
THE MODULAR CLASS OF A LIE ALGEBROID COMORPHISM

RAQUEL CASEIRO

Abstract. We introduce the definition of modular class of a Lie algebroid

comorphism and exploit some of its properties.

1. Introduction

The modular class of a Poisson manifold M is an element of the first Poisson
cohomology group H1

π(M), which measures the obstruction to the existence of
a measure in M invariant under all hamiltonian diffeomorphisms ([9, 12]). This
notion was extended to Lie algebroids by Evan, Lu and Weinstein [3] who showed
that the modular class of the cotangent bundle of a Poisson manifold is twice
the modular class of the Poisson structure. Grabowski, Marmo and Michor [6]
introduced the modular class of a Lie algebroid morphism and this was more deeply
studied by Kosmann-Schwarzbach, Laurent-Gengoux and Weinstein in [7] and [8].
In a recent paper [2], the notion of modular class of a Poisson map was given and
some of its properties studied. Even more recently Grabowski [5] generalizes all
these definitions introducing the modular class of skew algebroid relations. In this
paper we exploit the definition of the modular class of a Lie algebroid comorphism,
following the approach in [2].

2. The modular class of a Lie algebroid

Let A→M be a Lie algebroid over M , with anchor ρ : A→ TM and Lie bracket
[·, ·] : Γ(A) × Γ(A) → Γ(A). We will denote by Ωk(A) ≡ Γ(∧kA∗) the A-forms
and by Xk(A) ≡ Γ(∧kA) the A-multivector fields. Recall that the A-differential
dA : Ωk(A)→ Ωk+1(A) is given by

dAα(X0, X1 . . . , Xn) =

n∑
k=1

(−1)iρ(Xi) . . . α(X0, · · · , X̂i, . . . , Xn)

+
∑

0≤i<j≤k

(−1)i+jα([Xi, Xj ] , X0, . . . , X̂i, . . . X̂j , . . . , Xn)

and turns Ω•(A) into a complex whose cohomology is called the Lie algebroid
cohomology and will be denoted by H•(A).

Example 2.1. In case A = TM , the Lie algebroid cohomology is the De Rham
cohomology.

Example 2.2. For any Poisson manifold (M,π) there is a natural Lie algebroid
structure on its cotangent bundle T ∗M : the anchor is ρ = π] and the Lie bracket
on sections of A = T ∗M , i.e., on one forms, is given by:

[α, β] = £π]αβ −£π]βα− dπ(α, β).

The Poisson cohomology of (M,π) is just the Lie algebroid cohomology of T ∗M .
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A morphism between two Lie algebroids A→M and B → N is a vector bundle
map (Φ, φ)

A
Φ //

��

B

��
M

φ
// N

such that the dual vector bundle map Φ∗ : (Ω•(B),dB) → (Ω•(A),dA) is a chain
map.

The most basic example of a Lie algebroid morphism is the tangent map Tφ of
a smooth map φ : M → N .

A representation of a Lie algebroid A is a vector bundle E → M together
with a flat A-connection ∇ (see, e.g, [4]). The usual operations ⊕ and ⊗ on vec-
tor bundles turn the space of representations Rep(A) into a semiring. Given a
morphism of Lie algebroids (Φ, φ), there is a pullback operation on representations
E 7→ φ!E, which gives a morphism of rings φ! : Rep(B)→ Rep(A).

For an orientable line bundle L ∈ Rep(A) the only characteristic class can be
obtained as follows: for any nowhere vanishing section µ ∈ Γ(L),

∇Xµ = 〈αµ, X〉µ, ∀X ∈ X(A).

The 1-form αµ ∈ Ω1(A) is dA-closed and it is called the characteristic cocycle of
the representation L. Its cohomology class is independent of the choice of section
µ and defines the characteristic class of the representation L:

char(L) := [αµ] ∈ H1(A).

