN
= −ιl2 η̃i. From item (1) and definition of

η̃i we get [η̃i, l1]
RN

= d ◦ η̃i.
Last, we prove item (3). For m ≥ 3, [η̃i, [η̃i, lm]

RN
]
RN

= 0 is a direct consequence
of item (2). The case m = 2 follows from the fact that η̃i does not take value in
E−1, so l2(η̃i(α1, · · · , αi), αi+1) = 0, for all α1, · · · , αi+1 ∈ E. Hence, using item
(2) we get

ιη̃i [η̃i, l2]
RN

= 0 and ι[η̃i,l2]
RN
η̃i = 0,

which gives [η̃i, [η̃i, l2]
RN

]
RN

= 0. Similar arguments as those used above prove that
[η̃i, [η̃i, l1]

RN
]
RN

= 0. �

Proof. (of Proposition 3.7) From Lemma 3.8 we have

(17) [S + η̃i, µ]
RN

= µ+ [η̃i, l1]
RN

+ [η̃i, l2]
RN

and applying [S + η̃i, .]RN to both sides of Equation (17), we get

[S + η̃i, [S + η̃i, µ]
RN

]
RN

= µ+ 2[η̃i, l1]
RN

+ 2[η̃i, l2]
RN

= [S + 2η̃i, µ]
RN
.

Now, the equation
[S + η̃i, S + η̃i]RN = 0,

holds, for all i ≥ 2, as a consequence of ιη̃i η̃i = 0. �

From Proposition 3.7 we get the following result.

Theorem 3.9. Let (ηj)j≥1 be a family of n-forms on an n-plectic manifold (M,ω).
Let (E = E−n ⊕ · · · ⊕ E−1, µ = l1 + · · · + ln+1) be the Lie n-algebra associated to

(M,ω). For each 2 ≤ i ≤ n, define the vector valued i-forms (̃ηj)i as

(̃ηj)i(β1, · · · , βi) =

{
ιχβ1 · · · ιχβi η

j , if βk ∈ E−1 for all 1 ≤ k ≤ i,
0, otherwise
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where χβ1
, · · · , χβi are the Hamiltonian vector fields associated to the Hamiltonian

forms β1, · · · , βi, respectively. Then, N := S +
∑
j≥1

∑n
i=2 (̃ηj)i is a Nijenhuis

vector valued form with respect to the Lie n-algebra structure µ.

4. The case of Lie 2-algebras

In this section we treat the case of Lie 2-algebras. We show how to construct
Nijenhuis forms with respect to Lie 2-algebras, which are the sum of a vector valued
1-form with a vector valued 2-form.

We start by recalling that a Lie 2-algebra is a pair (E,µ), where E is a graded
vector space with degrees concentrated in −2 and −1, that is E = E−2⊕E−1, and
µ = l1 + l2 + l3 with l1, l2 and l3 being symmetric vector valued 1-form, 2-form
and 3-form, respectively, all of them of degree 1. For degree reasons, the brackets
l1 and l3 are not identically zero in the following cases:

l1 : E−2 → E−1, l3 : E−1 × E−1 × E−1 → E−2,

while the binary bracket l2 has two parts

l2|E−1×E−2
: E−1 × E−2 → E−2, l2|E−1×E−1

: E−1 × E−1 → E−1.

The equation [µ, µ]
RN

= 0 gives the following relations (by degree reasons, all the
missing cases are identically zero):

(18) [l1, l2]
RN

(f, g) = 0,

(19) [l1, l2]
RN

(X, f) = 0,

(20) (2[l1, l3]
RN

+ [l2, l2]
RN

) (X,Y, f) = 0,

(21) (2[l1, l3]
RN

+ [l2, l2]
RN

)(X,Y, Z) = 0,

(22) [l2, l3]
RN

(X,Y, Z,W ) = 0,

with X,Y, Z,W ∈ E−1 and f, g ∈ E−2.
Let us set

(23) l1 = ∂, l3 = ω

and, for all X,Y ∈ E−1 and f ∈ E−2,

(24) l2|E−1×E−1(X,Y ) = [X,Y ]2 and l2|E−1×E−2(X, f) = χ(X)f,

with χ : E−1 → End(E−2). Then, we have:

Lemma 4.1. A vector valued form µ = l1 + l2 + l3, with associated quadruple
(∂, χ, [., .]2, ω) given by (23) and (24), is a Lie 2-algebra structure on E = E−2⊕E−1

if and only if

(25) χ(∂f)g = −χ(∂g)f,

(26) [X, ∂f ]2 = ∂(χ(X)f),

(27) χ([X,Y ]2)f + χ(Y )χ(X)f − χ(X)χ(Y )f + ω(X,Y, ∂f) = 0,

(28) [[X,Y ]2, Z]2 + c.p. = ∂(ω(X,Y, Z)),

χ(W )ω(X,Y, Z)− χ(Z)ω(X,Y,W ) + χ(Y )ω(X,Z,W )− χ(X)ω(Y,Z,W ) =

−ω([X,Y ]2, Z,W ) + ω([X,Z]2, Y,W )− ω([X,W ]2, Y, Z)

−ω([Y, Z]2, X,W ) + ω([Y,W ]2, X, Z)− ω([Z,W ]2, X, Y ),(29)

for all X,Y, Z,W ∈ E−1 and f ∈ E−2.



NIJENHUIS FORMS ON L∞-ALGEBRAS AND POISSON GEOMETRY 15

Proof. We have the following equivalences, by applying the definition of Richardson-
Nijenhuis bracket: (18) ⇔ (25), (19) ⇔ (26), (20) ⇔ (27), (21) ⇔ (28) and
(22)⇔ (29). �

The quadruple (∂, χ, [., .]2, ω) of Lemma 4.1 is the quadruple associated to the
Lie 2-algebra structure µ = l1 + l2 + l3.

There is an associated Chevalley-Eilenberg differential to each Lie 2-algebra.
Before giving its definition, we need the next lemma.

Lemma 4.2. Let (E = E−2 ⊕ E−1, µ = l1 + l2 + l3) be a Lie 2-algebra with
corresponding quadruple (∂, χ, [., .]2, ω) and η ∈ Sk(E∗) ⊗ E be a vector valued
k-form of degree k − 2. Then,

[η, l2]
RN

(X0, . . . , Xk) =

k∑
i=0

(−1)iχ(Xi)η(X0, · · · , X̂i, · · · , Xk)

+
∑

0≤i<j≤k

(−1)i+jη([Xi, Xj ]2, X0, · · · , X̂i, · · · , X̂j , · · · , Xk),(30)

for all X0, . . . , Xk ∈ E−1 , where X̂i means the absence of Xi.

Proof. By degree reasons, η has to be of the form η : E−1 × k. . . × E−1 → E−2.
Using the Richardson-Nijenhuis bracket definition one gets Equation (30). �

Definition 4.3. Let E = E−2 ⊕ E−1 be a graded vector space concentrated on
degrees −2 and −1, Sk(E) ⊂ Sk(E∗)⊗ E be the subspace of all symmetric vector
valued k-forms of degree k−2 and S•(E) := ⊕k≥1Sk(E). Let χ : E−1 → End(E−2)
be a representation of vector spaces and [., .] : E−1×E−1 → E−1 a graded symmetric
bilinear map. Then, the Chevalley-Eilenberg differential dCE is the map

dCE : S•(E)→ S•(E)

such that, if η ∈ Sk(E), then dCEη ∈ Sk+1(E) is defined by

dCEη(X0, . . . , Xk) =

k∑
i=0

(−1)iχ(Xi)η(X0, · · · , X̂i, · · · , Xk)

+
∑

0≤i<j≤k

(−1)i+jη([Xi, Xj ], X0, · · · , X̂i, · · · , X̂j , · · · , Xk),

for all X0, . . . , Xk ∈ E−1, where X̂i means for the absence of Xi.

In general, the operator dCE does not square to zero. However, according to
Lemma 4.2 it can be written as

(31) dCE = [., l2]
RN
,

and we get, from the graded Jacobi identity of the Richardson-Nijenhuis bracket,
that dCE squares to zero if and only if [l2, l2]

RN
= 0.

Next, we explain how a crossed module of Lie algebras can be seen as a Lie
2-algebra. Let us first recall the definition of a crossed module of Lie algebras [26]:

Definition 4.4. A crossed module of Lie algebras (g, [., .]g) and (h, [., .]h) is a
homomorphism ∂ : g → h together with an action by derivation of h on g, that is,
a linear map χ : h→ Hom(g, g) such that

(32) ∂(χ(h)g) = [h, ∂(g)]h, for all g ∈ g, h ∈ h

and

(33) χ(∂(g1))g2 = [g1, g2]g, for all g1, g2 ∈ g.
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Such a crossed module will be denoted by (g, h, ∂, χ).

From a Lie 2-algebra with vanishing vector valued 3-form, we may get a crossed
module of Lie algebras.

Proposition 4.5. [4] Let (E = E−2 ⊕ E−1, µ = l1 + l2 + l3) be a Lie 2-algebra,
with corresponding quadruple (∂, χ, [., .]2, ω) given by (23) and (24). If ω = 0, then
(E−2, E−1, ∂, χ) is a crossed module of Lie algebras.

Proposition 3.3 provides the construction of Nijenhuis forms on Lie n-algebras.
However, for the case n = 2, that proposition does not give the possibility of having
a Nijenhuis vector valued 2-form. We intend to give an example of Nijenhuis vector
valued form with respect to a Lie 2-algebra structure µ on a graded vector space
E−2⊕E−1 which is not purely a 1-form, i.e. not just a collection of maps from Ei to

Ei, i = 1, 2. As we have mentioned before, elements of degree zero in S̃(E∗)⊗E are
necessarily of the form N + α with N : E → E a linear endomorphism preserving
the degree and α : E × E → E a symmetric vector valued 2-form of degree zero.

Theorem 4.6. Let µ = l1 + l2 + l3 be a Lie 2-algebra structure on a graded vector
space E = E−2⊕E−1 and α a symmetric vector valued 2-form of degree zero. Then,
S +α is a Nijenhuis vector valued form with respect to µ, with square of S + 2α, if
and only if

(34) α(l1(α(X,Y )), Z) + c.p. = 0,

for all X,Y, Z ∈ E−1.

Proof. By degree reasons, the only case where the vector valued 3-form [α, [α, l1]
RN

]
RN

is not identically zero is when it is evaluated on elements of E−1. In this case, we
get

(35)
[α, [α, l1]

RN
]
RN

(X,Y, Z) = [α, l1]
RN

(α(X,Y ), Z) + c.p.
−α([α, l1]

RN
(X,Y ), Z) + c.p.

= −2α(l1(α(X,Y )), Z) + c.p.,

for all X,Y, Z ∈ E−1. Again by degree reasons, [α, [α, l2]
RN

]
RN

and [α, l3]
RN

are
identically zero. So, we have

[S + α, [S + α, l1 + l2 + l3]
RN

]
RN

=

= [S + α, l1 + l2 + l3 + [α, l1]
RN

+ [α, l2]
RN

]
RN

= l1 + l2 + l3 + 2[α, l1]
RN

+ 2[α, l2]
RN

+ [α, [α, l1]
RN

]
RN

= [S + 2α, l1 + l2 + l3]
RN

+ [α, [α, l1]
RN

]
RN
.(36)

On the other hand, Lemma 2.6 and Equation (2) imply that

(37) [S + α, S + 2α]
RN

= 0.

Equations (35), (36) and (37) show that S + α is a Nijenhuis vector valued form
with respect to µ, with square S + 2α, if and only if α(l1(α(X,Y )), Z) + c.p. = 0,
for all X,Y, Z ∈ E−1. �

Corollary 4.7. Let µ = l1 + l2 + l3 be a Lie 2-algebra structure on a graded vector
space E = E−2 ⊕ E−1, with l1 = 0. Then, for every vector valued 2-form α of
degree zero, S + α is a Nijenhuis vector valued form with respect to µ, with square
S + 2α.

Combining Theorems 4.6 and 2.4 we get the following proposition.
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Proposition 4.8. Let µ = l1 + l2 + l3 be a Lie 2-algebra structure on a graded
vector space E = E−2 ⊕ E−1. Let α be a vector valued 2-form of degree zero such
that α(l1(α(X,Y )), Z)+ c.p. = 0, for all X,Y, Z ∈ E−1. Let µk stand for the vector
valued form defined by µk = [S+α, [S+α, · · · , [S+α, µ]

RN
· · · ]

RN
]
RN

, with k copies
of S+α. Then, S+α is a Nijenhuis vector valued form with respect to all the terms
of the hierarchy of successive deformations µk, with square S + 2α.

