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Abstract

An algorithm for gauge fixing to the Landau gauge in the fundamental modular region in lattice QCD is describe
method, a combination of an evolutionary algorithm with a steepest descent method, is able to solve the proble
nonperturbative gauge fixing. The performance of the combined algorithm is investigated on 84, β = 5.7, and 164, β = 6.0,
latticeSU(3) gauge configurations.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction and motivation

Quantum chromodynamics (QCD) is the theory that describes the interaction between quarks and gluo
the dynamical point of view, it is usual to separate the high energy regime from the low energy regime. W
high energy limit of QCD is well described by perturbative methods, perturbation theory cannot answer a
of important questions. Certainly, it is not applicable to the low energy limit of QCD. Presently, we do no
yet an analytical method to tackle this dynamical regime. The solution is to solve QCD on the computer [1]
continuum euclidean space–time is replaced by a discrete set of points, the lattice. Typical lattices are hy
where points are separated bya in each direction.

In the lattice formulation of QCD, the gluon fieldsAa
µ are replaced by the links, defined as

(1)Uµ(x) = exp
(
iag0Aµ(x + aêµ/2)

)
,

whereêµ are unit vectors alongµ direction. The links are elements of theSU(3) group.

* Corresponding author.
E-mail addresses: orlando@teor.fis.uc.pt (O. Oliveira), psilva@teor.fis.uc.pt (P.J. Silva).
0010-4655/$ – see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2003.12.001

http://www.elsevier.com/locate/cpc


74 O. Oliveira, P.J. Silva / Computer Physics Communications 158 (2004) 73–88

rom the
each

an [2],
niquely

ndau or
ge orbit.
gauge

scribed
ge was
uously
to

ormula
sitive

ssary to
and the
d chiral
upling
mposite
Landau

: how to
Gribov

e fixing
local
nd the
named

ent
ms,
proper

n this
in [21].
he local
d.
d

than all
QCD is a gauge theory, therefore, the fields related by gauge transformations

(2)Uµ(x) −→ g(x)Uµ(x)g
†(x + aêµ), g ∈ SU(3),

are physically equivalent. The set of fields related by gauge transformations defines a gauge orbit. F
definition of gauge orbit, it follows that to study such type of theories it is enough to pick one field from
of the orbits. The identification of one field in each gauge orbit is called gauge fixing.

On the continuum, the problem of the quantisation of gauge theories was solved long ago by Feynm
DeWitt [3] and Faddeev and Popov [4]. The quantisation method requires a choice of a gauge condition, u
satisfied in each gauge orbit, to define the generating functional for the Green’s functions. For the La
the Coulomb gauge and for small field amplitudes, the gauge condition is uniquely satisfied in each gau
However, if large field amplitudes are involved, the gauge fixing condition has multiple solutions in each
orbit [5,6], the Gribov copies, i.e., the nonperturbative quantisation of Yang–Mills theories cannot be de
by the usual methods of perturbation theory. This result due to Gribov for the Coulomb and Landau gau
generalized by Singer. In [7], Singer proves that it is impossible to find a local continuous and unambig
gauge fixing condition for anySU(N) gauge theory defined on the manifoldS4. Singer’s theorem was extended
the four-torus by Killingback [8].

For the continuum formulation of QCD, in [9] it was argued that the Landau gauge Faddeev–Popov f
δ(∂A)det[−∂ · D(A)]exp[−SYM (A)], restricted to the region where the Faddeev–Popov operator is po
−∂ ·D(A) > 0 (Gribov region), provides an exact nonperturbative quantisation for QCD.

The lattice formulation of gauge theories does not require gauge fixing. However, gauge fixing is nece
study the Green’s functions of the fundamental fields like, for example, the gluon and quark propagators
quark–gluon vertex. The propagators contain information about the mechanisms of confinement [10] an
symmetry breaking [11,12]. The quark–gluon vertex allows a first principles determination of the running co
constant of QCD [13]. In addition, by choosing a gauge one can compute renormalisation constants for co
operators by sandwiching the operators between quark states [14]. At least for the usual gauges like the
and Coulomb gauges, the lattice studies that rely on a gauge fixing condition have a fundamental problem
properly define a nonperturbative gauge fixing condition, i.e. how to eliminate the influence of the different
copies on the results. The implications of [9] for the lattice formulation of QCD remain to be investigated.

