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Abstract: We give a general sufficient condition for the uniform convergence of
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1. Introduction

Let ∆ ⊂ R be a compact interval and M(∆) the set of finite Borel measures
with constant sign whose support S(µ) is a subset of ∆ such that ∆ is
the smallest interval which contains S(µ); we write Co(S(µ)) = ∆. Given
µ ∈ M(∆), the associated Markov function is defined by

µ̂(z) =

∫
dµ(x)

z − x
∈ H(C \ S(µ))

which is holomorphic in C \ S(µ).
Fix a measure σ ∈ M(∆) and a system of m weights r = (ρ1, . . . , ρm)

with respect to σ; that is, each ρk ∈ L1(σ) and has constant sign. Consider
the system of measures s = (s1, . . . , sm), where dsj = ρjdσ, and the corre-
sponding system of Markov functions ŝ = (ŝ1, . . . , ŝm). Take a multi-index
n = (n1, . . . , nm) ∈ Zm

+ , where Z+ = {0, 1, 2, . . .}. There exist polynomials
Qn and Pn,j , j = 1, . . . , m, such that

i) degQn ≤ |n| = n1 + · · · + nm, Qn 6≡ 0 ,
ii) (Qnŝj − Pn,j) (z) = O

(
1/znj+1

)
, z → ∞, j = 1, . . . , m .

(1)
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In the sequel we assume that Qn is monic.
For each j = 1, . . . , m, Qn annihilates the terms corresponding to the

powers between −1 and −nj of the Laurent expansion of Qnŝj whereas Pn,j

represents the polynomial part of Qnŝj. Hence, Qn determines univocally
Pn,j and, consequently, the rational fraction Pn,j/Qn.

The vector rational fractions Rn = (Pn,1/Qn, . . . , Pn,m/Qn) is called type II
Hermite-Padé approximant corresponding to the system ŝ and the multi-
index n.

When m = 1, Rn = Pn,1/Qn = Pn/Qn, n = n, is the nth diagonal Padé
approximant of ŝ1 = ŝ. It is well known (for example, see [15, Chapter II]),
that in this case Qn is the nth monic orthogonal polynomial with respect
to the measure s. Usually, monic orthogonal polynomials are defined for
positive measures, however, the definition is trivially extended to measures
with constant sign. Qn has n simple zeros in the interior of Co(S(s)) (see [16,
Lemma 1.1.3]).

In [13], A.A. Markov proved that given an arbitrary measure s ∈ M(∆)
the sequence {Pn/Qn}n∈Z+

converges uniformly to ŝ on every compact subset

contained in the domain C \ ∆. We write

Pn

Qn
⇉

n→∞
ŝ, on C \ ∆.

In the present paper, we extend Markov’s Theorem to the context of type II
Hermite-Padé approximation.

The first drawback in extending Markov’s Theorem to the context of Her-
mite-Padé approximation is that in the vector case, in general, Qn is not
uniquely determined by (1). However, in [10] it is shown that uniqueness
takes place for the so called Nikishin systems of measures which we introduce
below. In this case, Qn also has |n| simple zeros in the interior of ∆.

Nikishin systems of measures were introduced by E.M. Nikishin in his fa-
mous article [14]. Take two compact intervals ∆α and ∆β of the real line
such that ∆α ∩ ∆β = ∅ and two measures σα ∈ M(∆α) and σβ ∈ M(∆β).
We define a third measure 〈σα, σβ〉 whose differential expression is

d〈σα, σβ〉(x) =

∫
dσβ(t)

x− t
dσα(x) = σ̂β(x)dσα(x).

Observe that 〈σα, σβ〉 ∈ M(∆α).
Now, take m compact intervals ∆1, . . . ,∆m with the property that for each

j = 1, . . . , m− 1, ∆j ∩ ∆j+1 = ∅. Let (σ1, . . . , σm) be a system of measures
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such that σj ∈ M(∆j), j = 1, . . . , m. The system of measures (s1, . . . , sm)
given by

s1 = σ1, s2 = 〈σ1, σ2〉, s3 = 〈σ1, 〈σ2, σ3〉〉 = 〈σ1, σ2, σ3〉,

. . . , sm = 〈σ1, . . . , σm〉,

is the so called Nikishin system of measures generated by (σ1, . . . , σm). For
short, we write (s1, . . . , sm) = N (σ1, . . . , σm) whereas ŝ = (ŝ1, . . . , ŝm) =

N̂ (σ1, . . . , σm) is the corresponding Nikishin system of functions. Nikishin
systems have received a great deal of attention in the recent past and have
found numerous applications, see for example [1, 2, 3, 4, 6, 7, 8, 11, 12, 17].