If µ = l1 + l2 + l3 is a Lie 2-algebra on E = E−2 ⊕ E−1 with l1 = 0, then
[., .]2, given by (24), is a Lie bracket on E−1. Also, the condition [l2, l3]

RN
= 0

means that l3 is a Chevalley-Eilenberg-closed 3-form of this Lie algebra E−1 valued
in E−2. This kind of Lie 2-algebras are usually called string Lie algebras. A Lie
2-algebra (E−2 ⊕ E−1, l1 + l2 + l3) with l2 = l3 = 0 and l1 invertible, is called a
trivial Lie 2-algebra. The next example is an application of Theorem 4.6 to a trivial
Lie 2-algebra.

Example 4.9. Let g be a vector space and [., .]g be a skew-symmetric bilinear map
on g. Let E−1 := {−1} × g, E−2 := {−2} × g and let ∂ : E−2 → E−1 be given by
(−2, x) 7→ (−1, x). Define α : E−1×E−1 → E−2 to be vector valued 2-form on the
graded vector space E = E−2 ⊕ E−1 as ((−1, x), (−1, y)) 7→ (−2, [x, y]g). Then, as
a direct consequence of Theorem 4.6, we have that S + α is Nijenhuis with respect
to ∂ if and only if [., .]g is a Lie bracket.

Let us now look at the deformation of a Lie 2-algebra structure.

Proposition 4.10. Let µ = l1 + l2 + l3 be a Lie 2-algebra structure on a graded
vector space E = E−2 ⊕ E−1, with associated quadruple (∂, [., .]2, χ, ω). Let α be
a symmetric vector valued 2-form of degree zero on E and set N = S + α. The
deformed structure µN is associated to the quadruple (∂′, [., .]′2, χ

′, ω′):

(38)

∂′f = ∂f,

[X,Y ]
′
2 = [X,Y ]2 + ∂(α(X,Y )),

χ′(X)f = χ(X)f − α(∂f,X),
ω′(X,Y, Z) = ω(X,Y, Z) + dCEα(X,Y, Z),

for all X,Y, Z ∈ E−1 and f ∈ E−2. If α satisfies (34), µN is a Lie 2-algebra
structure on E.

Proof. The first part of the statement follows from the following easy relations:

[S + α, µ]
RN

= l1 + (l2 + [α, l1]
RN

) + (l3 + [α, l2]
RN

);
[α, l1]

RN
(X,Y ) = l1(α(X,Y )), for all X,Y ∈ E−1;

[α, l1]
RN

(X, f) = −α(l1(f), X), for all X ∈ E−1, f ∈ E−2;
[α, l2]

RN
= dCEα.

The second part is a direct consequence of Theorem 4.6. �

Notice that, in the case of Proposition 4.10, the vector valued form S − α has
the inverse effect of S + α, that is, [S − α, [S + α, µ]

RN
]
RN

= µ.
As we have seen previously, string Lie algebras on E−2 ⊕ E−1 are in one to one

correspondence with Lie algebra structures on g := E−1 together with a represen-
tation of the Lie algebra g on the vector space V := E−2 and a Chevalley-Eilenberg
3-cocycle ω for this representation. Hence, we denote string Lie algebras as triples
(g, V, ω). According to Proposition 4.10, the deformation of a string Lie algebra
(g, V, ω) by S + α, just amounts to change the 3-cocycle ω into ω + dCEα. So
that, for string Lie algebras, adding up a coboundary, i.e., changing (g, V, ω) into
(g, V, ω + dCEα) can be seen as a Nijenhuis transformation by S + α.
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A Lie 2-subalgebra of a Lie 2-algebra (E = E−2 ⊕E−1, µ = l1 + l2 + l3) is a Lie
2-algebra (E′ = E′−2 ⊕ E′−1, µ

′ = l′1 + l′2 + l′3) with E′−2 ⊂ E−2 and E′−1 ⊂ E−1

vector subspaces,

l′1 = l1|E′ , l′2 = l2|E′×E′ and l′3 = l3|E′×E′×E′ .

Let us now investigate Lie 2-algebras structures for which χ = 0. There may be
quite a few such Lie 2-algebras but we are going to show that, after a Nijenhuis
transformation of the form S+α, such Lie 2-algebras will be decomposed as a direct
sum of a string Lie algebra with a trivial Lie 2-algebra.

Proposition 4.11. Given a Lie 2-algebra structure l1 + l2 + l3 on a graded vector
space E = E−2 ⊕ E−1 and corresponding quadruple (∂, [., .]2, χ, ω), with χ = 0,
there exists a Nijenhuis form S + α, with α a vector valued 2-form of degree zero,
such that the deformed bracket [S + α, l1 + l2 + l3]

RN
is the direct sum of a string

Lie 2-algebra with a trivial L∞-algebra.

Proof. We set Et−1 := Im(∂), Es−2 := Ker(∂) and we choose two subspaces Et−2 ⊂
E−2 and Es−1 ⊂ E−1 such that the following are direct sums: Et−2⊕Es−2 = E−2 and
Et−1 ⊕Es−1 = E−1. Since χ = 0, by (26), the bracket [., .]2 vanishes on E−1 ×Et−1;
so that, there exists a unique skew-symmetric bilinear map α : E−1 × E−1 → Et−2

such that

(39) ∂α(X,Y ) = −prEt−1
([X,Y ]2), for all X,Y ∈ E−1,

where prEt−1
stands for the projection on Et−1 with respect to Es−1. Notice that α is

unique. In fact, if α′ : E−1 × E−1 → Et−2 is another skew-symmetric bilinear map
satisfying (39), then (α − α′)(X,Y ) ∈ Ker(∂) = Es−2, for all X,Y ∈ E−1. Since
(α − α′)(X,Y ) is also an element of Et−2 and E−2 = Et−2 ⊕ Es−2 is a direct sum,
we have that (α− α′)(X,Y ) = 0, for all X,Y ∈ E−1, and so α = α′. Note that we
also have

(40) α(X,Y ) = 0 if X or Y belong to Et−1,

so that α(∂α(X,Y ), Z) = 0, for all X,Y, Z ∈ E−1. Hence, by Theorem 4.6, S+α is
a Nijenhuis form with square S+2α and, by Proposition 4.10, the deformed bracket
l′1 + l′2 + l′3 := [S+α, l1 + l2 + l3]

RN
is a Lie 2-algebra structure on E = E−2⊕E−1.

We claim that (Es−1 ⊕Es−2, l
′s
1 + l′s2 + l′s3 ) and (Et−1 ⊕Et−2, l

′t
1 + l′t2 + l′t3 ) are Lie

2-subalgebras of (E−2⊕E−1, l
′
1 + l′2 + l′3), where l′si and l′ti stand for the restrictions

of l′i to Es−1⊕Es−2 and Et−1⊕Et−2, respectively. We also claim that (Es−1⊕Es−2, l
′s
1 +

l′s2 + l′s3 ) is a string Lie 2-algebra while (Et−1 ⊕ Et−2, l
′t
1 + l′t2 + l′t3 ) is a trivial Lie

2-algebra, and that their direct sum is isomorphic to (E−2 ⊕ E−1, l
′
1 + l′2 + l′3).

Let (∂′, [., .]′, χ′, ω′) stand for the quadruple associated to the deformed structure
l′1 + l′2 + l′3. First, we prove that (Et−1 ⊕Et−2, l

′t
1 + l′t2 + l′t3 ) is a Lie 2-subalgebra of

(E−2 ⊕ E−1, l
′
1 + l′2 + l′3) with l′t2 = l′t3 = 0, hence it is a trivial Lie 2-subalgebra.

We use the explicit expressions given in Proposition 4.10 in the case χ = 0. Let
f ∈ Et−2 and X,Y, Z ∈ Et−1. Then, l′t1 (f) = ∂′(f) = ∂(f); thus l′t1 (Et−2) ⊂ Et−1.
Moreover, using (40) and the fact that [., .]2 vanishes on E−1 × Et−1, we get

l′t2 (X, f) = χ′(X)f = −α(∂f,X) = 0,

l′t2 (X,Y ) = [X,Y ]′2 = [X,Y ]2 + ∂(α(X,Y )) = 0,

so that l′t2 = 0. As for l′t3 , we have

l′t3 (X,Y, Z) = ω′(X,Y, Z) = ω(X,Y, Z) + dCEα(X,Y, Z).
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Now, ω(X,Y, Z) = 0 by (27) and dCEα(X,Y, Z)
(31)
= [α, l2]

RN
(X,Y, Z) = 0, by

(40) and because l2 vanishes on Et−1 × Et−1. We therefore obtain l′t3 = 0, which
completes the proof of the fact that (Et−1⊕Et−2, l

′t
1 + l′t2 + l′t3 ) is a Lie 2-subalgebra

of (E−2 ⊕ E−1, l
′
1 + l′2 + l′3) with l′t2 = l′t3 = 0.

Next we prove that (Es−2 ⊕ Es−1, l
′s
1 + l′s2 + l′s3 ) is a Lie 2-subalgebra of (E−2 ⊕

E−1, l
′
1 + l′2 + l′3) with l′s1 (Es−2) = 0 and hence it is a string Lie subalgebra. We use

again Proposition 4.10 with χ = 0. By definition of Es−2,

l′s1 (Es−2) = ∂′(Es−2) = ∂(Es−2) = 0

holds. Let f ∈ Es−2 = Ker(∂) and X,Y, Z ∈ Es−1. Then, we have l′s2 (X, f) =
χ′(X)f = −α(∂f,X) = 0 and

(41) l′s2 (X, f) ∈ Es−1.

Also,

l′s2 (X,Y ) = [X,Y ]′2 = [X,Y ]2 + ∂α(X,Y ) = [X,Y ]2 − prEt−1
([X,Y ]2),

which implies that

(42) l′s2 (X,Y ) ∈ Es−1.

From (28), and taking into account that ∂ = ∂′, we get

(43) ∂(ω′(X,Y, Z)) = l′2(l′2(X,Y ), Z) + c.p..

Using Relation (42), the right hand side of Equation (43) belongs to Es−1, while
according to the definition of Et−1, the left hand side of Equation (43) belongs to
Et−1 and since E−1 = Et−1⊕Es−1 is a direct sum, both sides of Equation (43) should
be zero. This implies that

(44) l′3(X,Y, Z) ∈ Es−2.

Relations (41) and (42) together with Equation (44) show that (Es−2 ⊕ Es−1, l
′
1 +

l′2 + l′3) is a Lie 2-subalgebra. This completes the proof. �

Next, it is interesting to see that Lie algebras themselves can be seen as Nijenhuis
forms. We start by noticing that any vector valued 2-form of degree zero on a graded
vector space E−2 ⊕ E−1 is of the form

(45) α(X,Y ) =

{
−α(Y,X), if X,Y ∈ E−1,

0, otherwise.

This, together with the fact that α always takes value in E−2, imply that

(46) α(α(X,Y ), Z) + c.p. = 0,

for all X,Y, Z ∈ E−1. Equations (45) and (46) mean that any symmetric vector
valued 2-form α on an arbitrary graded vector space E−2 ⊕ E−1 is a Lie algebra
(not a graded Lie algebra). In the next proposition, we show that there is also a
way to get a Lie bracket on a graded vector space E = E−2⊕E−1 from a Nijenhuis
form with respect to a Lie 2-algebra structure µ = l1 + l2 + l3 on the vector space
E.

Proposition 4.12. Let (E = E−2 ⊕E−1, µ = l1 + l2 + l3) be a Lie 2-algebra, with
corresponding quadruple (∂, [., .]2, χ, ω). Let α be a vector valued 2-form of degree
zero and define a bilinear map α̃ by setting

α̃(X,Y ) =


α(X,Y ), for X,Y ∈ E−1,

α(∂X, Y ), for X ∈ E−2, Y ∈ E−1,

α(X, ∂Y ), for X ∈ E−1, Y ∈ E−2,

α(∂X, ∂Y ), for X,Y ∈ E−2.
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Then, S+α is Nijenhuis vector valued 2-form with respect to µ, with square S+2α,
if and only if (E, α̃) is a Lie algebra.

Proof. By definition, α̃ is a skew-symmetric bilinear map on the vector space E
and we have

(47)
α̃(α̃(X,Y ), Z) + c.p. = α(∂α(X,Y ), Z) + c.p.,
α̃(α̃(f, Y ), Z) + c.p. = α(∂α(∂f, Y ), Z) + c.p.,

for all X,Y, Z ∈ E−1 and f ∈ E−2. Hence, Theorem 4.6 together with (47) imply
that α̃ is a Lie bracket on the vector space E if, and only if, S + α is a Nijenhuis
form with respect to µ, with square S + 2α. �

Last, we give a result involving weak Nijenhuis forms on a Lie 2-algebra.