In this paper we consider the problem of gauge fixing for the Landau gauge. On the lattice, Landau gaug
can be viewed as a global optimization problem [15]. Typically, we have a minimizing function with many
minima, the Gribov copies, and, to eliminate the ambiguities related to the various minima, we aim to fi
absolute minimum. In this work, the gauge defined by the absolute minimum of the minimizing function is
minimal Landau gauge.

We report on an algorithm that combines a local optimization method,1 a Fourier accelerated steepest desc
[16], with an implementation of an evolutionary algorithm [17], suitable for global optimization proble2

to address the question of gauge fixing in the minimal Landau gauge. Our investigation shows that a
combination of local and global methods identifies the global minimum of the optimizing function and, i
way, solves the problem of the nonperturbative gauge fixing. This paper is a full report of the work started

The paper is organized as follows. On Section 2, the minimal Landau gauge is defined. In Section 3 t
optimization method, the global optimization method and the combined local+ global method are describe
Section 4 reports on the performance of combined method for 84 and 164 lattices. Finally, conclusions an
discussion are given in Section 5.

1 By local optimization method we mean an algorithm that seeks only a local solution, i.e., a point at which the function is smaller
other points in its vicinity.

2 By global optimization we understand the problem of computing the absolute minimum/maximum of a given function.
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2. The minimal Landau gauge

On the continuum, the Landau gauge is defined by

(3)∂µAµ = 0.

This condition defines the hyperplane of transverse configurations

(4)Γ ≡ {A: ∂ ·A = 0}.
It is well known [5] thatΓ includes more than one configuration from each gauge orbit. In order to try to
the problem of the nonperturbative gauge fixing, Gribov suggested the use of additional conditions, nam
restriction of physical configurational space to the region

(5)Ω ≡ {
A: ∂ · A = 0,M[A] � 0

} ⊂ Γ,

whereM[A] ≡ −∇ · D[A] is the Faddeev–Popov operator. However,Ω is not free of Gribov copies and does n
provide a proper definition of physical configurations.

A suitable definition of the physical configurational space is given by the fundamental modular regionΛ ⊂ Ω ,
the set of the absolute minima of the functional

(6)FA[g] =
∫

d4x
∑
µ

Tr
[
Ag

µ(x)A
g
µ(x)

]
.

The fundamental modular regionΛ is a convex manifold [22] and each gauge orbit intersects the interior ofΛ only
once [23,24], i.e. its interior consists of nondegenerate absolute minima. On the boundary∂Λ there are degenera
absolute minima, i.e. different boundary points are Gribov copies of each other [24–26]. The interior ofΛ, the
region of absolute minima of (6), identifies a region free of Gribov copies. To this choice of gauge we c
minimal Landau gauge.

On the lattice, the situation is similar to the continuum theory [27–29]. The interior ofΛ consists of non-
degenerate absolute minima of the lattice version of (6) and Gribov copies can occur at the boundary∂Λ. For a
finite lattice, the boundary∂Λ, where degenerate minima may occur, has zero measure and the presence
minima can be ignored [28].

On the lattice, the Landau gauge is defined by maximizing the functional

(7)FU [g] = CF

∑
x,µ

Re
{
Tr

[
g(x)Uµ(x)g

†(x + µ̂)
]}
,

where

(8)CF = 1

NdimNcV

is a normalization constant,Ndim is the dimension of space–time,Nc is the dimension of the gauge group a
V represents the lattice volume. LetUµ be the configuration that maximizesF [g] on a given gauge orbit. Fo
configurations nearUµ on its gauge orbit, we have

(9)FU

[
1+ iω(x)

] ≈ FU [1] + CF

4

∑
x,µ

iωa(x)Tr
[
λa

(
Uµ(x)− Uµ(x − µ̂)

) − λa
(
U†

µ(x)− U†
µ(x − µ̂)

)]
,

whereλa are the Gell-Mann matrices. By definition,Uµ is a stationary point ofF , therefore,

(10)
∂F

∂ωa(x)
= iCF

4

∑
µ

Tr
[
λa

(
Uµ(x)− Uµ(x − µ̂)

) − λa
(
U†

µ(x)− U†
µ(x − µ̂)

)] = 0.
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In terms of the gluon field, this condition reads

(11)
∑
µ

Tr
[
λa

(
Aµ(x + aµ̂/2)− Aµ(x − aµ̂/2)

)] +O
(
a2) = 0,

or

(12)
∑
µ

∂µA
a
µ(x)+O(a) = 0,

i.e., (10) is the lattice equivalent of the continuum Landau gauge condition. The lattice Faddeev–Popov
M(U) is given by the second derivative of (7).

