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Abstract

An algorithm for gauge fixing to the Landau gauge in the fundamental modular region in lattice QCD is described. The
method, a combination of an evolutionary algorithm with a steepest descent method, is able to solve the problem of the
nonperturbative gauge fixing. The performance of the combined algorithm is investigatéd r-&.7, and 18, g = 6.0,
lattice U (3) gauge configurations.
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1. Introduction and motivation

Quantum chromodynamics (QCD) is the theory that describes the interaction between quarks and gluons. From
the dynamical point of view, it is usual to separate the high energy regime from the low energy regime. While the
high energy limit of QCD is well described by perturbative methods, perturbation theory cannot answer a number
of important questions. Certainly, it is not applicable to the low energy limit of QCD. Presently, we do not have
yet an analytical method to tackle this dynamical regime. The solution is to solve QCD on the computer [1], where
continuum euclidean space—time is replaced by a discrete set of points, the lattice. Typical lattices are hypercubes
where points are separated &4yn each direction.

In the lattice formulation of QCD, the gluon fields, are replaced by the links, defined as

Uulx) = eXD(iagoA;L(x +aéu/2))a 1)

whereé,, are unit vectors along direction. The links are elements of t8g(3) group.
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QCD is a gauge theory, therefore, the fields related by gauge transformations

Up(x) — g)U,(x)g"(x +aéy), geU@A), )

are physically equivalent. The set of fields related by gauge transformations defines a gauge orbit. From the
definition of gauge orbit, it follows that to study such type of theories it is enough to pick one field from each
of the orbits. The identification of one field in each gauge orbit is called gauge fixing.

On the continuum, the problem of the quantisation of gauge theories was solved long ago by Feynman [2],
DeWitt [3] and Faddeev and Popov [4]. The quantisation method requires a choice of a gauge condition, uniquely
satisfied in each gauge orbit, to define the generating functional for the Green’s functions. For the Landau or
the Coulomb gauge and for small field amplitudes, the gauge condition is uniquely satisfied in each gauge orbit.
However, if large field amplitudes are involved, the gauge fixing condition has multiple solutions in each gauge
orbit [5,6], the Gribov copies, i.e., the nonperturbative quantisation of Yang—Mills theories cannot be described
by the usual methods of perturbation theory. This result due to Gribov for the Coulomb and Landau gauge was
generalized by Singer. In [7], Singer proves that it is impossible to find a local continuous and unambiguously
gauge fixing condition for an$U (N) gauge theory defined on the manifdigl Singer’'s theorem was extended to
the four-torus by Killingback [8].

For the continuum formulation of QCD, in [9] it was argued that the Landau gauge Faddeev—Popov formula
8(0A)def{—0 - D(A)]exd—Sym (A)], restricted to the region where the Faddeev—Popov operator is positive
—d - D(A) > 0 (Gribov region), provides an exact nonperturbative quantisation for QCD.

The lattice formulation of gauge theories does not require gauge fixing. However, gauge fixing is necessary to
study the Green’s functions of the fundamental fields like, for example, the gluon and quark propagators and the
quark—gluon vertex. The propagators contain information about the mechanisms of confinement [10] and chiral
symmetry breaking [11,12]. The quark—gluon vertex allows a first principles determination of the running coupling
constant of QCD [13]. In addition, by choosing a gauge one can compute renormalisation constants for composite
operators by sandwiching the operators between quark states [14]. At least for the usual gauges like the Landau
and Coulomb gauges, the lattice studies that rely on a gauge fixing condition have a fundamental problem: how to
properly define a nonperturbative gauge fixing condition, i.e. how to eliminate the influence of the different Gribov
copies on the results. The implications of [9] for the lattice formulation of QCD remain to be investigated.

In this paper we consider the problem of gauge fixing for the Landau gauge. On the lattice, Landau gauge fixing
can be viewed as a global optimization problem [15]. Typically, we have a minimizing function with many local
minima, the Gribov copies, and, to eliminate the ambiguities related to the various minima, we aim to find the
absolute minimum. In this work, the gauge defined by the absolute minimum of the minimizing function is named
minimal Landau gauge.