Proposition 4.13. Let ∂ : E−2 → E−1 be a Lie 2-algebra structure on a graded
vector space E = E−2⊕E−1, that is, a Lie 2-algebra structure µ = l1 + l2 + l3 on E,
with l1 = ∂ and l2 = l3 = 0. Let α be a symmetric vector valued 2-form of degree
zero on the graded vector space E. If S +α is a weak Nijenhuis vector valued form
with respect to ∂, then E−1 is a Lie algebra with a representation on E−2.

Proof. According to Proposition 2.3, S + α is a weak Nijenhuis vector valued form
with respect to ∂ if and only if [S+α, ∂]

RN
is an L∞-structure on the graded vector

space E which, in turn, is equivalent to

[[S + α, ∂]
RN
, [S + α, ∂]

RN
]
RN

= 0

or to

[[α, ∂]
RN
, [α, ∂]

RN
]
RN

= 0.

Therefore, S + α is a weak Nijenhuis vector valued form with respect to ∂ if and
only if

(48) ∂α(∂α(X,Y ), Z) + c.p.(X,Y, Z) = 0

and

(49) α(∂α(X,Y ), ∂f) + c.p.(X,Y, ∂f) = 0,

for all X,Y, Z ∈ E−1 and f ∈ E−2. Equation (48) means that [X,Y ] := ∂α(X,Y )
defines a Lie bracket on E−1 since clearly it is skew-symmetric. If we define a map
· : E−1 × E−2 → E−2 by setting X · f := α(X, ∂f), then (49) can be written as

[X,Y ] · f = X · (Y · f)− Y · (X · f),

which means that · is a representation of E−1 on E−2. �

Remark 4.14. A notion of Nijenhuis operator on a Lie 2-algebra independently
appeared in [19], while the present paper was about to be completed. This notion is
a particular case of ours, by the following reasons. First, in [19], a Nijenhuis operator
is necessarily a vector valued 1-form. Second, if N = (N0, N1) is a Nijenhuis
operator in the sense of Definition 3.2. in [19], with respect to a Lie 2-algebra
l1 + l2 + l3, then

[N , [N , li]RN ]
RN

= [N 2, li]RN

holds for i = 1, 2 and 3, which means that N is a Nijenhuis vector valued form, in
our sense, with square N 2.
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5. Nijenhuis forms on Courant algebroids

We recall that one can associate a Lie 2-algebra to a Courant algebroid [24].
We use this construction to see how (1, 1)-tensors on a Courant algebroid, with
vanishing Nijenhuis torsion, are related with Nijenhuis forms with respect to the
associated Lie 2-algebra.

Definition 5.1. A Courant algebroid is a vector bundle E → M together with a
non-degenerate inner product 〈., .〉, a morphism of vector bundles ρ : E → TM and
a bilinear operator ◦ : Γ(E)× Γ(E)→ Γ(E), such that the following axioms hold:

(i) (Γ(E), ◦) is a Leibniz algebra, i.e., X ◦ (Y ◦Z) = (X ◦Y ) ◦Z +Y ◦ (X ◦Z),
(ii) ρ(X)〈Y, Z〉 = 〈X ◦ Y,Z〉+ 〈Y,X ◦ Z〉,
(iii) ρ(X)〈Y, Z〉 = 〈X,Y ◦ Z〉+ 〈X,Z ◦ Y 〉,

for all X,Y, Z ∈ Γ(E).

When item (i) in Definition 5.1 does not hold, the quadruple (E, ◦, ρ, 〈., .〉) is
called a pre-Courant algebroid [2].

The next proposition is stated in [12], for Courant algebroids. Since the proof
does not use the fact of ◦ being a Leibniz bracket, the result also holds for pre-
Courant algebroids.

Proposition 5.2. For every pre-Courant algebroid (E, ◦, ρ, 〈., .〉) we have

X ◦ (fY ) = f(X ◦ Y ) + (ρ(X)f)Y,

for all X,Y ∈ Γ(E) and f ∈ C∞(M).

Corollary 5.3. Let (E, ◦, ρ, 〈., .〉) and (E, ◦′, ρ′, 〈., .〉) be two pre-Courant alge-
broids. If ◦ = ◦′, then ρ = ρ′.

Proof. Assume that (E, ◦, ρ, 〈., .〉) and (E, ◦, ρ′, 〈., .〉) are both pre-Courant alge-
broids. By Proposition 5.2 we have

(ρ(X)f)Y = (ρ′(X)f)Y,

for all X,Y ∈ Γ(E) and f ∈ C∞(M), which implies that ρ = ρ′. �

We intend to define Nijenhuis deformation of Courant structures. Let (E, ◦, ρ, 〈., .〉)
be a Courant algebroid. For a given endomorphism N : E → E, the deformed
bracket by N is a bilinear operation ◦N , defined as:

X ◦N Y := NX ◦ Y +X ◦NY −N(X ◦ Y ),

for all X,Y ∈ Γ(E). The deformation of ρ by N is the map ρN given by ρN (X) =
ρ(NX), X ∈ Γ(E). The Nijenhuis torsion of N , with respect to the bracket ◦, is
defined as:

T◦N(X,Y ) := NX ◦NY −N(X ◦N Y ),

for all X,Y ∈ Γ(E). A direct computation shows that

T◦N =
1

2
(◦N,N − ◦N

2

).

All maps N : Γ(E)→ Γ(E) that will be considered here are C∞(M)-linear, that is
to say they are (1, 1)-tensors, that is, smooth sections of endomorphisms of E. We
denote an endomorphism (vector bundle morphism) of E and the induced map on
Γ(E) by the same letter.

According to [5], for every vector bundle E → M , if (Γ(E), ◦) is a Leibniz
algebra and N : E → E is any endomorphism whose Nijenhuis torsion vanishes,
then the pair (Γ(E), ◦N ) is a Leibniz algebra. However, given a Courant algebroid
(E, ◦, ρ, 〈., .〉) and a (1, 1)-tensor N , (E, ◦N , ρN , 〈., .〉) may fail to be a pre-Courant
algebroid, even if the Nijenhuis torsion of N vanishes. Indeed, from [5] we have the
following:
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Theorem 5.4. If N is an endomorphism on a pre-Courant algebroid (E, ◦, ρ, 〈., .〉),
then the quadruple (E, ◦N , ρN , 〈., .〉) is a pre-Courant algebroid if and only if

X ◦ (N +N∗)Y = (N +N∗)(X ◦ Y ) and (N +N∗)(Y ◦ Y ) = ((N +N∗)Y ) ◦ Y
for all X,Y ∈ Γ(E), where N∗ stands for the transpose of N , with respect to 〈., .〉.

Remark 5.5. In fact, Theorem 5.4 is slightly different from Theorem 4 in [5], because
there, the authors start from a Courant algebroid. However, the same proof is valid
for the pre-Courant algebroid case.

A Casimir function or simply a Casimir on a Courant algebroid (E, ◦, ρ, 〈., .〉) is
a function f ∈ C∞(M) such that ρ(X)f = 0, for all X ∈ Γ(E). It is easy to check
that f is a Casimir if and only if Df = 0, where D : C∞(M)→ Γ(E) is given by

(50) 〈Df,X〉 = ρ(X)f.

Also, if f is a Casimir, then

(51) (fX) ◦ Y = f(X ◦ Y ) = X ◦ (fY )

holds for all sections X,Y ∈ Γ(E).
The next lemma is a slight generalization of a result in [5].1

Lemma 5.6. Given a pre-Courant algebroid (E, ◦, ρ, 〈., .〉) and a map N : Γ(E)→
Γ(E), if N + N∗ = λIdΓ(E), for some Casimir function λ ∈ C∞(M), then

(E, ◦N , ρN , 〈., .〉) is a pre-Courant algebroid.

Proof. This lemma is a direct consequence of Theorem 5.4 together with (51). �

Theorem 5.7. Let (E, ◦, ρ, 〈., .〉) be a Courant algebroid and N a (1, 1)-tensor on
E whose Nijenhuis torsion vanishes and such that

N +N∗ = λIdΓ(E),

with λ being a Casimir function. Then, (E, ◦N , ρN , 〈., .〉) is a Courant algebroid.

Proof. Note that (E, ◦) is a Leibniz algebra, so that (E, ◦N ) is also a Leibniz algebra
since the Nijenhuis torsion of N vanishes. This, together with Lemma 5.6, prove
the theorem. �

Remark 5.8. For a (pre-)Courant algebroid (E, ◦, ρ, 〈., .〉), and a (1, 1)-tensor N on
E with N +N∗ = λIdΓ(E) and λ a Casimir function, we have

ρN (X)f = ρ(NX)f = 〈NX,Df〉 = 〈X,N∗Df〉 = 〈X, (−N + λIdΓ(E))Df〉,

for all X ∈ Γ(E), f ∈ C∞(M). This means that the operator DN : C∞(M)→ Γ(E)
associated with the (pre-)Courant algebroid (E, ◦N , ρN , 〈., .〉), is given by

(52) DN = (−N + λIdΓ(E)) ◦ D.

If we consider the skew-symmetrization of ◦, we obtain the bracket [., .] used in
the original definition of Courant algebroid [18]:

(53) [X,Y ] =
1

2
(X ◦ Y − Y ◦X),

with X,Y ∈ Γ(E). The deformation of [., .] by a (1, 1)-tensor N on E is the bracket
[., .]N on Γ(E), given by

[X,Y ]N := [NX,Y ] + [X,NY ]−N [X,Y ] =
1

2
(X ◦N Y − Y ◦N X).

The next lemma is an axiom included in the original definition of Courant alge-
broid [22].

1In [5], λ is a real number.
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Lemma 5.9. Let (E, ◦, ρ, 〈., .〉) be a Courant algebroid and D its associated opera-
tor, given by (50). Then,

[X, fY ] = f [X,Y ] + (ρ(X)f)Y − 1

2
〈X,Y 〉Df,

for all X,Y ∈ Γ(E) and f ∈ C∞(M), where [., .] is the bracket given by (53).

Remark 5.10. From the proof of Proposition 2.6.5 in [22], we realize that Lemma
5.9 also holds in the case of a pre-Courant algebroid.

In [24], it was proved that to each Courant algebroid corresponds a Lie 2-algebra.
The result in [24] is established using the graded skew-symmetric version of a Lie
2-algebra and the definition of Courant algebroid with skew-symmetric bracket.
With our conventions it goes as follows.

Let (E, ◦, ρ, 〈., .〉) be a Courant algebroid over M , with associated operator D,
given by (50). Consider the graded vector space V = C∞(M) ⊕ Γ(E), where the
elements of C∞(M) have degree −2 and the elements of Γ(E) have degree −1, and
the following symmetric vector valued forms l1, l2 and l3 on V , defined by:

(54)

l1f = Df
l2(X,Y ) = 1

2 (X ◦ Y − Y ◦X)
l2(X, f) = 1

2 〈X,Df〉,
l3(X,Y, Z) = 1

12 〈X ◦ Y − Y ◦X,Z〉+ c.p.,

for all X,Y, Z ∈ Γ(E) and f ∈ C∞(M), with l1, l2 and l3 being identically zero in
all the other cases. Notice that l2|Γ(E)×Γ(E) coincides with the bracket [., .] given
by (53).

Proposition 5.11. If (E, ◦, ρ, 〈., .〉) is Courant (respectively, pre-Courant) alge-
broid, then the pair (V, l1 + l2 + l3), constructed in above, is a symmetric Lie (re-
spectively, pre-Lie2) 2-algebra.

We call this symmetric Lie 2-algebra the symmetric Lie 2-algebra associated to
the Courant algebroid (E, ◦, ρ, 〈., .〉).

Starting with a (1, 1)-tensor on a Courant algebroid with vanishing Nijenhuis
torsion we construct, in the next proposition, a Nijenhuis form for the Lie 2-algebra
associated to that Courant structure. First, we need the following lemma.

Lemma 5.12. Let (E, ◦, ρ, 〈., .〉) be a pre-Courant algebroid with the associated
symmetric pre-Lie 2-algebra structure µ = l1 + l2 + l3, on the graded vector space
V = C∞(M)⊕ Γ(E). Let N be a (1, 1)-tensor on E such that

N +N∗ = λ IdΓ(E),

with λ a Casimir function. Then, the pre-Lie 2-algebra structure associated to the
pre-Courant algebroid (E, ◦N , ρN , 〈., .〉) is [N , l1 + l2 + l3]

RN
, with N defined as

follows:

(55) N|Γ(E) = N and N|C∞(M) = λ IdC∞(M).

