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Purpose: The inverse planning of an intensity-modulated radiation therapy (IMRT) treatment
requires decisions regarding the angles used for radiation incidence, even when arcs are used. The15

possibility of improving the quality of treatment plans by an optimized selection of the beam angle
incidences - beam angle optimization (BAO) - is seldom done in clinical practice. The inclusion of
noncoplanar beam incidences in an automated optimization routine is even more unusual. However,
for some tumor sites, the advantage of considering noncoplanar beam incidences is well known. This
paper presents the benefits of using a derivative-free multistart framework for the optimization of20

the noncoplanar BAO problem.
Methods: Multistart methods combine a global strategy for sampling the search space with a

local strategy for improving the sampled solutions. The proposed global strategy allows a thorough
exploration of the continuous search space of the highly non-convex BAO problem. To avoid local
entrapment, a derivative-free method is used as local procedure. Additional advantages of the25

derivative-free method include the reduced number of function evaluations required to converge and
the ability to use multi-threaded computing. Twenty nasopharyngeal clinical cases were selected
to test the proposed multistart framework. The planning target volumes included the primary
tumor, the high and low risk lymph nodes. Organs-at-risk included the spinal cord, brainstem,
optical nerves, chiasm, parotids, oral cavity, brain, thyroid, among others. For each case, a setup30

with seven equispaced beams was chosen and the resulting treatment plan, using a multicriteria
optimization framework, was then compared against the coplanar and noncoplanar plans using the
optimal beam setups obtained by the derivative-free multistart framework.

Results: The optimal noncoplanar beam setup obtained by the derivative-free multistart frame-
work lead to high quality treatment plans with better target coverage and with improved organ35

sparing compared to treatment plans using equispaced or optimal coplanar beam angle setups. The
noncoplanar treatment plans achieved, e.g., an average reduction in the mean dose of the oral cavity
of 6.1 Gy and an average reduction in the maximum dose of the brainstem of 7 Gy when compared
to the equispaced treatment plans.

Conclusions: The noncoplanar BAO problem is an extremely challenging multi-modal optimiza-40

tion problem that can be successfully addressed through a thoughtful exploration of the continuous
highly non-convex BAO search space. The proposed framework is capable of calculating high quality
treatment plans and thus can be an interesting alternative towards automated noncoplanar beam
selection in IMRT treatment planning which is nowadays the natural trend in treatment planning.
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Optimization, Multistart



I. INTRODUCTION

Many of the recent studies on the optimal selection of beam angle incidences - beam angle optimization (BAO) - for
intensity-modulated radiation therapy (IMRT) have considered noncoplanar beam directions1–12. These studies have
demonstrated a substantial plan’s quality improvement by the inclusion of noncoplanar beam incidences, specially50

for intra-cranial tumor sites1. Recently, the use of noncoplanar beam angles in volumetric modulated arc therapy
(VMAT) was also proposed to combine the benefits of arc therapy, such as short treatment times, with the benefits
of noncoplanar IMRT plans, such as improved organ sparing11,12. Selected noncoplanar beam angle directions can be
used as anchor points of the arc therapy trajectory11 which is yet another reason for the improvement of automated
selection of optimal noncoplanar beam angle directions that can prove to be important in extra-cranial tumor sites55

as well13,14. In clinical practice, in contrast, equispaced coplanar irradiation beam directions are still commonly
used. Alternatively, directions are manually selected by the treatment planner on a long trial-and-error process since
commercial treatment planning systems have none or very few resources available for optimal selection of beam angle
incidences. One of the reasons for this limited commercial offer is the difficulty of solving the BAO problem, a highly
non-convex multi-modal optimization problem on a large search space15.60

The BAO approaches can be separated into two different classes. The first class addresses sequentially the selec-
tion of beam irradiation directions, BAO problem, and the fluence map optimization (FMO) problem. Dosimetric
surrogates or geometric features are considered as measures of the beam ensembles quality for driving the BAO
problem2,9,16. The second class addresses simultaneously the BAO and FMO problems. The measure of the beam
ensembles quality used to drive the BAO problem is the optimal solution of the FMO problem5,10,11,15,17–21. In this65

second class, for most of the BAO approaches, a discrete sample of all possible beam irradiation directions is considered
and the BAO problem is modeled as a combinatorial optimization problem. The best ensemble of n-beam irradi-
ation directions among the discrete set of possible directions is obtained by performing exhaustive searches guided
by a variety of different methods including gradient search15, neighborhood search17, branch-and-prune18, hybrid
approaches19, genetic algorithms20 or simulated annealing21. This combinatorial formulation of the BAO problem70

leads to an NP (Nondeterministic Polynomial time) hard problem, i.e. there is no algorithm known able to find, in a
polynomial run time, the optimal solution of the combinatorial BAO problem22. Alternatively, iterative BAO3,5–7,11,12

sequentially adds beams, one at a time, to a treatment plan, significantly reducing the number of beam combinations
while achieving similar treatment plan quality1. For an ensemble with n − 1 irradiation beam directions, the nth
beam direction is selected by testing individually each of the possible remaining directions combined with the n − 175

beam direction ensemble. The beam direction that yield the best optimal value of the FMO problem is added to the
n− 1 beam direction ensemble. Nevertheless, if a large discrete pool of beam directions is considered, iterative BAO
remains computationally expensive. For nasopharyngeal tumor cases, e.g., about 1400 beam orientations are available
for a 5◦ angular spacing, excluding caudal beams which could result in a collision of the couch and/or patient with
the gantry12. Finding the best ensemble of 7 beams in 1400 candidate beams through iterative BAO still requires80

9779 FMOs.

In this paper, we propose a completely different methodological approach for the noncoplanar BAO in IMRT by ex-
ploring the continuous search space of the highly non-convex BAO problem through a parallel multistart derivative-free
framework. Multistart methods with local search procedures are globally convergent and its interest and application
fields continue to rise23. The proposed multistart framework combines a global strategy for a thoughtful sampling of85

the search space with a local strategy for improving the sampled solutions that avoids local entrapment by using a
derivative-free algorithm. A set of twenty clinical cases of nasopharyngeal tumors treated at the Portuguese Institute
of Oncology of Coimbra (IPOC) is used to discuss the benefits of the novel approach proposed for the BAO problem.

