Predicting Xerostomia after IMRT treatments: a data mining approach

Abstract

Background and Purpose: Xerostomia is one of the most frequent long terde-gffects
experienced by head-and-neck cancer patients umdgrgradiation therapy, reducing
drastically the quality-of-life of patients. In thgresent study, a prediction model for
xerostomia after radiotherapy is proposed.

Material and Methods: Model construction was based on a dataset ofphB8nts with head-
and-neck cancer treated at the Portuguese Instfudncology of Coimbra (IPOCFG) with
Intensity Modulated Radiation Therapy, using def@r data mining predictors. The models
considered dosimetric information and patient dpeéeatures known prior to treatment to
estimate which patients will experience xeroston{@0 vs G1/G2 according to
RTOG/EORTC). The quality of the classifiers waseassd by applying cross-validation
procedures and was validated by different dataB&€C/AUC, precision and recall were the
measures used to evaluate the models’ performance.

Results. Age, gender, severity of xerostomia prior to aiidin therapy and planned mean
(physical) dose in both parotids revealed to bewveeit predictors of xerostomia. The best
model was the one based on random forests. Theothetloduced an AUC equal to 0.73, a
precision of 72% and a recall of 83% considerirgttireshold 0.5.

Conclusions: The ability to discriminate patients accordingttieir features helps to achieve
personalized radiation therapy treatments. Randamesfs revealed to be a good
classification method for predicting the binarypesse “risk for xerostomia induced by

radiation therapy at 12 months”, showing a higleisinative ability.
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1. Introduction

Radiation therapy is one of the main modalitiesdus® cancer treatment, alone or in
combination with surgery and chemotherapy. The ativje of radiotherapy treatments is to
be able to destroy all cancerous cells, but atsdmae time to spare all healthy cells and
organs. Intensity Modulated Radiation Therapy (IMR3 one of the forms of radiation
therapy treatment. Its main feature is the abilityconform the delivered radiation to the
volumes to treat. This is achieved through a disaton of the radiation beams into a set of
individual beamlets that can have different intdesi

In radiation therapy, the medical doctor will pneélse the desired treatment for each patient.
This prescription is composed of a set of radiatiose constraints that should be satisfied
and that, in most cases, define maximum and minirtomits to the dose to be delivered to
the patient. The dose delivered should be suchall@at's the best possible irradiation of the
volumes to be treated but that also protects tlyar@ at risk (namely, guaranteeing their
proper functioning during and after the treatmeft)e treatment is delivered during a
predefined number of treatment sessions. IMRT alltive achievement of a high degree of
conformity between the volume to be treated andptiescribed dose distribution allowing
high sparing of the surrounding healthy tissuesnt@mpared with conventional treatment
techniques [1-5]. Despite improvements obtainedhwWMRT in head-and-neck cancer
patients, sparing of the salivary glands is stihltenging. The irradiation of these organs at
risk can result in salivary dysfunction and consadly xerostomia, one of the most frequent

long term side-effects. Xerostomia is characteribgdhe feeling of dry mouth due to the



lack of saliva, reducing drastically the qualityidé of patients due to difficulties in
swallowing and in feeding [6-10]. There is thus @ag interest in the development of
accurate models capable of predicting whether angpatient will experience xerostomia
after radiation therapy. If it was possible to pcethe future occurrence of xerostomia, this
could be taken into account during the treatmeahmhg phase, trying to reach treatment
plans that would spare as most as possible theasalylands.

The first predictive models for radiation therapytammes, and in particular xerostomia on
head-and-neck cancer patients, were mostly basedbsimetric information [11-14]. The
work developed by El Naga et al. [15] was the pavmgy study incorporating not only
dosimetric information but also other prognostiinichl factors in outcome prediction
models for head-and-neck cancer patients treatdd WRT. After that, a proliferation of
predictive models estimating xerostomia, mostlyeblasn dosimetric data, was observed [11,
16-20]. Naga et al. [20] and Blanco et al. [11]gameted studies with a small number of
patients. The authors measured the salivary flow6aand 12 months and predicted
radiotherapy outcomes using support vector machames multivariate logistic regression.
According to these authors, the prediction of treait response can be improved by
discovering nonlinear interactions among model aldegs. They concluded that, with
conventional fractionation, the incidence of xeoosia was significantly smaller when the
mean dose of at least one parotid gland was belm® @y. However, even when patients
were irradiated with doses lower than this threshehlue, they experienced a delayed
recovery of salivary function. Beetz et al. [17-18%ing a larger dataset, concluded that the
models developed in a population treated with @ifpdechnique cannot be generalized and
extrapolated to a population treated with anotbehmique without external validation. Using
logistic regression they concluded that the indosof predictive factors other than dose-

volume histogram parameters can significantly impranodel performance. Similar results



were also accomplished by using logistic regressioour exploratory study [16]. The main
drawback was the small number of patients and tkatgamount of predictive attributes.
Therefore, there is an enormous need for the dpiedat of predictive models that include
explanatory features beyond the dosimetry.