One checks easily that if L,L1, L2 ∈ Rep(A), then:

char(L∗) = − char(L), char(L1 ⊗ L2) = char(L1) + char(L2).

Also, if (Φ, φ) : A→ B is a morphism of Lie algebroids, and L ∈ Rep(B) then:

char(φ!L) = Φ∗ char(L),

where Φ∗ : H•(B)→ H•(A) is the map induced by Φ at the level of cohomology. If
L is not orientable, then one defines its characteristic class to be the one half that
of the representation L⊗L, so the formulas above still hold, for non-orientable line
bundles.

Every Lie algebroid A → M has a canonical representation in the line bundle
LA = ∧topA⊗ ∧topT ∗M :

∇X(ω ⊗ µ) = £Xω ⊗ µ+ ω ⊗£ρ(X)µ.

Then we set:

Definition 2.3. The modular cocycle of a Lie algebroid A relative to a nowhere
vanishing section ω ⊗ µ ∈ Γ(∧topA⊗ ∧topT ∗M) is the characteristic cocycle αω⊗µ
of the representation LA. The modular class of A is the characteristic class:

mod(A) := [αω⊗µ] ∈ H1(A).

Remark 2.4. Notice that, if ν = fµ is another section of LA, for a nonvanishing
function f ∈ C∞(M), then

(1) αν = αµ − dA ln f.

Example 2.5. The modular class of a tangent bundle is trivial.
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Example 2.6. Let (M,π) be a Poisson manifold. The first Poisson cohomology
space H1

π(M), is the space of Poisson vector fields modulo the hamiltonian vector
fields.

The Lie derivative of any volume form along hamiltonian vector fields leads to
a unique vector field Xµ ∈ X(M) such that:

£Xfµ = Xµ(f)µ.

One calls Xµ the modular vector field of the Poisson manifold (M,π) relative to
µ. The modular vector field Xµ is Poisson and, if ν = gµ is another volume form,
then:

(2) Xgµ = Xµ − π](d ln |g|).

This lead to the definition of modular class of a Poisson manifold, which is due to
Weinstein [12]:

The modular class of a Poisson manifold (M,π) is the Poisson
cohomology class

mod(M) := [Xµ] ∈ H1
π(M).

Note that mod(M) = 0 if and only if we can find a volume form µ invariant
under all hamiltonian flows.Therefore the modular class is the obstruction to the
existence of a volume form in (M,π) invariant under all hamiltonian flows.

In fact, the modular class of the Poisson manifold (M,π) and the modular class
of the Lie algebroid T ∗M just differ by a multiplicative factor:

mod(T ∗M) = 2 mod(M).

3. The modular class of a Lie algebroid morphism

Let Φ : A→ B be a morphism of Lie algebroids covering a map φ : M → N . The
induced morphism at the level of cohomology Φ∗ : H•(B) → H•(A), in general,
does not map the modular classes to each other. Therefore one sets ([8]):

Definition 3.1. The modular class of a Lie algebroid morphism Φ : A → B is
the cohomology class defined by:

mod(Φ) := mod(A)− Φ∗mod(B) ∈ H1(A).

Proposition 3.2. Let Φ : A → B and Ψ : B → C be Lie algebroid morphisms,
then:

mod(Ψ ◦ Φ) = mod(Φ) + Φ∗mod(Ψ).

The basic properties for characteristic classes show that the modular class of a
Lie algebroid morphism (Φ, φ) : A→ B can be seen as the characteristic class of a
representation. Namely, one takes the canonical representations LA ∈ Rep(A) and
LB ∈ Rep(B) and forms the representation Lφ := LA ⊗ φ!(LB)∗. Then:

Proposition 3.3. Let (Φ, φ) : A→ B be a Lie algebroid morphism. Then:

mod(Φ) = char(Lφ).