II. MATERIAL AND METHODS

A. Mathematical formulation of the noncoplanar BAO problem90

The mathematical formulation of the noncoplanar BAO problem considers all continuous beam irradiation direc-
tions. Let n denote the fixed number of noncoplanar beam directions, θ denote a gantry angle and φ denote a couch
angle. Note that, the coplanar beam angles commonly used in clinical practice are obtained for a fixed couch position
at φ = 0. Instead of a discretized sample, continuous gantry angles, θ ∈ [0, 360] , and couch angles, φ ∈ [−90, 90], are
considered. A simple formulation for the BAO problem is obtained by selecting an objective function such that the
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FIG. 1. 2-beam ensembles of coplanar incidences – 1(a) and corresponding solutions in the search space [0, 360]2 – 1(b).

best set of beam angles is obtained for the function’s minimum:

min f
(

(θ1, φ1), . . . , (θn, φn)
)

s.t.
(

(θ1, φ1), . . . , (θn, φn)
)

∈ [0, 360]n × [−90, 90]n.

(1)

The objective function f
(

(θ1, φ1), . . . , (θn, φn)
)

that measures the quality of the set of beam directions (θ1, φ1), . . . ,

(θn, φn) corresponds to the optimal value of the FMO problem for each fixed set of beam directions and incorporates
information concerning the angles for which collisions between the patient/couch and the gantry may occur:

f
(

(θ1, φ1), . . . , (θn, φn)
)

=

{

+∞ if collisions occur
optimal value of the FMO otherwise.

(2)

B. Multistart parallel framework for noncoplanar BAO

1. Choice of the starting solutions

An important feature of a BAO problem solution (beam ensemble) is the simple fact that the order of the beam
irradiation directions is irrelevant. E.g. for 2-beam coplanar ensembles, ordered pairs (50,190) and (120,320) corre-
spond to the same solutions of the BAO problem as ordered pairs (190,50) and (320,120), respectively. This symmetry95

of the search space is illustrated in Fig. 1 where coplanar beam directions displayed in Fig. 1(a) have 2 symmetric
solutions in the search space [0, 360]2 displayed in Fig. 1(b).
Typically, multistart methods sample the search space by considering starting points selected randomly23. For a

BAO multistart strategy, the symmetry of the search space illustrated by the diagonal line in Fig. 1(b) implies that
points in opposite sides of the diagonal line might be searching for the exact same solutions. Thus, the symmetry100

feature of the continuous search space must be taken into account when selecting starting points and throughout the
optimization procedure. The simple strategy of sorting all the solutions during the optimization process solves this
issue and leads to a huge reduction of the search space. E.g. for the 2-beam coplanar ensemble example of Fig. 1(b),
we guarantee that we are only searching in one side of the diagonal line and, with that, we reduce the search space to
half. In general, for n-beam noncoplanar ensembles, this strategy reduces the search space by 2n. Thus, for the 5-,105

7- or 9-beam noncoplanar directions optimization problems, the search space is only 3.13% of [0, 360]5 × [−90, 90]5,
0.78% of [0, 360]7 × [−90, 90]7 and 0.19% of [0, 360]9 × [−90, 90]9, respectively.
For a BAOmultistart strategy, the starting solutions should sample the search space [0, 360]n×[−90, 90]n thoroughly.

The rationale behind the choice of the sorted starting solutions must acknowledge the fact that the search space is



reduced and has a peculiar shape. Thus, we must assure that the starting solutions belong to the reduced search110

space and simultaneously are well spread attempting to cover the search space as best as possible.
The strategy developed consists in dividing the gantry beam directions, θ ∈ [0, 360], in 4 quadrants (Q1 − Q4)

and the couch beam directions, φ ∈ [−90, 90], in 2 quadrants (Q4, Q1). For a full comprehension of the strategy
sketched, the 2- and 3-beam coplanar cases are first introduced, cases where graphical illustration is straightforward.
There are ten and twenty possible (sorted) distributions by the four quadrants of the 2-beam and 3-beam coplanar115

ensembles, respectively. Examples of these distributions are displayed in Fig. 2. Fig. 2(a) and Fig. 2(c) display
examples of 2-beam and 3-beam ensembles for each one of the ten and twenty cases, respectively. Fig. 2(b) and Fig.
2(d) display the corresponding painted regions (squares/cubes) of the reduced search space. Note that, despite the
squares crossed by the diagonal line are all painted in Fig. 2(b), sorted points are only in one side of the line. A
possible sampling of the starting solutions, assuring that they belong to the reduced search space while covering well120

the reduced search space, can be obtained by considering one starting solution for each of these regions. For n = 2,
10 starting points are considered, corresponding to 10 squares in the reduced search space (out of 16 for the entire
search space). For n = 3, selecting one starting point for each one of the painted cubes in the reduced search space,
20 starting points are considered (out of 64 for the entire search space). Note that, for n = 2 the reduced search
space is 50% of the entire search space while for n = 3 the reduced search space is 25% of the entire search space125

corresponding to a larger reduction for higher dimensions. However, the number of regions of the reduced search space
for n = 2 is only 10 compared to the 20 cubes for n = 3. Thus, the number of regions of the reduced search space
increases as the number of beams increases. Furthermore, the dimension of the regions increases as well. In general,
for n-beam coplanar directions, the total number of hypercubes of the entire search space is 4n while the number of
hypercubes of the reduced search space, and thus the number of starting points, is the combination with repetition130

of
(

n+4−1
4

)

= (n+4−1)!
(4−1)!n! . Therefore, for the 5-, 7- or 9-beam coplanar ensembles optimization problems, the reduced

search space has 56, 120 and 220 hypercubes, compared to 1024, 16384 and 262144 hypercubes for the entire search
space, respectively.
The extension of this strategy to the noncoplanar case requires the inclusion of the couch beam directions, φ ∈

