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Predicting Xerostomia after IMRT treatments: a data mining approach 

 

Abstract 

Background and Purpose: Xerostomia is one of the most frequent long term side-effects 

experienced by head-and-neck cancer patients undergoing radiation therapy, reducing 

drastically the quality-of-life of patients. In the present study, a prediction model for 

xerostomia after radiotherapy is proposed. 

Material and Methods: Model construction was based on a dataset of 138 patients with head-

and-neck cancer treated at the Portuguese Institute of Oncology of Coimbra (IPOCFG) with 

Intensity Modulated Radiation Therapy, using different data mining predictors. The models 

considered dosimetric information and patient specific features known prior to treatment to 

estimate which patients will experience xerostomia (G0 vs G1/G2 according to 

RTOG/EORTC). The quality of the classifiers was assessed by applying cross-validation 

procedures and was validated by different datasets. ROC/AUC, precision and recall were the 

measures used to evaluate the models’ performance. 

Results: Age, gender, severity of xerostomia prior to radiation therapy and planned mean 

(physical) dose in both parotids revealed to be relevant predictors of xerostomia. The best 

model was the one based on random forests. The method produced an AUC equal to 0.73, a 

precision of 72% and a recall of 83% considering the threshold 0.5. 

Conclusions: The ability to discriminate patients according to their features helps to achieve 

personalized radiation therapy treatments. Random forests revealed to be a good 

classification method for predicting the binary response “risk for xerostomia induced by 

radiation therapy at 12 months”, showing a high discriminative ability.  
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1. Introduction 

Radiation therapy is one of the main modalities used for cancer treatment, alone or in 

combination with surgery and chemotherapy. The objective of radiotherapy treatments is to 

be able to destroy all cancerous cells, but at the same time to spare all healthy cells and 

organs. Intensity Modulated Radiation Therapy (IMRT) is one of the forms of radiation 

therapy treatment. Its main feature is the ability to conform the delivered radiation to the 

volumes to treat. This is achieved through a discretization of the radiation beams into a set of 

individual beamlets that can have different intensities. 

In radiation therapy, the medical doctor will prescribe the desired treatment for each patient. 

This prescription is composed of a set of radiation dose constraints that should be satisfied 

and that, in most cases, define maximum and minimum limits to the dose to be delivered to 

the patient. The dose delivered should be such that allows the best possible irradiation of the 

volumes to be treated but that also protects the organs at risk (namely, guaranteeing their 

proper functioning during and after the treatment). The treatment is delivered during a 

predefined number of treatment sessions. IMRT allows the achievement of a high degree of 

conformity between the volume to be treated and the prescribed dose distribution allowing 

high sparing of the surrounding healthy tissues when compared with conventional treatment 

techniques [1-5]. Despite improvements obtained with IMRT in head-and-neck cancer 

patients, sparing of the salivary glands is still challenging. The irradiation of these organs at 

risk can result in salivary dysfunction and consequently xerostomia, one of the most frequent 

long term side-effects. Xerostomia is characterized by the feeling of dry mouth due to the 
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lack of saliva, reducing drastically the quality-of-life of patients due to difficulties in 

swallowing and in feeding [6-10]. There is thus a great interest in the development of 

accurate models capable of predicting whether a given patient will experience xerostomia 

after radiation therapy. If it was possible to predict the future occurrence of xerostomia, this 

could be taken into account during the treatment planning phase, trying to reach treatment 

plans that would spare as most as possible the salivary glands. 

The first predictive models for radiation therapy outcomes, and in particular xerostomia on 

head-and-neck cancer patients, were mostly based on dosimetric information [11-14]. The 

work developed by El Naqa et al. [15] was the pioneering study incorporating not only 

dosimetric information but also other prognostic clinical factors in outcome prediction 

models for head-and-neck cancer patients treated with IMRT. After that, a proliferation of 

predictive models estimating xerostomia, mostly based on dosimetric data, was observed [11, 

16-20]. Naqa et al. [20] and Blanco et al. [11] presented studies with a small number of 

patients. The authors measured the salivary flow at 6 and 12 months and predicted 

radiotherapy outcomes using support vector machines and multivariate logistic regression. 