In order to state our main result we need to review some concepts. Given
two disjoint compact sets K1 and K2 of R, dist(K1, K2) denotes the distance
between K1 and K2 i.e. dist(K1, K2) = min{|x1 − x2| : (x1, x2) ∈ K1 ×K2}
whereas diam(K1) = max{|x1 − x2| : x1, x2 ∈ K1} denotes the diameter
of K1.

The main result of this paper is the following theorem.

Theorem 1. Let {Rn = (Pn,1/Qn, . . . , Pn,m/Qn)}n∈Λ be the sequence of
type II Hermite-Padé approximants corresponding to a sequence of distinct
multi-indices Λ ⊂ Zm

+ and a system (ŝ1, . . . , ŝm) = N̂ (σ1, . . . , σm). Assume

diam(∆k) < dist(∆1,∆2). Then, for each compact set K ⊂ C \ ∆1

lim sup
n∈Λ

∥∥∥∥ŝj −
Pn,j

Qn

∥∥∥∥
1/(|n|+nj)

K

≤ ‖φ∞‖K < 1, j = 1, . . . , m,

where ‖ · ‖K denotes the sup-norm on K and φ∞ denotes the conformal
representation of C \ ∆1 onto the open unit disk such that φ∞(∞) = 0 and
φ′∞(∞) > 0.

Notice that the sequence of multi-indices may be completely arbitrary. In
Markov’s Theorem, there is no assumption on the measure. This is also
true in our case whenever diam(∆k) < dist(∆1,∆2), k = 1, 2. We have
imposed no restrictions on the measures σ3, . . . , σm at all. Another extension
of Markov’s Theorem was given in [10, Corollary 1.1] without any assumption
on the measures, but the indices are required to satisfy nj ≥ |n|/m− c|n|κ,
j = 1, . . . , m, for c > 0 and κ < 1. We believe that a complete analogue of
Markov’s Theorem should hold.

The following result extends [9, Corollary 2] to a larger class of multi-
indices.
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Theorem 2. Let Λ ⊂ Zm
+ be a sequence of multi-indices such that either

there exists k ∈ {2, . . . , m} such that for every n = (n1, . . . , nm) ∈ Λ, nk =
max{n1 +1, n2, . . . , nm}, or n1 = max{n1, n2 − 1, . . . , nm − 1} (in which case
we take k = 1). Then, for each compact set K ⊂ C \ ∆1,

lim sup
n∈Λ

∥∥∥∥ŝk −
Pn,k

Qn

∥∥∥∥
1/2|n|

K

≤ κ(K) < 1, (2)

where

κ(K) = sup{‖φt‖K : t ∈ ∆2 ∪ {∞}}

and φt denotes the conformal representation of C\∆1 onto the open unit disk
such that φt(t) = 0 and φ′t(t) > 0.

In the first three sections we give some preliminary results which are nec-
essary for the proof of the Theorems above. Section 2 includes some proper-
ties of multiple orthogonal polynomials corresponding to Nikishin systems of
measures. In Section 3 we study properties of Fourier series of functions ex-
panded in terms of orthogonal polynomials with respect to varying measures.
Theorem 2 is proved in Section 4 as a first step to the proof of Theorem 1
which is completed in Section 5.

2. Multiple orthogonality in Nikishin systems

Let s = (s1, . . . , sm) = N (σ1, . . . , σm) and n = (n1, . . . , nm) be given. It is
well known and easy to verify that the conditions (1) imply

0 =

∫
xνQn(x)dsj(x), ν = 0, . . . , nj − 1, j = 1, . . . , m. (3)

For each j = 1, . . . , m, let h be an arbitrary polynomial such that deg h ≤ nj.
Then

0 =

∫
h(z) − h(x)

z − x
Qn(x)dsj(x)

hence
∫
Qn(x)

z − x
dsj(x) =

1

h(z)

∫
h(x)Qn(x)

z − x
dsj(x) = O

(
1

znj+1

)
as z → ∞.

Define

P (z) =

∫
Qn(z) −Qn(x)

z − x
dsj(x).
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Thus

(Qnŝj − P ) (z) =

∫
Qn(x)

z − x
dsj(x) = O

(
1

znj+1

)
as z → ∞.

From (1) we see that

P (z) − Pn,j(z) = O

(
1

znj+1

)
∈ H

(
C
)

z → ∞.