[−90, 90], and its distribution by 2 quadrants, Q1 and Q4. For n = 2, for each possible sorted coplanar ensemble, there135

are 4 different possibilities of distribution of the couch angles by the 2 quadrants while for n = 3 there are 8 different
possibilities of distribution of the couch angles for each possible sorted coplanar ensemble. In general, for n-beam
noncoplanar ensembles, for each possible sorted coplanar ensemble, there are 2n different possibilities of distribution
of the couch angles by the 2 quadrants. Thus, for n-beam noncoplanar ensembles, the total number of hypercubes
of the entire search space is 4n × 2n while the number of hypercubes of the reduced search space is

(

n+4−1
4

)

× 2n140

= (n+4−1)!×2n

(4−1)!n! . Therefore, for the 5-, 7- or 9-beam noncoplanar ensembles optimization problems, the reduced search

space has 1792, 15360 and 112640 hypercubes, compared to 32768, 2097152 and 134217728 hypercubes for the entire
search space, respectively.
For the noncoplanar case, considering one starting solution for each of the hypercubes of the reduced space, in a

strategy analogous to the coplanar case, would assure that initial points belong to the reduced search space while145

covering well the reduced search space. However, such strategy considers a large number of initial points and conse-
quently many FMO calculations which increases the total computational time. Notice that coplanar solutions lay on
the frontier of different hypercubes. Following the directions of the positive basis used in the local search procedure,
neighbor hypercubes can be reached when considering coplanar beam angle ensembles as initial solutions. Thus,
coplanar beam angle ensembles are selected as initial solutions so that the local search procedure assures that all150

hypercubes of the reduced search space can be explored.

2. Local search procedure

We have shown, in previous works, that a beam angle ensemble can be improved in a continuous manner using
derivative-free algorithms24–26. Thus, pattern search methods (PSM) are used in this framework, as local search
procedure, since they avoid local entrapment and require few FMO calculations to converge24–26. PSM are derivative-155

free directional search methods that generate, iteratively, a sequence of non-increasing iterates following the directions
of positive bases to move towards solutions that can decrease the objective function value. A positive basis for the
search space is a set of directions (vectors) whose positive combinations span the entire search space, but no proper
set does. It can be proved that, for an n−dimensional space, a positive basis contains at most 2n directions and
cannot contain less than n+ 1 directions27,28. Positive bases with 2n and n+ 1 elements are referred to as maximal160

and minimal positive basis, respectively. Maximal and minimal positive bases commonly used are [I − I], with I

being the identity matrix of dimension n, and [I − e] with e = [1 . . . 1]⊤, respectively.
Typically, PSM are organized around two steps at every iteration24–26. In the first step, called search step, a finite
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FIG. 2. Possible 2-beam coplanar ensembles distribution by the four quadrants – 2(a) and corresponding squares in the search
space [0, 360]2 – 2(b). Possible 3-beam coplanar ensembles distribution by the four quadrants – 2(c) and the corresponding
cubes in the search space [0, 360]3 – 2(d).

search is performed using any strategy, heuristic or algorithm attempting to find a solution that improves the objective
function value of the current best solution. This step, free of rules, allows searches away from the neighborhood of the165

current best solution, providing flexibility for a global search. If the search step fails to improve the current objective
function value, a second step, called poll step, is performed in the neighborhood of the current best solution. The
properties of positive bases are used in the poll step to perform a local search around the the current best solution.
A key motivation for the use of positive bases is that, unless the current best solution is at a stationary point, at
least one vector (direction) of a positive basis is a descent direction, i.e., following that direction leads to an objective170

function reduction for a sufficiently small step-size. Therefore, if the poll step fails to accomplish a reduction of
the current objective function value, and thus the iteration is unsuccessful, the step-size is decreased. On the other
hand, if the the value of the objective function is decreased during the poll step, the step-size is increased or held
constant. This iterative procedure ends when the step-size becomes too small or when the maximum number of
function evaluations is reached. Thus, the step-size has two purposes beyond its use as stopping criteria: to bound175

the size of the minimization step and also to control the local area where the function is sampled around the current
best solution.

PSM have the ability to converge globally, i.e., from arbitrary points, to local minimizers29. Furthermore, PSM
have the ability to avoid local entrapment. Gathering these two features make PSM a good choice for the local search
procedure to be embedded in our parallel multistart framework.180



3. Regions of attraction

Multistart methods are organized around two phases that are typically designated as global and local phases23. In
the first phase, the global phase, the search space is sampled by a given number of selected starting points where
the objective function is evaluated. Then, in the second phase, the starting points outcome is locally improved by
local search procedures. A major drawback of multistart methods is the multiple discovery of the same local minima,
i.e., the outcome of local procedures originated in different starting points may correspond to the same local minima
leading to precious computational time waste. For a parallel setting, this risk increases when the same region of the
search space is simultaneously searched by local procedures originated from different regions. There are many different
strategies to avoid local search overlap and repetitive discovery of the same minima including clustering methods30

or regions of attraction of a local minimum31. The notion of regions of attraction can be used to avoid multiple
discovery of the same minima and simultaneously to accelerate the search procedure. For the BAO problem, given a
local search procedure LS, the region of attraction of a local minimum x∗ can be defined as:

A = {x ∈ [0, 360]n × [−90, 90]n : LS(x) = x∗}.

