
An approach to determine unsupported non-dominated solutions in bicriteria
integer linear programs

João C. N. Clímaco(1), Marta M. B. Pascoal(1,2)∗

(1) Instituto de Engenharia de Sistemas e Computadores – Coimbra, Universidade de Coimbra, Rua Antero
de Quental, 199, 3000-033 Coimbra, Portugal

E-mail: jclimaco@inescc.pt

(2) Departamento de Matemática da FCTUC, Apartado 3008, EC Santa Cruz, 3001-501 Coimbra, Portugal
Phone: +351-239791150 Fax: +351-239793069

E-mail: marta@mat.uc.pt

April 29, 2016

Abstract: In this paper we introduce a method for finding both supported and unsup-
ported non-dominated solutions of a bicriteria integer linear program (BCILP). One-
phase and two-phase implementations of the method are described, and their interactive
versions are outlined. The one phase method and the second phase of the other are based
on the minimisation of weighted Chebyshev distances to well chosen reference points.
The dynamic change of reference point proposed here makes this method particularly
suitable for interactive approaches. Computational experiments on random instances of
three classes of BCILP are reported and discussed. The implementation of the proposed
method as a method to approximate the set of non-dominated solutions is described and
evaluated in computational terms.

Keywords: Bicriteria problems, Supported and unsupported non-dominated solutions,
Two-phase method, Reference point, Chebyshev metrics.

1 Introduction

Let us consider the bicriteria integer linear program (BCILP) with two objective functions, n vari-

ables and m constraints:
min f(x) = (f1(x), f2(x))
subject to Ax ≤ b

x ≥ 0
x ∈ Zn

(1)

where A ∈ Rm×n, b ∈ Rm and fi(x) = cTi x, with ci ∈ Rn for i = 1, 2. We assume that the feasible

region S = {x ∈ Zn : Ax ≤ b, x ≥ 0} is nonempty and bounded. We assume, without loss of

generality, the minimisation of the objective functions. When dealing with single criterion problems

the goal is to find a feasible solution, which satisfies all the constraints, with optimal objective

function value (regardless of its uniqueness). In this case the interesting solutions are compromise

solutions, those for which it is impossible to find another feasible solution improving one objective

function, without worsening at least another one. These form the set of efficient solutions and

“solving” a bicriteria problem is intended as computing this set of solutions. Typically the decision

maker (DM) will only choose and implement a single solution and the choice is guided by preferences
∗Corresponding author

1

regarding some features of the solutions. Thus, bicriteria approaches follow three trends: a priori

articulation of preferences (the objective functions are replaced by a single one that aggregates

all the preferences), a posteriori (with no articulation of preferences and listing the whole set of

efficient solutions), and interactive (there is a progressive articulation of preferences by the DM and

an interactive selection by means of a dialogue phase).

The main purpose of the present work is to introduce an algorithm for calculating the efficient

solutions of a general bicriteria integer linear program. The method is based on a reference point

approach, using Chebyshev metrics and a particular choice of the reference points, and it enables

the determination of all types of efficient solutions. The use of Chebyshev objective functions

and reference points has been proposed in earlier works. The main characteristic of the method

presented here is the proposed choice of reference points and its dynamical update, which make clear

the areas left to search in the objective function space. For this reason the introduced approach

is suitably designed for interactive applications. The running time of the method is not crucial

for these type of applications, given that it implies feedback from the DM every time a solution

is output. Nevertheless, the computational performance of the algorithm is evaluated on random

instances and it is compared with methods in previous literature.

The remainder of the text is organised into five other sections. The next section is devoted

to the introduction of concepts and notation, and to a short literature review on algorithms for

bicriteria integer linear programs. Afterwards the method for determining the set of efficient so-

lutions is introduced. Different variants of this method are discussed and an example illustrates

its application. The section finishes with the presentation of computational experiment results. In

Sections 4 and 5 it is discussed how the variants of the method can be applied to approximate the

set of efficient solutions and how they can be used within an interactive approach, respectively.

More computational tests and an example are presented. Conclusions are drawn in Section 6.

2 Literature review

A solution x ∈ S of problem (1) is efficient if and only if there is no other solution x′ ∈ S such

that f(x′) ≤ f(x) and f(x′) 6= f(x). A criterion vector f(x) is non-dominated if and only if

x is efficient. We address the determination of non-dominated solutions. This means that only

one solution is calculated representing an efficient point in the objective functions space. In spite

of these two standard definitions, in the remainder of the paper we might use the terms efficient

solution and non-dominated solution interchangeably. All the non-dominated solutions of a BCILP

form the problem’s Pareto frontier.

When two criteria have different priorities we talk about lexicographic solutions. A solution

s∗ ∈ S is lexicographic best with respect to (f1, f2) if

1. f1(s∗) ≤ f1(s), for any s ∈ S, and

2. f2(s∗) ≤ f2(s), for any s ∈ S such that f1(s∗) = f1(s).

2

A solution of (1) which is lexicographic best with respect to (f1, f2), or with respect to (f2, f1),

is an efficient solution of (1). These solutions can be found by solving two single criterion integer

linear programs. Assuming that the aimed order is (f1, f2), first

min f1(x)
subject to x ∈ S (2)

is solved. Then, denoting its optimal value by c∗, the problem

min f2(x)
subject to f1(x) = c∗

x ∈ S
(3)

is considered.

A solution s̄ is weakly efficient when no other is strictly better in all criteria, that is, if and

only if there is no s ∈ S such that f1(s) < f1(s̄) and f2(s) < f2(s̄). For instance, given two

solutions, s1 and s2, such that f(s1) = (10, 5) and f(s2) = (10, 10), then s1 dominates s2, but this

latter solution is weakly efficient.

Two types of non-dominated solutions can be distinguished as illustrated in Figure 1,

• Supported non-dominated solutions, which are non-dominated solutions that are optimal

solutions of a (single-criterion) weighted sum problem (WSP)

min
x∈S

{
2∑
i=1

wifi(x)

}
(4)

with wi > 0, i = 1, 2. Note that if at least one of the weights is null the WSP may have

alternative optima which are dominated solutions of (1).

• The remaining non-dominated solutions are called unsupported solutions, and they cannot

be obtained as solutions of a WSP.

The former solutions can be obtained by solving a sequence of WSP’s and varying the weights in

a suitable manner, as will be described later. The determination of unsupported solutions tends to

be more difficult than this, given that not all methods are able to find such solutions. Nevertheless,

unsupported solutions can still be found using, for instance, the ε-constraint method, the WSM with

additional constraints or single-phase methods with Chebyshev objective functions. In this work

we introduce a reference point algorithm for calculating all non-dominated solutions of a BCILP,

and show it can be used in one or two phases, as well as in an interactive framework.

Because not all methods are able to find unsupported non-dominated solutions, the calculation

of the two types of solutions is often done in two phases. First the supported solutions are computed.

Considering the non-dominated solutions in a given set sorted by increasing order of one of the two

criteria, for instance f1, two of them, s1 and s2, are said to be adjacent non-dominated solutions

if there is no other non-dominated solution in that set, s, such that f1(s1) < f1(s) < f1(s2). It

should be stressed that while the algorithms run the set of computed non-dominated solutions is

3

f1

f2

• f(s1)

• f(s3)

• f(s2)

◦

◦

× ×
×
×
×
×

× dominated solution
◦ non-dominated unsupported solution
• non-dominated supported solution

Figure 1: BCILP solutions

updated, and thus the adjacent pairs may change. In the second phase the search continues by

looking for unsupported solutions the images of which lie within the duality gaps formed by two

adjacent supported solutions. For further details see [2, 5, 12, 15, 17].

The search for solutions within duality gaps has been investigated since the work of Current,

ReVelle and Cohon [6]. The proposed approaches include using side constraints to obtain a sequence

of “easier” problems, ranking the K best solutions of the problem to sweep that area, using dynamic

programming and using enumerative branch and bound procedures. The application of side con-

straints to find unsupported solutions was introduced in [6] and is related with the ε-constraint

method, used by Mavrotas [11] for finding all non-dominated solutions. Using ranking algorithms

to perform the search has revealed to be quite efficient whenever these methods can run fast. The

bicriteria shortest path problem or the bicriteria spanning tree problem are two of those cases. In

the first the search can be done quite easily, as presented by Coutinho-Rodrigues, Clímaco and

Current [4], whereas the second is harder but still manageable for small problems, see Steiner and

Radzik [14]. For general problems, however, it can be difficult to rank solutions, and therefore

also difficult to perform the search. Alternative approaches using dynamic programming have been

proposed concerning the bicriteria shortest path problem, see Raith and Ehrgott [12], as well as

using branch and bound methods for the bicriteria knapsack problem, see Visée, Teghem, Pirlot

and Ulungu [17].