According to these authors, the prediction of treatment response can be improved by 

discovering nonlinear interactions among model variables. They concluded that, with 

conventional fractionation, the incidence of xerostomia was significantly smaller when the 

mean dose of at least one parotid gland was below 25.8 Gy. However, even when patients 

were irradiated with doses lower than this threshold value, they experienced a delayed 

recovery of salivary function. Beetz et al. [17-19], using a larger dataset, concluded that the 

models developed in a population treated with a specific technique cannot be generalized and 

extrapolated to a population treated with another technique without external validation. Using 

logistic regression they concluded that the inclusion of predictive factors other than dose-

volume histogram parameters can significantly improve model performance. Similar results 
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were also accomplished by using logistic regression in our exploratory study [16]. The main 

drawback was the small number of patients and the great amount of predictive attributes. 

Therefore, there is an enormous need for the development of predictive models that include 

explanatory features beyond the dosimetry. 

In the present work, several different data mining models were applied for prediction of 

radiation-induced complications in the salivary glands for head-and-neck cancer patients 

irradiated with IMRT. The models included dosimetric information but also patient specific 

features known prior to the treatment. The data mining approaches considered were 

classifiers that were trained to be able to predict the binary response “risk for xerostomia 

induced by radiation at 12 months”. The models were trained considering a database of head-

and-neck cancer patients treated at the Portuguese Institute of Oncology of Coimbra. Testing 

and validation were made using different sets of patients. 

In the next section, a description of the materials and methods used is detailed. Section 3 

presents the main results. Section 4 presents a critical discussion. Some conclusions and paths 

for future work are presented in section 5. 

 

2. Material and Methods 

2.1. Dataset 

Population cohort included patients with head-and-neck tumors treated at IPOCFG with 

different forms of IMRT [21]. All clinical and treatment patient data was retrieved from the 

electronic health information system RESPONSE [22]. The system comprises a number of 

patient features and medical registrations: patient and tumor characteristics, treatment details 

and patient response to radiation therapy registered during the follow-up medical 

consultations. 
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This study considered the development of a model to predict xerostomia, based on the 

knowledge acquired from retrospective data. The model considered only predictive attributes 

known at the beginning of the treatment, capable of influencing the posterior development of 

xerostomia. The aptness for xerostomia will be related to the delivered treatment and not to 

the planned one. Therefore, patients that interrupted radiation therapy were not considered in 

this study, since the delivered doses may not correspond to those planned. 

Classification of side-effects at IPOCFG is made using RTOG/EORTC guidelines. Thus, 

complications severity is ranked from 0 to 5, where 0 means no complication and 5 death 

from toxicity [23]. In this study, we were only interested in predicting patients’ binary 

response, regardless of the complication degree. Thus, all severity degrees equal to 1 or 2 

(where 2 was the maximum severity degree obtained at IPOCFG) were grouped. Only two 

severity classes were considered:  “1” if the patient presented xerostomia; “0” otherwise. 

IPOCFG dataset had 138 patients: 52 belonging to class “0”, i.e, being complication-free, and 

86 belonging to class “1”. The original dataset was thus unbalanced, since 62% of patients 

belonged to class “1” and 38% belonged to class “0”. Patients demographic, clinical and 

treatment characteristics are listed in Table 1. In this table it is also possible to find 

information regarding patients that presented xerostomia at baseline, i.e. prior to the 

beginning of radiation therapy treatments. Xerostomia at baseline was an exploratory variable 

incorporated in the predictive models tested. 

An overview of the corresponding calculated mean doses to organs at risk is depicted in 

Table 2. 

 

2.2. Predictive Features 

In order to develop a classification model that allow us to predict whether a given patient will 

experience xerostomia 12 months after the radiotherapy treatment, we should consider as 

valid inputs only those attributes that are known prior to the beginning of the radiation 

therapy or, at most, during the first weeks of treatment. Being able to predict xerostomia at 
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early stages of the treatment will make it possible to adjust the treatment plan in order to 

minimize or avoid this complication. 