We report on an algorithm that combines a local optimization mette&ourier accelerated steepest descent
[16], with an implementation of an evolutionary algorithm [17], suitable for global optimization protflems,
to address the question of gauge fixing in the minimal Landau gauge. Our investigation shows that a proper
combination of local and global methods identifies the global minimum of the optimizing function and, in this
way, solves the problem of the nonperturbative gauge fixing. This paper is a full report of the work started in [21].

The paper is organized as follows. On Section 2, the minimal Landau gauge is defined. In Section 3 the local
optimization method, the global optimization method and the combined Hocgbbal method are described.
Section 4 reports on the performance of combined method car@8l 16 lattices. Finally, conclusions and
discussion are given in Section 5.

1 By local optimization method we mean an algorithm that seeks only a local solution, i.e., a point at which the function is smaller than all
other points in its vicinity.
2 By global optimization we understand the problem of computing the absolute minimum/maximum of a given function.
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2. Theminimal Landau gauge

On the continuum, the Landau gauge is defined by
duA, =0. (3)
This condition defines the hyperplane of transverse configurations
F={A:9-A=0}. (4)

It is well known [5] thatI" includes more than one configuration from each gauge orbit. In order to try to solve
the problem of the nonperturbative gauge fixing, Gribov suggested the use of additional conditions, namely, the
restriction of physical configurational space to the region

2={A19-A=0,MA]>0}cCT, (5)

whereM[A] = —V - D[A] is the Faddeev—Popov operator. Howeyelis not free of Gribov copies and does not
provide a proper definition of physical configurations.

A suitable definition of the physical configurational space is given by the fundamental modular fegicn,
the set of the absolute minima of the functional

FA[g]=/d4x DT[4S (0 A5 (). (6)
"

The fundamental modular regiotis a convex manifold [22] and each gauge orbit intersects the interidrasfly
once [23,24], i.e. its interior consists of nondegenerate absolute minima. On the bolindaere are degenerate
absolute minima, i.e. different boundary points are Gribov copies of each other [24—-26]. The intedipthaf
region of absolute minima of (6), identifies a region free of Gribov copies. To this choice of gauge we call the
minimal Landau gauge.

On the lattice, the situation is similar to the continuum theory [27—-29]. The interiot obnsists of non-
degenerate absolute minima of the lattice version of (6) and Gribov copies can occur at the béunhdaoy a
finite lattice, the boundary A, where degenerate minima may occur, has zero measure and the presence of these
minima can be ignored [28].

On the lattice, the Landau gauge is defined by maximizing the functional

Fylgl=Cr Y Re{Tr{g(0)Uu(x)e"(x + )]}, 7
X,
where
1
= NamNeV ©

is a normalization constanigim is the dimension of space—tim#&, is the dimension of the gauge group and
V represents the lattice volume. LEY, be the configuration that maximizégg] on a given gauge orbit. For
configurations neat/,, on its gauge orbit, we have

c
Fy[l+iom]~ Fylll+ TF > iof (@) T (U (x) = Up(x — ) =2 (US 0) = Uf = )] (9)
X, [

whereA® are the Gell-Mann matrices. By definitioli,, is a stationary point of", therefore,
oF  iCFr
doi(x) 4

D T (UWx) = Uplx — ) = 24U (0) = U (x — )] = 0. (10)
"
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In terms of the gluon field, this condition reads

D TR (Au(x +aft/2) — Au(x — at/2)] + O(a®) =0, (11)
y
or
> 0,A%(x) + Oa) =0, (12)
y

i.e., (10) is the lattice equivalent of the continuum Landau gauge condition. The lattice Faddeev—Popov operator
M (U) is given by the second derivative of (7).
Similarly to the continuum theory, on the lattice one defines the region of stationary points of (7)

r={u: 3 -AW)=0}, (13)
the Gribov’s region2 of the maxima of (7),
2={U:93-AWU)=0andM () >0} (14)

and the fundamental modular regidrdefined as the set of the absolute maxima of (7). The lattice minimal Landau
gauge chooses from each gauge orbit, the configuration belonging to the intesior of

The evidence for lattice Gribov copies, i.e. different maximaFpf was established long time ago [30-32]
but their influence on physical observables is not clear. For the lattice Landau §l@g simulations suggest
that the influence of Gribov copies is at the level of the simulation statistical error [33,343J8) there is no
systematic study but it is believed that the Gribov noise is contained within the statistical error of the Monte Carlo.
Here, we will not discuss the role of Gribov noise on correlator functions but an algorithm for finding the absolute
maximum of Fyy[g]. For a discussion on the influence of Gribov copies on the gluon propagator see [33,35,36].