Consequently,

Pn,j(z) ≡

∫
Qn(z) −Qn(x)

z − x
dsj(x), (Qnŝj − Pn,j) (z) =

∫
Qn(x)

z − x
dsj(x). (4)

From [10] we know that the conditions (3) imply that Qn has |n| simple zeros
which lie in the interior of ∆1. Let xn,1 < · · · < xn,|n| be the zeros of Qn.
Decomposing into simple fractions, we get

Pn,j(z)

Qn(z)
=

|n|∑

i=1

λi,j,n

z − xn,i
, j = 1, . . . , m. (5)

The coefficients λi,j,n, i = 1, . . . , |n| and j = 1, . . . , m, were called Nikishin-
Christoffel coefficients in [9, Definition 2]. Taking into account the equality
in (4), we have that

λi,j,n = lim
z→xn,i

(z − xn,i)
Pn,j(z)

Qn(z)
=

∫
Qn(x)dsj(x)

Q′
n(xn,i)(x− xn,i)

. (6)

For each j = 1, . . . , m,
∣∣∣∣∣∣

|n|∑

i=1

λi,j,n

∣∣∣∣∣∣
=

∣∣∣∣∣∣

|n|∑

i=1

∫
Qn(x)dsj(x)

Q′
n(xn,i)(x− xn,i)

∣∣∣∣∣∣
(7)

=

∣∣∣∣∣∣

∫ |n|∑

i=1

Qn(x)

Q′
n
(xn,i)(x− xn,i)

dsj(x)

∣∣∣∣∣∣
=

∣∣∣∣
∫
dsj(x)

∣∣∣∣ = ‖sj‖ < +∞,

where ||s|| represents the total variation of the measure s. In this chain of

equalities we have used that P(x) =
∑|n|

i=1Qn(x)/ (Q′
n
(xn,i)(xn,i − x)) is the

polynomial of degree ≤ |n| − 1 which interpolates the constant function 1 at
the zeros of Qn. Thus P ≡ 1.

From [10, Lemma 3.2] one can state the following result. We wish to point
out that the measure denoted here with τ are products of those in [10].
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Lemma 1. Let (ŝ2,2, . . . , ŝ2,m) = N̂ (σ2, . . . , σm), there is a system of m −
1 measures (τ k

2,1, . . . , τ
k
2,k−1, τ

k
2,k+1, . . . , τ

k
2,m) where Co(S(τ k

2,j)) ⊂ ∆2, j =
1, . . . , k − 1, k + 1, . . . , m, such that

1

ŝ2,k(z)
= ℓ2,k(z) + τ̂ k

2,1(z), (8)

where ℓ2,k denotes a polynomial with degree one, and

ŝ2,j(z)

ŝ2,k(z)
−

|s2,j|

|s2,k|
= τ̂ k

2,j(z), j = 2, . . . , k − 1, k + 1, . . . , m. (9)

In [10, Theorem 1.4] refers to so called mixed type multiple orthogonal
polynomials of two Nikishin systems. When reduced to type II multiple or-
thogonal polynomials of a Nikishin system it may be restated in the following
form.

Lemma 2. Let (s1, . . . , sm) = N (σ1, . . . , σm) and n = (n1, . . . , nm) ∈ Z
m
+ be

given. Set k = 1 if n1+1 = M = max{n1+1, n2, . . . , nm}, otherwise k is equal
to the subscript of the first component of n such that M = nk. Then, there
exists a permutation λ of {1, . . . , m} which reorders the components of n such
that nλ(1) + δλ(1),1 ≥ nλ(2) ≥ · · · ≥ nλ(m) with nk = nλ(1) and δλ(1),1 denoting
the known Kronecker delta function, and an associated Nikishin system s̃ =
(r1, . . . , rm) = N (ρ1, . . . , ρm), where sk = r1 = ρ1 and Co(S(ρj)) ⊂ ∆j, j =
1, . . . , m, such that if ñ = (nλ(1), . . . , nλ(m)), the pairs (s,n) and (s̃, ñ) have
the same type II multiple orthogonal polynomial. That is, Qn satisfies (3)
and

0 =

∫
xνQn(x)r̂2,j(x)dsk(x), ν = 0, . . . , nλ(j) − 1, j = 1, . . . , m,

where r2,j = 〈ρ2, . . . , ρj〉, j = 2, . . . , m, and r̂2,1 ≡ 1.

Type II multiple orthogonal polynomials of Nikishin systems with respect
to decreasing multi-indices satisfy other orthogonality relations. In particu-
lar, from [11, Propositions 2 and 3] (see also [2, relations (5)-(7)]), we have

Lemma 3. Let s = (s1, . . . , sm) = N (σ1, . . . , σm) and n = (n1, . . . , nm) be
given. Let k ∈ {1, . . . , m} be as in Lemma 2. Then, there exist two monic
polynomial Qn,2, degQn,2 = |n|−nk, and Qn,3 = |n|−nk−nλ(2), whose zeros
are simple and lie in the interior of ∆2 and ∆3, respectively, such that:(

Qnŝk − Pn,k

Qn,2

)
(z) = O

(
1

z|n|+1

)
∈ H

(
C \ S(σ1)

)
,
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0 =

∫
xνQn(x)

dsk(x)

Qn,2(x)
, ν = 0, . . . , |n| − 1 (10)

and

0 =

∫
tνQn,2(t)

∫
Q2

n
(x)

t− x

dsk(x)

Qn,2(x)

dρ2(t)

Qn(t)Qn,3(t)
, ν = 0, . . . , |n|−nk −1. (11)

(Here, ρ2 is the measure coming from Lemma 2.)