Thus, A is the region of points x ∈ [0, 360]n × [−90, 90]n whose local search procedure outcome, LS(x), is the same
local minimum x∗. The strategy of allowing only one local search for each region of attraction can prevent overlap
of local searches and with that repetitive discovery of the same minima. However, regions of attraction can hardly
be determined in practice. Instead, regions of attraction are usually stochastically defined as the set of points in a
neighborhood of the local minimum x∗, i.e. the set of points whose distance is inferior to a certain radius RA

31:

A = {x ∈ [0, 360]n × [−90, 90]n : ‖x− x∗‖ < RA}. (3)

For a sequential multistart procedure, the computation of a first local minimum allows the definition of its region
of attraction and, thereafter, it is possible to decide stochastically if a subsequent iterate belongs to the region of
attraction. However, for a parallel setting, a different rationale is required since many or all local search procedures
coexist in time. For the noncoplanar BAO parallel multistart approach the stochastic region of attraction (3) is
generalized by considering the l∞-norm instead of the Euclidean norm, l2-norm, centered at the midpoints M of all
hypercubes of the reduced noncoplanar search space instead of at local minima x∗:

ABAO = {x ∈ [0, 360]n × [−90, 90]n : ‖x−M‖∞ < RA}. (4)

For the noncoplanar BAO, instead of circles or balls, with this definition of regions of attraction we have hypercubes
that, choosing RA = 45, for the coplanar cases n = 2 and n = 3 correspond exactly to the squares and cubes painted
in Figs. 2(b) and 2(d), respectively.

4. Parallel multistart algorithm for BAO185

A tailored strategy was sketched to address the noncoplanar n−beam BAO problem. In the first iteration,

Nc = (n+4−1)!
(4−1)!n! initial coplanar beam ensembles, x0

i ∈ [0, 360]n × 0n, i = 1, . . . , Nc, are chosen considering all sorted

combinations of the gantry’s 4 quadrants, corresponding, for n = 2 and n = 3, to points in the painted squares
and cubes in Figs. 2(b) and 2(d), respectively. Then, the objective function value is evaluated for each one of the
initial beam ensembles and the best beam ensemble x∗ is determined, corresponding to the best objective function190

value f∗ = f(x∗) = min{f(x0
1), f(x

0
2), . . . , f(x

0
Nc

)}. The best objective function values and corresponding copla-
nar solutions calculated for some of the regions (hypercubes) of the noncoplanar reduced search space are stored:

xbest
i = x0

i , i = 1, . . . , Nc; f
best
i = f(x0

i ), i = 1, . . . , Nc. Note that the total number of hypercubes, Nnc =
(n+4−1)!×2n

(4−1)!n! ,

of the noncoplanar reduced search space is larger than the initial coplanar beam ensembles. Thus, the objective
function value for the hypercubes where no solution was yet computed is set to +∞, f best

i = +∞, i = Nc+1, . . . , Nnc.195

Moreover, only a subset of all hypercubes of the noncoplanar reduced search space will have “active” local search
procedures. In order to store the information of which regions have active local search procedures at each iteration,
a boolean vector ActiveNnc×1 is defined.
A parallel local search procedure using PSM is performed in the following iterations for each of the regions with

active local search procedures. For the noncoplanar BAO problem, we choose the initial step-size as a power of 2, 32,200

and we use a common update of the step-size that is halved at unsuccessful iterations and held constant at successful
ones. For this selection of the initial search-step, since the initial solutions are vectors of integers, all solutions will
be integers until the step-size becomes inferior to 1 which will be the stopping criteria. For the noncoplanar BAO
problem, we choose the maximal positive basis, [I − I]. The directions of the maximal positive basis correspond



to the rotation of each individual incidence direction (gantry or couch angle) clockwise and counter-clockwise, for205

positive and negative directions, respectively. Thus, with the selected initial coplanar beam ensembles and the set
of directions of the positive basis considered, PSM can reach all the different hypercubes of the noncoplanar reduced
search space and perform local searches there. At iteration k, the local search outcome in active region i is one of the
three possible outcomes:

• The local search is successful, i.e. f(xk
i ) < f best

i , and xk
i remains in region i. In this case, the best objective210

function value and best solution in region i are updated to the new function value and the new iterate.

• The local search is successful but xk
i is outside of region i. In this case, region i becomes inactive, Activei = 0,

since local search pointed outside the region. The successful solution xk
i belongs to a region j 6= i where local

search may be active or not leading to four different possibilities:

1. If region j has no active local search, Activej = 0:215

(a) If the objective function at xk
i improves the best objective function value of region j then region j

becomes active and iterate and function values of region j are updated.

(b) If the objective function at xk
i does not improve the best objective function value of region j, that

local search ends.

2. If a local search is active in region j, Activej = 1:220

(a) If the objective function at xk
i improves the best objective function value of region j then region j

remains active and iterate, function and step-size values of region j are updated.

(b) If the objective function at xk
i does not improve the best objective function value of region j then

region j remains active continuing the local search process existent there.

Thus, when a local search is directed to a different region, the number of active local searches is decremented225

by one in three out of the four possibilities.

• The local search is not successful. In this case, the step-size is decreased. When the step-size becomes inferior
to the minimum step-size then the local search ends.

This process is repeated while regions with active local search procedures still exists. For computational time reasons,
only the most promising regions are further explored. Therefore, local search procedure in region i remains active,230

Activei = 1, if the objective function at xbest
i is not worst than the best objective function value f∗ within a defined

threshold p ≥ 0, i.e., if f(xbest
i ) ≤ (1 + p)f∗. Otherwise, Activei = 0. The different local search procedures can

always progress towards regions whose local procedures are not currently active. We are able to describe now the
parallel multistart algorithm:

Parallel multistart algorithm framework235

Initialization:

• Choose x0
i ∈ [0, 360]n × 0n, i = 1, . . . , Nc;

• Evaluate in parallel the objective function value at these Nc points;

• Determine the best objective function value f∗ = f(x∗) = min{f(x0
1), f(x

0
2), . . . , f(x

0
Nc

)} and the correspond-
ing best initial beam ensemble x∗;240

• Set xbest
i ← x0

i , i = 1, . . . , Nc, f
best
i ← f(x0

i ), i = 1, . . . , Nc and f best
i ← +∞, i = Nc + 1, . . . , Nnc;

• Set Activei ← 1, i = 1, . . . , Nc, Activei ← 0, i = Nc + 1, . . . , Nnc;