3. Optimization methods

The algorithm for minimal Landau gauge fixing reported in this paper combines a local and a global optimization
method. For completeness, in this section we outline the local method and describe the global and combined
local+ global algorithms.

On the gauge fixing process, the quality of the gauge fixing is measured by

1
6= v Xx:Tr[A(x)AT(x)] (15)
where
A@) = [Uy(x —aé,) — U} (x) —h.c. — tracd (16)

v

is the lattice version of, A, = 0.
3.1. Local optimization

By definition, a local optimization method computes a local maximunigfg]. For Landau gauge fixing, a
popular local optimization method is the steepest descent [16] method.

The naive steepest descent method faces the problem of critical slowing down when applied to large lattices.
Critical slowing down can be reduced by Fourier acceleration. In the Fourier accelerated method, in each iteration



O. Oliveira, P.J. Slva / Computer Physics Communications 158 (2004) 73-88 e

one chooses

2 2
A 10 Phad” A
g(x) =exp|:F 15 ;2a2 F(EU A [U(x) — U (x)] — trac )} (17)
where
A_V(Uu(x)) =U,(x —aé,) — Uy (x), (18)

p? are the eigenvalues ¢f-92), a is the lattice spacing and represents a fast Fourier transform (FFT). For the
parametew we use the value 0.08 [16]. For numerical purposes, it is enough to expand to first order the exponential
in (17), followed by a reunitarization @f(x).

For large lattices (17) is not the best way to solve the problem of critical slowing down. In [37,38] a method
was developed that avoids the use of FFT, has a dynamical critical exponent close to zero and the advantage to be
easily parallelized. In this work we use the Fourier accelerated steepest descent method (SD).

3.2. Global optimization

Global optimization methods aim to find the absolute maximum or minimum of a multidimensional function.
Presently, there is not a method that can assure, with certainty, that the computed maximum in a single run is
the absolute maximum. Simulated annealing (SA) is, probably, the most popular method for global optimization.
However, evolutionary algorithms (EA) [17] are an alternative to simulated annealing. The “advantage” of
evolutionary algorithms relatively to SA is that EA work with multiple candidates for maximum/minimum in a
single run and, in principle, can avoid or reduce the number of multiple runs necessary to identify the global
optimum. For us, this provided the motivation to try the use of EA for gauge fixing in lattice QCD.

Evolutionary algorithms (EA) are a generalization of genetic algorithms (GA). Genetic algorithms are inspired
in natural selection and in the theory of evolution of species. The language spoken in evolutionary programming is
borrowed from genetics. The vector of the parameters to optimize is called chromosome or individual. A population
consists in a number of individuals. The function to optimize is the cost function.

For the gauge fixing problem, a chromosome is the set of matgicesthat defined a gauge transformation.

The cost function is the functional; [g].

An evolutionary code starts generating a set of tentatives of solutions, the initial population. In the following
the number of individuals in the initial population will be referred8yop. In our case, the initial population was
generated randomly. After sorting the initial population according to their cost function v&juemembers were
selected, using a roulette-wheel method [17], to begin the evolutionary phase. The number of individuals in the
population was always kept fixed yop. In this work we usedVipop/ Npop = 2.5.

The population evolution was performed according to the rules:

(1) The bestVgoodindividuals survive for the next generation;,

(2) Npad= Npop — Ngood are replaced by new chromosomes. The new individuals are generated by reproducing
the Ngood members of the population. In this work we $&jood= Npop/2;

(3) For mating or reproduction two good chromosomes are selected and give “birth” to two offsprings. The process
completes after generation dfy,ag Nnew offsprings. In this work parents were selected using the so-called
roulette-wheel selection [17], a method which favours the best chromosomes in the population;

(4) A new generation is defined only after mutating the population constructed after point 3. No mutation was
applied to the best member of the population.