Formulas (10) and (11) state that Qn and Qn,2 are, respectively, the |n|th
and (|n| − nk)th monic orthogonal polynomials with respect to the varying
measures

dsk

Qn,2
and

∫
Q2

n
(x)

t− x

dsk(x)

Qn,2(x)

dρ2(t)

Qn(t)Qn,3(t)
. (12)

There are other full orthogonality relations with respect to varying measures
satisfied deeper in the system, but we will not need them.

3. Varying measures and associated Fourier series

Let sign : R\{0} → {−1, 1} denote the sign function. Analogously, sign(µ)
will denote the sign of a given measure µ ∈ M(∆). Notice that sign(µ) · µ is
a positive measure. Given a measurable function f : ∆ → R,

‖f‖2,µ =

√
sign(µ)

∫
f 2(x)dµ(x),

denotes the L2 norm with respect to µ. If ‖f‖2,µ < +∞ we write f ∈ L2(µ).
Let {qµ,n}n∈Z+

be the family of monic orthogonal polynomials with respect
to µ. For each n ∈ Z+ let pµ,n(z) ≡ qµ,n/‖qµ,n‖2,µ denote the nth orthonormal
polynomial with respect to the measure µ. That is

∫
pµ,n(x)pµ,k(x)dµ(x) = δn,k =

{
1 if n = k

0 if n 6= k
, (n, k) ∈ Z

2
+ .

Fix n ∈ Z+, for each polynomial h of degree ≤ n we have the identity

0 =

∫
h(z) − h(x)

z − x
pµ,n(x)dµ(x),

thus ∫
pµ,n(x)dµ(x)

z − x
=

1

pµ,n(z)

∫
p2

µ,n(x)dµ(x)

z − x
. (13)
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From (10) we see that qµ,|n| ≡ Qn when dµ = dsk/Qn,2, and pµ,|n| ≡
Qn/‖Qn‖2,µ.

Lemma 4. Let {dµn}n∈Z+
⊂ M(∆) be given. Then for each t ∈ C \ ∆ we

have that ∣∣∣∣
qµn,n(x)

qµn,n(t)

∣∣∣∣
1/n

≤
diam(∆)

dist(t,∆)
, n ∈ Z+ (14)

uniformly in {x ∈ ∆}.

Proof : Fix n ∈ Z+. Since qµn,n has its n zeros in the interior of ∆ then
∣∣∣∣
qµn,n(x)

qµn,n(z)

∣∣∣∣ ≤
(

diam(∆)

dist(K,∆)

)n

This proves immediately (14).

Fix two integers n, ν ∈ Z+ and a function f ∈ L2(µν). The sum

Sf,n,µν
(z) =

n∑

i=0

γi,νpµν ,i(z), (15)

where

γi,ν = sign(µν)

∫
f(x)pµν,i(x)dµν(x), i = 0, . . . , n,

defines the nth partial sum of the Fourier series corresponding to f in terms
of the orthonormal system {pµn,i}i∈Z+

.
Substituting in (15) the well known Christoffel-Darboux identity (in [5,

Theorem 4.5, page 23]) we obtain

Sf,n,µν
(z) = aµν ,n+1

∫
pµν ,n+1(z)pµν ,n(x) − pµν ,n+1(x)pµν,n(z)

z − x
f(x)dµν(x) , (16)

where

aµν ,n+1 =

∫
xpµν,n+1(x)pµν,n(x)dµν(x) .

Notice that sign(aµn,n+1) = sign(µn). For an arbitrary polynomial P of degree
less or equal to n, we have SP ,n,µn

≡ P .