4. The modular class of a Lie algebroid comorphism

In this section we extend some of the results for Poisson maps in [2] to comor-
phisms between Lie algebroids. We begin with the definition of a Lie algebroid
comorphism. Further details about comorphisms can be seen in [10, 1, 11, 13].
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Definition 4.1. Let A→M and B → N be two Lie algebroids. A comorphism
between A and B covering φ : M → N is a vector bundle map Φ : φ!B → A from
the pullback vector bundle φ!B to A, such that the following two conditions hold:[

Φ̄X, Φ̄Y
]

= Φ̄ [X,Y ] ,

and

dφ ◦ρA(Φ̄X) = ρB(X),

for X,Y ∈ X(B), where Φ̄ : X(B)→ X(A) is the natural map induced by Φ.

Equivalently, we may say that (Φ, φ) is a Lie algebroid comorphism if and only
if Φ∗ : A∗ → B∗ is a Poisson map for the natural linear Poisson structures on the
dual Lie algebroids.

Proposition 4.2. Let Φ : φ!B → A be a Lie algebroid comorphism. The pullback
vector bundle φ!B →M carries a natural Lie algebroid structure characterized by:[

X !, Y !
]

= [X,Y ]
!

and

ρ(X !) = ρA(Φ̄X !),

for X,Y ∈ X(B), X ! = X ◦φ ∈ Γ(φ!B) and Y ! = Y ◦φ ∈ Γ(φ!B).
For this structure, the natural maps

(3) φ!B
Φ //

j   

A

B

are Lie algebroid morphisms.

The modular class of a Lie algebroid comorphism is defined as follows:

Definition 4.3. Let Φ : φ!B → A be a Lie algebroid comorphism between the Lie
algebroids A and B. The modular class of Φ is the cohomology class:

mod(Φ) := Φ∗mod(A)− j∗mod(B) ∈ H1(φ!B).

Example 4.4. A Poisson map φ : M → N defines a comorphism between cotangent
bundles: Φ : φ!T ∗N → T ∗M such that Φ(α!) = (dφ)∗α, where α! = α ◦φ ∈
X
(
φ!(T ∗N)

)
, for all α ∈ Ω1(N). The modular class of the Poisson map φ was

defined in [2] and we see that it is one half the modular class of the comorphism Φ
induced by φ.

Notice that the map j∗ : Ωk(B)→ Ωk(φ!B) is simply defined by

j∗(α) = α ◦φ, α ∈ Ωk(B).

Taking this into account we can give an explicit description of a representative
of the modular class of a comorphism Φ:

Proposition 4.5. Let Φ : φ!B → A be a Lie algebroid comorphism over φ : M → N
and fix non-vanishing sections µ ∈ Γ(LA), ν ∈ Γ(LB). The modular class mod(Φ)
is represented by:

αµ,ν = Φ∗(αµ)− αν ◦φ,

where αµ and αν are the modular cocycle of A and B relative to µ and ν, respec-
tively.

We will refer to αµ,ν as the modular cocycle of Φ relative to µ and ν.
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Corollary 4.6. The class mod(Φ) is the obstruction to the existence of modular
cocycles α ∈ Ω1(A) and β ∈ Ω1(B), such that

Φ∗α = β ◦φ.

Proof. The Lie algebroid morphism Φ has trivial modular class if its modular co-
cycles are exact in the Lie algebroid cohomology of φ!B, i.e., if for each µ ∈ Γ(LA)
and ν ∈ Γ(LB),

αµ,ν = dφ!Bf = Φ∗(dAf), for some f ∈ C∞(M)

By definition αµ,ν = Φ∗(αµ) − αν ◦φ, hence we have Φ∗(αµ + dAf) = αν ◦φ,
and taking into account equation (1), we conclude that αµ + dAf = αe−fµ and
Φ∗αe−fµ = Xν . �

Corollary 4.7. Let Φ : φ!B → A be a comorphism between Lie algebroids. If there

exists a Lie algebroid morphism Φ̂ : A→ B making the diagram commutative

φ!B
Φ //

j   

A

Φ̂
��
B

then

mod Φ = Φ∗mod Φ̂.