• Set k← 1;

• Choose p ≥ 0, a positive spanning set, σ1
i > 0, i = 1, . . . , N and σmin;

Iteration:245

1. Perform local search in parallel for the active regions using PSM;



2. For each active region i do

If local search is successful, i.e. f(xk
i ) < f(xk−1

i ) then

If xk
i remains in region i then

xbest
i ← xk

i ;250

f best
i ← f(xk

i );

Else

Activei ← 0;

Find j 6= i where xk
i is;

If f(xk
i ) < f(xbest

j ) then255

xbest
j ← xk

i ;

f best
j ← f(xk

i );

Activej ← 1;

Else

σk
i ←

σ
k−1

i

2 ;260

If σk
i < σmin then

Activei ← 0;

3. Set Activei ← 0 if f best
i > (1 + p)f∗;

4. Set k← k + 1. If any region is still active then return to step 1 for a new iteration.

This parallel multistart algorithm framework for the optimization of the noncoplanar BAO problem uses the optimal265

value of the FMO problem to progress towards better solutions. The FMO is used as a black-box function. Thus,
the conclusions drawn regarding this parallel multistart noncoplanar BAO approach are valid regardless of the FMO
formulation/resolution considered. The FMO approach used for the clinical examples of nasopharyngeal tumors is
presented next.

C. FMO framework270

Treatment plan optimization is inherently a multicriteria procedure. Nevertheless, typically, the FMO problem is
modeled as a weighted sum function with conflicting objectives. Moreover, constraints are many times implemented as
objectives, which difficult the trade-off between objectives without violating constraints. The multicriteria approaches
that have been proposed for the FMO problem can be divided into two classes. In the first class, treatment plans are
selected a posteriori from a set of Pareto-optimal treatment plans32,33. In the second class, a set of criteria (constraints275

and objectives) that have to be met during the multicriteria optimization procedure is defined a priori5,34,35. For
a fully automated noncoplanar BAO procedure, this second class of multicriteria approaches is a straightforward
option. Thus, we choose a multicriterial optimization based on a set of criteria (radiation dose prescription) called
wish-list5,34,35 to address the FMO problem.
The wish-list constructed for the clinical examples of nasopharyngeal tumors treated at IPOC is given in Table I.280

The nasopharyngeal tumors are complex cases due to the large number of sensitive organs in this region which
increases the difficulty of the radiotherapy treatment planning. The structures in the wish-list include the planning
target volume (PTV), tumor to be treated plus some safety margins, and several organs at risk (OARs): brainstem,
spinal cord, lens, retinas, optics (optical nerves + chiasm), ears, pituitary gland, oral cavity, parotids, mandible,
temporomandibular joints (TMJ), larynx, esophagus, thyroid, brain and lungs. The prescribed and tolerance doses285

were defined according to the protocols defined for nasopharyngeal tumors at IPOC. A higher dose level (70Gy) was
defined for the primary tumor (PTV-T) and a lower dose level (59.4Gy) was defined for the lymph nodes (PTV-N).
Several auxiliary structures were constructed by computerized volume expansions to support the dose optimization.
To prevent possible high doses in the lymph nodes, PTV-N shell was created by subtracting a 10 mm margin of
PTV-T to PTV-N. Ring PTV-T and Ring PTV-N were created with 10 mm of thickness at 10 mm distance from290

PTV-N and PTV-T, respectively, to improve target coverage and conformity, respectively. External Ring, a ring of
10 mm thickness, was created next to the patient outer contour to prevent possible high values of dose entrance.
The wish-list contains 11 hard constraints and 28 prioritized objectives based on the prescribed and tolerance

doses for all the structures considered in the optimization. All hard constraints are maximum-dose constraints. Hard



TABLE I. Wish-list for nasopharyngeal tumor cases.
Structure Type Limit

PTV-N maximum 63.6 Gy (=107% of prescribed dose)
PTV-T maximum 74.9 Gy (=107% of prescribed dose)
PTV-N shell maximum 63.6 Gy (=107% of prescribed dose)
Spinal cord maximum 45 Gy
Brainstem maximum 54 Gy

Constraints Optics maximum 55 Gy
Retinas maximum 45 Gy
Ring PTV-N maximum 50.5 Gy (=85% of prescribed dose)
Ring PTV-T maximum 59.5 Gy (=85% of prescribed dose)
External Ring maximum 45 Gy
Body maximum 70 Gy
Structure Type Priority Goal Sufficient Parameters

PTV-N LTCP 1 1 0.5 PD = 59.4 Gy; τ= 0.75
PTV-T LTCP 2 1 0.5 PD = 70 Gy; τ= 0.75
PTV-N shell LTCP 3 1 0.5 PD = 59.4 Gy; τ= 0.75
External ring maximum 4 42.75 Gy – –
Spinal cord maximum 5 42.75 Gy – –
Brainstem maximum 6 51.3 Gy – –
Optics maximum 7 52.25 Gy – –
Retinas maximum 8 42.75 Gy – –
Lens gEUD 9 12 Gy – a=12
Ears mean 10 50 Gy – –
Parotids mean 11 50 Gy – –
Oral cavity mean 12 45 Gy – –