Proposition 1. Let {µn}n∈Z+
⊂ M(∆) be given. Fix t ∈ C \ ∆ such that

dist(t,∆) > diam(∆). Then

S1/(z−t),n,µn
⇉

1

z − t
, for z ∈ ∆. (17)



AN EXTENSION OF MARKOV’S THEOREM 9

Proof : Fix N ∈ Z+. We start by proving

S1/(z−t),n,µN
⇉

1

z − t
, for z ∈ ∆. (18)

For two nonnegative integers n > n′ we analyze the difference

εN,n,n′ =
∣∣S1/(z−t),n′,µN

− S1/(z−t),n,µN

∣∣ =

∣∣∣∣∣

n∑

i=n′+1

γi,NpµN ,i(z)

∣∣∣∣∣

where γi,N =
∫
pµN ,i(x)/(x− t)dµN(x). So

εN,n,n′ =

∣∣∣∣∣

n∑

i=n′+1

pµN ,i(z)

∫
pµN ,i(x)

ρN(x)

dµN(x)

x− t

∣∣∣∣∣ .

Taking into account the identity given in (13) we have that

εN,n,n′ =

∣∣∣∣∣

n∑

i=n′+1

pµN ,i(z)

pµN ,i(t)

∫
p2

µN ,i(x)dµN(x)

x− t

∣∣∣∣∣

≤
n∑

i=n′+1

∣∣∣∣
pµN ,i(z)

pµN ,i(t)

∣∣∣∣

∣∣∣∣∣

∫
p2

µN ,i(x)dµN(x)

x− t

∣∣∣∣∣ ≤
n∑

i=n′+1

∣∣∣∣
pµN ,i(z)

pµN ,i(t)

∣∣∣∣

∣∣∫ p2
µn,i(x)dµN(x)

∣∣
dist(t,∆)

.

Hence we obtain that

εN,n,n′ ≤
1

dist(t,∆)

n∑

i=n′+1

∣∣∣∣
pµN ,i(z)

pµN ,i(t)

∣∣∣∣ .

Lemma 4 implies that there exists a nonnegative integer N ′ such that for
every pair (n, n′), with n ≥ n′ ≥ N ′

εN,n,n′ ≤ εN,n,n′ ≤
1

dist(t,∆)

n∑

i=n′+1

M i → 0 as n, n′ → ∞,

where M = diam(∆)/dist(∆, t) < 1. This proves (18).
So, for each n ∈ Z+ fixed we can write

1

z − x
=

∞∑

i=0

pµn,i(z)

∫
pµn,i(x)

x− t
dµn(x) =

∞∑

i=0

pµn,i(z)

pµn,i(t)

∫
p2

µn,i(x)dµn(x)

x− t
.

Then

εn,n,∞ =

∣∣∣∣S1/(z−t),n,µn
−

1

z − t

∣∣∣∣ =

∣∣∣∣∣

∞∑

i=n+1

pµn,i(z)

pµn,i(t)

∫
p2

µn,i(x)dµn(x)

x− t

∣∣∣∣∣
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Taking again into account Lemma 4 we see that there exists a nonnegative
integer N ′ such that for all n ≥ N ′

εn,n,∞ ≤
1

dist(t,∆)

∞∑

i=n

M i → 0 as n→ ∞.

This proves (17) and completes the proof of Proposition 1.

Recall the definition of Nikishin-Christoffel coefficients introduced in Sec-
tion 2.

Proposition 2. Let n = (n1, . . . , nm) ∈ Z
m
+ and (s1, . . . , sm) = N (σ1, . . . ,

σm) be given. Set k = 1 if n1 + 1 = M = max{n1 + 1, n2, . . . , nm}, otherwise
k is equal to the subscript of the first component of n such that M = nk.
For each n ∈ Z+, denote dµn = dsk/Qn,2. Then, for each j = 1, . . . , m, the
Nikishin-Christoffel coefficients can be written as follows

λi,j,n =
||Qn||2,µn

SQn,2ŝ2,j/ŝ2,k,|n|−1,µn
(xn,i)

aµn,|n|Q′
n(xn,i)pµn,|n|−1(xn,i)

, i = 1, . . . , |n|. (19)

When j = k, the Nikishin-Christoffel coefficients acquire the following form

λi,k,n =
||Qn||2,µn

(xn,i)

aµn,|n|Q′
n
(xn,i)pµn,|n|−1(xn,i)

, i = 1, . . . , |n|. (20)

Thus

sign(λi,k,n) = sign(sk), i = 1, . . . , |n|. (21)

In particular
|n|∑

i=1

|λi,k,n| = ‖sk‖ < +∞. (22)

Proof : Let us rewrite (6) for each j = 1, . . . , m and each i = 1, . . . , |n| as

λi,j,n =

∫
Qn(x)dsj(x)

Q′
n(xn,i)(x− xn,i)

=

∫
Qn(x)

Q′
n(xn,i)(x− xn,i)

ŝ2,j(x)

ŝ2,k(x)
Qn,2(x)

dsk(x)

Qn,2(x)

=
||Qn||2,µn

aµn,|n|Q′
n
(xn,i)pµn,|n|−1(xn,i)

× aµn,|n|

∫
pµn,|n|(x)pµn,|n|−1(xn,i)

x− xn,i

ŝ2,j(x)

ŝ2,k(x)
Qn,2(x)

dsk(x)

Qn,2(x)
.
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Using the formula given in (16) it follows that

λi,j,n =
||Qn||2,µn

SQn,2ŝ2,j/ŝ2,k,|n|−1,µn
(xn,i)

aµn,|n|−1Q′
n(xn,i)pµn,|n|−1(xn,i)

.