Similarly to the continuum theory, on the lattice one defines the region of stationary points of (7)

(13)Γ ≡ {
U : ∂ ·A(U) = 0

}
,

the Gribov’s regionΩ of the maxima of (7),

(14)Ω ≡ {
U : ∂ ·A(U) = 0 andM(U) � 0

}
and the fundamental modular regionΛ defined as the set of the absolute maxima of (7). The lattice minimal La
gauge chooses from each gauge orbit, the configuration belonging to the interior ofΛ.

The evidence for lattice Gribov copies, i.e. different maxima ofFU , was established long time ago [30–3
but their influence on physical observables is not clear. For the lattice Landau gauge,SU(2) simulations sugges
that the influence of Gribov copies is at the level of the simulation statistical error [33,34]. ForSU(3) there is no
systematic study but it is believed that the Gribov noise is contained within the statistical error of the Monte
Here, we will not discuss the role of Gribov noise on correlator functions but an algorithm for finding the ab
maximum ofFU [g]. For a discussion on the influence of Gribov copies on the gluon propagator see [33,35

3. Optimization methods

The algorithm for minimal Landau gauge fixing reported in this paper combines a local and a global optim
method. For completeness, in this section we outline the local method and describe the global and c
local+ global algorithms.

On the gauge fixing process, the quality of the gauge fixing is measured by

(15)θ = 1

VNc

∑
x

Tr
[
∆(x)∆†(x)

]

where

(16)∆(x)=
∑
ν

[
Uν(x − aêν)− U†

ν (x)− h.c.− trace
]

is the lattice version of∂µAµ = 0.

3.1. Local optimization

By definition, a local optimization method computes a local maximum ofFU [g]. For Landau gauge fixing,
popular local optimization method is the steepest descent [16] method.

The naive steepest descent method faces the problem of critical slowing down when applied to large
Critical slowing down can be reduced by Fourier acceleration. In the Fourier accelerated method, in each
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(17)g(x) = exp

[
F̂−1α

2

p2
maxa

2

p2a2 F̂

(∑
ν

∆−ν

[
Uν(x)− U†

ν (x)
] − trace

)]
,

where

(18)∆−ν

(
Uµ(x)

) = Uµ(x − aêν)− Uµ(x),

p2 are the eigenvalues of(−∂2), a is the lattice spacing and̂F represents a fast Fourier transform (FFT). For
parameterα we use the value 0.08 [16]. For numerical purposes, it is enough to expand to first order the exp
in (17), followed by a reunitarization ofg(x).

For large lattices (17) is not the best way to solve the problem of critical slowing down. In [37,38] a m
was developed that avoids the use of FFT, has a dynamical critical exponent close to zero and the advan
easily parallelized. In this work we use the Fourier accelerated steepest descent method (SD).

3.2. Global optimization

Global optimization methods aim to find the absolute maximum or minimum of a multidimensional fun
Presently, there is not a method that can assure, with certainty, that the computed maximum in a sing
the absolute maximum. Simulated annealing (SA) is, probably, the most popular method for global optim
However, evolutionary algorithms (EA) [17] are an alternative to simulated annealing. The “advanta
evolutionary algorithms relatively to SA is that EA work with multiple candidates for maximum/minimum
single run and, in principle, can avoid or reduce the number of multiple runs necessary to identify the
optimum. For us, this provided the motivation to try the use of EA for gauge fixing in lattice QCD.

Evolutionary algorithms (EA) are a generalization of genetic algorithms (GA). Genetic algorithms are in
in natural selection and in the theory of evolution of species. The language spoken in evolutionary program
borrowed from genetics. The vector of the parameters to optimize is called chromosome or individual. A pop
consists in a number of individuals. The function to optimize is the cost function.

For the gauge fixing problem, a chromosome is the set of matricesg(x) that defined a gauge transformatio
The cost function is the functionalFU [g].

An evolutionary code starts generating a set of tentatives of solutions, the initial population. In the fol
the number of individuals in the initial population will be referred byNipop. In our case, the initial population wa
generated randomly. After sorting the initial population according to their cost function value,Npop members were
selected, using a roulette-wheel method [17], to begin the evolutionary phase. The number of individua
population was always kept fixed toNpop. In this work we usedNipop/Npop= 2.5.