Objectives TMJ maximum 13 66 Gy – –
Mandible maximum 14 66 Gy – –
Esophagus mean 15 45 Gy – –
Larynx mean 16 45 Gy – –
Optics gEUD 17 48 Gy – a=12
Retinas gEUD 18 22 Gy – a=12
Lens gEUD 19 6 Gy – a=12
Ears mean 20 45 Gy – –
Parotids mean 21 26 Gy – –
Oral cavity mean 22 35 Gy – –
Esophagus mean 23 35 Gy – –
Larynx mean 24 35 Gy – –
Brain gEUD 25 54 Gy – a=12
Pituitary gland gEUD 26 60 Gy – a=12
Thyroid mean 27 27.5 Gy – –
Lungs mean 28 5 Gy – –

constraints must be strictly met while objectives are optimized following the priorities defined in the wish-list. The
higher an objective priority, the most likely the corresponding objective will be fulfilled. The maximum dose was
considered for serial organs, e.g. for the brainstem or the spinal cord. For parallel organs, e.g. parotids or thyroid,
the mean dose was considered. For some other organs, a generalized Equivalent Uniform Dose (gEUD) objective was
considered5,

gEUD = Tf

( 1

V

∑

k

Da
k

)
1

a ,

where Tf is the number of treatment fractions, V the number of voxels of the discretized structure, Dk the dose in
voxel k and a is the tissue-specific parameter that describes the volume effect. We considered a = 12 attempting to
minimize the volume of a given OAR with a high dose. Note that for a = 1, 0,+∞ and −∞, gEUD is equivalent to295

the arithmetic mean, geometric mean, maximum and minimum doses, respectively.
The logarithmic tumor control probability (LTCP ) was considered for the target dose optimization5,

LTCP =
1

VT

VT
∑

k=1

e−τ(Dk−PD),

where VT is the number of voxels in the target structure, Dk is the dose in voxel k, PD is the prescribed dose, and τ

is the cell sensitivity parameter. For doses Dk lower than the prescribed dose PD, LTCP has an exponential penalty.
For doses higher than the prescribed dose, LTCP slowly approaches 0. Note that our goal is an LTCP equal to one
which would correspond to an homogeneous dose equal to PD. The tumor coverage can be improved by increasing300

the value of τ which corresponds to a decrease in the number of voxels with a low dose.
A primal-dual interior-point algorithm tailored for multicriteria IMRT treatment planning, named 2pǫc34, was used

for the optimization of the FMO problem using the described wish-list. The 2pǫc multicriteria algorithm generate, in



TABLE II. Gantry and couch angles obtained for BAOnc and BAOc treatment plans.

Patient Angle BAOnc BAOc Patient Angle BAOnc BAOc

1 Gantry (38,97,115,194,240,301,349) (19,58,125,185,230,272,339) 11 Gantry (9,92,127,163,214,266,317) (8,137,207,229,268,293,353)
Couch (344,358,292,16,12,32,342) (0,0,0,0,0,0,0) Couch (64,0,0,0,32,64,0) (0,0,0,0,0,0,0)

2 Gantry (7,70,119,151,226,270,351) (75,101,126,161,193,230,356) 12 Gantry (10,91,125,164,200,237,351) (10,92,132,162,205,237,352)
Couch (332,324,344,290,18,30,64) (0,0,0,0,0,0,0) Couch (0,0,8,8,32,352,352) (0,0,0,0,0,0,0)

3 Gantry (8,49,121,164,256,283,325) (15,86,114,178,235,319,337) 13 Gantry (4,71,123,182,230,285,329) (2,43,65,92,133,301,339)
Couch (336,334,352,286,348,32,4) (0,0,0,0,0,0,0) Couch (64,328,8,0,24,8,56) (0,0,0,0,0,0,0)

4 Gantry (48,89,139,202,236,293,353) (12,89,127,176,230,277,339) 14 Gantry (7,68,115,131,214,268,347) (35,60,111,129,184,266,347)
Couch (28,354,2,78,354,32,48) (0,0,0,0,0,0,0) Couch (354,330,6,0,32,2,0) (0,0,0,0,0,0,0)

5 Gantry (50,109,153,190,264,323,359) (25,59,84,113,169,186,325) 15 Gantry (20,71,133,174,224,277,329) (8,91,139,212,232,281,347)
Couch (0,18,312,64,4,14,344) (0,0,0,0,0,0,0) Couch (64,300,332,344,0,0,328) (0,0,0,0,0,0,0)

6 Gantry (10,79,131,234,236,285,331) (73,115,139,168,195,233,274) 16 Gantry (21,64,121,175,246,278,347) (84,109,165,194,230,319,359)
Couch (346,2,344,66,0,358,292) (0,0,0,0,0,0,0) Couch (72,328,8,288,54,34,46) (0,0,0,0,0,0,0)

7 Gantry (38,77,131,180,236,271,341) (105,135,200,234,265,335,358) 17 Gantry (24,89,149,188,240,275,301) (24,87,131,188,240,297,351)
Couch (90,332,0,280,24,8,328) (0,0,0,0,0,0,0) Couch (358,356,324,358,358,40,16) (0,0,0,0,0,0,0)

8 Gantry (6,79,125,196,232,283,345) (18,52,120,178,265,338,351) 18 Gantry (17,62,109,129,216,274,333) (14,73,123,178,228,277,333)
Couch (28,312,336,76,12,34,2) (0,0,0,0,0,0,0) Couch (76,2,326,296,2,8,36) (0,0,0,0,0,0,0)

9 Gantry (40,91,133,184,224,263,357) (76,102,132,156,200,225,358) 19 Gantry (28,95,173,194,242,299,349) (5,96,132,170,194,226,250)
Couch (84,326,346,64,24,40,48) (0,0,0,0,0,0,0) Couch (334,334,328,16,352,34,8) (0,0,0,0,0,0,0)

10 Gantry (23,92,125,181,228,264,329) (38,89,139,194,244,297,353) 20 Gantry (22,79,129,158,234,295,357) (16,81,131,164,236,295,355)
Couch (72,352,8,340,0,58,2) (0,0,0,0,0,0,0) Couch (64,310,352,312,6,38,88) (0,0,0,0,0,0,0)

an automated way, a single Pareto optimal IMRT plan for a given number of beams34. This hierarchical algorithm is
organized around two phases. In the first phase, following the priorities of the wish-list, the objectives are optimized305

without violating the hard constraints. After the optimization of each objective, a new hard constraint embedding the
current optimal objective outcome is added to be considered in the optimization of the lower level objectives. This
strategy assures that outcomes of higher priority objectives are not jeopardized by the optimization of lower priority
objectives. At the end of the first phase, the treatment plan obtained fulfills all hard constraints of the wish-list
and simultaneously attain a value for each objective that is equal to its goal or higher if the constraints, including310

constraints added from higher priority objectives, prevent a better outcome. In the second phase, all objectives,
except LTCP objectives, are fully optimized following their wish-list prioritization. For a detailed description of the
2pǫc algorithm see Breedveld et al.34.