When j = k, since ŝ2,j/ŝ2,k ≡ 1 and degQn,2 = |n| − nk

λi,k,n =
||Qn||2,µn

Qn,2(xn,i)

aµn,|n|Q′
n(xn,i)pµn,|n|−1(xn,i)

.

So (19) and (20) have been proved. It is well known (see [5, Theorem 5.3])
that the zeros two two consecutive elements of a family of orthogonal polyno-
mials interlace, then Q′

n(xn,i)pµn,|n|−1(xn,i) must be positive. Hence for each
i = 1, . . . , |n| the equalities (20) imply

sign(λi,k,n) = sign(aµn,|n|) sign(Qn,2)

= sign(sk) sign(Qn,2) sign(Qn,2) = sign(sk) .

Combining (7) and (21) we obtain (22).

4. Proof of Theorem 2

We proceed as in the proof of (34) in [9, Corollary 2]. Fix n ∈ Λ. Taking
into account (22), from (5) we have that for each compact set K ⊂ C \ ∆1

∥∥∥∥
Pn,k

Qn

∥∥∥∥
K

≤
||sk||

dist(K,∆1)
.

Therefore, the family of functions {ŝk − Pn,k/Qn}n∈Λ, is uniformly bounded
on each compact K ⊂ C \ ∆1 by 2||sk||/dist(K,∆1).

Let tn,1 < · · · < tn,|n|−nk
denote the zeros of Qn,2. From Lemma 3 we know

that {tn,1, . . . , tn,|n|−nk
} ⊂ ∆2 and the zeros of Qn lie in ∆1, and

(
ŝk −

Pn,k

Qn

Qn,2

)
(z) = O

(
1

z2|n|+1

)
, z → ∞.

So

ŝk −
Pn,k

Qn

φ
|n|+nk+1
∞

∏|n|−nk

i=1 φtn,i

∈ H
(
C \ ∆1

)
.
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Take ρ ∈ (0, 1) such that γρ = {z : |φ∞(z)| = ρ} satisfies that ∆2 ⊂ Ext(γρ),
where Ext(γρ) denotes the unbounded connected component of the comple-
ment of γρ. We have then

∥∥∥∥∥
ŝk −

Pn,k

Qn

φ
|n|+nk+1
∞

∏|n|−nk

i=1 φtn,i

∥∥∥∥∥
γρ

≤
2|sk|

dist(γρ,∆1)ψ2|n|+1(γρ)
,

where
ψ(γρ) = inf{|φt(z)| : z ∈ γρ, t ∈ ∆2 ∪ {∞}}.

Considered as a function of the two variables z and t, φt(z) is a continuous

function in C
2
. Since γρ∩∆2 = ∅ then ψ(γρ) > 0. Fix a compact K ⊂ C\∆1

and take ρ sufficient by close to 1 so that K ⊂ Ext(γρ). Since the function
under the norm sign is analytic in C \ ∆1, from the maximum principle it
follows that the same bound holds for all z ∈ K. Consequently,
∥∥∥∥ŝk −

Pn,k

Qn

∥∥∥∥
K

≤
2|sk|φ

|n|+nk+1
∞

∏|n|−nk

i=1 φtn,i

dist(γρ,∆1)ψ2|n|+1(γρ)
≤

2|sk|

dist(γρ,∆1)

(
κ(K)

ψ(γρ)

)2|n|+1

,

taking κ(K) as in the statement of the theorem. Therefore,

lim sup
|n|→∞

∥∥∥∥ŝk −
Pn,k

Qn

∥∥∥∥
1/2|n|

K

≤
κ(K)

ψ(γρ)
.

So, the continuity of |φt(z)| in C
2
and the fact that limρ→1 ψ(γρ) = 1 prove (2).

That κ(K) < 1 is also a consequence of the continuity of |φt(z)| in C
2
. �

5. Proof of Theorem 1

We will use the following auxiliary result.

Proposition 3. Let (s1, . . . , sm) = N (σ1, . . . , σm) and Λ ⊂ Z
m
+ be given.

Assume that diam(∆k) < dist(∆1,∆2), k = 1, 2. Then there exists N ≥
0 such that for each n ∈ Λ, where |n| ≥ N , every coefficient λi,j,n, i =
1, . . . , |n|, j = 1, . . . , m has the same sign as its corresponding measure sj.