Proof. Since j = Φ̂ ◦Φ we have j∗ = Φ∗ ◦ Φ̂∗ and

Φ∗mod Φ̂ = Φ∗(modA− Φ̂∗B) = Φ∗modA− j∗modB = mod Φ.

�

Proposition 4.8. Let Φ : A→ B be a comorphism between Lie algebroids. There
is a natural representation of φ!B on the line bundle Lφ := LA ⊗ φ!L∗B, and we
have:

mod(Φ) = char(Lφ).

Proof. We define a representation of φ!B on the line bundle LA by setting:

∇X!(µ⊗ ν) := [X !, µ]A ⊗ ν + µ⊗£ρAΦ̄Xν

and another representation on φ!LB by setting:

∇X!(µ! ⊗ ν!) := [α, µ]!B ⊗ ν! + µ! ⊗
(
£ρB(X)ν

)!
,

for X ∈ X(B) and µ ⊗ ν ∈ Γ(LA). The tensor product of the first representation
with the dual of the second representation defines a representation of φ!B on the
line bundle

Lφ := LA ⊗ φ!L∗B .

�

Let us consider two Lie algebroids morphisms Φ : φ!B → A and Ψ : ψ!C → B

over φ : M → N and ψ : N → P , respectively. The restriction Ψ̃ = Ψ|(ψ ◦φ)!C maps

(ψ ◦φ)!C to φ!B and defines a map at the cohomology level:

Ψ̃∗ : H•(φ!B)→ H•((ψ ◦φ)!C).

The function Ψ ◦Φ : (ψ ◦φ)!C → A defined by:

Ψ ◦Φ(Xψ ◦φ(m)) = Φ
(

Ψ̃
(
Xψ ◦φ(m)

))
, ( ∀m ∈M),

is a Lie algebroid comorphism.
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We also have the natural Lie algebroid morphism j̃ : (ψ ◦φ)!C = φ!ψ!C → ψ!C
that defines a map at the cohomology level

j̃∗ : H•(ψ!C)→ H•((ψ ◦ φ)!C), α 7→ α ◦φ.

Proposition 4.9. Let Φ : φ!B → A and Ψ : ψ!C → B be Lie algebroid comor-
phisms. Then:

mod(Ψ ◦ Φ) = Ψ̃∗mod(Φ) + j̃∗mod(Ψ).

Proof. The following diagram commutes:

H•(B)
j∗φ

ww

Ψ∗

''
H•(A)

Φ∗
//

(Φ ◦Ψ)∗ **

H•(φ!B)

Ψ̃∗

''

H•(ψ!C)

j̃∗

ww

H•(C)
j∗ψoo

j∗ψ ◦φtt
H•((ψ ◦φ)!C)

Hence, we find:

mod(Φ ◦Ψ) = (Φ ◦Ψ)∗mod(A)− j∗ψ◦φ mod(C)

= Ψ̃∗ ◦Φ∗mod(A)− j̃∗ ◦j∗ψ mod(C)

= Ψ̃∗ ◦Φ∗mod(A)− Ψ̃∗ ◦j∗φ mod(B) + Ψ̃∗ ◦j∗φ mod(B)− j̃∗ ◦j∗ψ mod(C)

= Ψ̃∗(Φ∗mod(A)− j∗φ mod(B)) + j̃∗(Ψ∗mod(B)− j∗ψ mod(C))

= Ψ̃∗mod(Φ) + j̃∗mod(Ψ).

�

5. Generalization to Dirac structures

The modular class of a Lie algebroid morphism and the modular class of a
Lie algebroid comorphism fit together into the notion of modular class of a skew
algebroid relation, given by Grabowski in [5]. As a particular case we have the
modular class of a Dirac map but very few was said about this particular case. The
study of these structures will be exposed in a future work.
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