In order to reproduce, a population requires a set of rules to make childs from the parents, the genetic operators.
In this work we considered the following operators
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e Random Crossover (RC)
For evolutionary and genetic algorithms, crossover is a fundamental mating operator that mimics the crossover
observed in biological systems: after selection of a set of contiguous genes in the chromosomes, the two childs
are built by interchanging the chosen piece of the parents genetic material. Our implementation of the crossover
is slightly different. On the lattice we select randomlyx pinicrossp0ints; the random variabl@nicrosstakes
values in[0.40, 0.70]. The offsprings are defined by interchanging the parents magriaethese point8 Note
that crossover does not imply creation of new genes.

e Random Blending (RB)
Blending operators try to overcome the crossover problem of gene creation. Our implementation of blending
starts by choosing a set of lattice points similarly as in RC. For the first child, we select a randofnfealue
B €10, 2]. For the selected points, tigematrices are given, after reunitarization, by

Bg1+ (1—B)g2, (19)

wheregi and g2 denote parents. In the remaining lattice points wegsetgi. The genetic material of the
second offspring is generated in the same way. The difference being thathosen different at each of the
selected lattice points and in the remaining points we selgs.

Each mating operator has an associated probability. After parent selection, it is tested if the chosen parent is able
to reproduce by comparing an uniformly distributed random numbf, ity with the mating probability.

The mating operators just recombine the genetic information of the population. To explore more effectively the
cost surface, an evolutionary code applies mutation operators after the mating phase. These operators change a few
genes of a chromosome either by replacing the gene by a neighbouring value or replacing the gene by a completely
different value. In this work, we considered the following mutation operators:

o Addition mutations (MA)

g(x) — g(x) +€A, (20)
e Substitution mutations (MS)

gx) — A, (21)
e Expansion mutations (ME)

8(x) — g(x)(1+€A), (22)

wheree (Je| < 0.025) is a random number atl is a randomSU(N) matrix. The resulting matrix is properly
reunitarized. Each mutation operator is applied to all population skipping theVagstindividuals (in our work

Nelite = 1). Like for the mating operators, mutations have an associated probability too. For each operator, and for
each individual, we go through the lattice and apply the operator in the correspgniiagices according to the
respective probability.

Each complete iteration of the algorithm (selection, mating and mutation) is called generation.

The probabilities associated to each genetic operator were defined to maximize the performance of the pure
evolutionary code. The large number of parameters makes a detailed study of the probabilities quite hard to
perform. However, for practical purposes, we used the procedure described below to define our algorithm. Set
all probabilities to zero except for MS. For MS take 0.01 for the probability. Change the probability of RC and

3 In literature this type of crossover is also known as uniform crossover.
4 The choiceB € [0, 1] is the most simple blending method, but has the disadvantage that it does not create new values outside the interval
defined by the parents genes.
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choose the value that optimizes the performance of the algorithm. After setting the probability for RC, repeat the
procedure for MA, then for RB, then for ME. Finally, check for the value of the MS probability. The probabilities
associated to the genetic and mutation operators used in our study are

Random crossover prc =0.40
Random blending prb=0.70
Addition mutation pma=0.04
Substitution mutation  pms= 0.04
Expansion mutation pme=0.02

In what concerns Landau gauge fixing, the performance of the pure evolutionary algorithm for Landau gauge
fixing was quite disappointing; the best run ended with 10~L. This can be understood as a consequence of the
large dimension of the problem and of the natur&pt In conclusion, the performance of the pure evolutionary
algorithm for the 4D Landau gauge fixing problem is similar to the performance observed in simplified versions of
the problem [39,40].

3.3. Combined global + local optimization

For minimal Landau gauge fixing in lattice QCD, the global optimization problem can be overcomed by
combining the local and the global algorithms described above. From the point of view of the evolutionary
algorithm, a possible combined algorithm means redefining the cost function as

flg; N]= Fylg] afterN local steepest descent steps (23)

As described below, with a proper choiceMfit is possible to identify the global maximum &%, .