As alternative ways to determine all the non-dominated solutions, rather than treating supported

and unsupported solutions separately, we point out the parametric algorithm for bicriteria integer

programs in [13], and the ε-constraint algorithm in [11]. Ralphs, Saltzman and Wiecek [13] propose

a method based on the weighted Chebyshev scalarisation, where the weights depend on the images

of pairs of consecutive solutions and the ideal point of the original problem. More recently Dächert,

Gorski and Klamroth [7] presented an adapted augmented weighted Chebyshev method with an

adaptive choice of parameters for discrete bicriteria optimisation problems. Ferreira [8] also used

a weighted Chebyshev approach to obtain non-dominated solution for a bicriteria location and

distribution problem. More recently, Boland, Charkhgard and Savelsbergh [1] proposed the balanced

box method, which computes both supported and unsupported solutions. This is an extension of

the method introduced by Hamacher, Pedersen and Ruzika [10], which finds solutions by splitting

the search area in two, horizontally, and computing one lexicographic best solution in each of the

4

two new regions thus obtained.

3 Algorithmic approach

In the current section we describe a method to compute the non-dominated solutions of problem

(1) in two variants. One of these variants is a two-phase approach with a first phase that solves

weighted sum problems and a reference point based second phase, whereas the other consists of

using only the second phase of the former one. This section begins by recalling the weighted sum

method, proceeds with the introduction of the second phase method and then shows that this can be

used in one-phase only. The presentation of both approaches is followed by an application example

and by computational test results.

As mentioned before, our goal is to determine the non-dominated solutions of a BCILP, among

which we distinguish the supported and the unsupported solutions. Figure 1 illustrates these differ-

ent types of solutions. The first approach proposed here is comprised of two phases, where the first

phase is responsible for the supported solutions calculation, whereas the remaining non-dominated

solutions, i.e., the unsupported ones, are calculated during the second part. In the following the

first phase of the method is described.

One of the most well known techniques to calculate supported non-dominated solutions is the

WSM. This approach is introduced for instance by Cohon [3], Coutinho-Rodrigues et al. [4] or

Steuer [15]. We now summarise this method, for completeness.

The WSM we use is inspired by the type of choice of weights used in the non inferior set

estimation (NISE) method – [3]. It calculates non-dominated solutions by solving a sequence of

WSPs and updating their parameters according to the found solutions. The method works by

starting with the lexicographic best solution with respect to each criteria, and then taking pairs of

consecutive solutions, s1, s2, and, for each, trying to calculate a new one by solving a single criterion

WSP. If there exist further supported non-dominated solutions within the triangle ∆(f(s1)c
∗f(s2)),

where c∗ = (c∗1, c
∗
2) and c∗i = fi(si), i = 1, 2 – Figure 2a – one of them is calculated. The new

solution s3, the image of which is depicted in Figure 2b, is the best regarding the minimisation of

the objective function

w1f1(s) + w2f2(s),

with w1 = f2(s1)− f2(s2), w2 = f1(s2)− f1(s1), and the problem can be formulated as

min w1f1(s) + w2f2(s)
subject to s ∈ S (5)

It should be added that the weights w1, w2 can also be normalised. The process is illustrated in

Figure 2 and a summary of the whole phase 1 method is included in Algorithm 1.

Several authors have shown that the solution of a WSP is a non-dominated solution. Addi-

tionally, when a NISE-like method is applied, either a new supported solution is found within a

given pair of solutions, or else concludes that no other supported solutions exist, which proves the

method’s correctness. More details can be found in [3].

5

f1

f2

• f(s1)

• f(s2)

c∗1

c∗2

(a)
f1

f2

• f(s1)

• f(s3)

• f(s2)

c∗1

c∗2

(b)

Figure 2: Phase 1, weighted-sum method: (a) initial supported solutions; (b) new supported solution
obtained from the optimisation of the weighted sum objective function derived from the previous
pair of solutions

Algorithm 1: Supported non-dominated solutions determination
/* (s1, s2) identifies a pair of consecutive solutions */
/* L is a set that stores the calculated non-dominated solutions */
/* X is an auxiliary set that stores the unscanned pairs of non-dominated

solutions */
1 s1 ← lexicographic best solution with respect to (f1, f2)
2 s2 ← lexicographic best solution with respect to (f2, f1)
3 L← {s1, s2}
4 X ← {(s1, s2)}
5 while X 6= ∅ do
6 (s1, s2)← element in X; X ← X − {(s1, s2)}
7 w1 ← f2(s1)− f2(s2); w2 ← f1(s2)− f1(s1)
8 s← best solution to (5)
9 if s is defined then

10 L← L ∪ {s}
11 if f1(s) 6= f1(s2) then X ← X ∪ {(s1, s)}
12 if f2(s) 6= f2(s1) then X ← X ∪ {(s, s2)}

As mentioned in Section 2, the optimal lexicographic solutions can be obtained by solving two

ILPs each. In practice this calculation can be replaced by optimising f1 and f2 separately to find

two solutions. The obtained solutions may be weakly efficient (in fact dominated), which makes

the initial search area wider than what is necessary. However, Algorithm 1 solves WSPs until no

further supported non-dominated solutions are found. The correctness of this method follows from

the fact that for each pair of adjacent solutions, s1, s2, an ILP is solved, which

• either provides a new supported non-dominated solution in ∆(f(s1)c
∗f(s2)), with c∗i = fi(si),

i = 1, 2, in case it exists,

• or outputs one of the initial solutions, in case no further solutions exist in ∆(f(s1)c
∗f(s2)).

Given that the lexicographic best solutions correspond to supported non-dominated points and lie

within the original search region, these will be computed at a certain stage of the method.

6

In the following the second part of the two-phase approach for obtaining all the non-dominated

solutions of a BCILP is introduced. The goal of this second part is to search for other solutions

lying within the duality gaps formed by pairs of the adjacent supported solutions obtained by

Algorithm 1, after they are sorted by increasing order f1. As shown earlier, unsupported solutions

are not the optimum solution of any WSP, and thus in general Algorithm 1 is not able to find

the whole Pareto frontier. However, Theorem 1 states that unsupported non-dominated solutions

are solutions closest to the ideal point, the point defined by the best value of both criteria, with

respect to a certain weighted Chebyshev distance – see Steuer and Choo [16].

Theorem 1 ([16]). Let si be the optimum solution with respect to fi, and c∗i = fi(si) represent

the optimum value for each criteria, i = 1, 2. If s̄ is a non-dominated solution of (1) then it is the

optimum solution of
min max{w1|f1(s)− c∗1|, w2|f2(s)− c∗2|}
subject to s ∈ S

for some w1, w2 > 0 with w1 + w2 = 1.

A consequence of this result is that any unsupported solution can be found by using a Chebyshev

metric with adequate parameters. Let us now assume that all supported solutions are known. Our

next goal is to split the search for the remaining non-dominated solutions, the unsupported, into

several regions, the duality gaps of every adjacent supported solutions. That is, taking s1 and s2
as two adjacent supported solutions, we want to apply Theorem 1 to search for solutions within

the duality gap defined by s1 and s2. Because s1 and s2 are supported solutions, this duality gap

is given by the triangle ∆(f(s1)ĉf(s2)), with ĉ = (f1(s2), f2(s1)) – see Figure 3a. The objective

function in Theorem 1 is a Chebyshev metric, which defines rectangles whose sides have lengths

proportional to w1 and w2, and with c∗ as a vertex. Therefore, the search in the duality gap can

replicate this one, by using the same metric with adequate weights, w1, w2, and a different reference

point, c∗, within the rectangle �(c∗f(s1)ĉf(s2)) – see Figure 3a.

f1

f2

◦ f(s3)

c∗1

c∗2

ĉ1

ĉ2 • f(s1)

• f(s2)

(a)
f1

f2

◦ f(s3)

c∗1

c∗2

ĉ1

ĉ2

◦
• f(s1)

• f(s2)

◦A

B

C

D

(b)

Figure 3: Phase 2, computing unsupported solutions: (a) initial search area; (b) areas to scan after
the unsupported solution s3 is calculated

In this case we consider w1 = f2(s1)− f2(s2), w2 = f1(s2)− f1(s1), and the reference point c∗,

and solve the problem

min T (s) = max{w1|f1(s)− c∗1|, w2|f2(s)− c∗2|}
subject to s ∈ S (6)

7

The image of an optimal solution of (6) is the closest to c∗ with respect to the Chebyshev metric T ,

in the region �(c∗f(s1)ĉf(s2)), for instance, like solution s3 in Figure 3a. Like before, the function

weights can be normalised without changing the optimal solution. The previous statement is shown

in Proposition 1.