D. Computational tests

The computational tests were performed on a modern 8-core workstation. Erasmus-iCycle, an in-house optimization315

platform written in MATLAB, developed at Erasmus MC Cancer Institute in Rotterdam5,34,35, was used to embed
our parallel multistart BAO algorithm. The Erasmus-iCycle multicriteria fluence map optimizer, 2pǫc, makes full
use of multi-threaded computing34 and was used to obtain the optimal value of the FMO problem. The choice of
Erasmus-iCycle to embed our BAO optimization is justified by the reliability of its multicriteria fluence map optimizer
to achieve good treatment plans for complex cases as nasopharyngeal tumors. Nevertheless, the FMO is treated as a320

black-box. Thus, other FMO algorithms can be easily coupled with this BAO strategy. It should be highlighted that,
unlike our previous BAO studies that only considered a limited number of structures, all structures of the complex
cases tested were included in this study.
A set of twenty nasopharyngeal tumors treated at IPOC was used retrospectively to test the parallel multistart

noncoplanar BAO framework. The mean (minimum-maximum) volume of the PTV-T is 59.4 (20.6-106.5) cm3 and the325

mean (minimum-maximum) volume of the PTV-N is 525.9 (303.8-705.4) cm3. Treatment plans with seven noncoplanar
beam orientations, obtained using the parallel multistart framework and denoted BAOnc, were compared against
treatment plans with seven coplanar beam orientations, obtained using the parallel multistart framework and denoted
BAOc. Gantry and couch angles obtained for BAOnc and BAOc treatment plans are depicted in Table II. These
treatment plans were compared against treatment plans with seven equispaced coplanar beam ensembles, denoted330

Equi, commonly used at IPOC and in clinical practice to treat nasopharyngeal cases17 and used here as benchmark.
All treatment plans were generated and compared using Erasmus-iCycle.
In our noncoplanar approach, for computational time efficiency, only the most promising regions have active local

search by choosing a threshold, p = 0.1, related to the best solution found so far. This threshold was determined in
preliminary tests and corresponds to the smaller value of p > 0 that leads to similar results obtained by considering335

all regions with active local search. The PSM algorithm implemented considered the directions of the maximal
positive basis ([I − I]), an initial step-size of σ1 = 25 = 32 and a minimal step-size value of one which defined



the stopping criteria. With this choice of initial step-size, since step-size is halved at unsuccessful iterations, all
beam directions considered are integer until the termination criteria when the step-size becomes inferior to one.
For a matter of computational time efficiency, no trial points were computed in the search step. For the coplanar340

BAO, BAOc, the mean number of FMO evaluations was 2019 corresponding to a mean computational time of 12.4
h. For the noncoplanar BAO, BAOnc, the mean number of FMO evaluations was 2840 corresponding to a mean
computational time of 18.3 h. Most of the computational time is spent on the computation of the expensive (in terms
of time) objective function value (FMO). For each beam ensemble, the FMO performed by the Erasmus-iCycle FMO
optimizer takes 10 to 15 minutes, depending on the patient. More than half of the FMO computational time is spent345

in dosimetric computation.

III. RESULTS

Target metrics computed for the different treatment plans included the tumor coverage, conformity, and homo-
geneity, corresponding to output values of Erasmus-iCycle FMO optimizer. Tumor coverage is computed as the ratio
between the volume of PTV receiving at least 95% of the prescribed dose and the volume of PTV. The ratio between350

the volume of PTV receiving at least 95% of the prescribed dose and the volume outside PTV receiving at least 95%
of the prescribed dose corresponds to conformity. Homogeneity is calculated as the ratio between the dose received by
95% of the volume and the dose received by 5% of the volume. The mean values of PTV-T tumor coverage, confor-
mity and homogeneity for BAOnc treatment plans was 0.98, 0.67, and 0.90, respectively. The mean values of PTV-N
tumor coverage, conformity and homogeneity for BAOnc treatment plans was 0.99, 0.61, and 0.82, respectively. These355

metrics presented very small differences for BAOnc, BAOc, and Equi treatment plans.
Organ sparing results, i.e. mean and/or maximum doses, depending if the organ has a parallel or serial architecture,

are displayed for the twenty cases in Fig. 3. For spinal cord and brainstem, serial organs, the maximum dose is
displayed. For these structures, it can be verified that BAOnc clearly obtained the best sparing results. Compared
to Equi treatment plans, BAOnc obtained an improved average sparing for spinal cord and brainstem of 1.8 Gy and360

7.3 Gy, respectively. These results are particularly impressive for brainstem, and may have added importance, e.g.
for re-irradiation cases, since maximum doses are many times close to the tolerance dose. BAOc manage to obtain
an improved average sparing for spinal cord and brainstem of 0.3 Gy and 2.5 Gy, respectively, compared to Equi

treatment plans. For parotids, oral cavity and thyroid, parallel organs, the mean dose is displayed. Again, BAOnc

clearly obtained the best sparing results. Compared to Equi treatment plans, BAOnc obtained an improved average365

sparing for left parotid, right parotid, oral cavity, and thyroid of 3.9 Gy, 3.0 Gy, 6.1 Gy, and 2.1 Gy, respectively.
Sparing of salivary glands may prevent xerostomia, a common complication of radiation therapy for head-and-neck
cancer cases. While parotids are the largest of the three salivary glands, submandibular glands, the second largest
salivary glands, and the sublingual glands are very important in saliva production. At IPOC, both the submandibular
and the sublingual glands are included on a single structure named oral cavity. Thus, the enhanced sparing obtained370

for both parotids and oral cavity is of the utmost interest. The sparing results of thyroid are the least impressive
at first sight. However, looking at thyroid priority on the wish-list displayed in Table I, this result highlights the
capacity of sparing low level priority structures as well. BAOc treatment plans achieve more modest improvements
when compared to Equi treatment plans. In average, BAOc treatment plans achieve a mean dose irradiation reduction
on the left parotid, right parotid, oral cavity, and thyroid of 1.4 Gy, 1.2 Gy, 3.9 Gy, and 1.3 Gy, respectively. For375

space reasons, other lower level wish-list structures results are not displayed. Nevertheless, BAOnc treatment plans
outperform the Equi treatment plans for other structures. For instance, for esophagus and larynx, BAOnc treatment
plans obtained, in average, a mean dose irradiation reduction of 1.7 Gy and 3.1 Gy, respectively.
In clinical practice, plans’ quality is also assessed by cumulative dose-volume histograms (DVHs). For illustration,