Proof. Let us denote the pre-Lie 2-algebra associated to the pre-Courant algebroid
(E, ◦N , ρN , 〈., .〉) by lN1 + lN2 + lN3 . Using (52) and (54) and taking into account the
fact that D is a derivation, we have, for all f ∈ C∞(M) and for all X,Y, Z ∈ Γ(E),

(56) lN1 f = DNf = λDf −NDf = l1(N f)−N l1(f) = [N , l1]
RN

(f),

2A pre-Lie 2-algebra is a pair (E = E−2 ⊕E−1, l1 + l2 + l3), where E is a graded vector space
concentrated in degrees −2 and −1, and l1, l2 and l3 are symmetric graded vector valued 1-form,
2-form and 3-form, respectively, of degree 1.
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lN2 (X,Y ) =
1

2
(X ◦N Y − Y ◦N X) = l2(NX,Y ) + l2(X,NY )−Nl2(X,Y )

= [N , l2]
RN

(X,Y ),(57)

lN2 (X, f) =
1

2
〈X,DNf〉 =

1

2
〈X, (−N + λ IdΓ(E))Df〉 =

1

2
〈X,N∗Df〉

=
1

2
〈NX,Df〉 = l2(NX, f) + λl2(X, f)− λl2(X, f)

= l2(NX, f) + l2(X,N f)−N l2(X, f)

= [N , l2]
RN

(X, f)(58)

and

lN3 (X,Y, Z) =
1

12
〈X ◦N Y − Y ◦N X,Z〉+ c.p.(X,Y, Z)

=
1

6
〈lN2 (X,Y ), Z〉+ c.p.(X,Y, Z)

=
1

6
(〈l2(NX,Y ) + l2(X,NY ) + (N∗ − λIdΓ(E))l2(X,Y ), Z〉) + c.p.(X,Y, Z)

=
1

6
(〈l2(NX,Y ), Z〉+ 〈l2(X,NY ), Z〉+ 〈l2(X,Y ), NZ〉 − λ〈l2(X,Y ), Z〉)

+c.p.(X,Y, Z)

=
1

6
(〈l2(NX,Y ), Z〉+ c.p.(NX,Y, Z) + 〈l2(X,NY ), Z〉+ c.p.(X,NY,Z)

+〈l2(X,Y ), NZ〉+ c.p.(X,Y,NZ)− λ〈l2(X,Y ), Z〉+ c.p.(X,Y, Z))

= l3(NX,Y, Z) + l3(X,NY,Z) + l3(X,Y,NZ)−N l3(X,Y, Z)

= [N , l3]
RN

(X,Y, Z).(59)

Equations (56), (57), (58) and (59) complete the proof. �

For the case of a Courant algebroid, we have the following result.

Corollary 5.13. Let (E, ◦, ρ, 〈., .〉) be a Courant algebroid with the associated
symmetric Lie-2 algebra structure µ = l1 + l2 + l3, on the graded vector space
V = C∞(M)⊕ Γ(E). Let N be a (1, 1)-tensor on E such that{

N +N∗ = λ IdΓ(E),

(Γ(E), ◦N ) is a Leibniz algebra,

with λ a Casimir function. Then, the Lie 2-algebra structure associated to the
Courant algebroid (E, ◦N , ρN , 〈., .〉) is [N , l1 + l2 + l3], with N given by (55).

Proposition 5.14. Let (E, ◦, ρ, 〈., .〉) be a Courant algebroid with the associated
symmetric Lie 2-algebra structure µ = l1 + l2 + l3, on the graded vector space
V = C∞(M) ⊕ Γ(E). Let N be a (1, 1)-tensor on E whose Nijenhuis torsion with
respect to the bracket ◦ vanishes and satisfies the following conditions{

N +N∗ = λ IdΓ(E)

N2 + (N2)∗ = γ IdΓ(E),

with λ and γ Casimir functions. Define N and K as

N|Γ(E) = N and N|C∞(M) = λ IdC∞(M),

K|Γ(E) = N2 = λN +
γ − λ2

2
IdΓ(E) and K|C∞(M) = γ IdC∞(M).

Then, N is a Nijenhuis vector valued 1-form with respect to µ, with square K.
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Proof. Since the Nijenhuis torsion of N vanishes, (E, ◦N ) and (E, ◦N2

) are Leibniz
algebras [5], [2]. Applying Corollary 5.13 for the Courant algebroid (E, ◦, ρ, 〈., .〉),
the (1, 1)-tensor N and the vector valued 1-form N , twice, we get

(60) lN,N1 + lN,N2 + lN,N3 = [N , [N , l1 + l2 + l3]
RN

]
RN
,

where lN,N1 + lN,N2 + lN,N3 stands for the Lie 2-algebra structure associated to the
Courant algebroid (E, ◦N,N , ρN,N , 〈., .〉). Applying again Corollary 5.13 for the
Courant algebroid (E, ◦, ρ, 〈., .〉), the (1, 1)-tensor N2 and the vector valued 1-form
K, we get

(61) lN
2

1 + lN
2

2 + lN
2

3 = [K, l1 + l2 + l3]
RN
,

where lN
2

1 +lN
2

2 +lN
2

3 stands for the Lie 2-algebra structure associated to the Courant

algebroid (E, ◦N2

, ρN
2

, 〈., .〉). On the other hand, since the Nijenhuis torsion of

N vanishes, the Courant algebroids (E, ◦N,N , ρN,N , 〈., .〉) and (E, ◦N2

, ρN
2

, 〈., .〉)
coincide. Therefore, (60) and (61) imply that

[N , [N , l1 + l2 + l3]
RN

]
RN

= [K, l1 + l2 + l3]
RN
.

Finally, an easy computation shows that [N ,K]
RN

vanishes both on functions and
on sections of E. �

Since there exists a Lie 2-algebra associated to each Courant algebroid, there
was a hope that we could, given a Courant structure, find a Nijenhuis deformation
by a Nijenhuis tensor, which is the sum of a vector valued 1-form and a vector
valued 2-form, of the corresponding Lie 2-algebra structure, and prove, eventually,
that the Lie 2-algebra structure obtained by this procedure comes from a Courant
structure. But this fails, at least when the anchor is not identically zero, as it is
shown in the next theorem. First, notice that every C∞(M)-linear vector valued
form of degree 0 on E−2 ⊕ E−1, where E−2 := C∞(M) and E−1 := Γ(E), is the
sum of a 2-form α, a (1, 1)-tensor N and an endomorphism of C∞(M) of the form
f 7→ λf for some smooth function λ. Hence, we denote a C∞(M)-linear vector
valued form of degree zero on E−2 ⊕ E−1 as a sum, λ+N + α.

Theorem 5.15. Let (◦, ρ, 〈., .〉) be a Courant structure on a vector bundle E →M
with the associated Lie 2-algebra structure l1 + l2 + l3 on the graded vector space
V = E−2 ⊕ E−1, where E−2 := C∞(M) and E−1 := Γ(E). Let N = λ+N + α be
a C∞(M)-linear vector valued form of degree zero on V . Assume also that ρ is not
equal to zero on a dense subset of the base manifold. If [N , l1 + l2 + l3]

RN
is the Lie

2-algebra associated to a Courant structure with the same scalar product 〈., .〉, then

(1) λ is a Casimir,
(2) α = 0,
(3) N +N∗ = λIdΓ(E).

In this case, the Courant structure that [N , l1 + l2 + l3]
RN

is associated to, is
(◦N , ρN , 〈., .〉).

Proof. Set µ = l1+l2+l3 and denote the i-form component of [N , µ]
RN

by [N , µ]iRN ,
i = 1, 2. Then, for all X,Y ∈ Γ(E) and f ∈ C∞(M), we have

[N , µ]1RN (f) = ([λ, l1]
RN

+ [N, l1]
RN

)(f)
= l1(λf)−Nl1(f)
= λl1(f) + fl1(λ)−Nl1(f).

The first equation in (54) implies that, if [N , µ]
RN

is a Lie 2-algebra associated to
a Courant algebroid, then [N , µ]1RN has to be a derivation, and this happens if and
only if l1(λ) = 0. So, we get that λ is a Casimir and

(62) [N , µ]1RN (f) = (λIdΓ(E) −N)l1(f).
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On the other hand,

[N , µ]2
RN

(X, f) = ([λ, l2]
RN

+ [N, l2]
RN

+ [α, l1]
RN

)(X, f)

= l2(X,λf)− λl2(X, f) + l2(NX, f)− α(X, l1(f))

=
1

2
λ〈X, l1(f)〉 − 1

2
λ〈X, l1(f)〉+

1

2
〈NX, l1(f)〉 − α(X, l1(f))

=
1

2
〈NX, l1(f)〉 − α(X, l1(f)),(63)

and the same computations for (f,X) instead of (X, f) gives

(64) [N , µ]2
RN

(f,X) =
1

2
〈NX, l1(f)〉 − α(l1(f), X).

Since [N , µ]2
RN

(X, f) = [N , µ]2
RN

(f,X), from (63) and (64) we get α(X, l1(f)) = 0,
for all X ∈ Γ(E) and f ∈ C∞(M); so,

(65) [N , µ]2
RN

(X, f) =
1

2
〈NX, l1(f)〉.

For any X,Y ∈ Γ(E), we have

(66)
[N , µ]2

RN
(X,Y ) = ([λ, l2]

RN
+ [N, l2]

RN
+ [α, l1]

RN
)(X,Y )

= l2(NX,Y ) + l2(X,NY )−Nl2(X,Y ) + l1α(X,Y ).

According to Lemma 5.9, if [N , µ]
RN

is a Lie 2-algebra associated to a Courant
structure, then we must have:
(67)

[N , µ]2
RN

(X, fY ) = f [N , µ]2
RN

(X,Y ) + 2[N , µ]2
RN

(X, f).Y − 1

2
〈X,Y 〉[N , µ]1RN (f).

Using (62), (65) and (66), we get

[N , µ]2
RN

(X, fY ) = l2(NX, fY ) + l2(X,NfY )−Nl2(X, fY ) + l1α(X, fY )

= fl2(NX,Y ) + 2l2(NX, f)Y − 1

2
〈NX,Y 〉l1(f)

+fl2(X,NY ) + 2l2(X, f)NY − 1

2
〈X,NY 〉l1(f)

−fNl2(X,NY )− 2l2(X, f)NY +
1

2
〈X,Y 〉Nl1(f)

+fl1α(X,Y ) + α(X,Y )l1(f)

= f(l2(NX,Y ) + l2(X,NY )−Nl2(X,Y ) + l1α(X,Y )) + 2l2(NX, f)Y

−1

2
〈X, (N +N∗)Y 〉l1(f) +

1

2
〈X,Y 〉Nl1(f) + α(X,Y )l1(f)(68)

and

f [N , µ]2
RN

(X,Y ) + 2[N , µ]2
RN

(X, f).Y − 1

2
〈X,Y 〉[N , µ]1RN (f)

= f(l2(NX,Y ) + l2(X,NY )−Nl2(X,NY ) + l1α(X,Y )) + 2l2(NX, f).Y

−1

2
〈X,Y 〉(λ IdΓ(E) −N)l1(f).(69)

Now, Equations (67), (68) and (69) show that

1

2
〈X, (N +N∗ − λ IdΓ(E))Y 〉l1(f) = α(X,Y )l1(f),

for allX,Y ∈ Γ(E) and f ∈ C∞(M). Since α is skew-symmetric, 〈., (N+N∗−λ Id).〉
is symmetric on Γ(E)×Γ(E) and the anchor is not zero everywhere, which implies
that l1(f) is not always zero, we have α = 0 and N +N∗ − λ IdΓ(E) = 0. �
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Corollary 5.16. Let (E, ◦, ρ, 〈., .〉) be a Courant algebroid with anchor ρ being
different from zero on a dense subset of E and let µ be the associated Lie 2-algebra
structure on the graded vector space C∞(M) ⊕ Γ(E). Then, there is a one to one
correspondence between:

(i) quadruples (N,K, λ, γ) with N,K being (1, 1)-tensors on E and λ, γ being
Casimir functions satisfying the following conditions:

◦N,N = ◦K ,
NK −KN = 0,

N +N∗ = λ IdΓ(E),

K +K∗ = γ IdΓ(E),

(Γ(E), ◦N ) and (Γ(E), ◦K) are Leibniz algebras.

(ii) Nijenhuis vector valued forms N with respect to µ, with square K, such that
the deformed brackets [N , µ]

RN
and [K, µ]

RN
are Lie 2-algebras associated

to Courant structures with the same scalar product.

Proof. Given a quadruple (N,K, λ, γ) satisfying conditions in item (i), we define
vector valued 1-forms N and K on the graded vector space C∞(M) ⊕ Γ(E) as
N (f) = λf , K(f) = γf , N (X) = NX and K(X) = KX, for all X ∈ Γ(E) and
f ∈ C∞(M). We prove that N is a Nijenhuis vector valued form with respect to µ,
with square K. First, notice that using Corollary 5.3, the assumption ◦N,N = ◦K
implies that (E, ◦N,N , ρN,N , 〈., .〉) and (E, ◦K , ρK , 〈., .〉) are the same pre-Courant
algebroid, hence, they have the same associated pre-Lie 2-algebras. On the other
hand, using Lemma 5.12, the pre-Lie 2-algebra associated to the pre-Courant alge-
broid (E, ◦N,N , ρN,N , 〈., .〉) is [N , [N , µ]

RN
]
RN

and the pre-Lie 2-algebra associated
to the pre-Courant algebroid (E, ◦K , ρK , 〈., .〉) is [K, µ]

RN
. Hence,

(70) [N , [N , µ]
RN

]
RN

= [K, µ]
RN
.