4. Resultsfor combined algorithm and the minimal Landau gauge

The combined algorithm was studied wig(3) gauge configurations on*§A = 5.7) and 168 (8 = 6.0)
lattices. The gauge configurations were generated with the MILC code [41] using a combination of four over-
relaxed and one Cabibbo—Marinari updates, with a separation between configurations of 3000 combined updates.
For each of the lattices, the combined algorithm was investigated in detail for at least three configurations.

For Landau gauge fixing, the absolute maximunkgfwas computed by running, for each gauge configuration,
1000 local algorithms for the smaller lattice and 500 on the larger lattice, starting from different random chosen
points. A local minimum was defined by demanding that 10-10 for the smaller lattice and < 10~1° for the
larger lattice. The candidate for absolute maximum computed with the combined algorithm was compared with the
candidate for absolute maximum from the multiple local algorithm runs. In all the simulations, we never observed
a larger maximum than the one obtained with the multiple runs of the steepest descent method. Preliminary results
on the performance of the combined algorithm were given in [21].

4.1. 8*lattices

For the & lattice, 10 gauge configurations were generated. The study of their Gribov copies structure was
performed by running 1000 SD on each of the configurations. Then, a detailed study of the three configurations
with the largest number of maxima was performed as described below.

The number of local maxima computed in the multiple runs with the steepest descent method was quite large.
Fig. 1 resumes the 1000 SD runs for one of the configurations used to test the algorithm. The figure shows not only
a large number of local maxima, the Gribov copies, but also that the most probable maxima are associated with
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Fig. 1. Local maxima of one of the*&U (3), B =5.7, configurations after 1008eepest Descent starting from random point® (< 10‘10).

Table 1
Evolutionary populations considered on tH’esﬁudy.
The number of generations used in each run was 400

Nipopp 10 20 30 40 50
Npop 4 8 12 16 20
Ngood 2 4 6 8 10

the largest values afy; . Note that, for the configuration considered, the copy with the largest frequency is not the
absolute maximum. These properties are a general trend observed for some of the configurations.

The combined evolutionary algorithm steepest descent method (CEASD) has a large number of parameters and
to establish the algorithm we tried to cover, as much as possible, the space of parameters. Table 1 is a summary of
the various runs. All results reported in this paper, for this smaller lattice, consider runs with 400 generations and
use Nipop = 2.5Npop: Ngood= Npop/2 andNejite = 1.

For the combined algorithm, we observed that by increasinin (23), the computed maximum, i.e. the
maximum computed after applying a SD to the best member of population of the last generation, becomes closer
to the absolute maximum. Moreover, there is a minimum numb@¥,aVsieps Such that the computed maximum
of CEASD is the absolute maximum &f,. Fig. 2 reports the number of successful runs of the combined method,
for the three 8 test configurations, as function Hpop andN .

Fig. 2 shows that, for each population size, there is a minimum valu€,aVsteps such that the CEASD
algorithm correctly computes the absolute maximum. Fig. 3 shéws,sas a function of the initial population.

The solid line isNstepsfor 400 generations and the dashed line is the valug ogquired to identify the absolute
maximum in 50 generations. Results seem to suggest that for larger populatiggsshould become smaller.
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Fig. 2. Number of successful runs for the combined method, for the tHTmsBconfigurations, as function dfpop and .

100

90+

NSTEPS

30+

20+

10+

10 20 30 40 50
NIPOP

Fig. 3.Nstep5versusNip0p for 8% U (3), B =5.7, configurations. The solid line givééstepsfor 400 generations. The dashed linéMgepsfor
50 generations.
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Table 2
Number of generations required by the CEASD algorithm
to identify the absolute maximum for aft &ttice

Nipop
Nsteps 10 20 30 40 50
10 - - - - -
20 - - - - -
30 - - - - -
40 - 100 - 100 -
50 150 - 150 150 150

60 150 50 50 50 50
70 350 100 50 50 50

80 50 50 50 50 50
90 50 50 50 50 50
100 50 50 50 50 50

Table 2 reports the first generation that includes the absolute maximum in the populakierresults seems
to suggest that, for arf'8attice, 50 generations may be a safe number of generations for the CEASD algorithm to
compute the absolute maximum B§ .