Proof : Fix an arbitrary permutation λ of {1, . . . , m}. Define Λλ as the set
of all n ∈ Λ such that there exists s̃ = (r1, . . . , rm) = N (ρ1, . . . , ρm) for
which Qn is orthogonal with respect to (s,n) and (s̃, ñ) (recall that ñ =
(nλ(1), . . . , nλ(m))) in such a way that nλ(1) + δλ(1),1) ≥ nλ(2) ≥ · · · ≥ nλ(m).
According to Lemma 2 we have that ∪λΛλ = Λ. Some of the sets Λλ may be
empty or have a finite number of elements. Since the group of permutations
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of {1, . . . , m} is finite it is sufficient to prove that the result holds true for
all λ such that Λλ has an infinite number of multi-indices. In the sequel we
restrict our attention to such λ’s and fix one of them.

Fix n ∈ Λλ. Let us denote the measures introduced in (12) as

dµn,1 =
dρ1

Qn,2
=

dsk

Qn,2
and dµn,2(t) =

∫
Q2

n
(x)

t− x

dρ1(x)

Qn,2(x)

dρ2(t)

Qn(t)Qn,3(t)
.

We call k = λ(1). From identities (19) in Proposition 2 it is sufficient to
show that for each j = 1, . . . , k − 1, k + 1, . . . , m the sequence of functions
{SQn,2ŝ2,j/ŝ2,k,|n|−1,µn,1

}n∈Λλ
converges unifromly to ŝ2,j/ŝ2,k on ∆1 because this

function has constant and constant sign and no zero on ∆1.
Denote

K(z, x, |n| − 1) =
pµn,1,|n|(z)pµn,1,|n|−1(x) − pµn,1,|n|(x)pµn,1,|n|−1(z)

z − x
.

Let us start by analyzing the case when j = 1. Taking into account the
formula (16) and unsing the identity (8) in Lemma 1 we have that

∣∣∣∣
SQn,2/ŝ2,k,|n|−1,µn,1

(z)

Qn,2(z)
−

1

ŝ2,k(z)

∣∣∣∣

=

∣∣∣∣
aµn,1,|n|

Qn,2(z)

∫
K(z, x, |n| − 1)

(
Qn,2(x)

ŝ2,k(x)
−
Qn,2(z)

ŝ2,k(z)

)
dµn,1(x)

∣∣∣∣

=

∣∣∣∣
aµn,1,|n|

Qn,2(z)

∫
K(z, x, |n| − 1) (Qn,2(x)ℓ2,k(x) −Qn,2(z)ℓ2,k(z)) dµn,1(x)

+
aµn,1,|n|

Qn,2(z)

∫
K(z, x, |n| − 1) (Qn,2(x)τ̂2,k(x) −Qn,2(z)τ̂2,k(z)) dµn,1(x)

∣∣∣∣ .

Since degQn,2ℓ2,k ≤ |n| − nk + 1 < |n| − 1 (nk = max{n1, . . . , nm}), then
∣∣∣∣
SQn,2/ŝ2,k,|n|−1,µn,1

(z)

Qn,2(z)
−

1

ŝ2,k(z)

∣∣∣∣ = |ℓ2,k(z) − ℓ2,k(z)

+
aµn,1,|n|

Qn,2(z)

∫
K(z, x, |n| − 1) (Qn,2(x)τ̂2,k(x) −Qn,2(z)τ̂2,k(z)) dµn,1(x)

∣∣∣∣

=

∣∣∣∣
aµn,1,|n|

Qn,2(z)

∫
K(z, x, |n| − 1) (Qn,2(x)τ̂2,k(x) −Qn,2(z)τ̂2,k(z)) dµn,1(x)

∣∣∣∣ .
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Proceeding analogously as above, for j = 2, . . . , k−1, k+1, . . . , m, and taking
into account (16) and (9), we obtain

∣∣∣∣
SQn,2ŝ2,j/ŝ2,k,|n|−1,µn,1

(z)

Qn,2(z)
−
ŝ2,j(z)

ŝ2,k(z)

∣∣∣∣

=

∣∣∣∣
aµn,1,|n|

Qn,2(z)

∫
K(z, x, |n| − 1)

(
Qn,2(x)ŝ2,j(x)

ŝ2,k(x)
−
Qn,2(z)ŝ2,j(z)

ŝ2,k(z)

)
dµn,1(x)

∣∣∣∣

=

∣∣∣∣
aµn,1,|n|

Qn,2(z)

∫
K(z, x, |n| − 1) (Qn,2(x)τ̂2,j(x) −Qn,2(z)τ̂2,j(z)) dµn,1(x)

∣∣∣∣ .