Unless otherwise stated, for simplicity, and with no los of generality, we will assume that (6) has

a unique optimum solution.

Proposition 1. Let s1, s2 be a pair of adjacent non-dominated solutions of (1) and s∗ be an optimal

solution of (6). Then, s∗ minimises T in the region bounded by �(c∗(c∗1, f2(s
∗))f(s∗)(f1(s

∗), c∗2)).

Proof. Assume that s∗ is the optimum solution of (6), but that there exists another solution s̄ ∈ S in

the region bounded by �(c∗(c∗1, f2(s
∗))f(s∗)(f1(s

∗), c∗2)) such that c∗i ≤ fi(s̄) < fi(s
∗), for i = 1, 2.

Thus,

0 ≤ fi(s̄)− c∗i < fi(s
∗)− c∗i , i = 1, 2,

and because wi > 0, i = 1, 2,

wi|fi(s̄)− c∗i | < wi|fi(s∗)− c∗i |, i = 1, 2.

Therefore,

T (s̄) = max
i=1,2
{wi|fi(s̄)− c∗i |} < max

i=1,2
{wi|fi(s∗)− c∗i |} = T (s∗),

which contradicts the assumption that s∗ is optimal.

Corollary 1.1. If s∗ is the optimum solution of (6), then s∗ is a non-dominated solution of (1).

Proof. Assume s∗ ∈ S is dominated by s̄ ∈ S, i.e., fi(s̄) ≤ fi(s
∗), for i = 1, 2, and f(s̄) 6= f(s∗).

Then,

0 ≤ fi(s̄)− c∗i ≤ fi(s∗)− c∗i , i = 1, 2,

and, similarly to the proof of Proposition 1, we can derive

T (s̄) = max
i=1,2
{wi|fi(s̄)− c∗i |} ≤ max

i=1,2
{wi|fi(s∗)− c∗i |} = T (s∗).

Finally, two alternatives are possible,

• T (s̄) = T (s∗), which contradicts s∗ uniqueness, or

• T (s̄) < T (s∗), which contradicts s∗ optimality,

therefore s∗ is a non-dominated solution.

When s3 (in Figure 3, and corresponding to s∗ in Proposition 1) is determined, it partitions the

rectangle �(c∗f(s1)ĉf(s2)) into four new regions. Then, the search for non-dominated solutions in

the original region can be restricted to searching for non-dominated solutions in just two of them,

those bounded by the rectangles �(Af(s1)Cf(s3)) and �(Bf(s3)Df(s2)) – Figure 3b – which are

the rectangles associated with the pairs of solutions (s1, s3) and (s3, s2).

8

Proposition 2. Let s1, s2 be adjacent non-dominated solutions of (1) and s∗ be the optimum solution

of (6). Then, all non-dominated solutions in the region bounded by �(c∗f(s1)ĉf(s2)), with c∗i =

fi(si), i = 1, 2, ĉ1 = f1(s2), and ĉ2 = f2(s1), belong either

1. to the region bounded by �((c∗1, f2(s
∗))f(s1)(f1(s

∗), ĉ2)f(s∗)), or

2. to the region bounded by �((f1(s
∗), c∗2)f(s∗)(ĉ1, f2(s

∗))f(s2)).

Proof. It suffices to show that there are no non-dominated solutions in the excluded areas, namely

in �(c∗(c∗1, f2(s
∗))f(s∗)(f1(s

∗), c∗2) and �(f(s∗)(f1(s
∗), ĉ2), ĉ, (ĉ1, f2(s

∗)).

1. Based on Proposition 1.1, there are no solutions in the first of these regions.

2. Let s̄ be a solution within the region bounded by the second rectangle. Thus, fi(s∗) < f(s̄),

for i = 1, 2, but, by definition, this implies that s̄ is dominated by s∗.

The termination of the method is guaranteed because the swept area decreases in every iteration,

reaching a point when no further non-dominated solutions have to be found. This is shown in

Corollary 2.1.

Corollary 2.1. Let s1, s2 be adjacent non-dominated solutions of (5) and s∗ be the optimum solution

of (6).

1. If f(s∗) = f(s1), then there are no other non-dominated solutions in the region bounded by

�((c∗1, f2(s
∗))f(s1)(f1(s

∗), ĉ2)f(s∗)).

2. If f(s∗) = f(s2), then there are no other non-dominated solutions in the region bounded by

�((f1(s
∗), c∗2)f(s∗)(ĉ1, f2(s

∗))f(s2)).

Proof. It is immediate, given that in both cases the region reduces to a single point, f(s∗).

So far it was assumed that T does not have multiple optimal solutions. If that happens, there

is more than one solution whose image lies along the line segments with endpoints (c∗1, f2(s
∗)) and

f(s∗), as well as f(s∗) and (f1(s
∗), c∗2), and some of them may be weakly dominated by other points

over the same line segments. Computing all multiple optimal solutions is possible, but usually a

heavy task for mathematical programming solvers. Nevertheless, Steuer and Choo [16] proposed

adding a term to the objective function in (6), in order to overcome this drawback of the simple

weighted Chebyshev metric. The augmented objective function is

Tρ(s) = max{w1|f1(s)− c∗1|, w2|f2(s)− c∗2|}+ ρ (f1(s) + f2(s))

with ρ > 0 sufficiently small. Another alternative is to complement solving problem (6) for a given

pair s1, s2 with solving two additional problems

min f1(s)
subject to f2(s) = f2(s

∗)
s ∈ S

and
min f2(s)
subject to f1(s) = f1(s

∗)
s ∈ S

9

thus ensuring that the (at most) two obtained solutions are non-dominated. Yet another possibility

is to proceed similarly to what was suggested earlier for the WSM. This consists of storing the

solutions that are weakly non-dominated (but still dominated). In this case, the two new rectangles

still contain the solutions that dominate s∗, as shown in Proposition 3. Therefore, they will be

found in a subsequent iteration.

Proposition 3. Let s1, s2 be adjacent non-dominated solutions of (1) and s∗ be an optimal solution

of (6). Two cases may occur.

1. If s∗ is dominated by s̄ such that f2(s∗) = f2(s̄), then T (s̄) < T (s∗) in the region bounded by

�((c∗1, f2(s
∗))f(s1)(f1(s

∗), ĉ2)f(s∗)).

2. If s∗ is dominated by s̄ such that f1(s∗) = f1(s̄), then T (s̄) < T (s∗) in region bounded by

�((f1(s
∗), c∗2)f(s∗)(ĉ1, f2(s

∗))f(s2)).

Proof. The two cases are similar, so we show only the first one. The new function T , referring to

�((c∗1, f2(s
∗))f(s1)(f1(s

∗), ĉ2)f(s∗)), is defined by

T (s) = max{w1|f1(s)− f1(s1)|, w2|f2(s)− f2(s∗)|},

with w1 = f2(s1)− f2(s∗), w2 = f1(s
∗)− f1(s1), for any s ∈ S. Then,

T (s∗) = max{w1|f1(s∗)− f1(s1)|, w2|f2(s∗)− f2(s∗)|} = w1|f1(s∗)− f1(s1)|.

Similarly, because f2(s∗) = f2(s̄),

T (s̄) = max{w1|f1(s̄)− f1(s1)|, w2|f2(s̄)− f2(s∗)|} = w1|f1(s̄)− f1(s1)|.

Moreover, s̄ dominates s∗, so f1(s̄) < f1(s
∗), and thus T (s̄) < T (s∗), as claimed.

The dominated solutions the method finds can be discarded efficiently as they are obtained or

after all regions have been explored.

Solving problem (6) and reducing the search to the regions mentioned before can be repeated

until there are no more pairs of solutions left to analyse. In the end all the regions that might contain

unsupported solutions will have been swept. A summary of the phase 2 method here proposed is

included in Algorithm 2.