Also, using the assumption NK −KN = 0, we get

(71) [N ,K]
RN

= 0.

Equations (70) and (71) show that N is a Nijenhuis vector valued 1-form with re-
spect to µ, with square K. By Corollary 5.13, [N , µ]

RN
is a Lie 2-algebra associated

to the Courant algebroid (E, ◦N , ρ, 〈., .〉) and [K, µ]
RN

is a Lie 2-algebra associated
to the Courant algebroid (E, ◦K , ρ, 〈., .〉).

Conversely, assume that N is a Nijenhuis vector valued form with respect to
µ, with square K, such that [N , µ]

RN
and [K, µ]

RN
are Lie 2-algebras associated to

Courant algebroids. Then, by Theorem 5.15, N is of the form λ+N with N+N∗ =
λ IdΓ(E) and K is of the form γ + K, with K + K∗ = γ IdΓ(E). Moreover, the
Courant algebroid which is associated to the Lie 2-algebra [N , µ]

RN
(respectively,

[K, µ]
RN

) is (E, ◦N , ρN , 〈., .〉) (respectively, (E, ◦K , ρK , 〈., .〉) ). From this, we get
that (Γ(E), ◦N ) and (Γ(E), ◦K) are Leibniz algebras. Since N is a Nijenhuis vector
valued form with respect to µ, with square K, we have

(72) [N , [N , µ]
RN

]
RN

= [K, µ]
RN

and

(73) [N ,K]
RN

= 0.

Applying both sides of Equation (72) on a pair of sections X,Y ∈ Γ(E) we get
X ◦N,N Y = X ◦K Y , which implies ◦N,N = ◦K . Lastly, Equation (73) implies
KN −NK = 0. �
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Using Lemma 5.9 and Remark 5.10, and also taking into account the fact that
the operator D associated to a pre-Courant algebroid (E, ◦, ρ, 〈., .〉), given by (50),
is a derivation, we may restate Theorem 5.15.

Theorem 5.17. Let (◦, ρ, 〈., .〉) be a Courant structure on a vector bundle E →M ,
with the associated symmetric Lie 2-algebra structure l1+l2+l3 on the graded vector
space V = E−2⊕E−1, where E−2 := C∞(M) and E−1 := Γ(E). Let N = λ+N+α
be a C∞(M)-linear vector valued form of degree zero on V . Assume also that ρ is
not equal to zero on a dense subset of the base manifold. If [N , l1 + l2 + l3]

RN
=

l′1 + l′2 + l′3, where the vector valued forms l′1, l
′
2, l
′
3 are obtained from a pre-Courant

algebroid, by the construction given in (54), with the same scalar product, then

(1) λ is a Casimir,
(2) α = 0,
(3) N +N∗ = λ IdΓ(E).

In this case, the Courant structure that [N , l1 + l2 + l3]
RN

is associated to, is
(◦N , ρN , 〈., .〉).

And this leads to the next result:

Corollary 5.18. Let (E, ◦, ρ, 〈., .〉) be a Courant algebroid with anchor ρ being dif-
ferent from zero on a dense subset of E, with the associated Lie 2-algebra structure
µ = l1 + l2 + l3 on the graded vector space C∞(M)⊕ Γ(E). Then, there is a one to
one correspondence between:

(i) quadruples (N,K, λ, γ) with N,K being (1, 1)-tensors and λ, γ being Casimir
functions satisfying the following conditions:

(74)


◦N,N = ◦K ,
NK −KN = 0,

N +N∗ = λ IdΓ(E),

K +K∗ = γ IdΓ(E).

(ii) C∞(M)-linear Nijenhuis vector valued forms N with respect to µ, with
square K, such that the deformed bracket is of the form [N , µ]

RN
= l′1+l′2+l′3

and l′1, l
′
2, l
′
3 are constructed by the procedure in (54) obtained from a pre-

Courant algebroid, with the same scalar product.

Proof. Let N be a C∞(M)-linear Nijenhuis vector valued form with respect to the
Lie 2-algebra structure µ = l1 + l2 + l3, with square K, and assume that [N , µ]

RN

is obtained from a pre-Courant algebroid. Let

N|Γ(E) = N, N|C∞(M) = λ IdC∞(M), K|Γ(E) = K and K|C∞(M) = γ IdC∞(M).

By Theorem 5.17, N +N∗ = λ IdΓ(E) and (E, ◦N , ρN , 〈., .〉) is a pre-Courant alge-
broid (it is, in fact, the pre-Courant algebroid which [N , µ]

RN
is obtained from).

Hence, by Lemma 5.6, (E, ◦N,N , ρN,N , 〈., .〉) is a pre-Courant algebroid. Now,
Lemma 5.12 implies that [K, µ]

RN
=
[
N , [N , µ]

RN

]
RN

is obtained from the pre-

Courant algebroid (E, ◦N,N , ρN,N , 〈., .〉), by the construction given in (54). There-
fore, by Theorem 5.17, K +K∗ = γ IdΓ(E). The assumption [N ,K]

RN
= 0 implies

that NK −KN = 0, while
[
N , [N , µ]

RN

]
RN

= [K, µ]
RN

implies that ◦N,N = ◦K .

Conversely, assume that we are given a quadruple (N,K, λ, γ) satisfying the
properties in (74). By Lemma 5.6, (E, ◦N , ρN , 〈., .〉) is a pre-Courant and by
Lemma 5.12, the pre-Lie 2-algebra structure associated to the pre-Courant alge-
broid (E, ◦N , ρN , 〈., .〉) is [N , µ]

RN
. Similar arguments prove that the pre-Lie 2-

algebra structure associated to the pre-Courant algebroid (E, ◦N,N , ρN,N , 〈., .〉) is[
N , [N , µ]

RN

]
RN

and the pre-Lie 2-algebra structure associated to the pre-Courant
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algebroid (E, ◦K , ρK , 〈., .〉) is [K, µ]
RN

. Now, the assumption ◦N,N = ◦K and

Lemma 5.3 imply that (E, ◦N,N , ρN,N , 〈., .〉) and (E, ◦K , ρK , 〈., .〉) are the same
pre-Courant algebroid; therefore, we have

[
N , [N , µ]

RN

]
RN

= [K, µ]
RN

. It follows

from the assumption NK−KN = 0 that [N ,K] = 0. Hence, N is a C∞(M)-linear
Nijenhuis vector valued form with respect to the Lie 2-algebra structure µ, with
square K. �

Remark 5.19. The notion of weak Nijenhuis tensor on a Courant algebroid was in-
troduced in [5] (see also [13]). A (1, 1)-tensorN on a Courant algebroid (E, ◦, ρ, 〈., .〉)
is a weak Nijenhuis tensor if its Nijenhuis torsion is a Leibniz 2-cocycle. We may
ask how weak Nijenhuis tensors on a Courant algebroid are related to weak Nijen-
huis vector valued forms, with respect to the Lie 2-algebra associate to the Courant
algebroid.

Let (E, ◦, ρ, 〈., .〉) be a Courant algebroid, with associated Lie 2-algebra µ, and
N a (1, 1)-tensor on E which is weak Nijenhuis (in the sense of [5]) and such that
N+N∗ = λ IdΓ(E), with λ a Casimir function. Then, (E, ◦N , ρN , 〈., .〉) is a Courant

algebroid [5]; let us denote by µN its associated Lie 2-algebra. By Corollary 5.13,
µN = [N , µ]

RN
, with N given by (55). But [N , µ]

RN
being a Lie 2-algebra is

equivalent to N being weak Nijenhuis with respect to µ (see Proposition 2.3).
Summarizing, if N is a weak Nijenhuis tensor on a Courant algebroid E and

N +N∗ = λ IdΓ(E), with λ a Casimir function, then, N given by

N|Γ(E) = N and N|C∞(M) = λ IdC∞(M)

is a weak Nijenhuis vector valued form with respect to the Lie 2-algebra associated
to the Courant algebroid.

6. Multiplicative L∞-structures

Adapting the notion of P∞-structure on a graded vector space [6] to the symmet-
ric graded case, we define, in this section, multiplicative L∞-structures. We classify
all multiplicative L∞-structures on Γ(∧A)[2], for A→M an arbitrary vector bun-
dle over a manifold M . When A→ M is equipped with a Lie algebroid structure,
given a (1, 1)-tensor N on A, we define the extension of N by derivation, which
is a symmetric vector valued 1-form on Γ(∧A)[2], of degree zero. For a k-form on
the Lie algebroid, we also define its extension by derivation, yielding a symmetric
vector valued form k-form of degree k − 2. These multi-derivations will be used in
the next section to construct examples of Nijenhuis forms.

There is an important graded Lie subalgebra of (S̃(E∗)⊗E, [., .]RN ), when there
exists a graded commutative associative algebra structure on E[2], denoted by ∧,
that is, a bilinear operation such that for all X ∈ Ei, Y ∈ Ej , Z ∈ Ek

• X ∧ Y ∈ Ei+j+2,
• (X ∧ Y ) ∧ Z = X ∧ (Y ∧ Z),
• X ∧ Y = (−1)|X||Y |Y ∧X,

where |X| = i+ 2 and |Y | = j + 2.

Definition 6.1. Let E be a graded vector space equipped with an associative
graded commutative algebra structure, that is a graded symmetric bilinear map
∧ of degree zero which is associative. An element D ∈ Sd(E∗) ⊗ E is called a
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multi-derivation vector valued d-form, if

D(X1, · · · , Xi−1, Y ∧ Z,Xi+1, · · · , Xd)(75)

= (−1)|Z|(|Xi+1|+···+|Xd|)D(X1, · · · , Xi−1, Y,Xi+1, · · · , Xd) ∧ Z
+(−1)|Y |(|X1|+···+|Xi−1|+D̄)Y ∧D(X1, · · · , Xi−1, Z,Xi+1, · · · , Xd),

for all X1, · · · , Xd, Y, Z ∈ E, where D̄ is the degree of D as a graded map.

Remark 6.2. The graded commutativity of the product ∧ implies that Equation
(75) is equivalent to

D(X1, · · · , Xd−1, Y ∧ Z)

= D(X1, · · · , Xd−1, Y ) ∧ Z + (−1)|Y ||Z|D(X1, · · · , Xd−1, Z) ∧ Y.

We denote the space of all multi-derivation vector valued forms by MultiDer(E).
Elements of S1(E∗)⊗E are simply called derivations. By definition, E ⊂MultiDer(E)
and we have the following:

Proposition 6.3. MultiDer(E) is a graded Lie subalgebra of (S̃(E∗)⊗E, [., .]
RN

).

We shall use the following lemmas in the proof of Proposition 6.3.

Lemma 6.4. Let D1 and D2 be two derivations. Then, [D1, D2]
RN

is also a deriva-
tion.

Proof. We have

[D1, D2]
RN

= D2 ◦D1 − (−1)D̄1D̄2D1 ◦D2

= −(−1)D̄1D̄2 [D1, D2],

where [., .] is the graded commutator on the space of derivations of the graded asso-
ciative commutative algebra (E, ∧). Since [D1, D2] is a derivation, so is [D1, D2]

RN
.
�

Lemma 6.5. For d ≥ 2, an element D ∈ Sd(E∗)⊗ E is a multi-derivation vector
valued d-form if and only if [X,D]

RN
is a multi-derivation vector valued (d − 1)-

form, for all X ∈ E.