The population evolution was performed according to the rules:

(1) The bestNgood individuals survive for the next generation;
(2) Nbad= Npop − Ngood are replaced by new chromosomes. The new individuals are generated by repro

theNgood members of the population. In this work we setNgood= Npop/2;
(3) For mating or reproduction two good chromosomes are selected and give “birth” to two offsprings. The

completes after generation ofNbad new offsprings. In this work parents were selected using the so-c
roulette-wheel selection [17], a method which favours the best chromosomes in the population;

(4) A new generation is defined only after mutating the population constructed after point 3. No mutati
applied to the best member of the population.

In order to reproduce, a population requires a set of rules to make childs from the parents, the genetic o
In this work we considered the following operators
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• Random Crossover (RC)
For evolutionary and genetic algorithms, crossover is a fundamental mating operator that mimics the c
observed in biological systems: after selection of a set of contiguous genes in the chromosomes, the tw
are built by interchanging the chosen piece of the parents genetic material. Our implementation of the c
is slightly different. On the lattice we select randomlyV × pintcrosspoints; the random variablepintcrosstakes
values in[0.40,0.70]. The offsprings are defined by interchanging the parents matricesg at these points.3 Note
that crossover does not imply creation of new genes.

• Random Blending (RB)
Blending operators try to overcome the crossover problem of gene creation. Our implementation of b
starts by choosing a set of lattice points similarly as in RC. For the first child, we select a random val4 for
β ∈ [0,2]. For the selected points, theg matrices are given, after reunitarization, by

(19)βg1 + (1− β)g2,

whereg1 andg2 denote parents. In the remaining lattice points we setg = g1. The genetic material of th
second offspring is generated in the same way. The difference being thatβ is chosen different at each of th
selected lattice points and in the remaining points we setg = g2.

Each mating operator has an associated probability. After parent selection, it is tested if the chosen pare
to reproduce by comparing an uniformly distributed random number in[0,1] with the mating probability.

The mating operators just recombine the genetic information of the population. To explore more effectiv
cost surface, an evolutionary code applies mutation operators after the mating phase. These operators ch
genes of a chromosome either by replacing the gene by a neighbouring value or replacing the gene by a co
different value. In this work, we considered the following mutation operators:

• Addition mutations (MA)

(20)g(x) −→ g(x) + εA,

• Substitution mutations (MS)

(21)g(x) −→ A,

• Expansion mutations (ME)

(22)g(x) −→ g(x)(1+ εA),

whereε (|ε| � 0.025) is a random number andA is a randomSU(N) matrix. The resulting matrix is properl
reunitarized. Each mutation operator is applied to all population skipping the bestNelite individuals (in our work
Nelite = 1). Like for the mating operators, mutations have an associated probability too. For each operator
each individual, we go through the lattice and apply the operator in the correspondingg matrices according to th
respective probability.

Each complete iteration of the algorithm (selection, mating and mutation) is called generation.
The probabilities associated to each genetic operator were defined to maximize the performance of

evolutionary code. The large number of parameters makes a detailed study of the probabilities quite
perform. However, for practical purposes, we used the procedure described below to define our algori
all probabilities to zero except for MS. For MS take 0.01 for the probability. Change the probability of R

3 In literature this type of crossover is also known as uniform crossover.
4 The choiceβ ∈ [0,1] is the most simple blending method, but has the disadvantage that it does not create new values outside th

defined by the parents genes.
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choose the value that optimizes the performance of the algorithm. After setting the probability for RC, rep
procedure for MA, then for RB, then for ME. Finally, check for the value of the MS probability. The probab
associated to the genetic and mutation operators used in our study are

Random crossover prc = 0.40
Random blending prb = 0.70
Addition mutation pma= 0.04
Substitution mutation pms= 0.04
Expansion mutation pme= 0.02

In what concerns Landau gauge fixing, the performance of the pure evolutionary algorithm for Landau
fixing was quite disappointing; the best run ended withθ ∼ 10−1. This can be understood as a consequence o
large dimension of the problem and of the nature ofFU . In conclusion, the performance of the pure evolution
algorithm for the 4D Landau gauge fixing problem is similar to the performance observed in simplified vers
the problem [39,40].