In the present work, several different data minmgdels were applied for prediction of
radiation-induced complications in the salivarygla for head-and-neck cancer patients
irradiated with IMRT. The models included dosimetinformation but also patient specific
features known prior to the treatment. The datainginapproaches considered were
classifiers that were trained to be able to prethiet binary response “risk for xerostomia
induced by radiation at 12 months”. The models viexmed considering a database of head-
and-neck cancer patients treated at the Portugasstite of Oncology of Coimbra. Testing
and validation were made using different sets tiepés.

In the next section, a description of the materals methods used is detailed. Section 3
presents the main results. Section 4 presentsieatdiscussion. Some conclusions and paths

for future work are presented in section 5.

2. Material and Methods

2.1. Dataset

Population cohort included patients with head-aadkntumors treated at IPOCFG with

different forms of IMRT [21]. All clinical and treément patient data was retrieved from the
electronic health information system RESPONSE [Z2je system comprises a number of
patient features and medical registrations: paaait tumor characteristics, treatment details
and patient response to radiation therapy regutedering the follow-up medical

consultations.



This study considered the development of a modepramlict xerostomia, based on the
knowledge acquired from retrospective data. Theahodnsidered only predictive attributes
known at the beginning of the treatment, capablaftdencing the posterior development of
xerostomia. The aptness for xerostomia will beteeldo the delivered treatment and not to
the planned one. Therefore, patients that inteedipadiation therapy were not considered in
this study, since the delivered doses may not spaed to those planned.

Classification of side-effects at IPOCFG is madengiRTOG/EORTC guidelines. Thus,

complications severity is ranked from 0 to 5, wh@reneans no complication and 5 death
from toxicity [23]. In this study, we were only erested in predicting patients’ binary

response, regardless of the complication degrees,Tdll severity degrees equal to 1 or 2
(where 2 was the maximum severity degree obtaindB@CFG) were grouped. Only two

severity classes were considered: “1” if the pdtijeresented xerostomia; “0” otherwise.
IPOCFG dataset had 138 patients: 52 belongingassci0”, i.e, being complication-free, and

86 belonging to class “1”. The original dataset wass unbalanced, since 62% of patients
belonged to class “1” and 38% belonged to class Ritients demographic, clinical and
treatment characteristics are listed in Table 1.tHis table it is also possible to find

information regarding patients that presentedostomia at baseline, i.e. prior to the
beginning of radiation therapy treatments. Xerostoah baseline was an exploratory variable
incorporated in the predictive models tested.

An overview of the corresponding calculated mearedoto organs at risk is depicted in

Table 2.

2.2. Predictive Features

In order to develop a classification model thabwllus to predict whether a given patient will
experience xerostomia 12 months after the radiafhetreatment, we should consider as
valid inputs only those attributes that are knowiompto the beginning of the radiation

therapy or, at most, during the first weeks of tireant. Being able to predict xerostomia at



early stages of the treatment will make it possibledjust the treatment plan in order to
minimize or avoid this complication.
There are a myriad of variable screening technighas can be applied to help in the
selection process of the most relevant featuresactexizing a specific dataset regarding the
relation with a given outcome. A dataset of 138quas can be considered a small dataset
(see our previous work [24]). In such circumstandke instability of the selection methods
and the limited power to select relevant attributes lead to a loss in predictive ability,
because more information can be lost than gainkdrefore, alternative strategies should be
taken into account for small datasets [24, 25]. Tise of external information, such as
clinical knowledge or information from other stusligs highly important in the variable
selection and estimation processes [24-26]. Thisrnmation can not only improve the
predictive performance of the model, but also iaseeits clinical credibility. The medical
team can feel more comfortable and rely more inuge of a model that includes the team’s
inputs rather than in a model constructed basedaoable screening practices only [25, 27,
28]. In small datasets, the model should, as muzhp@ssible, be based on external
knowledge that can be expected to describe therpatin the dataset sufficiently well [25].
Thus, in this retrospective study, we incorporatddical knowledge in the modeling
process, by considering four attributes indicatgdtlie medical team as probably being
highly associated with xerostomia outcome:

(1) Patients data: age and gender;

(2) Severity of xerostomia prior to radiation thgya

(3) Calculated mean (physical) dose on the conéwlhand ipsilateral parotids.