There are a myriad of variable screening techniques that can be applied to help in the 

selection process of the most relevant features characterizing a specific dataset regarding the 

relation with a given outcome. A dataset of 138 patients can be considered a small dataset 

(see our previous work [24]).  In such circumstances, the instability of the selection methods 

and the limited power to select relevant attributes can lead to a loss in predictive ability, 

because more information can be lost than gained. Therefore, alternative strategies should be 

taken into account for small datasets [24, 25]. The use of external information, such as 

clinical knowledge or information from other studies, is highly important in the variable 

selection and estimation processes [24-26]. This information can not only improve the 

predictive performance of the model, but also increase its clinical credibility. The medical 

team can feel more comfortable and rely more in the use of a model that includes the team’s 

inputs rather than in a model constructed based on variable screening practices only [25, 27, 

28]. In small datasets, the model should, as much as possible, be based on external 

knowledge that can be expected to describe the patterns in the dataset sufficiently well [25]. 

Thus, in this retrospective study, we incorporated clinical knowledge in the modeling 

process, by considering four attributes indicated by the medical team as probably being 

highly associated with xerostomia outcome: 

(1) Patients data: age and gender; 

(2) Severity of xerostomia prior to radiation therapy; 

(3) Calculated mean (physical) dose on the contralateral and ipsilateral parotids. 

These features were all known at the beginning of the treatment for every patient. 

 

2.3. Predictive Models 
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The problem of predicting a response for a new patient based on a model derived from a 

dataset of previously treated patients can be seen as a machine learning problem, namely, a 

classification learning problem. In a classification problem, a training dataset consisting of n 

elements is available. Each element is characterized by a p-dimensional attribute vector x, 

belonging to a suitable space, and a class label (also known as response) yϵ{0,1,…}. The 

objective is to construct a decision or classification rule (also known as predictor, classifier or 

model) that will accurately predict the class labels of elements for which only the attribute 

vector is observed [29]. 

The output of a classifier will be a value belonging to [0,1] that corresponds to the probability 

of a patient belonging to a specific class. Classifying a patient will thus require this 

probability to be translated into a binary output: 1 or 0. This can be done by considering a 

threshold α: if the probability is greater than α, the assigned class should be “1”, and “0” 

otherwise. Each α represents a decision boundary in the feature space. The most used 

threshold is the value 0.5. 

Clinical knowledge was incorporated in the modeling process, by considering the four 

attributes indicated by the medical team. 

 

We applied different data mining classifiers in order to classify new patients according to the 

probability of experience xerostomia 12 months after the beginning of IMRT treatments. The 

classifiers used were Random Forests, Stochastic Boosting, Support Vector Machines, Neural 

Networks, Model-based Clustering and Logistic Regression. In the following we will 

describe each methodology used.  

 

Random Forests 
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A random forest consists in a collection of tree-structured classifiers [30], where leaves 

represent class labels and branches represent conjunctions of features that lead to those class 

labels. The random forest classifier works as an ensemble of decision trees predictors, where 

each tree is constructed based on a random selection of observations of the working dataset 

(also called training set). The main essence of this procedure is to build multiple trees in 

randomly selected subspaces of the feature space, such that locally-optimal decisions are 

made at each node. The split in each node is made according to the best feature among all 

possible features on the subspace. The classification of a new observation corresponds to the 

class that is the mode of the classes outputted by individual trees. 

 

Stochastic Boosting 

The basic idea of stochastic boosting is to combine very simple classification rules to form an 

ensemble, with a significantly improved performance. All elements have an initial weight 

and, at each iteration, the weights are recalculated. The correct classified elements have their 

weights decreased and those incorrectly classified have the weight increased. The aim is to 

direct the classifier to these elements. The final classification is a weighted majority vote of 

all the trained weak learners where each weak learner has one vote. The most usual weak 

learners applied are classification trees and the most used algorithm is AdaBoost [31]. 

 

Support Vector Machines 

Support vector machines efficiently perform a non-linear classification implicitly mapping 

the observations into a high-dimensional feature space using a set of mathematical functions 

known as kernels. The basic idea behind support vector machines is the construction of a 

hyperplane in a higher dimensional space defining a decision boundary to separate the set of 

elements having different class memberships. The algorithm selects prototypes from the 
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training data lying on the board between two classes in order to derive the classification rule 

for new data [32]. Support vector machines implementations require the user to define some 

parameters, namely the kernel function and a cost parameter used to penalize the classifier for 

incorrect classifications of the training data. The error of misclassifications can be minimized 

by an adequate choice of the kernel function. 