Proof. It is a direct consequence of

[X,D]
RN

(X1, · · · , Xd−2, Y ∧ Z) = D(X,X1, · · · , Xd−2, Y ∧ Z),

which holds for all elements Y, Z,X1, · · · , Xd−2 ∈ E. �

Proof. (of Proposition 6.3) Let D,D′ be two multi-derivation vector valued d-form
and d′-form, respectively. We show that [D,D′]

RN
is a multi-derivation vector

valued (d + d′ − 1)-form, using induction on the number n = d + d′ − 1. Lemmas
6.4 and 6.5 prove the case n = 1. Assume, by induction, that [D,D′]

RN
is a multi-

derivation vector valued (d+d′−1)-form and let D1 and D2 be two multi-derivation
vector valued d1- and d2-forms respectively, such that d1 + d2 − 1 = n + 1. From
(3) we have

[D1, D2]
RN

(X1, · · · , Xd1+d2−2, Y ∧Z) = [Y ∧Z, [Xd1+d2−2, · · · , [X1, [D1, D2]
RN

]
RN
· · · ]

RN
]
RN
,

or, using the graded Jacobi identity of [., .]
RN

,

[D1, D2]
RN

(X1, · · · , Xd1+d2−2, Y ∧ Z)

= [Y ∧ Z, [Xd1+d2−2, · · · , [[X1, D1]
RN
, D2]

RN
· · · ]

RN
]
RN

+(−1)D̄1X̄1 [Y ∧ Z, [Xd1+d2−2, · · · , [D1, [X1, D2]
RN

]
RN
· · · ]

RN
]
RN
,

for all X1, · · · , Xd1+d2−2, Y, Z ∈ E. By Lemma 6.5, [X1, D1]
RN

and [X1, D2]
RN

are
multi-derivation vector valued (d1 − 1)- and (d2 − 1)-forms respectively, and hence
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using the assumption of induction, [[X1, D1]
RN
, D2]

RN
and [D1, [X1, D2]

RN
]
RN

are
multi-derivation vector valued n-forms. Therefore,

[D1, D2]
RN

(X1, · · · , Xd1+d2−2, Y ∧ Z)

= [[X1, D1]
RN
, D2]

RN
(X2, · · · , Xd1+d2−2, Y ∧ Z)

+(−1)D̄1X̄1 [D1, [X1, D2]
RN

]
RN

(X2, · · · , Xd1+d2−2, Y ∧ Z)

= [[X1, D1]
RN
, D2]

RN
(X2, · · · , Xd1+d2−2, Y ) ∧ Z

+(−1)|Y ||Z|[[X1, D1]
RN
, D2]

RN
(X2, · · · , Xd1+d2−2, Z) ∧ Y

+(−1)D̄1X̄1 [D1, [X1, D2]
RN

]
RN

(X2, · · · , Xd1+d2−2, Y ) ∧ Z
+(−1)D̄1X̄1(−1)|Y ||Z|[D1, [X1, D2]

RN
]
RN

(X2, · · · , Xd1+d2−2, Z) ∧ Y
= [D1, D2]

RN
(X1, · · · , Xd1+d2−2, Y ) ∧ Z

+(−1)|Y ||Z|[D1, D2]
RN

(X1, · · · , Xd1+d2−2, Z) ∧ Y,
which completes the induction and also the proof (see Remark 6.2). �

Remark 6.6. The graded symmetric bilinear map ∧ of degree zero on E[2], con-
sidered in Definition 6.1, can be viewed as a vector valued 2-form of degree 2 on
E, and so we may compute [∧, D]

RN
for any vector valued d-form D. An easy

computation shows that

(76) a vector valued 1-form D is a derivation if and only if [∧, D]
RN

= 0.

Now, if D (resp. D′) is a multi-derivation vector valued d-form (resp. d′-form) and
X1, · · ·Xd+d′−1 are elements of E then, by Lemma 6.5, D := [Xd−1, · · · , [X2, [X1, D]

RN
]
RN
· · · ]

RN

(resp. D′ := [Xd′−1, · · · , [X2, [X1, D
′]
RN

]
RN
· · · ]

RN
) is a derivation vector-valued 1-

form. Hence, by (76), we get [∧,D]
RN

= [∧,D′]
RN

= 0 which implies [∧,D1]
RN

= 0,
with D1 := [Xd+d′−2, · · · , [X2, [X1, [D,D

′]
RN

]
RN

]
RN
· · · ]

RN
(notice that we made

use here of the Jacobi identity for the Richardson-Nijenhuis bracket). So, D1 is a
derivation vector-valued 1-form. Thus, by Lemma 6.5, [D,D′]

RN
is multi-derivation

vector valued (d+ d′ − 1)-form.
This observation gives an alternative proof of Proposition 6.3.

Let us now define multiplicative L∞-algebra.

Definition 6.7. An L∞-structure µ =
∑∞
i=1 li on a graded vector space E equipped

with a graded commutative product ∧ : Ei × Ej → Ei+j is called multiplicative if
all the multi-linear brackets li are multi-derivations.

Next, we discuss the relation between multiplicative L∞-structures and Lie al-
gebroids.

A pre-Lie algebroid structure on a vector bundle A → M over a manifold M is
a pair (ρ, [., .]), with ρ : A → TM a vector bundle morphism over the identity of
M , called anchor map, and [., .] a skew-symmetric bilinear endomorphism of Γ(A)
subject to the so-called Leibniz identity:

[X, fY ] = f [X,Y ] + (ρ(X)f)Y,

for all X,Y ∈ Γ(A) and all f ∈ C∞(M). When, moreover, [., .] is a Lie algebra
bracket, the pair ([., .] , ρ) is called a Lie algebroid structure on A→M . We denote
by [., .]

SN
the Schouten-Nijenhuis bracket on the space of multivectors of the (pre-

)Lie algebroid A and by dA the (pre-)differential of A.
Let ([., .] , ρ) be a pre-Lie algebroid structure on a vector bundle A → M .

Set Ei := Γ(∧i+1A) and E = ⊕i≥−1Ei , with E−1 = Γ(∧0A) = C∞(M). The
Schouten-Nijenhuis bracket is a graded skew-symmetric bracket of degree zero on
E = ⊕i≥−1Ei and it is known that a pre-Lie algebroid structure (ρ, [., .]) is a Lie
algebroid structure on the vector bundle A → M, if and only if [., .]

SN
is a graded



32 M. J. AZIMI, C. LAURENT-GENGOUX, AND J. M. NUNES DA COSTA

Lie algebra bracket on E = Γ(∧A)[1]. It is also well known that the pre-differential
dA is a derivation of Γ(∧A∗) and that dA squares to zero if and only if (A, [., .] , ρ)
is Lie algebroid.

The discussion above leads to the conclusion that there are two ways to see Lie
algebroids as L∞-structures: the first one will make it an L∞-structure on Γ(∧A),
and the second one will make it an L∞-structure on Γ(∧A∗) [14]. More precisely:

Proposition 6.8. Let A→M be a vector bundle and A∗ →M its dual. There is
a one to one correspondence between:

(i) pre-Lie algebroid structures (ρ, [., .]) on A→M ,
(ii) binary multi-derivations of Γ(∧A)[2] of degree 1,

(iii) unary multi-derivations of Γ(∧A∗)[2] of degree 1.

The one to one correspondence above restricts to a one to one correspondence be-
tween:

(i′) Lie algebroid structures (ρ, [., .]) on A→M ,
(ii′) multiplicative L∞-structures on Γ(∧A)[2] given by a binary bracket,

(iii′) multiplicative L∞-structures on Γ(∧A∗)[2] given by a unary bracket.

Given a (1, 1)-tensor N on a Lie algebroid (A, [., .] , ρ), we define a linear map N
on the graded vector space Γ(∧A)[2], by setting

N(f) := 0,

for all f ∈ C∞(M), and

N(P ) :=

p∑
i=1

P1 ∧ · · · ∧ Pi−1 ∧N(Pi) ∧ Pi+1 ∧ · · · ∧ Pp,

for all monomial multi-sections P = P1 ∧ · · · ∧ Pp ∈ Γ(∧A)[2]. The map N is
called the extension of N by derivation on the graded vector space Γ(∧A)[2]. It is
a multi-derivation on the graded vector space Γ(∧A)[2], hence a symmetric vector
valued 1-form on Γ(∧A)[2], and has degree zero.

For a k-form on a Lie algebroid, we also consider its extension by derivation.
More precisely, if κ ∈ Γ(∧kA∗), the extension of κ by derivation is a k-linear map,
denoted by κ, given by

κ(P1, · · · , Pk) :=

p1,··· ,pk∑
i1,··· ,ik=1

(−1)♠κ(P1,i1 , · · · , Pk,ik)P̂1,i1 ∧ · · · ∧ P̂k,ik ,

for all homogeneous multi-sections Pi = Pi,1 ∧ · · · ∧ Pi,pi ∈ Γ(∧piA), with i =
1, · · · , k, where 1 ≤ ij ≤ pj for all 1 ≤ j ≤ k,

P̂j,ij = Pj,1 ∧ · · · ∧ Pj,ij−1 ∧ Pj,ij+1 ∧ · · · ∧ Pj,pj ∈ Γ(∧pj−1A)

and
♠ = 2p1 + 3p2 + · · ·+ (k + 1)pk + i1 + · · ·+ ik + 1.

It follows from its definition that κ is a multi-derivation on the graded vector
space Γ(∧A)[2] and that it is a symmetric vector valued k-form of degree k − 2 on
Γ(∧A)[2].

Lemma 6.9. Let (A, [., .] , ρ) be a Lie algebroid, α ∈ Γ(∧kA∗) be a k-form and
β ∈ Γ(∧lA∗) be an l-form. Then, [

α, β
]
RN

= 0.

Proof. The fact that α (respectively β) is a vector valued k-form (respectively l-

form) of degree k − 2 (respectively l − 2), imply that
[
α, β

]
RN

is a vector valued

(k+ l−1)-form of degree k+ l−4 on the graded vector space Γ(∧A) = ⊕i≥0Γ(∧iA).
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Therefore, for all l, k ≥ 0 the restriction of
[
α, β

]
RN

to the space of sections is zero

and hence we have
[
α, β

]
RN

= 0, because
[
α, β

]
RN

is a multi-derivation and it is

uniquely determined on the space of sections. �

According to Proposition 6.8, for a given Lie algebroid (A, [., .] , ρ), the bracket

l
[.,.]
2 given by

(77) l
[.,.]
2 (P,Q) = (−1)p−1[P,Q]

SN
, P ∈ Γ(∧pA), Q ∈ Γ(∧qA),

defines a multiplicative graded Lie algebra structure on Γ(∧A)[2]. When we deform
the bracket [., .] by N as

[X,Y ]N = [NX,Y ] + [X,NY ]−N [X,Y ] ,

for all X,Y ∈ Γ(A), of course we may consider l
[.,.]N
2 using Equation (77) and

we may take the Schouten-Nijenhuis bracket [., .]
N

SN
corresponding to the deformed

bracket [., .]N . Note that the bracket l
[.,.]N
2 is not necessarily a multiplicative graded

Lie algebra structure. On the other hand, since l
[.,.]
2 is a symmetric vector valued

2-form of degree 1 and N is a (symmetric) vector valued 1-form of degree zero, we

can consider the deformation of l
[.,.]
2 by N . The following lemma shows the relation

between
[
N, l

[.,.]
2

]
RN

and l
[.,.]N
2 .

Lemma 6.10. Let N be a (1, 1)-tensor on a Lie algebroid (A, [., .] , ρ). Then, we
have [

N, l
[.,.]
2

]
RN

= l
[.,.]N
2 .

Proof. The proof follows directly from the fact that the Schouten-Nijenhuis bracket
on Γ(∧A) associated to the bracket [., .]N is given by

[P,Q]
N

SN
= [NP,Q]

SN
+ [P,NQ]

SN
−N [P,Q]

SN
,

for all P,Q ∈ Γ(∧A), see [14]. �

We will need the following lemma for our next purpose.

Lemma 6.11. Let (A, [., .] , ρ) be a Lie algebroid, with differential dA and associated

multiplicative graded Lie algebra structure l
[.,.]
2 on Γ(∧A)[2]. Then,[

α, l
[.,.]
2

]
RN

= dAα,

for all α ∈ Γ(∧nA∗).

Proof. We shall prove the statement for n = 2. A similar proof can be done for

any n ≥ 1. First note that
[
α, l

[.,.]
2

]
RN

is a vector valued 3-form of degree 1 on the

graded vector space Γ(∧A)[2]. This implies that the restriction of
[
α, l

[.,.]
2

]
RN

to

Γ(A) is of the form:[
α, l

[.,.]
2

]
RN

|Γ(A)×Γ(A)×Γ(A) : Γ(A)× Γ(A)× Γ(A)→ C∞(M)

and, by degree reasons, any other restriction of
[
α, l

[.,.]
2

]
RN

is zero. On the other

hand, by Proposition 6.3,
[
α, l

[.,.]
2

]
RN

is a multi-derivation, so that its restriction

to the sections Γ(A) is a C∞(M)-linear map. Therefore,
[
α, l

[.,.]
2

]
RN

∈ Γ(∧3A∗).

Next, we show that [
α, l

[.,.]
2

]
RN

|Γ(A)×Γ(A)×Γ(A) = dAα
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and this together with the fact that
[
α, l

[.,.]
2

]
RN

is a multi-derivation will imply

that
[
α, l

[.,.]
2

]
RN

= dAα, by the uniqueness of extension by derivation of dAα to the

graded vector space Γ(∧A)[2]. A direct computation shows that[
α, l

[.,.]
2

]
RN

(X,Y, Z) = [α(X,Y ), Z]
SN
− α([X,Y ] , Z) + c.p.