Some notes to the implementation of this algorithm should be added. First, each pair of solutions

that is stored in set X corresponds to, and identifies, an area (rectangle) to be swept. However, if

solving the problem in two phases, when Algorithm 1 is finished its output, the solutions in set L,

should be sorted by increasing order of f1, so that the pairs of adjacent solutions are provided to

the second phase and each one is an input to Algorithm 2. Second, problem (6) can be formulated

as the equivalent, also single criterion, mixed integer linear program

min v
subject to w1f1(s)− v ≤ w1c

∗
1

w2f2(s)− v ≤ w2c
∗
2

s ∈ S

(7)

10

Algorithm 2: Unsupported non-dominated solutions determination within the duality gap
defined by (S1, S2)

/* (S1, S2) is a given pair of adjacent supported solutions */
/* L is a set that stores the calculated non-dominated solutions */
/* X is an auxiliary set that stores the unscanned pairs of non-dominated

solutions */
1 s1 ← S1
2 s2 ← S2
3 L← {s1, s2}
4 X ← {(s1, s2)}
5 while X 6= ∅ do
6 (s1, s2)← element in X; X ← X − {(s1, s2)}
7 w1 ← f2(s1)− c∗2; w2 ← f1(s2)− c∗1
8 s← best solution to (6)
9 if s is defined then

10 L← L ∪ {s}
11 if f(s) 6= f(s2) then X ← X ∪ {(s1, s)}
12 if f(s) 6= f(s1) then X ← X ∪ {(s, s2)}

and thus it can be solved by means of a mixed integer programming solver.

According to Theorem 1 any non-dominated solution can be found by means of solving the

BCILP for a suitable Chebyshev metric. Furthermore, according to Propositions 1 and 2, and their

corollaries, solving problem (6) as in Algorithm 2 sweeps a rectangle delimited by the images of

solutions s1 and s2. Because the set of non-dominated solutions lies within the rectangle given by

the lexicographic best solutions with respect to f1 and to f2, all the solutions in the Pareto frontier

can be computed using simply the procedure presented for the second phase. A summary of this

method is still provided by Algorithm 2, but taking the lexicographic best solutions for f1 and f2
as the initial solutions S1 and S2, respectively.

With this single-phase approach there is no distinction between the type of the output solutions,

unlike what happens with the method previously presented. Furthermore, the order of calculation of

the solutions might be different when using the two approaches, as the example in the next section

shows.

The proposed methods are suitable for being adapted in order to privilege or limit the search

to a certain region, for instance in an interactive approach with the decision maker, as it allows

him/her to choose which pairs of solutions to analyse, and thus which regions to further explore

seeking for non-dominated solutions. More details will be given in Section 5.

11

3.1 Example

As an example of the application of the previous methods, let us consider a particular instance of

the bicriteria {0, 1} knapsack problem. The instance has 10 items and can be formulated as

min −46x1 + 36x2 − 46x3 − 74x4 − x5 − 40x6 − 68x7 + 44x8 − 97x9 − 81x10
min 56x1 + 78x2 + 6x3 + 77x4 − 41x5 − 17x6 − 95x7 − 87x8 − 29x9 − 2x10
subject to 62x1 + 81x2 + 77x3 + 67x4 + 12x5 + 63x6 + 4x7 + 18x8 + 10x9 + 73x10 ≤ 217

x ∈ {0, 1}10
(8)

The images of the supported and unsupported non-dominated solutions of (8) are depicted in

Figure 4. The images of the solutions represented in the plot are listed in Table 1, their order is

given in the first column (of Algorithms 1 and 2).

f2

f1-366

7

-271
-243

•1

•2

•3

◦4
◦5

◦6

◦7

◦8

• supported solution
◦ unsupported solution

Figure 4: Efficient solutions to problem (8)

Table 1 shows the efficient solutions of this problem. The first column indicates the order of

calculation of those solutions when Algorithm 1 and Algorithm 2 are applied, whereas the second

column shows the same but when using only one phase, consisting of Algorithm 2. The first

solutions obtained with both methods correspond to the best for each criterion. After knowing

these initial solutions, the two-phase approach first computes the supported, and only afterward

the unsupported. However, when using only one-phase, that is Algorithm 2, the solutions besides

the best for each criterion are obtained in a different order.

Alg 1 + Alg 2 f(s) Alg 2
1 (−366, 7) 1
2 (−243,−271) 2
3 (−360,−66) 6
4 (−293,−161) 3
5 (−321,−90) 7
6 (−287,−184) 5
7 (−332,−87) 4
8 (−249,−248) 8

Table 1: Efficient solutions output by Algorithms 1 and 2, and by Algorithm 2, when applied to
problem (8)

12

3.2 Computational experiments

In the following, results for the computational evaluation of Algorithms 1 and 2 are presented.

Besides comparing them with the methods in [1, 13], the main goal of these tests is to understand

the sizes of problems each algorithm can solve and how the running times vary with the parameters.

We denote the two-phase algorithm by A1, the one-phase algorithm by A2, the algorithm introduced

by Boland et al. [1] by BCS, and the algorithm proposed by Ralphs et al. [13] by RSW. The algorithm

proposed in [1] also searches for non-dominated solutions within rectangles (called boxes) that

change as new solutions are obtained. For each pair of solutions defining a rectangle, two new

non-dominated solutions are computed. The new solutions are the lexicographic best with respect

to the two criteria, considering also particular additional constraints in order to restrict the search

(and define the rectangles). The algorithm proposed in [13] differs from the one-phase approach here

proposed essentially due to a different strategy of search, because in our case the reference point

is changed from one iteration to the next one. All the codes were implemented in C language and

using CPLEX 12.6 to solve the intermediate mixed integer programs. These codes were tested on a

Dual Core AMD Opteron at 2 GHz, with 4 Gb of RAM, aiming at computing all the non-dominated

solutions of bicriteria problems. Three sets of randomly generated instances were considered:

• The first set of instances consists of {0, 1} knapsack problems with two objective functions,

min f1(x) = c1x
min f2(x) = c2x
subject to ax ≤W

x ∈ {0, 1}n

with c1j , c
2
j and aj uniformly generated in [−100, 100], W a random integer in [100,

∑n
j=1 aj],

and n = 10, 20, 30, 50, 100, 200.

• The second set of instances consists of {0, 1} two-dimensional knapsack problems with two

objective functions,
min f1(x) = c1x
min f2(x) = c2x
subject to a1x ≤W1

a2x ≤W2

x ∈ {0, 1}n

with cij and aij uniformly generated in [−100, 100], Wi a random integer in [100,
∑n

j=1 a
i
j],

i = 1, 2, and n = 10, 20, 30, 50, 100, 200.

• The third set of instances consists of complete assignment problems, again with two objective

functions, with the form

min f1(x) =
∑n

i=1

∑n
j=1 c

1
ijxij

min f2(x) =
∑n

i=1

∑n
j=1 c

2
ijxij

subject to
∑n

j=1 xij = 1, i = 1, . . . , n∑n
i=1 xij = 1, j = 1, . . . , n

x ∈ {0, 1}n×n

13

with c1ij , c
2
ij uniformly generated in [−100, 100], and n = 10, 15, 20, 25, 30, 50.

For each dimension thirty instances were generated, and the previous programs were applied.

A comparison of the average results for each code, A1, A2, BCS and RSW, in terms of running

times is summarised in Table 2 for the knapsack problems, whereas Table 3 shows the number

of non-dominated solutions in these instances. The CPU time for sorting the supported solutions

found along phase 1 in A1 was negligible, therefore it does not appear separately in the tables.

The CPU times obtained with all the four codes were not very different, in particular the times

for the methods based on a reference point approach, A1 and A2, are specially close. In fact, its

correspondent lines in the picture of Table 2 (solid for A1 and dashed for A2) seem to overlap. In

spite of the fact that the times do not differ much, there seems to be a tendency for their faster

growth with n for code RSW rather than with the other two approaches, and a slower growth for

code BCS. The best times for each problem dimension are shown in bold in Table 2. The method

with the best performance varies depending on the set of instances. However, A1 outperformed A2

in all cases. Additionally, A1 seemed to perform better than the other methods for small problems

and BCS for bigger size instances.