 

Neural Networks 

A neural network is an interconnected group of nodes. This structure was inspired by the 

central nervous system and explored for addressing an array of problems [33]. Formally, a 

neural network is an information processing paradigm composed by a large number of highly 

interconnected processing elements (known as neurons), organized by layers and working in 

unison to solve specific problems. Patterns are presented to the network via the input layer, 

which communicates to one or more hidden layers where the actual processing is done via a 

system of weighted connections. The hidden layers then link to an output layer where the 

answer is finally yielded. Within each hidden layer neuron there is a sigmoidal activation 

function that polarizes network activity, as a function of a weighted sum of its inputs, and 

helps it to stabilize by modifying the weights of the connections according to the input 

patterns to decrease the differences between the neural network outputs and the true outputs 

of the training data. Neural network analysis often requires a large number of individual runs 

to obtain the best solution. 

 

Model-based Clustering 

Model-based clustering assumes that all elements of the original dataset are created by a 

mixture of components, each described by a density function and having an associated 

probability or “weight” in the mixture. The class of a new element will correspond to the 
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group defined by the mixture component that most likely created it [34]. We can adopt any 

probability model for components, but typically it is assumed the Gaussian finite mixture 

model, where each component is modeled by a single Gaussian term with the same 

covariance structure among classes. This procedure is well-known as Eigenvalue 

Decomposition Discriminant Analysis (EDDA). Furthermore, the covariance matrix can 

assume several parameterizations, which leads to different models with different 

interpretations. 

 

Logistic Regression 

Logistic regression classifier (also known as logit model) measures the relationship between a 

dependent variable (also called response) and one or more independent variables, by using 

probability scores as the predicted values of the dependent variable. The probabilities are 

modeled as a function of the explanatory variables by using a logistic function [35]. 

 

R software was used, namely the packages “randomForest” [36], “ada” [37], “kernlab” [38], 

“nnet” [39] and “mclust” [40] and the “glm” function.  

All the classifiers considered had parameters that should be fixed a priori. Several 

computational tests were done to try to find the best parameters. Random Forests were 

considered as having 500 trees, Stochastic Boosting model considered 100 trees, the Support 

Vector Machine model considered a radial basis function (with automatic sigma estimation) 

as the kernel function and a penalty of 1, the neural network predictor had a single inner layer 

with 5 nodes and the Model-based Clustering classifier was fitted with the Gaussian 

multivariate mixture model EII (spherical and equal volume). 

 

2.4. Performance Measures 
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Bootstrapping is a technique used to iteratively improve the classifier performance where a 

sample with a size higher or equal to the original dataset is considered by random selection 

with replacement [41]. We used bootstrapping samples with 500 observations. To assess the 

suitability of the models, we used a cross-validation technique [42]. Cross-validation involves 

partitioning the available data sample into complementary subsets, performing the analysis on 

one subset (training set) and validating the analysis on the other subset (validation or testing 

set) [43].  

After running all cross-validation iterations in the bootstrap sample, we created the Receiver 

Operating Characteristics Curve (ROC) and determined the Area Under the ROC Curve 

(AUC) in order to assess the performance of the classifiers and measure the discriminative 

ability of the models. 

The results of correlation tests between attributes and classifications are not very useful, 

because strong correlations do not imply good predictors. A model is useful if it efficiently 

separates ‘responders’ from ‘non-responders’ and the metric that quantifies this ability is the 

AUC, which is the probability that the model will correctly rank sampled ‘responder’ and 

‘non-responder’ pairs from the data set. We considered the intervals [0.5,0.7[, [0.7,0.9[ and 

[0.9,1] to define the performance of the model as poor, moderate/good and excellent, 

according to [44]. Also, for a binary outcome, ROC and AUC are the most commonly 

recommended and used performance measures to judge the discriminative ability of a model 

between the observations with and without the characteristic [45-47]. The AUC can be 

interpreted as the probability that a patient with xerostomia 12 months after IMRT treatments 

is given a higher probability of the outcome by the model than a randomly chosen patient 

without the outcome. 

 

3. Results 
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3.1. Predictive Models 

The suitability of the predictive models was assessed by applying the leave-one-out cross-

validation (LOOCV) procedure. This method uses all elements of the original dataset except 

one as training data, and the remaining single observation as validation data. Hence, all 

observations with exception of one are used to train the model, which is then used to predict 

the class for the remaining observation. 

The features and performance of the different predictive models were compared by 

generating the ROC curves for each classification model and computing the respective AUC. 