= ρ(Z)α(X,Y )− α([X,Y ] , Z) + c.p.

= dαA(X,Y, Z)

for all X,Y, Z ∈ Γ(A). This completes the proof. �

7. Nijenhuis forms on multiplicative L∞-structures associated to Lie
algebroids

In this section we consider several structures defined by tensors and pairs of
tensors on a Lie algebroid and, by using their extensions by derivations, we construct
Nijenhuis forms (weak Nijenhuis and co-boundary Nijenhuis, in some cases) with
respect to the graded Lie algebra associated to the Lie algebroid structure.

Let (A, [., .] , ρ) be a Lie algebroid and N : A→ A an endomorphim. Then, as in
the case of Lie algebras, the Nijenhuis torsion of N with respect to the Lie bracket
[., .], denoted by T[.,.]N , is defined by Equation (11) and again a direct computation
shows that

T[.,.]N(X,Y ) =
1

2

(
[X,Y ]N,N − [X,Y ]N2

)
,

for all X,Y ∈ Γ(A). A (1, 1)-tensor N on a Lie algebroid (A, [., .] , ρ) is said to be
Nijenhuis if the Nijenhuis torsion of N , with respect to the Lie algebroid bracket
[., .], vanishes. As a consequence of Lemma 6.10, we have the following proposition:

Proposition 7.1. For every Nijenhuis tensor N on a Lie algebroid (A, [., .] , ρ),
the extension N of N by derivation is a Nijenhuis vector valued 1-form with respect

to the multiplicative graded Lie algebra structure l
[.,.]
2 on the graded vector space

Γ(∧A)[2], with square (N2).

Proof. Applying Lemma 6.10 twice, for the tensor N and the bracket l
[.,.]
2 , we get[

N,
[
N, l

[.,.]
2

]
RN

]
RN

= l
[.,.]N,N
2 . The same lemma gives

[
N2, l

[.,.]
2

]
RN

= l
[.,.]N2

2 . Since

N is a Nijenhuis (1, 1)-tensor on A, we have l
[.,.]N,N
2 = l

[.,.]N2

2 , which implies that[
N,
[
N, l

[.,.]
2

]
RN

]
RN

=
[
N2, l

[.,.]
2

]
RN

. Also, (N2) and N commute with respect to

the Richardson-Nijenhuis bracket. �

In the next proposition we obtain a Nijenhuis vector valued form which is the
sum of a vector valued 1-form with a vector valued 2-form.

Proposition 7.2. Let (A, [., .] , ρ) be a Lie algebroid, with differential dA and asso-

ciated multiplicative graded Lie algebra structure l
[.,.]
2 on Γ(∧A)[2]. Then, for every

section α ∈ Γ(∧2A∗), S + α is a Nijenhuis vector valued form with respect to l
[.,.]
2 ,

with square S + 2α. The deformed structure is l
[.,.]
2 + dAα.

Proof. As a direct consequence of Lemma 6.11, we have[
S + α, l

[.,.]
2

]
RN

= l
[.,.]
2 + dAα.
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A simple computation gives[
S + α,

[
S + α, l

[.,.]
2

]
RN

]
RN

= l
[.,.]
2 + 2 dAα =

[
S + 2α, l

[.,.]
2

]
RN

and the fact that [S + α, S + 2α]
RN

= 0 completes the proof. �

Our next purpose is to use well-known structures on a Lie algebroid defined
by pairs of compatible tensors, such as ΩN -, Poisson-Nijenhuis and PΩ-structures
[15, 1, 3], to construct Nijenhuis forms on the multiplicative graded Lie algebra
associated to the Lie algebroid. We start by recalling what an ΩN -structure is.

Definition 7.3. [1, 15] Let (A, [., .] , ρ) be a Lie algebroid, with differential dA, N
be a (1, 1)-tensor on A and α ∈ Γ(∧2A∗) a 2-form. Let α

N
: Γ(A)× Γ(A)→ Γ(A)

be a bilinear map, defined as

(78) α
N

(X,Y ) = α(NX,Y ).

Then, the pair (α,N) is an ΩN -structure on the Lie algebroid A if α(NX,Y ) =
α(X,NY ) for all X,Y ∈ Γ(A) (which amounts to α

N
being skew-symmetric and

therefore a 2-form on A), and α and α
N

are dA-closed.

Lemma 7.4. Let (A, [., .] , ρ) be a Lie algebroid, with differential dA and with the

associated multiplicative graded Lie algebra structure l
[.,.]
2 on the graded vector space

Γ(∧A)[2]. Let N be a (1, 1)-tensor on the Lie algebroid and α ∈ Γ(∧2A∗) be a 2-
form such that αN : Γ(A) × Γ(A) → Γ(A) given by (78) is skew-symmetric and
therefore a 2-form on A. Then,

i) [N,α]
RN

= 2α
N
,

ii)
[
N + α, l

[.,.]
2

]
RN

= l
[.,.]N
2 + dAα

iii) If N is Nijenhuis, then[
N + α,

[
N + α, l

[.,.]
2

]
RN

]
RN

=
[
N2, l

[.,.]
2

]
RN

− 2 dAα
N

+ 2
[
N, dAα

]
RN

.

Proof. i) First notice that for all X,Y ∈ Γ(A) we have

[N,α]
RN

(X,Y ) = α(NX,Y )− α(NY,X) = 2α
N

(X,Y ).

Since N and α are both derivations, by Lemma 6.4 [N,α]
RN

is a derivation and
hence it is the unique extension of 2α

N
by derivation.

ii) It is a direct consequence of Lemma 6.10 together with Lemma 6.11.
iii) Using item (ii) and Lemma 6.10, we have[
N + α,

[
N + α, l

[.,.]
2

]
RN

]
RN

=
[
N + α, l

[.,.]N
2 + dAα

]
RN

= l
[.,.]N,N
2 +

[
N, dAα

]
RN

+
[
α, l

[.,.]N
2

]
RN

+
[
α, dAα

]
RN

.

Lemma 6.10 and the graded Jacobi identity give[
α, l

[.,.]N
2

]
RN

=

[
α,
[
N, l

[.,.]
2

]
RN

]
RN

=
[
[α,N ]

RN
, l

[.,.]
2

]
RN

+

[
N,
[
α, l

[.,.]
2

]
RN

]
RN

=
[
−2α

N
, l

[.,.]
2

]
RN

+
[
N, dAα

]
RN
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and, by Lemma 6.9,
[
α, dAα

]
RN

= 0. Hence, since N is Nijenhuis, we get

[N + α, [N + α, l
[.,.]
2 ]

RN
]
RN

=
[
N2 − 2α

N
, l

[.,.]
2

]
RN

+ 2
[
N, dAα

]
RN

=
[
N2, l

[.,.]
2

]
RN

− 2 dAα
N

+ 2
[
N, dAα

]
RN

.

�

The next proposition is now immediate.

Proposition 7.5. Let (A, [., .] , ρ) be a Lie algebroid, with differential dA and with

associated multiplicative graded Lie algebra structure l
[.,.]
2 on the graded vector space

Γ(∧A)[2]. If (α,N) is an ΩN -structure on the Lie algebroid A, then N + α is a

Nijenhuis vector valued form, with respect to l
[.,.]
2 , with square N2 + α

N
.

Proof. Let (α,N) be an ΩN -structure on the Lie algebroid A. Then, dAαN = 0

and, by Lemma 6.11, we have
[
α
N
, l

[.,.]
2

]
RN

= 0. It follows from item (iii) in Lemma

7.4, that [
N + α,

[
N + α, l

[.,.]
2

]
RN

]
RN

=
[
N2 + α

N
, l

[.,.]
2

]
RN

.

Since[
N + α,N2 + α

N

]
RN

=
[
N,α

N

]
RN

+
[
α,N2

]
RN

= 2(α
N

)
N
− 2α

N2 = 0,

the proof is complete. �

We are now going to see how to include Poisson-Nijenhuis structures among our
examples of Nijenhuis structures on L∞-algebras. Let us first fix and recall some
notations and notions.

Let (A,µ = [., .] , ρ) be a Lie algebroid, π ∈ Γ(∧2A) a bivector and N : A→ A a
vector bundle morphism. We denote by N∗ the morphism N∗ : A∗ → A∗ given by
〈N∗α,X〉 = 〈α,NX〉, for all X,Y ∈ Γ(A). We consider the morphism induced by
π, π# : A∗ → A, given by 〈β, π#α〉 = π(α, β), and we denote by π

N
the bivector

defined by

(79) π
N

(α, β) = 〈β,Nπ#α〉 = 〈N∗β, π#α〉,

for all α, β ∈ Γ(A∗). A bracket {·, ·}µ
π

can be defined on Γ(A∗), the space of 1-forms
on the Lie algebroid (A,µ = [., .] , ρ), as follows:

{α, β}µ
π

= LA
π#(α)

β − LA
π#(β)

α− dA(π(α, β)),

for all α, β ∈ Γ(A∗). It is well known that if π is a Poisson bivector on the Lie
algebroid (A,µ = [., .] , ρ), that is [π, π]

SN
= 0, then (Γ(A∗), {., .}µ

π
) is a Lie algebra

and if this is the case, then π# is a Lie algebra morphism form the Lie algebra
(Γ(A∗), {., .}µ

π
) to the Lie algebra (Γ(A), µ).

For every Poisson structure π on a Lie algebroidA, the triple (Γ(∧A)[1], [., .]
SN

, [π, .]
SN

)

is a skew-symmetric differential graded Lie algebra, so that the pair (l
[.,.],π
1 , l

[.,.]
2 )

given by

l
[.,.],π
1 (P ) = [π, P ]

SN
and l

[.,.]
2 (P,Q) := (−1)(p−1) [P,Q]

SN
,

where P ∈ Γ(∧pA) and Q ∈ Γ(∧qA), is an L∞-structure on the graded vector
space Γ(∧A)[2], which is clearly multiplicative. This L∞-structure is called the
L∞-structure associated to the Poisson structure π and the Lie algebroid A.

Now, we recall the notion of Poisson-Nijenhuis structure on a Lie algebroid.
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Definition 7.6. [14] Let (A,µ = [., .] , ρ) be a Lie algebroid, π ∈ Γ(∧2A) a bivector
and N a (1, 1)-tensor on A. Then, the pair (π,N) is a Poisson-Nijenhuis structure
on the Lie algebroid (A,µ = [., .] , ρ) if

i) N is a Nijenhuis (1, 1)-tensor with respect to the Lie bracket µ,
ii) π is a Poisson bivector,

iii) N ◦ π# = π# ◦N∗,
iv) ({α, β}µ

π
)
N∗ = {α, β}µN

π
,

for all α, β ∈ Γ(A∗), where ({., .}µ
π
)
N∗ is the deformation of the Lie bracket {·, ·}µ

π

by N∗ and {., .}µN
π

is the bracket determined by the pair (π, µN = [., .]N ) according
to formula (79).

Notice that π#
N

= Nπ# = π#N∗ and hence,

(80) N(π) = 2π
N
.

Recall from [14] that if (π,N) is a Poisson-Nijenhuis structure on a Lie alge-
broid (A,µ = [., .] , ρ), then

(
A,µN = [., .]N , ρ ◦N

)
and

(
A∗, {., .}µπ, ρ ◦ π#

)
are Lie

algebroids. Also,(
({., .}µπ)N∗ , ρ ◦ π

# ◦N∗
)
,
(
{., .}µ

N

π , ρ ◦N ◦ π#
)

and
(
{., .}µπ

N
, ρ ◦ π#

N

)
define the same Lie algebroid structure on A∗. Moreover, identifying the graded
vector spaces Γ(∧A∗∗) and Γ(∧A), the differential dA

∗

({.,.}µπ)
coincide with the linear

map [π, .]
SN

. Hence, we have

dA
∗

({.,.}µ
N
π )

= dA
∗

({.,.}µπ
N

),

which is equivalent to

(81) [π, .]
N

SN
= [π

N
, .]

SN
,

where [., .]
N

SN
is the Schouten-Nijenhuis bracket with respect to the Lie bracket

[., .]N .

Lemma 7.7. Let (π,N) be a Poisson-Nijenhuis structure on a Lie algebroid (A, [., .] , ρ).
Then, [

N, l
[.,.],π
1

]
RN

(P ) = [π,N(P )]
SN
−N [π, P ]

SN
= [−πN , P ]

SN
,

for all P ∈ Γ(∧A).