Table 2: Average CPU times (in seconds) for random knapsack problems

n 10 20 30 50 100 200
A1 0.128 1.133 3.730 10.115 64.928 451.078
A2 0.146 1.173 3.769 10.361 66.579 451.428
BCS 0.203 1.299 3.599 10.833 57.753 287.522
RSW 0.130 1.110 3.679 11.744 70.698 509.566

10 20 30 50 100 200
0

100

200

300

400

A1 A2 BCS RSW

n

C
P

U
ti

m
es

(s
)

Besides presenting the average number of non-dominated solutions for each size, Table 3 also

shows how many of those are supported (obtained in Phase 1) and how many are unsupported

(obtained in Phase 2), which gives an idea of how the workload is distributed.

Table 3: Average number of solutions for random knapsack problems

n 10 20 30 50 100 200
Phase 1 5.167 9.567 12.133 18.867 37.200 69.267
Phase 2 5.100 20.633 38.467 86.700 282.767 1000.400
Total 10.267 30.200 50.600 105.567 319.967 1069.667

Table 4 shows the average CPU times for computing one non-dominated solution. In the case

of code A1 these times are split into the time for calculating one supported solution (solid line in

the picture) and the time for calculating one unsupported solution (dashed line in the picture).

As expected, according to these results solving phase 1 problems is easier than solving phase 2

14

problems. Furthermore, the CPU times for computing unsupported solutions grow faster with n

than the times for obtaining supported solutions. The Chebyshev problems solved by each code (in

phase 2 for code A1) all have the same number of variables and of constraints, but are not exactly

the same, given that different scalars and different reference points can be used. This fact results

in slightly different running times which, together with the number of non-dominated solutions of

each type, have an impact in the overall running times presented by each algorithm.

Table 4: Average CPU times (in seconds) per solution for random knapsack problems

(a) Results for all codes

n 10 20 30 50 100 200
A1 0.012 0.038 0.074 0.096 0.203 0.422
Phase 1 0.007 0.018 0.033 0.040 0.065 0.106
Phase 2 0.018 0.045 0.081 0.113 0.214 0.483
A2 0.014 0.039 0.074 0.098 0.208 0.422
BCS 0.020 0.043 0.071 0.103 0.180 0.269
RSW 0.013 0.037 0.073 0.111 0.221 0.476

(b) Results for Phases 1 and 2 of code A1

10 20 30 50 100 200
0

0.1

0.2

0.3

0.4
Phase 1 Phase 2

n
C

P
U

ti
m

es
(s

)

For the biggest knapsack problems, comprising 200 items, the new method with two phases,

A1, computed 1069.667 solutions in an average time of 451.078 seconds, 69.267 of them supported

solutions and 1000.400 of them unsupported. As for the method implemented only in one phase,

A2, the same solutions were obtained in an average time of 451.428 seconds. As mentioned above,

the quickest method for these instances was BCS, which required 287.522 seconds, in average, to

solve each of them.

The running times for codes A1, A2, BCS and RSW on the two-dimensional knapsack instances are

shown in Table 5, whereas Table 6 presents their number of non-dominated solutions.

Table 5: Average CPU times (in seconds) for random two-dimensional knapsack problems

n 10 20 30 50 100 200
A1 0.128 1.127 3.579 10.844 64.261 490.338
A2 0.151 1.111 3.501 11.223 64.418 506.166
BCS 0.206 1.209 3.512 11.787 61.267 353.504
RSW 0.132 1.091 3.415 12.262 71.471 584.677

10 20 30 50 100 200
0

100

200

300

400

500
A1 A2 BCS RSW

n

C
P

U
ti

m
es

(s
)

Although it was only slightly slower to find each non-dominated solution for two-dimensional

knapsack problems – Table 7 – than for knapsack problems with only one constraint – Table 4 –,

15

the number of non-dominated solutions was higher in the latter case – Table 3. Nevertheless, in

general the two-dimensional problems were harder to solve than the previous knapsack instances –

Table 5.

Table 6: Average number of solutions for random two-dimensional knapsack problems

n 10 20 30 50 100 200
Phase 1 4.800 8.533 10.333 18.500 29.433 45.355
Phase 2 4.800 17.900 30.167 86.300 226.100 684.387
Total 9.600 26.433 40.500 104.800 255.533 729.742

The relative performance of the methods was similar to the previous results. The code A1 was

almost always better than A2. RSW was the quickest method for problems with 20 or 30 items.

However, it was still the most sensitive method to the increasing size of the problems. Like before,

code BCS was advantageous for the biggest problems.

Table 7: Average CPU times (in seconds) per solution for random two-dimensional knapsack prob-
lems

(a) Results for all codes

n 10 20 30 50 100 200
A1 0.012 0.037 0.071 0.103 0.201 0.458
Phase 1 0.009 0.021 0.033 0.035 0.070 0.135
Phase 2 0.017 0.053 0.112 0.110 0.278 0.650
A2 0.015 0.037 0.069 0.106 0.201 0.473
BCS 0.020 0.040 0.069 0.112 0.191 0.330
RSW 0.013 0.036 0.067 0.116 0.223 0.547

(b) Results for Phases 1 and 2 of code A1

10 20 30 50 100 200
0

0.2

0.4

0.6
Phase 1 Phase 2

n

C
P

U
ti

m
es

(s
)

The biggest instances of the two-dimensional knapsack problems, again with 200 items, were

solved in less than six minutes by code BCS. The two- and the one- phase methods presented earlier,

respectively A1 and A2, found the same set of solutions in about eight minutes.

Table 8: Average CPU times (in seconds) for random assignment problems

n 10 15 20 25 30 50
A1 3.222 19.130 60.816 137.420 242.352 1918.357
A2 3.261 19.700 61.361 138.342 243.362 1932.813
BCS 4.276 22.548 63.110 149.849 262.254 1237.120
RSW 3.609 21.256 66.938 154.346 284.533 2353.239

A1 A2 BCS RSW

10 15 20 25 30 50
0

500

1000

1500

2000

n

C
P

U
ti

m
es

(s
)

16

Finally, Tables 8 to 10 show the total running times, the number of non-dominated solutions and

the running times per solution of the same four codes applied to the assignment problem instances.

In this case the CPU times are generally bigger for the same n and increase faster than for the

previous problems. The performances of A1 and A2 are still very close, whereas code RSW is always

slower than these two and the gap in the times became greater with n. Even though the number

of non-dominated assignments – in Table 9 – is, in certain cases, smaller than the number of non-

dominated knapsacks solutions, according to the running times the first problems are harder to

solve than the latter.

Table 9: Average number of solutions for random assignment problems

n 10 15 20 25 30 50
Phase 1 7.367 12.567 17.533 22.367 26.233 48.567
Phase 2 14.933 44.667 76.267 121.800 154.700 388.033
Total 22.300 57.233 93.800 144.167 180.933 436.600

The time each code required to obtain one non-dominated solution, as well as the times to

compute one supported solution or one unsupported solution with A1, are presented in Table 10.

Although the total number of solutions in these instances is smaller than for knapsack problems

and calculating unsupported solutions takes longer than calculating supported solutions, the fact

that the assignment problems are more difficult to solve has a smaller impact in the total running

times than in the first case. On this set of problems the subproblems generated by code A1 were

solved faster than the others. In terms of the overall running times the new methods, A1 and A2,

outperformed code RSW as well as code BCS, except for the bigger instances with n = 50.

Table 10: Average CPU times (in seconds) per solution for random assignment problems

(a) Results for all codes

n 10 15 20 25 30 50
A1 0.145 0.338 0.653 0.961 1.351 4.394
Phase 1 0.036 0.071 0.126 0.198 0.266 0.723
Phase 2 0.199 0.414 0.775 1.102 1.537 4.853
A2 0.147 0.348 0.659 0.967 1.357 4.427
BCS 0.192 0.398 0.678 1.048 1.462 2.834
RSW 0.162 0.376 0.719 1.079 1.586 5.390

(b) Results for Phases 1 and 2 of code A1

10 15 20 25 30 50
0

0.8

1.6

2.4

3.2

4
Phase 1 Phase 2

n

C
P

U
ti

m
es

(s
)

Finally, it should be recalled that the presented times refer to the problem of finding all the non-

dominated solutions. When applied as an interactive approach the running times of these methods

are smaller, depending mostly on the regions to be searched.

17

4 Approximating the Pareto frontier

When Phase 1 is over it outputs part of the Pareto frontier, formed only by those non-dominated

solutions that are supported. This can be seen as an approximation to the Pareto frontier and in

order to improve this approximation new non-dominated solutions can be added, until all have been

determined or a measure of the quality of the approximation is met. Other approaches of the same

type were introduced by Cohon [3], Current et al. [6], and by Hamacher and Ruhe [9] using different

metrics.