The best result was obtained when considering random forests, which results in an AUC of 

73% (Figure 1A). The ROC curve generated by the stochastic boosting model resulted in an 

AUC of 65% (Figure 1B). For the support vector machine model, the AUC achieved was of 

66% (Figure 1C). The neural network predictor resulted in an AUC of 61% (Figure 1D). 

Model-based Clustering classifier presented an AUC of 43% (Figure 1E). The last model 

tested was the logistic regression, which exhibited an AUC of 47% (Figure 1F). 

For that prediction model that revealed a better performance (Figure 1A) complementary 

analyses were also carried out in order to confirm the robustness of the classifier. Such 

experiments are exposed in the following subsections. 

 

3.2. Random Forest Predictive Model 

3.2.1. n-factor Predictive Models 

For the best classifier (random forest model), and in order to support clinical knowledge, all 

possible n-factor predictive models (nϵ{1,2,3,4}) were built and the results are shown in 

Table 3. The highest performance was accomplished by the model that considers the four 

attributes (Table 3). Considering α=0.5 in the 4-factor random forest predictive model, in 
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addition to reach an AUC of 73%, we also obtained an accuracy of 70%, a precision of 72% 

and a recall equal to 83%. 

 

3.2.2. 6-fold Cross-Validation Analysis 

The suitability and performance of the 4-factor random forest predictive model were also 

assessed by a 6-fold cross-validation procedure. This process consisted in the partitioning of 

the original dataset, into 6 complementary subsets, each with 23 patients. Each subset was 

used once as testing set, whereas the remaining patients were all used to train the model. This 

process was applied 6 times such that each complementary subset was used once as testing 

set. Similarly to the previous situation, the bootstrap samples had 500 instances. The process 

was repeated 100 times, obtaining an average AUC of 0.69 and standard deviation of 0.03. 

 

3.2.3. Model Validation 

In order to validate the predictive model, we randomly selected 24 elements from the dataset, 

obtaining two subsets from the original sample. The new sample composed by the remaining 

114 observations was used to train the model, while the 24 separated elements were then used 

to validate the model. The validation process was repeated 100 times producing an average 

AUC of 0.69 with standard deviation of 0.03. Considering α=0.5, we obtained an average 

accuracy of 0.68 and standard deviation of 0.09 for the validation sample set. Figure 2 

illustrates the histogram generated by the accuracy values obtained in 100 iterations 

considering α= 0.5. Each bar [a,b[ of the histogram quantifies the number of iterations that 

resulted in an accuracy value between a (inclusive) and b (exclusive). It is worth noting  that 

the worst accuracy value in the [0.6,0.7[ interval was 0.62. Therefore, and as can also be seen 

in Figure 2, 80% of the total iterations (that is the sum of the frequencies of the last 6 bars of 
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the histogram) resulted in an accuracy higher than 62% (proportion of patients in class “1”). 

This means that in 80 out of 100 run iterations the classifications obtained were better than 

classifying all patients as belonging to class “1” (class that comprises 62% from the total size 

of the dataset).  

4. Discussion 

We applied several data mining classifiers for predicting xerostomia induced by radiation 

treatments in head-and-neck cancer patients at 12 months. The basis of a predictive study is 

the set of explanatory features that characterize the original sample set. The majority of 

available radiobiological models only incorporate dose information in the analyses. In Naqa 

et al. [15], the authors determined that the analysis can be enriched and be more reliable by 

carefully select the most adequate explanatory features and increasing larger datasets. Naqa et 

al. performed analogous studies to investigate radiotherapy outcomes [15, 20].  They did not 

evaluate the performance of their methodologies by computing the AUC but correlated their 

approaches with other equivalent applications. 

Beetz and his colleagues also constructed predictive models to study xerostomia and sticky 

saliva at 6 months of treatments [18, 48], focusing their attention into two different treatment 

techniques, precisely, three-dimensional conformal radiotherapy and IMRT. Concerning the 

first treatment, they obtained AUC values of 82% and 84%, respectively. When considering 

IMRT, the values were significantly lower, 66% and 63%, respectively. These values were 

also lower than those reached by our 4-factor random forest classifier (our forecasting model 

that resulted in a better performance), when considering the same treatment technique, which 

was equal to 73%. The studies performed by Beetz and his colleagues present two 

drawbacks:  the use of small datasets and the elimination of patients with moderate to severe 

xerostomia or sticky saliva at baseline. This circumvented inherent complications in the 
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construction of the classification model, but cannot reflect the real scenario of therapies and 

possibly not leading to reliable predictions.  