Proof. The first equality follows directly from the definition of l
[.,.],π
1 . For the second

equality, observe that for all P ∈ Γ(∧A) we have

[π, P ]
N

SN
= [N(π), P ]

SN
+ [π,N(P )]

SN
−N [π, P ]

SN
,

where [., .]
N

SN
stands for the Schouten-Nijenhuis bracket with respect to the Lie

bracket [., .]N . Hence, using (80) and (81), we have

[π,N(P )]
SN
−N [π, P ]

SN
= [π, P ]

N

SN
− [N(π), P ]

SN
= [π, P ]

N

SN
− 2 [π

N
, P ]

SN

=
(

[π, P ]
N

SN
− [π

N
, P ]

SN

)
− [π

N
, P ]

SN

= − [π
N
, P ]

SN
.

�

Proposition 7.8. Let (π,N) be a Poisson-Nijenhuis structure on a Lie algebroid
(A, [., .] , ρ). Then, the derivation N is a weak Nijenhuis tensor for the L∞-structure
associated to the Poisson structure π and the Lie algebroid (A, [., .] , ρ).

In this case, the deformed structure [N, l
[.,.],π
1 + l

[.,.]
2 ]

RN
is the L∞-structure as-

sociated to the Poisson structure −πN and the Lie algebroid (A, [., .]N , ρ ◦N).
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Proof. Lemmas 7.7 and 6.10 imply that[
N, l

[.,.],π
1 + l

[.,.]
2

]
RN

= −l[.,.],πN1 + l
[.,.]

N
2 .

Hence,
(82)[

N,
[
N, l

[.,.],π
1 + l

[.,.]
2

]
RN

]
RN

= l
[.,.],π

N,N

1 + l
[.,.]

N,N

2 = l
[.,.],π

N2

1 + l
[.,.]

N2

2

=
[
N2 ,−l[.,.],π1 + l

[.,.]
2

]
RN

=
[
N2 , l

[.,.],π
1 + l

[.,.]
2

]
RN

− 2
[
N2 , l

[.,.],π
1

]
RN

.

Denoting µ = l
[.,.],π
1 + l

[.,.]
2 and using the fact that π

N2 is a Poisson bivector on

the Lie algebroid (A, [., .] , ρ) and hence (Γ(∧A)[2], l
[.,.],π

N2

1 + l
[.,.]
2 ) is a symmetric

differential graded Lie algebra, we have
(83)[

µ,
[
N, [N,µ]

RN

]
RN

]
RN

=
[
µ,
[
N2 , µ

]
RN

]
RN

− 2

[
µ,
[
N2 , l

[.,.],π
1

]
RN

]
RN

= −2

[
µ,
[
N2 , l

[.,.],π
1

]
RN

]
RN

= 2

[
µ, l

[.,.],π
N2

1

]
RN

= 2

[
l
[.,.],π
1 , l

[.,.],π
N2

1

]
RN

+ 2

[
l
[.,.]
2 , l

[.,.],π
N2

1

]
RN

= 2

[
l
[.,.],π
1 , l

[.,.],π
N2

1

]
RN

and

(84)

[
l
[.,.],π
1 , l

[.,.],π
N2

1

]
RN

(P ) = l
[.,.],π

N2

1 (l
[.,.],π
1 (P )) + l

[.,.],π
1 (l

[.,.],π
N2

1 (P ))

=
[
π
N2 , [π, P ]

SN

]
SN

+
[
π,
[
π
N2 , P

]
SN

]
SN

=
[[
π, π

N2

]
SN

, P
]
SN

= 0,

for all P ∈ Γ(∧A). Therefore
[
µ,
[
N, [N,µ]

RN

]
RN

]
RN

= 0, which means that N is a

weak Nijenhuis vector valued form with respect to the symmetric differential graded

Lie algebra structure µ = l
[.,.],π
1 + l

[.,.]
2 on the graded vector space Γ(∧A)[2]. �

There is a second manner to see Poisson-Nijenhuis structures on a Lie algebroid
as a Nijenhuis form.

Proposition 7.9. Let (π,N) be a Poisson-Nijenhuis structure on a Lie algebroid
(A, [., .] , ρ). Then N+π is a weak Nijenhuis vector valued form with curvature, with

respect to the multiplicative differential graded Lie algebra structure l
[.,.],π
1 + l

[.,.]
2 on

the graded vector space Γ(∧A)[2].

Proof. It follows from Lemma 6.10 that[
N + π, l

[.,.],π
1

]
RN

= −l[.,.],πN1 + [π, π]
SN

= −l[.,.],πN1 ,

while Lemma 7.7 implies that[
N + π, l

[.,.]
2

]
RN

= l
[.,.]N
2 + l

[.,.]
2 (π, .) = l

[.,.]N
2 − l[.,.],π1 .
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Hence, we have
(85) [

N + π,
[
N + π, l

[.,.],π
1 + l

[.,.]
2

]
RN

]
RN

=
[
N + π,−l[.,.],πN1 + l

[.,.]N
2 − l[.,.],π1

]
RN

= l
[.,.],π

N,N

1 + l
[.,.],π

N
1 + l

[.,.]N,N
2 − l[.,.],πN1 (π)− l[.,.],π1 (π) + l

[.,.]N
2 (π, .).

But l
[.,.],π
1 (π) = [π, π]

SN
= 0, l

[.,.],π
N

1 (π) = [π
N
, π]

SN
= 0 and l

[.,.],π
N

1 (P )+l
[.,.]N
2 (π, P ) =

[π
N
, P ]

SN
− [π, P ]

N

SN
= 0, for all P ∈ Γ(∧A), where [., .]

N

SN
is the Schouten-Nijenhuis

bracket associated to the Lie bracket [., .]N . Hence, (85) can be written as[
N + π,

[
N + π, l

[.,.],π
1 + l

[.,.]
2

]
RN

]
RN

= l
[.,.],π

N,N

1 + l
[.,.]N,N
2 .

Similar computations as in (82), (83) and (84) show that
[
µ,
[
N, [N,µ]

RN

]
RN

]
RN

=

0, which means that N is weak Nijenhuis vector valued form with respect to the

symmetric differential graded Lie algebra structure µ = l
[.,.],π
1 + l

[.,.]
2 on the graded

vector space Γ(∧A)[2]. �

The next proposition establishes a relation between Poisson-Nijenhuis structures
and co-boundary Nijenhuis tensors on a Lie algebroid.

Proposition 7.10. Let (A, [., .] , ρ) be a Lie algebroid , π ∈ Γ(∧2A) a bivector and
N a (1, 1)-tensor on A such that

N ◦ π# = π# ◦N∗.
Then, N + π is a co-boundary Nijenhuis vector valued form with curvature, with

respect to the multiplicative graded Lie algebra structure l
[.,.]
2 on the graded vector

space Γ(∧A)[2], with square N2, if and only if (π,N) is a Poisson-Nijenhuis struc-

ture on the Lie algebroid (A, [., .] , ρ). The deformed structure [N, l
[.,.]
2 ]

RN
is the

L∞-structure (indeed a differential graded Lie algebra structure) associated to the
Poisson structure π on the Lie algebroid (A, [., .]N , ρ ◦N).

Proof. Assume that (π,N) is a Poisson-Nijenhuis structure on the Lie algebroid
(A, [., .] , ρ). Then, [

N + π, l
[.,.]
2

]
RN

= l
[.,.]N
2 − l[.,.],π1

and, by (81), we get[
N + π

[
N + π, l

[.,.]
2

]
RN

]
RN

= l
[.,.]N,N
2 + l

[.,.],π
N

1 − l[.,.]N ,π1

= l
[.,.]N,N
2 =

[
N2, l

[.,.]
2

]
RN

,

which means that N +π is a co-boundary Nijenhuis with respect to the multiplica-

tive graded Lie algebra structure l
[.,.]
2 on the graded vector space Γ(∧A)[2], with

square N2.
Conversely, assume that N + π be a co-boundary Nijenhuis with respect to the

multiplicative graded Lie algebra structure l
[.,.]
2 on the graded vector space Γ(∧A)[2],

with square N2, that is,

(86)

[
N + π,

[
N + π, l

[.,.]
2

]
RN

]
RN

=
[
N2, l

[.,.]
2

]
RN

.

Decomposing by homogeneous components, we get
(87)[
N + π,

[
N + π, l

[.,.]
2

]
RN

]
RN

= l
[.,.]N,N
2 +

([
N, l

[.,.]
2 (π, .)

]
RN

+ l
[.,.]N
2 (π, .)

)
+l

[.,.]
2 (π, π).
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From (86) and (87), we get

(88)
[
N2, l

[.,.]
2

]
RN

= l
[.,.]N,N
2 ,

(89)

([
N, l

[.,.]
2 (π, .)

]
RN

+ l
[.,.]N
2 (π, .)

)
= 0

and

(90) l
[.,.]
2 (π, π) = 0.

Equation (88) is equivalent to l
[.,.]N,N
2 = l

[.,.]N2

2 , or to [., .]N,N = [., .]N2 , which means

that N is a Nijenhuis tensor on A. Equation (90) means that π is Poisson, while
Equation (89) gives ([

N, l
[.,.]
2 (π, .)

]
RN

+ l
[.,.]N
2 (π, .)

)
(P ) = 0,

or

(91)
[
N, l

[.,.]
2 (π, .)

]
RN

(P ) = [π, P ]
N

SN
,

for all P ∈ Γ(∧A). The definition of [., .]
N

SN
gives

[π, P ]
N

SN
= [N(π), P ]

SN
+ [π,N(P )]

SN
−N [π, P ]

SN
(92)

= 2 [πN , P ]
SN

+
[
N, l

[.,.],π
1

]
RN

(P )

= 2 [πN , P ]
SN
−
[
N, l

[.,.]
2 (π, .)

]
RN

(P ),

where in the second equality we used N(π) = 2πN and the definition of the
Richardson-Nijenhuis bracket. From (91) and (92), we get

[π, P ]
N

SN
= [πN , P ]

SN
.

and this completes the proof that (π,N) is a Poisson-Nijenhuis structure on the Lie
algebroid (A, [., .] , ρ). �

Last, we shall say a few words about the so-called PΩ-structures [1, 15]. Recall
that a PΩ-structure on a Lie algebroid (A, ρ, [., .]) is a pair (π, ω) where π ∈ Γ(∧2A)
is a Poisson element and ω ∈ Γ(∧2A∗) is a 2-form, with dAα = 0. The 2-form
ω ∈ Γ(∧2A∗) determines a morphism ω[ : A→ A∗, given by 〈Y, ω[(X)〉 = ω(X,Y ).
Defining a (1, 1) tensor N := π# ◦ω[, it is known that (π,N) is a Poisson-Nijenhuis
structure while (ω,N) is an ΩN -structure.

Proposition 7.11. Let (π, ω) be a PΩ-structure on a Lie algebroid (A, [., .] , ρ).
Then, N = ω + π is a co-boundary Nijenhuis form, with curvature, with respect

to the multiplicative graded Lie algebra structure l
[.,.]
2 on the graded vector space

Γ(∧A)[2], with square N , where N = π# ◦ ω[. The deformed structure is −l[.,.],π1 .

Proof. Observe that

l
[.,.],π
1 (P ) = [π, P ]

SN
= −l[.,.]2 (π, P ) = −

[
π, l

[.,.]
2

]
RN

(P )

for all P ∈ Γ(∧2A). This means that

(93) l
[.,.],π
1 = −

[
π, l

[.,.]
2

]
RN

.

Hence,

(94)
[
N , l[.,.]2

]
RN

= −l[.,.],π1 + dAω = −l[.,.],π1 ,
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which proves the last claim (and proves that N is weak Nijenhuis vector valued

form with respect to l
[.,.]
2 , since l

[.,.],π
1 is an L∞-structure on Γ(∧A)[2]). Equations

(94) and (93) imply that[
N ,
[
N , l[.,.]2

]
RN

]
RN

= −
[
N , l[.,.],π1

]
RN

= −
[
ω, l

[.,.],π
1

]
RN

− [π, π]
SN

=

[
ω,
[
π, l

[.,.]
2

]
RN

]
RN

=
[
[ω, π]

RN
, l

[.,.]
2

]
RN

.

This shows that N is a co-boundary Nijenhuis vector valued form with respect to

the graded Lie algebra structure l
[.,.]
2 , on the graded vector space Γ(∧A)[2], with

square [ω, π]
RN

. A direct computation shows that [π, ω]
RN

= N and completes the
proof. �
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March 2010.
[2] P. Antunes, C. Laurent-Gengoux, J. M. Nunes da Costa, Hierarchies and compatibility on

Courant algebroids, Pac. J. Math. 261 (1) (2013), 1-32.

[3] P. Antunes, J. M. Nunes da Costa, Nijenhuis and compatible tensors on Lie and Courant
algebroids, J. Geom. Phys. 65 (2013), 66-79.

[4] J. Baez, A. Crans, Higher-dimensional algebra VI: Lie 2-algebras. Theory Appl. Categ. 12

(2004) 492-538.
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