In the following an error upper bound for the Pareto frontier approximations will be used. As

seen in the previous section, each pair of consecutive solutions obtained along the application of

Algorithm 2 provides an area to sweep, in search for new non-dominated solutions. As shown in

the following, for a given problem this area is smaller the higher the number of solutions, therefore

it can be used to halt the process, or compared with the area of the complete Pareto frontier (when

known).

Let P̄ = {s1, . . . , s`} be a set of non-dominated solutions, sorted in a way that f1(s1) < . . . <

f1(s`). Let us denote by A(si, si+1) the area of the region bounded by f(si) and f(si+1), i.e.,

A(si, si+1) = (f1(si+1)− f1(si))(f2(si)− f2(si+1)), i = 1, . . . , `− 1. Then, the area associated with

P̄ is defined by

A(P̄) =

`−1∑
i=1

A(si, si+1).

Proposition 4. Let P̄ = {s1, . . . , s`} be a set of non-dominated solutions, where f1(s1) < . . . <

f1(s`), and s′ be another non-dominated solution such that f1(s1) < f1(s
′) < f1(s`). Then, A(P̄) >

A
(
P̄ ∪ {s′}

)
.

Proof. Assume j is the greatest index such that f1(sj) < f1(s
′), and that f1(s′) < f1(sj+1). By

definition,

A
(
P̄ ∪ {s′}

)
=

∑j−1
i=1 A(si, si+1) +A(sj , s

′) +A(s′, sj+1) +
∑`−1

i=j+1A(si, si+1)

= A(P̄) +A(sj , s
′) +A(s′, sj+1)−A(sj , sj+1)

Next it is shown that A(sj , s
′) + A(s′, sj+1) < A(sj , sj+1). By assumption and because s′ is a

non-dominated solution,

f1(sj) < f1(s
′) < f1(sj+1) and f2(sj+1) < f2(s

′) < f2(sj).

Therefore,

A(sj , sj+1) = (f1(sj+1)− f1(sj))(f2(sj)− f2(sj+1))
= A(s′, sj+1) +A(sj , s

′) + (f1(sj+1)− f1(s′))(f2(sj)− f2(s′))+
(f1(s

′)− f1(sj))(f2(s′)− f2(sj+1))
> A(s′, sj+1) +A(sj , s

′)

as we wanted to show.

18

Let P be the Pareto frontier of a BCILP and P̄ ⊆ P be a subset of P . Let also the error

associated with P̄ be defined by e(P̄) = A(P̄)−A(P).

Corollary 4.1. Under the conditions of Proposition 4, e(P̄) > e
(
P̄ ∪ {s′}

)
.

Proposition 4 states that the area associated with subsets of non-dominated solutions decreases

as more solutions are computed. Therefore, it can be used as a measure of the quality of the current

subset of the Pareto frontier. Thus, the application of the method can halt if that area is smaller

than a maximum allowed tolerance for the quality of the computed set of non-dominated solutions.

By doing so the area of potential locations of new interesting non-dominated images is reduced.

Moreover, a “well-distributed” set of such solutions can be computed. This is done by selecting

the pair of consecutive images that corresponds to the widest area. This procedure is outlined in

Algorithm 3.

Algorithm 3: Approximate non-dominated solutions determination within the duality gap
defined by (S1, S2)

/* (S1, S2) is a pair of adjacent solutions (f1(S1) < f1(S2)) */
/* ε is the maximum allowed area of a set of non-dominated solutions */
/* X is an auxiliary set that stores the unscanned pairs of non-dominated

solutions */
1 s1 ← S1
2 s2 ← S2
3 L← {s1, s2}
4 X ← {(s1, s2)}
5 while X 6= ∅ and A(X) ≥ ε do
6 (s1, s2)← pair of solutions in X with the most distant images
7 X ← X − {(s1, s2)}
8 w1 ← f2(s1)− c∗2; w2 ← f1(s2)− c∗1
9 s← best solution to (6)

10 if s is defined then
11 L← L ∪ {s}
12 if f1(s) 6= f1(s2) then X ← X ∪ {(s1, s)}
13 if f2(s) 6= f2(s1) then X ← X ∪ {(s, s2)}

4.1 Computational experiments

A new set of computational tests was performed, in order to evaluate the speed of convergence

of the proposed method, and thus evaluating its ability to approximate the Pareto frontier of a

problem. These tests comprised the same instances listed in Section 3.2 and codes A1 and BCS. The

stopping criterion was a given upper bound on the relative gap between the area associated with

the exact Pareto frontier and the area associated with the set of non-dominated solutions output

by the codes.

19

Two evaluating measures were recorded: the number of non-dominated solutions computed by

the approximating method, and the running time required to obtain them. Such values are shown

in Tables 11 to 13 for a maximum relative gap tolerance of 10% and 20%.

Table 11: Average results to approximate Pareto frontiers for random knapsack problems

A1 BCS
Gap < 10% Gap < 20% Gap < 10% Gap < 20%

n (1) (2) (1) (2) (1) (2) (1) (2) (3)
10 0.122 10.133 0.124 10.133 0.212 10.267 0.196 10.267 10.267
20 1.190 30.200 1.143 30.200 1.294 30.200 1.310 30.200 30.200
30 3.818 50.600 3.813 50.600 3.609 50.600 3.568 50.600 50.600
50 10.678 105.567 10.219 105.567 10.938 105.567 10.805 105.567 105.567
100 64.734 319.967 62.430 319.967 58.637 319.723 58.242 319.723 319.967
200 239.393 867.767 198.621 787.933 216.144 941.459 193.047 878.552 1069.667
Legend: (1) CPU time (in seconds); (2) # of computed non-dominated solutions; (3) Total # of

non-dominated solutions.

When compared to the corresponding results when codes are applied in an exact manner we

observe that some CPU times for obtaining a set of non-dominated solutions with a gap smaller than

10% were smaller than the former. This was due to the additional operations that are performed

for checking the stopping criterion, and is less relevant for more difficult problems.

In most of the smaller instances of the knapsack and the two-dimensional knapsack problems all

the non-dominated solutions have been found for both a 10% and a 20% gaps. These results were

different for the class of assignment problems, which were harder to solve. In this case only part of

the Pareto frontier was obtained and there was a clearer decrease of the CPU times.

Table 12: Average results to approximate Pareto frontiers for random two-dimensional knapsack
problems

A1 BCS
Gap < 10% Gap < 20% Gap < 10% Gap < 20%

n (1) (2) (1) (2) (1) (2) (1) (2) (3)
10 0.147 9.600 0.142 9.600 0.197 9.600 0.191 9.600 9.600
20 1.237 26.433 1.180 26.433 1.224 26.433 1.254 26.433 26.433
30 3.916 40.500 3.711 40.500 3.530 40.500 3.569 40.500 40.500
50 11.601 104.800 11.341 104.800 12.004 104.800 12.649 104.800 104.800
100 66.914 255.533 65.552 255.533 63.128 255.533 62.467 255.533 255.533
200 276.116 615.133 230.724 561.633 261.884 635.499 229.560 590.551 729.742
Legend: (1) CPU time (in seconds); (2) # of computed non-dominated solutions; (3) Total # of

non-dominated solutions.

In general the conclusions are similar to what was drawn in Section 3, when comparing the

performances of codes A1 and BCS. The first of them was faster (and computed more solutions) for

small and medium size instances, whereas the second became the fastest of both codes for the bigger

instances. This was more obvious for the assignment problems class.

For the class of assignment problems, the running times of code A1 decreased from 39% to 52%,

to compute between 90% and 85% of all the non-dominated solutions, for a 10% gap. For a 20% gap,

20

the decrease in the running times varied between 44% and 59%, for knowing from 84% to 79% of

the Pareto frontier. The same values for code BCS, with a 10% gap, were of a time decrease between

37% to 15% for computing between 89% to 87% of the Pareto frontier. When the maximum gap is

20%, the times reduced between 45% to 21% to obtain about 83% of the non-dominated solutions.

It is worth remarking that the times decrease of approximating the Pareto frontier was bigger for

code A1 rather than for BCS.