Fig. 4 reports, for different population sizes, typical evolutiong ébr one of the tested configurations. They
show that, in each rurg, decreases rapidly in the first generations, with its value decreasing by roughly 3 to 4
orders of magnitude in the first 50 generations, and then remaining approximately constant. Moreover, in order to
properly identify the absolute maximum &, the algorithm seems to requife~ 10-°-10"7 after generation
50.

In conclusion, for an 8lattice it is possible to define a set of parameters such that the CEASD algorithm
identifies the gauge transformation that maximiZgs For this smaller lattice, our choice beideps= 100,

Nipop = 10 for runs with 200 generations. Note that from Fig. 3 one réagss= 50. However, since evolutionary
algorithms are statistical algorithms and the combined algorithm requires a relatively low valuéof@ccess

the absolute maximum ofy, our choice forNseepsand the number of generations was conservative. Indeed,
results show that similar results can be obtained for runs with only 50 gener&tiderseasing the number of
generations implies either increasingeps (increasing the computational cost of the cost function), increasing
Nipop (increasing the memory requirements) or relying on multiple runs of the algorithm. Of course, the user
should choose between the different possible solutions depending on the computational power he has available.

In order to get an idea on the CPU time required by the CEASD, we benchmarked the code on a Pentium IV
at 2.40 GHz. For the‘Blattice, Nsieps= 100, Nipop = 10 and requiring < 10~ for the final steepest descent
applied to the best member of the population of the last generation, we measured

Number of generations  CPU time (s)

50 2633
200 10859

meaning that the CEASD algorithm requires about 54 seqmeaeration. For the same gauge fixing precision,
the steepest descent method requires 56 seconds. Therefore, the time required by a run with 200 generations is

5 We monitored the presence of the absolute maximum each 50 generations.

6 We tested running the code on 10 configurationsNeteps= 80, Nipop = 10 and for 200 generations. Of all the configurations, only one
didn’t arrive to the absolute maximum. Fdgteps= 100, of the 10 configurations tested nine got the absolute maximum in 50 generations and
only one required 100 generations to compute correctly the maximum.
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Fig. 4. log®) for one of the 8 test configurations and different population sizes. The valu¥ @ represented by the thickness of the line
(larger thickness meaning larga). (a) Nipop = 10; (0) Nipop = 20; () Nipop = 40; (d) Nipop = 50.

similar to the time required by 200 multiple steepest descent. At this point, a warning should be given to the reader.
The CEASD code has space for optimization, therefore, the CPU times reported above should be read as order of
magnitudes. The CEASD memory requirements for the evolutive pNsg+ 4) are about 15 MB.

In the next section we report on the CEASD algorithm for a larger lattice.

4.2. 16* lattices

For the larger lattice considered in this work, seyes 6.0 gauge configurations were generated. Similarly to
what was done for the*3attice, the Gribov copies structure was studied applying 500 steepest descents started
from different randomly chosen points. In order to test the algorithm we performed a detailed study for the three
configurations with the largest number of Gribov copies.

The first observation being that the number of local maxima is now much larger than if & Fig. 5
shows the Gribov copies found in 500 multiple SD of one of the configurations used in the detailed study of the
CEASD algorithm. A similar figure for a®8configuration is Fig. 1. Not only, the number of local maxima increases
but also the maxima become closer to each other when compared to the smaller lattice. To give an idea of the local
maxima for the 16 configurations, in Table 3 we list the first five highest valueg'gfcomputed after the 500
SD method, the 10th and the smallgy. From the numerical point of view, this difference makes the global
optimization problem a much harder problem to solve. Concerning the frequency of the local maxima, the results
for the 16" and & lattices are similar. The most probable maxima are associated with the largest valyebutf
the copy with the largest frequency is not always the absolute maximufn .of
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Fig. 5. Local maxima of a 6U®3), p=6.0 configuration achieved after 500 Steepest Descent starting from random starting points
(6 < 10~15). For the three configurations used to set the algorithm, the number of different Gribov copies found after 500 SOY8@@;, 177
238/500, 326500 for configurations humber 66000, 72000 and 9000, respectively.