3.3. Combined global + local optimization

For minimal Landau gauge fixing in lattice QCD, the global optimization problem can be overcom
combining the local and the global algorithms described above. From the point of view of the evolu
algorithm, a possible combined algorithm means redefining the cost function as

(23)f [g;N] = FU [g] afterN local steepest descent steps.

As described below, with a proper choice ofN it is possible to identify the global maximum ofFU .

4. Results for combined algorithm and the minimal Landau gauge

The combined algorithm was studied withSU(3) gauge configurations on 84 (β = 5.7) and 164 (β = 6.0)
lattices. The gauge configurations were generated with the MILC code [41] using a combination of fou
relaxed and one Cabibbo–Marinari updates, with a separation between configurations of 3000 combined
For each of the lattices, the combined algorithm was investigated in detail for at least three configurations

For Landau gauge fixing, the absolute maximum ofFU was computed by running, for each gauge configurat
1000 local algorithms for the smaller lattice and 500 on the larger lattice, starting from different random
points. A local minimum was defined by demanding thatθ < 10−10 for the smaller lattice andθ < 10−15 for the
larger lattice. The candidate for absolute maximum computed with the combined algorithm was compared
candidate for absolute maximum from the multiple local algorithm runs. In all the simulations, we never ob
a larger maximum than the one obtained with the multiple runs of the steepest descent method. Prelimina
on the performance of the combined algorithm were given in [21].

4.1. 84 lattices

For the 84 lattice, 10 gauge configurations were generated. The study of their Gribov copies structu
performed by running 1000 SD on each of the configurations. Then, a detailed study of the three config
with the largest number of maxima was performed as described below.

The number of local maxima computed in the multiple runs with the steepest descent method was qui
Fig. 1 resumes the 1000 SD runs for one of the configurations used to test the algorithm. The figure shows
a large number of local maxima, the Gribov copies, but also that the most probable maxima are associa



80 O. Oliveira, P.J. Silva / Computer Physics Communications 158 (2004) 73–88

ot the

eters and
mmary of
ons and

e
s closer

m
thod,

.
e

Fig. 1. Local maxima of one of the 84 SU(3), β = 5.7, configurations after 1000Steepest Descent starting from random points (θ � 10−10).

Table 1
Evolutionary populations considered on the 84 study.
The number of generations used in each run was 400

Nipop 10 20 30 40 50
Npop 4 8 12 16 20
Ngood 2 4 6 8 10

the largest values ofFU . Note that, for the configuration considered, the copy with the largest frequency is n
absolute maximum. These properties are a general trend observed for some of the configurations.

The combined evolutionary algorithm steepest descent method (CEASD) has a large number of param
to establish the algorithm we tried to cover, as much as possible, the space of parameters. Table 1 is a su
the various runs. All results reported in this paper, for this smaller lattice, consider runs with 400 generati
useNipop = 2.5Npop, Ngood= Npop/2 andNelite = 1.

For the combined algorithm, we observed that by increasingN in (23), the computed maximum, i.e. th
maximum computed after applying a SD to the best member of population of the last generation, become
to the absolute maximum. Moreover, there is a minimum number ofN , Nsteps, such that the computed maximu
of CEASD is the absolute maximum ofFU . Fig. 2 reports the number of successful runs of the combined me
for the three 84 test configurations, as function ofNipop andN .

Fig. 2 shows that, for each population size, there is a minimum value ofN , Nsteps, such that the CEASD
algorithm correctly computes the absolute maximum. Fig. 3 showsNstepsas a function of the initial population
The solid line isNstepsfor 400 generations and the dashed line is the value ofN required to identify the absolut
maximum in 50 generations. Results seem to suggest that for larger populations,Nstepsshould become smaller.
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Fig. 2. Number of successful runs for the combined method, for the three 84 test configurations, as function ofNipop andN .

Fig. 3.NstepsversusNipop for 84 SU(3), β = 5.7, configurations. The solid line givesNstepsfor 400 generations. The dashed line isNstepsfor
50 generations.
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Table 2
Number of generations required by the CEASD algorithm
to identify the absolute maximum for an 84 lattice

Nipop

Nsteps 10 20 30 40 50

10 – – – – –
20 – – – – –
30 – – – – –
40 – 100 – 100 –
50 150 – 150 150 150
60 150 50 50 50 50
70 350 100 50 50 50
80 50 50 50 50 50
90 50 50 50 50 50

100 50 50 50 50 50

Table 2 reports the first generation that includes the absolute maximum in the population.5 The results seem
to suggest that, for an 84 lattice, 50 generations may be a safe number of generations for the CEASD algori
compute the absolute maximum ofFU .