Table 13: Average results to approximate Pareto frontiers for random assignment problems

A1 BCS
Gap < 10% Gap < 20% Gap < 10% Gap < 20%

n (1) (2) (1) (2) (1) (2) (1) (2) (3)
10 1.981 20.033 1.803 18.633 2.699 19.867 2.364 18.600 22.300
15 10.324 48.567 8.836 45.400 15.319 51.300 13.072 47.633 57.233
20 33.918 81.133 28.535 74.600 44.646 83.633 39.296 77.967 93.800
25 74.764 124.133 62.536 115.400 114.673 125.267 103.547 118.500 144.167
30 131.963 155.100 105.924 142.533 199.828 157.233 181.081 148.600 180.933
50 931.250 370.200 787.233 343.800 1042.708 380.267 975.303 362.200 436.600
Legend: (1) CPU time (in seconds); (2) # of computed non-dominated solutions; (3) Total # of

non-dominated solutions.

5 Interactive approach

In this section we intend to make a progressive and selective search of non-dominated solutions,

intending to avoid the effort in the calculation of “areas” identified by the DM as most interesting.

This is done taking into account the possible feasible values of the objective functions in those

“areas”.

Algorithm 1 together with Algorithm 2, Algorithm 2 by itself, ad Boland et al.’s algorithm can

be used as interactive approaches. In this section we will exemplify the different possibilities. We

propose two approaches based on Algorithm 1 combined with Algorithm 2. In both, the first part

of the interactive procedures here suggested follow the framework of the procedure proposed in [4].

Let us start by an approach using a NISE-like approach in an interactive way for searching in a

progressive and selective way the supported non-dominated solutions.

In order to illustrate this process, let us consider the following {0, 1} knapsack problem with ten

items and two objective functions to be maximised.

max 91x1 + 9x2 − 66x3 + 32x4 − 13x5 + 99x6 + 62x7 − 98x8 − 50x9 + 26x10
max 29x1 − 14x2 + 73x3 + 87x4 − 90x5 + 69x6 − 16x7 + 56x8 − 61x9 + 71x10
subject to 62x1 + 21x2 + x3 + 57x4 + 93x5 + 34x6 + 89x7 + 59x8 + 39x9 + 90x10 ≤ 409

x ∈ {0, 1}10
(9)

The set of all efficient solutions for this problem is shown in Figure 5.

A NISE-like approach starts by the calculation of solutions 1 and 2, depicted in Figure 6a.

Maximising the weighted-sum of f1 and f2, such that the line passing through points 1 and 2 is

a constant cost line of such a weighted-sum, the solution 3 is obtained – see Figure 6b. Now, a

21

f2

f1
83

226

385

318

•

•

•

◦

•

•

◦
◦
◦

◦

◦ unsupported solution

• supported solution

Figure 5: Efficient solutions to problem (9)

dialogue phase follows, asking the DM whether he is interested in the search for supported non-

dominated solutions between 2 and 3, or between 1 and 3, or both. In the first case the point 5 is

found, in the second it will be point 4, and both of them in the last case – Figure 6c.

f2

f1

•1

•2
f2

f1
244

313

•1

•2

•3

f2

f1
146

369

240

310

•1

•2

•3

•4

•5

(a) (b) (c)

Figure 6: Interactive calculation of supported non-dominated solutions to problem (9) with the
two-phase method

Note that the DM’s decision is based on the knowledge of the feasible intervals of the objective

function values. This type of dichotomic questions and the speed of calculation of the supported

non-dominated solutions contributes to select, in an easy way, the “areas” where phase two will be

used to search unsupported non-dominated solutions minimising a weighted Chebyshev distance.

Note that the selection of the first phase is crucial because the second procedure is much more time

consuming, as seen before.

The second way of using phase 1 of the two-phase algorithm is to start by calculating the

whole set of supported solutions. Then, in a dialogue phase, the DM can identify visually the

duality gaps where the second phase search should be done. The calculation in the duality gaps,

between two current adjacent supported non-dominated solutions, in order to start the search of

unsupported non-dominated solutions, is done by minimising a weighted Chebyshev distance to

the “ideal solution” associated with the considered duality gap. As explained earlier, the weights

are chosen such that the constant cost contours related to the weighted Chebyshev metric are

proportional to the intervals associated with the two adjacent supported non-dominated solutions

22

defining the duality gap under consideration. Of course, here again the search can be complete or

can halt according to some pre-defined bound, as explained in Section 4.

We now exemplify the application of the second version of the interactive procedure above

referred to, based on the methods presented in Section 3, but driven by a DM to guide the search

for non-dominated solutions of this problem.

f2

f1

•1

•2

•3

•4

•5
f2

f1
83

369
385

146

R1

•1

•2

•3

•4

•5◦ 6
f2

f1

R2

93

369
371

146

•1

•2

•3

•4

•5◦ 6

(a) (b) (c)

Figure 7: Interactive calculation of supported and unsupported non-dominated solutions to problem
(9) with the two-phase method

First we consider the two-phase method, consisting of a first phase with Algorithm 1, followed

by a second phase with Algorithm 2. Suppose that all supported solutions have been computed and

that the interactivity is only applied with Algorithm 2. Then the list of images of the supported

solutions, points 1 to 5 in Figure 7a (namely, (318, 226), (83, 385), (244, 313), (310, 240), (146, 369)),

is presented to the DM. He/she is also informed that other non-dominated solutions may exist in the

duality gaps between adjacent pairs of these solutions, namely the shaded areas in that plot. Assume

that, when shown this information, the DM asks to find (if possible) more non-dominated solutions

in the region defined by points 2 and 5. An augmented Chebyshev metric with R1 = (146, 385) as

the reference point – in Figure 7b – is considered in problem (6). Then, the solution with image

(93, 371), given by point 6 in Figure 7b, is output. Two new regions are then defined, one associated

with points 2 and 6, and another associated with points 6 and 5. Proceeding with the search, and

now using R2 = (146, 371) as the reference point, leads to a previous solution (corresponding to point

5 or to point 6) – see Figure 7c – and, thus, the DM is told that there are no other non-dominated

solutions with an image in the region between points 5 and 6.

If the DM wishes to continue searching, a new region has to be chosen, which can be the region

limited by points 2 and 6, 5 and 3, 3 and 4, or 4 and 1. Otherwise, the process halts. Note, again,

that the selection of the first phase is crucial because the second procedure is much more time

consuming, as seen before.

It should be noted that the search can change from the first phase to the second phase between

two current adjacent solutions obtained in the first phase (i.e., that may not be true adjacent

solutions). For example, after obtaining the points 1, 2 and 3, in Figure 6b, the DM’s next step

may be to search between points 2 and 3 using the second phase of the algorithm.

23

We now exemplify the application of a similar interactive procedure based only on the one-phase

method outlined in Algorithm 2, guided by a DM. The departure points are the non-dominated

solutions that optimise individually each criterion. These are the first two solutions saved by the

system and have objective function values: (318, 226) and (83, 385) – represented by 1 and 2 in

Figure 8a. The ideal solution for this problem is R1 = (318, 385) and this is the trivial starting

reference point. Then problem (6) is solved for these parameters and a new solution is computed,

its objective functions vector being (244, 313) – point 3 in Figure 8b.

f2

f1

•1

•2
f2

f1
83

226

385

318

R1

•1

•2

•3

f2

f1

R2

83

313

385

244

•1

•2

•3

•4

(a) (b) (c)

f2

f1

R3

83

369
385

146

•1

•2

•3

•4◦5
f2

f1
93

369
371

146

R4

•1

•2

•3

•4◦5

(d) (e)

Figure 8: Interactive calculation of non-dominated solutions to problem (9)

The knowledge of point 3 allows to restrict the search region for non-dominated solution images

to the two shaded areas in Figure 8b. Suppose the DM is then requested to choose one of those

regions to continue the search and consider that this chosen region is bounded by points 2 and 3,

that is, by (83, 385) and (244, 313). This consists of solving (6) again, considering R2 = (244, 385)

as the new reference point, and the next non-dominated solution is obtained. Its objective function

values are (146, 369) – which is point 4 in Figure 8c and the shaded areas in that plot represent the

regions that may contain images of non-dominated solutions.