Summarizing, for each j = 1, . . . , k− 1, k+ 1, . . . , m, we need to analyze the
expression:

∣∣∣∣
aµn,1,|n|

Qn,2(z)

∫
K(z, x, |n| − 1) (Qn,2(x)τ̂2,j(x) −Qn,2(z)τ̂2,j(z)) dµn,1(x)

∣∣∣∣ .

Using Fubini’s Theorem we obtain the following chain of equalities
∣∣∣∣
aµn,1,|n|

Qn,2(z)

∫
K(z, x, |n| − 1) (Qn,2(x)τ̂2,j(x) −Qn,2(z)τ̂2,j(z)) dµn,1(x)

∣∣∣∣

=

∣∣∣∣
∫

aµn,1,|n|

Qn,2(z)

∫
K(z, x, |n| − 1)

(
Qn,2(x)

x− t
−
Qn,2(z)

z − t

)
dµn,1(x)dτ

k
2,j(t)

∣∣∣∣

=

∣∣∣∣
∫

aµn,1,|n|

Qn,2(z)

∫
K(z, x, |n| − 1)

(
Qn,2(x) −Qn,2(t)

x− t

)
dµn,1(x)dτ

k
2,j(t)

−

∫
aµn,1,|n|

Qn,2(z)

∫
K(z, x, |n| − 1)

(
Qn,2(z) −Qn,2(t)

z − t

)
dµn,1(x)dτ

k
2,j(t)

+

∫
aµn,1,|n|

Qn,2(z)

∫
K(z, x, |n| − 1)

(
Qn,2(t)

x− t

)
dµn,1(x)dτ

k
2,j(t)

−

∫
Qn,2(t)

Qn,2(z)

∫
K(z, x, |n| − 1)

(
Qn,2(t)

z − t

)
dµn,1(x)dτ

k
2,j(t)

∣∣∣∣

=

∣∣∣∣
∫

Qn,2(t)

Qn,2(z)
aµn,1,|n|

∫
K(z, x, |n| − 1)

(
1

x− t
−

1

z − t

)
dµn,1(x)dτ

k
2,j(t)

∣∣∣∣

=

∣∣∣∣
∫

Qn,2(t)

Qn,2(z)

(
S1/(z−t),|n|−1,µn,1

−
1

z − t

)
dτ k

2,j(t)

∣∣∣∣

≤

∥∥∥∥
Qn,2(t)

Qn,2(z)

∥∥∥∥
S(σ2)

∥∥∥∥S1/(z−t),|n|−1,µn,1
−

1

z − t

∥∥∥∥
∆1

‖τ k
2,j‖ .
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Combining the requirement diam(∆k) < dist(∆1,∆2), k = 1, 2, Lemma 4
and Proposition 1 we obtain that

∥∥∥∥
Qn,2(t)

Qn,2(z)

∥∥∥∥
S(σ2)

→ 0 and

∥∥∥∥S1/(z−t),|n|−1,µn,1
−

1

z − t

∥∥∥∥
∆1

→ 0 .

So this completes the proof.

Now we are ready to prove Theorem 1. As in Section 4, we take ρ ∈ (0, 1)
and γρ = {z : |φ∞(z)| = ρ}. For each j = 1, . . . , k − 1, k + 1, . . . , m we
have that

‖ŝj‖γρ
=

|sj|

dist(γρ,∆1)
and

∥∥∥∥
Pj

Qn

∥∥∥∥
γρ

=

∥∥∥∥∥∥

|n|∑

i=1

λi,j,n

z − xn,i

∥∥∥∥∥∥
γρ

≤
|sj|

dist(γρ,∆1)

The second inequality can be deduced easily from Proposition 3. Combining
the above inequalities we have that

∥∥∥∥∥
ŝj −

Pn,j

Qn

φ
|n|+nj+1
∞

∥∥∥∥∥
γρ

≤
2|sj|

dist(γρ,∆1)ρ|n|+nj+1
.

Let us fix a compact K ⊂ C̄ \ ∆1 and take ρ sufficient close to 1. From
the maximum principle it follows that the same bound holds for all z ∈ K.
Consequently, ∥∥∥∥ŝj −

Pn,j

Qn

∥∥∥∥
K

≤
2|sj|‖φ∞‖

|n|+nj+1
K

dist(γρ,∆1)ρ|n|+nj+1

Therefore,

lim sup
|n|→∞

∥∥∥∥ŝj −
Pn,j

Qn

∥∥∥∥
1/(|n|+nj)

K

≤
‖φ∞‖

ρ
,

and the result readily follows making ρ→ 1.
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