These features were all known at the beginning@titeatment for every patient.

2.3. Predictive Models



The problem of predicting a response for a newepatbased on a model derived from a
dataset of previously treated patients can be asem machine learning problem, namely, a
classification learning problem. In a classificatijproblem, a training dataset consistinghof
elements is available. Each element is charactefigeap-dimensional attribute vectox,
belonging to a suitable space, and a class latsb {@own as responsg{0,1,...}. The
objective is to construct a decision or classifaatule (also known as predictor, classifier or
model) that will accurately predict the class labet elements for which only the attribute
vector is observed [29].

The output of a classifier will be a value belorggto [0,1] that corresponds to the probability
of a patient belonging to a specific class. Clggsif a patient will thus require this
probability to be translated into a binary outputor 0. This can be done by considering a
thresholda: if the probability is greater tham the assigned class should be “1”, and “0”
otherwise. Eachu represents a decision boundary in the featureesp@lce most used
threshold is the value 0.5.

Clinical knowledge was incorporated in the modelimgpcess, by considering the four

attributes indicated by the medical team.

We applied different data mining classifiers in@rtb classify new patients according to the
probability of experience xerostomia 12 monthsratte beginning of IMRT treatments. The
classifiers used were Random Forests, StochastistBg, Support Vector Machines, Neural
Networks, Model-based Clustering and Logistic Rsgi@. In the following we will

describe each methodology used.

Random Forests



A random forest consists in a collection of treewdured classifiers [30], where leaves
represent class labels and branches representinctiojs of features that lead to those class
labels. The random forest classifier works as asemble of decision trees predictors, where
each tree is constructed based on a random selegftiobservations of the working dataset
(also called training set). The main essence & ginocedure is to build multiple trees in
randomly selected subspaces of the feature spach, that locally-optimal decisions are
made at each node. The split in each node is med®ding to the best feature among all
possible features on the subspace. The classificafia new observation corresponds to the

class that is the mode of the classes outputteddyidual trees.

Stochastic Boosting

The basic idea of stochastic boosting is to comberg simple classification rules to form an
ensemble, with a significantly improved performan&d elements have an initial weight
and, at each iteration, the weights are recalallldibe correct classified elements have their
weights decreased and those incorrectly classifeace the weight increased. The aim is to
direct the classifier to these elements. The fatasification is a weighted majority vote of
all the trained weak learners where each weak éedras one vote. The most usual weak

learners applied are classification trees and tbgt msed algorithm i&daBoost [31].

Support Vector Machines

Support vector machines efficiently perform a nimedr classification implicitly mapping
the observations into a high-dimensional featuscspising a set of mathematical functions
known as kernels. The basic idea behind suppotiorenachines is the construction of a
hyperplane in a higher dimensional space definidga@asion boundary to separate the set of

elements having different class memberships. Theriéhm selects prototypes from the



training data lying on the board between two classeorder to derive the classification rule
for new data [32]. Support vector machines impletaigons require the user to define some
parameters, namely the kernel function and a cstnpeter used to penalize the classifier for
incorrect classifications of the training data. Bmeor of misclassifications can be minimized

by an adequate choice of the kernel function.

Neural Networks

A neural network is an interconnected group of sodeéhis structure was inspired by the
central nervous system and explored for addresmingrray of problems [33]. Formally, a

neural network is an information processing panadapmposed by a large number of highly
interconnected processing elements (known as ngyrorganized by layers and working in

unison to solve specific problems. Patterns arsguted to the network via the input layer,
which communicates to one or more hidden layersrevtiee actual processing is done via a
system of weighted connections. The hidden laylees link to an output layer where the

answer is finally yielded. Within each hidden layexuron there is a sigmoidal activation

function that polarizes network activity, as a fuoe of a weighted sum of its inputs, and

helps it to stabilize by modifying the weights dfet connections according to the input
patterns to decrease the differences between tmalngetwork outputs and the true outputs
of the training data. Neural network analysis oftequires a large number of individual runs

to obtain the best solution.