DVH results for a typical patient (ninth) are displayed in Fig. 4. For clarity, tumor volumes, spinal cord, brainstem,380

parotids, oral cavity, and thyroid are displayed in two separated figures. The DVH curves show that for a similar
tumor coverage, a better organ sparing is obtained by the treatment plan using the optimized noncoplanar beam
directions.
It is important to remark that clinical decision is made case by case. Thus, as important as average results, it is

important to assess results for individual cases that can reveal results hidden by averages. If optimal beam irradiation385

lead to clearly better treatment plans for some cases at free cost, i.e. in an automated way, then BAO purpose is fully
attained.
Iterative BAO, considering noncoplanar beam orientations for a 5◦ angular spacing, has been used to generate an

ideal 4π plan that would correspond to a theoretical upper limit of the treatment plan quality12. Two treatment
plans with seven coplanar and with seven noncoplanar beam orientations were obtained using iterative BAO and390

considering beam orientations for a 5◦ angular spacing. These plans were compared with BAOnc and BAOc. Since
noncoplanar iterative BAO requires a huge number of FMO calculations, this comparison was only performed for the
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FIG. 3. Comparison of organ sparing metrics obtained by Equi, BAOc, and BAOnc treatment plans. The horizontal lines
displayed represent the tolerance (mean or maximum) dose for each structure.

ninth patient, the one corresponding to Fig. 4. Comparison of the two strategies should consider two criteria. While
the main goal is to obtain the best objective function value possible (quality), another important goal is to obtain a
good solution as fast as possible (time). Fig. 5 display the solutions obtained by the different approaches in terms395

of quality and time. It can be seen that the results in terms of objective function value clearly favor the multistart
approach and the use of noncoplanar directions. In terms of FMO evaluations, a small increase is verified for the
multistart strategy when adding noncoplanar directions while a drastic increase is verified for the iterative strategy
when adding noncoplanar beams.
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FIG. 4. Cumulative dose volume histogram comparing the results obtained by BAO and Equi for one patient.

IV. DISCUSSION400

In this study we propose a novel approach for the resolution of the noncoplanar BAO problem using a different
methodological approach. The proposed approach presents an alternative to other known approaches for IMRT
treatment planning. A multistart derivative-free framework was sketched and tested using a set of twenty clinical
nasopharyngeal tumor cases. Multistart approaches are suitable for the highly non-convex BAO problem since they
combine a global strategy for sampling the search space with a local strategy for improving the sampled solutions.405

The global strategy designed provide a non-random strategy for distributing the initial beam ensembles on the BAO
continuous reduced search space while the local strategy using PSM proved, in previous works, to be successful in
improving locally beam angle ensembles, requiring few function evaluations and avoiding local entrapment.

For the twenty nasopharyngeal clinical cases tested, comparisons between the different treatment plans clearly favor
plans obtained by the multistart derivative-free approach with noncoplanar beam directions. The considerable plan410

quality improvements relatively to the benchmark plan, using seven coplanar equispaced directions, were obtained
considering a large number of structures and using a reliable IMRT platform, Erasmus-iCycle, capable of obtaining
good treatment plans for complex cases as nasopharyngeal tumors. For similar target coverage, plans using opti-
mized beam directions improved high level wish-list structures, in particular brainstem, but also lower level wish-list
structures including salivary glands. Considering different wish-lists priorities may lead to different levels of sparing415

for the different structures. That tunning process should be made for each institution for the different tumor sites.
Furthermore, since FMO is treated as a black-box, other FMO algorithms can be easily coupled with this parallel
multistart BAO framework.

For one nasopharyngeal clinical case, the multistart derivative-free approach with noncoplanar beam directions
was also compared with iterative BAO considering noncoplanar beam orientations for a 5◦ angular spacing. This420

latter approach, 4π, has been used as theoretical upper limit of the treatment plan quality12. The results for the
nasopharyngeal clinical case tested imply that 4π is not a theoretical upper limit of the treatment plan quality and
highlight that the frontier of the best expectations can be overcome. This might indicate that BAO potential is yet
far from being fully explored both in terms of quality and time.

In this multistart noncoplanar approach several strategies were embedded to reduce, as much as possible, the425

number of function evaluations leading to a good compromise between the number of function evaluations and the
quality of the solutions. The strategies drafted included the non-random strategy sketched to take advantage of a
reduced search space, the use of a generalization of regions of attraction of a local minimum and the limitation of
local searches to the most promising regions. Other approaches to accelerate BAO have been made by reducing the
arithmetic load of FMO5 or by an early termination of FMO36. These strategies accelerate the computation of a430

beam’s ensemble quality measure rather than the BAO process itself and can thus be promptly incorporated in any
strategy that uses the optimal FMO problem value to drive the BAO procedure. Finally, the computational burden
of integrated beam orientation and fluence optimization is manageable using the current generation of calculation
platforms, which will only become faster.
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FIG. 5. Relative FMO improvement comparing the benchmark beam ensemble, Equi, (0% improvement) and the best treatment
plan, BAOnc, (100% improvement) – 5(a) and corresponding number of FMO evaluations required to obtain the corresponding
solutions – 5(b).
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