Fig. 4 reports, for different population sizes, typical evolutions ofθ for one of the tested configurations. Th
show that, in each run,θ decreases rapidly in the first generations, with its value decreasing by roughly
orders of magnitude in the first 50 generations, and then remaining approximately constant. Moreover, in
properly identify the absolute maximum ofFU , the algorithm seems to requireθ ∼ 10−6–10−7 after generation
50.

In conclusion, for an 84 lattice it is possible to define a set of parameters such that the CEASD algo
identifies the gauge transformation that maximizesFU . For this smaller lattice, our choice beingNsteps= 100,
Nipop = 10 for runs with 200 generations. Note that from Fig. 3 one readsNsteps= 50. However, since evolutionar
algorithms are statistical algorithms and the combined algorithm requires a relatively low value forθ to access
the absolute maximum ofFU , our choice forNsteps and the number of generations was conservative. Ind
results show that similar results can be obtained for runs with only 50 generations.6 Decreasing the number o
generations implies either increasingNsteps(increasing the computational cost of the cost function), increa
Nipop (increasing the memory requirements) or relying on multiple runs of the algorithm. Of course, th
should choose between the different possible solutions depending on the computational power he has ava

In order to get an idea on the CPU time required by the CEASD, we benchmarked the code on a Pen
at 2.40 GHz. For the 84 lattice,Nsteps= 100,Nipop = 10 and requiringθ < 10−15 for the final steepest desce
applied to the best member of the population of the last generation, we measured

Number of generations CPU time (s)

50 2633
200 10859

meaning that the CEASD algorithm requires about 54 seconds/generation. For the same gauge fixing precis
the steepest descent method requires 56 seconds. Therefore, the time required by a run with 200 gene

5 We monitored the presence of the absolute maximum each 50 generations.
6 We tested running the code on 10 configurations forNsteps= 80,Nipop = 10 and for 200 generations. Of all the configurations, only

didn’t arrive to the absolute maximum. ForNsteps= 100, of the 10 configurations tested nine got the absolute maximum in 50 generatio
only one required 100 generations to compute correctly the maximum.



O. Oliveira, P.J. Silva / Computer Physics Communications 158 (2004) 73–88 83

ne

reader.
s order of

y to
started
e three

y of the
ses
the local

0
bal
results
(a) (b)

(c) (d)

Fig. 4. log(θ) for one of the 84 test configurations and different population sizes. The value ofN is represented by the thickness of the li
(larger thickness meaning largerN ). (a)Nipop = 10; (b)Nipop = 20; (c)Nipop = 40; (d)Nipop = 50.

similar to the time required by 200 multiple steepest descent. At this point, a warning should be given to the
The CEASD code has space for optimization, therefore, the CPU times reported above should be read a
magnitudes. The CEASD memory requirements for the evolutive phase (Npop= 4) are about 15 MB.

In the next section we report on the CEASD algorithm for a larger lattice.

4.2. 164 lattices

For the larger lattice considered in this work, sevenβ = 6.0 gauge configurations were generated. Similarl
what was done for the 84 lattice, the Gribov copies structure was studied applying 500 steepest descents
from different randomly chosen points. In order to test the algorithm we performed a detailed study for th
configurations with the largest number of Gribov copies.

The first observation being that the number of local maxima is now much larger than in the 84 lattice. Fig. 5
shows the Gribov copies found in 500 multiple SD of one of the configurations used in the detailed stud
CEASD algorithm. A similar figure for a 84 configuration is Fig. 1. Not only, the number of local maxima increa
but also the maxima become closer to each other when compared to the smaller lattice. To give an idea of
maxima for the 164 configurations, in Table 3 we list the first five highest values ofFU computed after the 50
SD method, the 10th and the smallerFU . From the numerical point of view, this difference makes the glo
optimization problem a much harder problem to solve. Concerning the frequency of the local maxima, the
for the 164 and 84 lattices are similar. The most probable maxima are associated with the largest values ofFU but
the copy with the largest frequency is not always the absolute maximum ofFU .
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Fig. 5. Local maxima of a 164 SU(3), β = 6.0 configuration achieved after 500 Steepest Descent starting from random starting
(θ � 10−15). For the three configurations used to set the algorithm, the number of different Gribov copies found after 500 SD was 1/500,
238/500, 326/500 for configurations number 66000, 72000 and 9000, respectively.