The present work can also be compared with previous work of the same authors  [16], where 

an AUC of 73% was also achieved, but considering a significant smaller dataset (only 49 

patients) and a considerably higher number of attributes (15 predictive features), preventing 

further validation tests to be performed. 

A compromise between the number of elements and the number of attributes used is of great 

importance in predictive analysis to guarantee a good performance of the model and to avoid 

overfitting. Commonly, a concession of 10 observations per predictive variable is assumed. 

Nevertheless, the 1:10 rule is somewhat arbitrary. Moreover, the total sample size is highly 

significant. According to Steyerberg et al. [25], for small datasets, the external clinical 

knowledge should be a priority. We used the valuable expertise of the medical team to select 

a small number of features that were considered as influencing most the future occurrence of 

xerostomia. The random forest predictive model, based on the set of four attributes suggested 

by clinicians, was the data mining approach that presented better results regarding the 

prediction of aptness for xerostomia induced by radiation at 12 months. The classifier 

produced results with high predictive capability, showing that clinical experience and 

knowledge was really an excellent support for predictive studies. 

As far as the authors know, this was the first time that random forests encompassing only pre-

treatment predictors were applied with the aim of determining a potential adverse-effect of 

xerostomia in radiation treatments. The majority of available approaches was only based on 

dosimetry data [11, 15, 20]. Consequently, these predictive models might not be as accurate 

for individualized clinical decision-support system for routine care [49]. Our 4-factor random 

forest approach, being based on a small set of four pre-treatment known attributes revealed a 



16 

 

good performance. Thus, it might have a great clinical utility being capable of correctly 

estimate the class for new patients. 

Our best predictive method was also evaluated using resampling techniques and validated on 

independent datasets. All possible combinations of the four chosen attributes were tested. As 

can be seen in Table 3, using AUC as the measure of the discriminative ability of the models, 

the best model was the one considering all four attributes simultaneously. Although the 

dosimetric feature revealed the most significant univariate prognostic ability, these results 

highlight the importance of considering other attributes in addition to dosimetric information. 

The 4-factor classifiers yielded a probability consisting in a numerical value that represents 

the degree to which a patient is a member of class “1”. The obtained results by LOOCV for 

the random forest approach displayed a high AUC value of 0.73, which revealed a high 

performance of the predictive model, highly consistent with the true classifications. All 

similar systems and classification approaches investigated exhibit poor values of AUC 

measure. The high accuracy value (70%) as well as the high precision (72%) and recall (83%) 

values, obtained for the most commonly used threshold value of 0.5, reinforced the great 

performance and consistence of the 4-factor random forest model. These values mean that our 

4-factor random forest model was able to correctly predicting the xerostomia class for 70% of 

the patients. Additionally, from all patients estimated by the 4-factor random forest model as 

having aptness for xerostomia 12 months after IMRT, 72% really developed this 

complication. For the 86 patients that really presented xerostomia after 12 months of 

radiation therapy, our predictive 4-factor random forest model correctly predicted 83%.  

When applying a 6-fold cross-validation procedure to the best reached forecasting model, the 

average AUC presented also a good value, 0.69. Moreover, the very small average standard 

deviation, resulting in an AUC of 0.69±0.03, revealed once again that the model was able of 

correctly estimating the aptness for xerostomia complication after 12 months of the beginning 
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of radiation therapy for new head-and-neck cancer patients. Validation analysis produced 

similar AUC results and thus equally high performance and discriminative ability of the 4-

factor random forest model to make the predictions for new patients. In the scope of 

validation analyses, we also explored the accuracy results obtained when considering the 

most commonly used threshold, 0.5, which resulted in an accuracy of 0.68±0.09. Indeed, in 

80% of the studied cases the obtained accuracy produced a value higher than 0.62, which 

means that in 80% of the analyzed cases, the predictions were better than classifying all 

patients as belonging to class “1” (which comprises 62% from the total 138 head-and-neck 

cancer patients). 