Table 3
Fy values after 500 SD—Zf6lattice

Conf 66000 Freg. Conf72000 Freqg. Conf9000  Freg.

0.86013650 17 0.85964596 15 0.85962982 6
0.86013552 3 0.85963938 2 0.85962880 13
0.86013533 8 0.85963928 7 0.85961392 13
0.86013430 10 0.85963888 5 0.85961286 1
0.86013269 6 0.85963756 1 0.85961242 4

10 0.86012155 6 0.85963328 4 0.85960036 1
smaller  0.85907152 1 0.85866489 1 0.85885161 1

A WNPR

(&)]

For the larger lattice, the investigation of the algorithm did not cover the same set of parameters as in the study
of the smaller lattice. Indeed, due to the difference on the size of a gauge configuration, a faéovefahly
considered the smallest population sizes, naméfesp = 10, 20. The larger populations were avoided because
of the large memory requirements. In what concerns the number of generations on each run, for the larger lattice
we only considered runs up to 200 generations and checked for the presence of to the best maximum each 50
generations. As in the previous section, in all runs we uéggh = 2.5Npop.

In Table 4 we summarize the performance of the algorithm for the three gauge configurations considered. For
the smallest population, the algorithm seems to identify the absolute maximum in 200 generativns 80
(Nsteps= 180). For runs up to 50 generations, whafpop = 10 the algorithm sometimes fails the computation
of the absolute maximurhFor runs up to 50 generations and> 180, the probability of getting the absolute

7 For the remaining 4 configurations, we verified that fér= 180, 190, 200Njpop = 10 and for 50 generations the CEASD method
computed correctly the absolute maximum#Ff.
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Table 4
Maxima computed with the CEASD algorithm for three*18 = 6.0 U(3) configurations

Nipop
10 20
N Generation 66000 72000 9000 66000 72000 9000

120 50
100
150
200

130 50
100
150
200

140 50
100
150
200

150 50
100
150
200

160 50
100
150
200

170 50
100
150
200

180 50
100
150
200

190 50
100
150
200

200 50
100
150
200

[Eny

RPRRPRp RPRRPRRp RPRREPRA PRRPRp RPRRPRp RRREPO PRRO RPRPREPA RBRRE
PRNy PRPPRPO PP RPRRPRE PRPRE WOWW POOO RPRPEQO WWWN
PRRPp PRRP® bR DN NN RPREPRE RPREO NN NNN D
RPRRPRp RPRPRP pppRr U RPRRPRE PNONNND PREPR RPRRPRPp RPRREPRA RBPRRE R
PRRPRp RPRPRRP pppRpr RPRRPRPp RPRRPRp RPRRPRp PRRPPp RPNNN PR PN
PR RPRPRPP RBRNONN PREPRE NNRPR RPRER NNNND RPRP R RPRE R

maximum is pmax = 0.67 for Nijpop = 10. The probability of getting a maximum which is not the absolute
maximum inK independent runs is themer= 0.33X, a number which goes rapidly to z8naith K. Therefore,

it seems reasonable to try the use of smaller number of generations, provided multiple indébenteot the
algorithm are done. A possible improvement of the multiple run situation could be a parallel version of the CEASD
algorithm, with the interchange of chromosomes between the essentially independent populations every now and

8 pother= 0.33, 0.11, 0.036, 0.012, 0.004 f&r = 1, 2, 3, 4, 5.
9 For runs up to 50 generations, if one considers the results for all the seven configupations 0.86 andpgiher= 0.14K .
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then. For the largest populatioNjpop = 20, the algorithm identifies the absolute maximum when 200 generations
are considered faV > 170 (Nsteps= 170). For runs up to 50 generations, again, the algorithm does not provide the
right maximum. Now,pmax = 0.75 for Nipop = 20 and the situation becomes similar to case discussed previously.
Once more, multiple runs of the CEASD algorithm should be able to identify the absolute maximftgmndien
using 50 generations.