Table 3
FU values after 500 SD—164 lattice

Conf 66000 Freq. Conf 72000 Freq. Conf 9000 Freq.

1 0.86013650 17 0.85964596 15 0.85962982 6
2 0.86013552 3 0.85963938 2 0.85962880 13
3 0.86013533 8 0.85963928 7 0.85961392 13
4 0.86013430 10 0.85963888 5 0.85961286 1
5 0.86013269 6 0.85963756 1 0.85961242 4

10 0.86012155 6 0.85963328 4 0.85960036 1
smaller 0.85907152 1 0.85866489 1 0.85885161 1

For the larger lattice, the investigation of the algorithm did not cover the same set of parameters as in t
of the smaller lattice. Indeed, due to the difference on the size of a gauge configuration, a factor of 24, we only
considered the smallest population sizes, namely,Nipop = 10, 20. The larger populations were avoided beca
of the large memory requirements. In what concerns the number of generations on each run, for the larg
we only considered runs up to 200 generations and checked for the presence of to the best maximum
generations. As in the previous section, in all runs we usedNipop = 2.5Npop.

In Table 4 we summarize the performance of the algorithm for the three gauge configurations conside
the smallest population, the algorithm seems to identify the absolute maximum in 200 generations forN � 180
(Nsteps= 180). For runs up to 50 generations, whenNipop = 10 the algorithm sometimes fails the computat
of the absolute maximum.7 For runs up to 50 generations andN � 180, the probability of getting the absolu

7 For the remaining 4 configurations, we verified that forN = 180, 190, 200,Nipop = 10 and for 50 generations the CEASD meth
computed correctly the absolute maximum ofFU .
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Table 4
Maxima computed with the CEASD algorithm for three 164, β = 6.0 SU(3) configurations

Nipop

10 20

N Generation 66000 72000 9000 66000 72000 9000

120 50 1 4 2 1 4 1
100 1 3 2 1 1 1
150 1 3 2 1 1 1
200 1 3 2 1 1 1

130 50 1 3 6 1 2 1
100 1 1 2 1 2 1
150 1 1 2 1 2 1
200 1 1 2 1 1 1

140 50 3 9 2 1 1 2
100 1 9 1 1 1 2
150 1 6 1 1 1 2
200 1 1 1 1 1 2

150 50 3 3 1 1 1 1
100 1 3 1 1 1 1
150 1 3 1 1 1 1
200 1 3 1 1 1 1

160 50 1 1 2 2 1 1
100 1 1 2 2 1 1
150 1 1 2 2 1 2
200 1 1 2 1 1 2

170 50 1 1 2 1 1 1
100 1 1 2 1 1 1
150 1 1 2 1 1 1
200 1 1 2 1 1 1

180 50 1 1 1 2 1 2
100 1 1 1 1 1 2
150 1 1 1 1 1 1
200 1 1 1 1 1 1

190 50 1 > 9 3 1 1 1
100 1 1 1 1 1 1
150 1 1 1 1 1 1
200 1 1 1 1 1 1

200 50 1 7 1 1 1 2
100 1 2 1 1 1 2
150 1 1 1 1 1 1
200 1 1 1 1 1 1

maximum ispmax = 0.67 for Nipop = 10. The probability of getting a maximum which is not the abso
maximum inK independent runs is thenpother= 0.33K , a number which goes rapidly to zero8 with K. Therefore,
it seems reasonable to try the use of smaller number of generations, provided multiple independent9 runs of the
algorithm are done. A possible improvement of the multiple run situation could be a parallel version of the C
algorithm, with the interchange of chromosomes between the essentially independent populations every

8 pother= 0.33, 0.11, 0.036, 0.012, 0.004 forK = 1, 2, 3, 4, 5.
9 For runs up to 50 generations, if one considers the results for all the seven configurationspmax= 0.86 andpother= 0.14K .
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then. For the largest population,Nipop = 20, the algorithm identifies the absolute maximum when 200 genera
are considered forN � 170(Nsteps= 170). For runs up to 50 generations, again, the algorithm does not provid
right maximum. Now,pmax= 0.75 forNipop = 20 and the situation becomes similar to case discussed previo
Once more, multiple runs of the CEASD algorithm should be able to identify the absolute maximum ofFU when
using 50 generations.