 

5. Conclusion 

Random forests proved to be good classifiers for predicting the binary response “risk for 

xerostomia at 12 months induced by radiation therapy treatments”, showing a high 

discriminative ability. The role of the four attributes: age, gender, severity of xerostomia prior 

to radiation therapy and planned mean physical dose in the contralateral and ipsilateral 

parotids appeared to be of main importance to the development of the radiation therapy side-

effect xerostomia. The corresponding 4-factor random forest model can make highly reliable 

predictions of xerostomia complication. The importance of detecting prior to treatment, the 

radiation-induced complications has, as major advantage, the possibility of optimizing 

treatment plans trying to avoid this complication or at least minimize such side-effect. 

Future work will examine other aspects of nonlinear modeling outcomes, such as applying 

data mining algorithms to address not only the short term and long term estimates of radiation 

treatment-induced complications but also the tumor response prediction problem. The 
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developed models, as well as the obtained results can, in the future, be integrated in the 

optimization processes of radiation treatment planning. 
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Table 1. Demographic, clinical and treatment information for the population cohort used in 

this study. The average patients age is 56.8, with a standard deviation of 11.9 (the ages are 

comprised between 17.8 and 84.8). 

Characteristics N (%) 
  
Gender  

Female 
Male 

20 (14) 
118 (86) 

Stage AJCC1  
I 
II 
III 
IV 

3 (2) 
10 (7) 

31 (23) 
94 (68) 

Surgery  
Yes 
No 

60 (43) 
78 (57) 

Type of radiotherapy  
Non-Concomitant 
Concomitant 

64 (46) 
74 (54) 

Overall treatment time (days)  
≤44 
>44 

85 (62) 
53 (38) 

Xerostomia at baseline  
Yes 
No 

9 (7) 
129 (93) 

Total 138 (100) 
1
 American Joint Committee on Cancer 

 

Table 2. Dosimetry for the parotid glands. 

Parotid Glands 
Dmean±SD (Gy) 

(min–max) 
Patients with xerostomia Patients without xerostomia 

Ipsilateral 
39.0±7.4 

(24.8 – 61.6) 
37.1±8.1 

(17.6 – 56.4) 

Contralateral 
35.2±7.4 

(12.5 – 55.1) 
33.1±8.3 

(4.9 – 47.1) 
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Table 3. AUC obtained for all possible n-factor random forest predictive models 

(nϵ{1,2,3,4}). The mean dose in the parotid glands is the average between both planned mean 

(physical) doses in the contralateral and ipsilateral parotids. 

 

 

  

Features AUC 
Gender 0.50 
Xerostomia at baseline 0.52 
Age 0.63 
Mean dose in parotid glands 0.68 
  
Xerostomia at baseline and Gender 0.50 
Age and Gender 0.50 
Xerostomia at baseline and Age 0.59 
Mean dose in parotid glands and Age 0.65 
Mean dose in parotid glands and Xerostomia at baseline 0.66 
Mean dose in parotid glands and Gender 0.68 
  
Mean dose in parotid glands, Xerostomia at baseline and Gender 0.67 
Mean dose in parotid glands, Age and Gender 0.69 
Mean dose in parotid glands, Xerostomia at baseline and Age 0.70 
  
Mean dose in parotid glands, Xerostomia at baseline, Age and Gender 0.73 
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Figure 1. ROC curve generated by the following predictive models: A. Random Forest, B: 

Stochastic Boosting, C. Support Vector Machine, D. Neural Network, E. Model-

based Clustering, F. Logistic Regression. All models were  applied to the dataset 

by a LOOCV technique. The diagonal line produces an AUC of 0.5. TPR and FPR 

are, respectively, the True and False Positive Rates. 
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Figure 2. Histogram generated by the accuracy values, obtained for the validation dataset 

with 24 random samples, in the 100 iterations for the threshold value of 0.5, when 

considering the 4-factor random forest model. The histogram cells are left-opened 

and right-closed intervals. 
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Table Legends 

Table 1. Demographic, clinical and treatment information for the population cohort used in 

this study. The average patients age is 56.8, with a standard deviation of 11.9 (the 

ages are comprised between 17.8 and 84.8). 

 

Table 2. Dosimetry for the parotid glands. 

 

Table 3. AUC obtained for all possible n-factor random forest predictive models 

(nϵ{1,2,3,4}). The mean dose in the parotid glands is the average between both 

planned mean (physical) doses in the contralateral and ipsilateral parotids. 

 