Assuming that the DM continues the search within the region limited by points 2 and 4, the

image of the next non-dominated solution is (93, 371) – point 5 in Figure 8d. Once again the search

can be restricted to the shaded regions in that plot. Continuing, using now R3 = (146, 371) as the

reference point, leads to an already known solution (either point 4 or 5) – Figure 8e. The DM can

halt the process as soon as he/she is satisfied. If the he/she wants to continue the search, he/she

is then informed that no other non dominated solutions can be found in that region, so he/she can

24

either choose to halt the process or else to proceed with the decision process from a different starting

reference point. Namely the regions delimited by points 1 and 3, points 3 and 4, and points 2 and

5 could still be further explored in order to find new non-dominated solutions.

The method introduced by Boland et. al [1] can also be implemented in interaction with a DM

who points the region to be searched, according to his/her preferences. Such implementation is

now illustrated, when solving problem (9). Again the first two solutions to be found and presented

to the DM are the lexicographic best for each criterion. Then, two new constrained problems are

solved, considering the maximisation is sought, and the solutions with images 3 and 4 on Figure 9b

are found. The knowledge of these two new solutions allows to partition the search space into two

rectangular regions/boxes, one bounded by points 2 and 3, and another bounded by points 4 and

1, both shaded on Figure 9b.

f2

f1

•1

•2
f2

f1

•1

•2

•3
◦4

f2

f1

•1

•2

•3
◦4

•5

◦ 6

(a) (b) (c)

f2

f1

•1

•2

•3
◦4

•5

◦ 6

◦7

(d)

Figure 9: Interactive calculation of non-dominated solutions to problem (9) with Boland et al.’s
method

Suppose that, when presented this information, the DM decides to search for more non-dominated

solutions in the first of those two boxes. Then a new iteration of the method by Boland et al. is

applied, thus computing the solutions with points 5 and 6 on Figure 9c as the images. Now the DM

is informed that there still may exist other non-dominated points in the shaded box, bounded by

points 2 and 5, 6 and 4, or 4 and 1. Assuming the DM wants to continue searching in the first of

them, only one new solution is found, corresponding to point 7. Next we suppose the DM wishes to

halt the calculation, even though he/she could continue searching for solutions with images within

the boxes bounded by 7 and 5, 6 and 3 or 4 and 1.

25

First, we have to emphasise that at any moment of the search the DM can say that he is

interested in the complete calculation of a subset of non-dominated solutions corresponding to a

more or less wide area of the objective function space. In these circumstances, this can be done

automatically (one shot) using the generating approach proposed above. Secondly, for such an area

it is also possible to use the approximate algorithm proposed in the previous section to calculate

an approximation of those solutions. Additionally, and as mentioned earlier, in such an interactive

procedure phase 1 can be replaced by phase 2 at any time the DM finds convenient, as long as

two current adjacent non-dominated solutions are given. Also, other searching processes, based on

different search regions, could be tested. For instance, the combination of using lower bounds for

the objective functions with the search for the best solutions with respect to a Chebyshev distance

to a reference point, like the ideal point.

6 Conclusions

The non-dominated solutions of BCILP can be classified into supported and unsupported, the latter

type of solutions being harder to compute. For instance, they cannot be obtained by one of the

most common multicriteria approaches, WSMs. In this paper a method was developed based on a

weighted Chebyshev metric with respect to a reference point, which is associated with the search

for non-dominated solutions the images of which lie on a rectangle defined by this metric and a

given pair of non-dominated solutions. This method can be used to find all the solutions or can

be combined with a WSM in a two-phase approach. These two versions were adapted with the

goals of calculating an approximation of the Pareto frontier up to a given tolerance or being used

interactively.

When used to find all non-dominated solutions of bicriteria random knapsack, two-dimensional

knapsack and assignment instances, computational experiments revealed that the two versions of

the proposed method can compete with advantage with the algorithm in [13], whereas the presented

methods were faster than the algorithm in [1] for the smallest instances and slower for the biggest.

Furthermore, bicriteria knapsack problems with 200 items were solved in an average CPU time of

451.078 seconds by the two-phase method, in 451.428 seconds when using only one phase, whereas

bicriteria two-dimensional problems also with 200 items were solved in 490.338 and in 506.166

seconds, and bicriteria 50×50 assignment problems were solved in 1918.357 and in 1932.813 seconds,

both with the same codes, respectively.

A version of the introduced method for approximating the Pareto frontier was also proposed. In

this case, and for random assignment problem instances of size up to 50× 50, it was shown that a

set of non-dominated solutions with an area that differs at most 10% from the exact could be found

in less 39% to 52% of the running time required to find the whole Pareto frontier, and in less 44%

to 59% when the relative gap is of 20%. Given the obtained results, a two-phase implementation of

Boland et al.’s method [1] is expected to enhance the original for big problems.

The WSM together with the proposed Chebyshev approach (Algorithm 2), the former Chebyshev

26

approach alone and the Boland’s algorithm can also be adapted as interactive procedures. In the

last section of the paper we exploited them to create progressive and selective interactive procedures

for searching non-dominated solutions. It was concluded that the methods combining the WSM

with Algorithm 2 are the most efficient because the WSM is used to reduce the scope of the search

and the Chebyshev approach is used just in a second phase for very focused search. Remember

that, as we have seen in Section 3, the WSM calculation phase is much faster than the one based

on a Chebyshev approach.

Acknowledgments This work was partially supported by Fundação para a Ciência e a Tecnologia

(FCT) under projects PEst-C/EEI/UI0308/2011 and PTDC/EEA-TEL/101884/2008. The work of

Marta Pascoal was also partially funded by the FCT under grant SFRH/BSAB/113683/2015.

References

[1] N. Boland, H. Charkhgard, and M. Savelsbergh. A criterion space search algorithm for biob-
jective integer programming: The balanced box method. INFORMS Journal on Computing,
2:558–584, 2015.

[2] J. Clímaco and M. Pascoal. Multicriteria path and tree problems: discussion on exact algo-
rithms and applications. International Transactions in Operational Research, 19:63–98, 2012.

[3] J. Cohon. Multiobjective programming and planning. Academic Press, New York, 1978.

[4] J. Coutinho-Rodrigues, J. Clímaco, and J. Current. An interactive bi-objective shortest path
approach: searching for unsupported non dominated solutions. Computers & Operations Re-
search, 26:789–798, 1999.

[5] J. Current and M. Marsh. Multiobjective transportation network design and routing problems:
Taxonomy and annotation. European Journal of Operational Research, 65:4–19, 1993.

[6] J. Current, C. ReVelle, and J. Cohon. An interactive approach to identify the best compromise
solution for two objective shortest path problems. Computers & Operations Research, 17:187–
198, 1990.

[7] K. Dächert, J. Gorski, and K. Klamroth. An augmented weighted Tchebycheff method with
adaptively chosen parameters for discrete bicriteria optimization problems. Computers & Op-
erations Research, 39:2929–2943, 2012.

[8] C. Ferreira. Problemas de localização e distribuição multicritério – aproximações e estudo de
alguns casos com implicações ambientais. PhD thesis, Univ. of Aveiro, 1998.

[9] H. Hamacher and G. Ruhe. On spanning tree problems with multiple objectives. Annals of
Operations Research, 52:209–230, 1994.

[10] H. W. Hamacher, C. R. Pedersen, and S. Ruzika. Finding representative systems for discrete
bicriterion optimization problems. Operations Research Letters, 35:336–344, 2007.

27

[11] G. Mavrotas. Effective implementation of the ε-constraint method in multi-objective mathe-
matical programming problems. Applied Mathematics and Computation, 213:455–465, 2009.

[12] A. Raith and M. Ehrgott. A comparison of solution strategies for biobjective shortest path
problems. Computers & Operations Research, 36:1299–1331, 2009.

[13] T. K. Ralphs, M. J. Saltzman, and M. M. Wiecek. An improved algorithm for solving biobjec-
tive integer programs. Annals of Operations Research, 147:43–70, 2006.

[14] S. Steiner and T. Radzik. Computing all efficient solutions of the biobjective minimum spanning
tree problem. Computers & Operations Research, 35:198–211, 2008.

[15] R. Steuer. Multiple Criteria Optimization: Theory, Computation and Applicattion. John Wiley
& Sons, Inc., New York, 1986.

[16] R. Steuer and E.-U. Choo. An interactive weighted Tchebycheff procedure for multiple objective
programming. Mathematical Programming, 26:326–344, 1983.

[17] M. Visée, J. Teghem, M. Pirlot, and E.L. Ulungu. Two-phases method and branch and bound
procedures to solve the bi-objective knapsack problem. Journal of Global Optimization, 12:139–
155, 1998.

28