In conclusion, if for runs up 50 generations only a multiple independent run can provide the right answe
the algorithm uses 200 generations, it is possible to defineNsteps:

Nipop Nsteps

10 180
20 170

To close this section we report now on the CPU times. On a Pentium IV at 2.40 GHz, for a 164 lattice,Nsteps= 200,
Nipop = 10 and forθ < 10−15 the CPU time measured required by the CEASD algorithm was

Number of generations CPU time (s)

50 112090
200 436071

meaning that the CEASD algorithm requires about 2211 seconds/generation. For the same gauge fixing precis
the steepest descent method requires 1826 seconds. Then, the time required by a run with 200 generation
to the time required by 240 multiple steepest descent. The CEASD memory requirements for the evolutiv
(Npop= 4) are about 236 MB.

5. Discussion and conclusions

In this paper we describe a method for Landau gauge fixing that combines an evolutionary algorithm
local optimization method. The “happy marriage” between the two algorithms is achieved by redefining t
function of the EA, in such a way that it becomes an approximation for the local maximum in the neighborh
the chromosome. In order to get the global maximum, the CEASD algorithm seems to require values forθ of the
order of 10−7 for 84 configurations and 10−8 for 164 configurations. Note that the CEASD requires only a g
approximation ofFU in order to be able to compute the global optimum.

The combined algorithm was tested for three different configurations in two lattices: a smaller 84 lattice and a
larger 164 lattice. For both lattices it was possible to identify a set of parameters for the CEASD method su
in a single run, the computed maximum, i.e. the maximum obtained after applying the steepest descen
to best member of the population of the last generation, was always the global maximum defined from m
steepest descent runs.

For the smaller lattice the CEASD performed extremely well. Indeed, despite the relative large number
maxima, the algorithm seems to be quite stable in identifying the global maximum ofFU—see Table 2. For th
larger lattice, the number of local maxima is much larger when compared to the 84 lattice. Not only the number o
maxima is larger but they are closer to each other. From the point of view of the global optimization, this
that the numerical problem in hands is much harder to solve. Nevertheless, again it was possible to defin
parameters such that the algorithm identified the global maximum in all tested configurations—see Tabl
choice of parameters for the CEASD algorithm (200 generations,Nsteps= 100 for 84 lattice andNsteps= 200 for the
larger lattice and forNipop = 10) is a conservative choice. As explained before, it is possible to use smaller
of N or smaller number of generations. DecreasingN and/or the number of generations implies decreasing the
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time of the CEASD algorithm. However, reducingN and/or the number of generations should be done with c
Indeed, the comparative study of the two lattices shows that the complexity of the maximization problem in
with the lattice size, that the method works better for larger populations, larger values ofN and for sufficiently
large number of generations. Nevertheless, the results of the previous section also show that, for relativ
values ofN , the probability of computing the absolute maximum ofFU is large. This suggests that a possi
solution to the global optimization problem is to perform multiple independent CEASD runs using lower
of N and/or smaller number of generations. For sufficient number of independent runs, in principle, the
should be able to get the global maximum. A similar situation is found when one relies on simulated annea
global optimization problems.

The CPU times required by CEASD algorithm for the two lattice sizes seems to suggest that the scalin
the combined method is close to the Fourier accelerated SD method, i.e.,V δ lnV with δ taking values close to 1
A measure ofδ requires necessarily an analysis with more lattice sizes.10 This is a numerical intensive problem. W
are currently engaged in measuringδ and will report the result elsewhere. Naively, one expects that gauge fixi
the minimal Landau gauge with CEASD is as demanding as performing a gauge fixing with the SD metho

In principle, it is possible to combine the EA with any local optimization method. Faster local method
produce faster combined algorithms. The time required by a combined algorithm is strongly dependen
performance of the local method. The gauge fixing is a computational intense problem. Therefore, it is im
to investigate new and more performant local methods.

The CEASD algorithm described here for Landau gauge fixing seems to solve the problem of the m
Landau gauge fixing. Moreover, the method is suitable to be used with other gauge conditions that als
from the Gribov ambiguity and are currently used in lattice gauge theory. The effects of Gribov copies in
correlation functions remains to be investigated [36].
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