In conclusion, if for runs up 50 generations only a multiple independent run can provide the right answer, when
the algorithm uses 200 generations, it is possible to d&Nipgs

Nipop ~ Nsteps
10 180
20 170

To close this section we report now on the CPU times. On a Pentium IV at 2.40 GHz, ff)taitlkﬁe,Nsteps: 200,
Nipop = 10 and ford < 10~ the CPU time measured required by the CEASD algorithm was

Number of generations  CPU time (s)

50 112090
200 436071

meaning that the CEASD algorithm requires about 2211 se¢gedgration. For the same gauge fixing precision,

the steepest descent method requires 1826 seconds. Then, the time required by a run with 200 generations is similar
to the time required by 240 multiple steepest descent. The CEASD memory requirements for the evolutive phase
(Npop=4) are about 236 MB.

5. Discussion and conclusions

In this paper we describe a method for Landau gauge fixing that combines an evolutionary algorithm with a
local optimization method. The “happy marriage” between the two algorithms is achieved by redefining the cost
function of the EA, in such a way that it becomes an approximation for the local maximum in the neighborhood of
the chromosome. In order to get the global maximum, the CEASD algorithm seems to require vafuebtfor
order of 1077 for 8* configurations and 1 for 16* configurations. Note that the CEASD requires only a good
approximation offy in order to be able to compute the global optimum.

The combined algorithm was tested for three different configurations in two lattices: a sridhtic® and a
larger 1@ lattice. For both lattices it was possible to identify a set of parameters for the CEASD method such that,
in a single run, the computed maximum, i.e. the maximum obtained after applying the steepest descent method
to best member of the population of the last generation, was always the global maximum defined from multiple
steepest descent runs.

For the smaller lattice the CEASD performed extremely well. Indeed, despite the relative large number of local
maxima, the algorithm seems to be quite stable in identifying the global maximurp-efsee Table 2. For the
larger lattice, the number of local maxima is much larger when compared t4 thttige. Not only the number of
maxima is larger but they are closer to each other. From the point of view of the global optimization, this means
that the numerical problem in hands is much harder to solve. Nevertheless, again it was possible to define a set of
parameters such that the algorithm identified the global maximum in all tested configurations—see Table 4. Our
choice of parameters for the CEASD algorithm (200 generatiggsss= 100 for & lattice andNsteps= 200 for the
larger lattice and folVipop = 10) is a conservative choice. As explained before, it is possible to use smaller values
of N or smaller number of generations. Decreasihgnd/or the number of generations implies decreasing the run
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time of the CEASD algorithm. However, reducingand/or the number of generations should be done with care.
Indeed, the comparative study of the two lattices shows that the complexity of the maximization problem increases
with the lattice size, that the method works better for larger populations, larger valwesoél for sufficiently

large number of generations. Nevertheless, the results of the previous section also show that, for relatively large
values of N, the probability of computing the absolute maximum#Af is large. This suggests that a possible
solution to the global optimization problem is to perform multiple independent CEASD runs using lower values
of N and/or smaller number of generations. For sufficient number of independent runs, in principle, the method
should be able to get the global maximum. A similar situation is found when one relies on simulated annealing for
global optimization problems.

The CPU times required by CEASD algorithm for the two lattice sizes seems to suggest that the scaling law of
the combined method is close to the Fourier accelerated SD method%ile.y with § taking values close to 1.

A measure of requires necessarily an analysis with more lattice si2@is is a numerical intensive problem. We
are currently engaged in measurihgnd will report the result elsewhere. Naively, one expects that gauge fixing to
the minimal Landau gauge with CEASD is as demanding as performing a gauge fixing with the SD method.

In principle, it is possible to combine the EA with any local optimization method. Faster local methods will
produce faster combined algorithms. The time required by a combined algorithm is strongly dependent on the
performance of the local method. The gauge fixing is a computational intense problem. Therefore, it is important
to investigate new and more performant local methods.

The CEASD algorithm described here for Landau gauge fixing seems to solve the problem of the minimal
Landau gauge fixing. Moreover, the method is suitable to be used with other gauge conditions that also suffer
from the Gribov ambiguity and are currently used in lattice gauge theory. The effects of Gribov copies in QCD
correlation functions remains to be investigated [36].
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