Model-based Clustering
Model-based clustering assumes that all elementheforiginal dataset are created by a
mixture of components, each described by a dersitgtion and having an associated

probability or “weight” in the mixture. The clas$ a new element will correspond to the



group defined by the mixture component that mdslyi created it [34]. We can adopt any
probability model for components, but typicallyist assumed the Gaussian finite mixture
model, where each component is modeled by a si@Ggassian term with the same
covariance structure among classes. This procedsrrewell-known as Eigenvalue
Decomposition Discriminant Analysis (EDDA). Furtheasre, the covariance matrix can
assume several parameterizations, which leads fteraht models with different

interpretations.

Logistic Regression

Logistic regression classifier (also known as logatdel) measures the relationship between a
dependent variable (also called response) and pmeoce independent variables, by using
probability scores as the predicted values of tepeddent variable. The probabilities are

modeled as a function of the explanatory variableasing a logistic function [35].

R software was used, namely the packages “randorsf¢86], “ada” [37], “kernlab” [38],
“nnet” [39] and “mclust” [40] and the “glm” functia

All the classifiers considered had parameters tlabuld be fixed a priori. Several
computational tests were done to try to find thethgarameters. Random Forests were
considered as having 500 trees, Stochastic Boostodgl considered 100 trees, the Support
Vector Machine model considered a radial basistionqwith automatic sigma estimation)
as the kernel function and a penalty of 1, the alengtwork predictor had a single inner layer
with 5 nodes and the Model-based Clustering cli@ssivas fitted with the Gaussian

multivariate mixture model Ell (spherical and equalume).

2.4. Performance Measures

10



Bootstrapping is a technique used to iterativelprove the classifier performance where a
sample with a size higher or equal to the origohthset is considered by random selection
with replacement [41]. We used bootstrapping sasmpliegh 500 observations. To assess the
suitability of the models, we used a cross-valmatechnique [42]. Cross-validation involves
partitioning the available data sample into comm@etary subsets, performing the analysis on
one subset (training set) and validating the amalys the other subset (validation or testing
set) [43].

After running all cross-validation iterations iretbootstrap sample, we created the Receiver
Operating Characteristics Curve (ROC) and deterthitne Area Under the ROC Curve
(AUC) in order to assess the performance of thesdiars and measure the discriminative
ability of the models.

The results of correlation tests between attribated classifications are not very useful,
because strong correlations do not imply good ptedi. A model is useful if it efficiently
separates ‘responders’ from ‘non-responders’ ardrihtric that quantifies this ability is the
AUC, which is the probability that the model wilbrcectly rank sampled ‘responder’ and
‘non-responder’ pairs from the data set. We comsul¢he intervals [0.5,0.7[, [0.7,0.9] and
[0.9,1] to define the performance of the model a®rp moderate/good and excellent,
according to [44]. Also, for a binary outcome, R@@d AUC are the most commonly
recommended and used performance measures to thuelgiescriminative ability of a model
between the observations with and without the daharetic [45-47]. The AUC can be
interpreted as the probability that a patient withostomia 12 months after IMRT treatments
is given a higher probability of the outcome by thedel than a randomly chosen patient

without the outcome.

3. Results

11



3.1. Predictive Models

The suitability of the predictive models was assds3y applying the leave-one-out cross-
validation (LOOCYV) procedure. This method usessiments of the original dataset except
one as training data, and the remaining single reasen as validation data. Hence, all
observations with exception of one are used tm tfa model, which is then used to predict
the class for the remaining observation.

The features and performance of the different ptedi models were compared by
generating the ROC curves for each classificationlehand computing the respective AUC.
The best result was obtained when considering ranidoests, which results in an AUC of
73% (Figure 1A). The ROC curve generated by thehststic boosting model resulted in an
AUC of 65% (Figure 1B). For the support vector maehmodel, the AUC achieved was of
66% (Figure 1C). The neural network predictor reiilin an AUC of 61% (Figure 1D).
Model-based Clustering classifier presented an AWd@3% (Figure 1E). The last model
tested was the logistic regression, which exhibétedUC of 47% (Figure 1F).

For that prediction model that revealed a bettefopmance (Figure 1A) complementary
analyses were also carried out in order to confine robustness of the classifier. Such

experiments are exposed in the following subsestion

3.2. Random Forest Predictive Model

3.2.1. n-factor Predictive Models

For the best classifier (random forest model), indrder to support clinical knowledge, all
possible n-factor predictive modelse{h,2,3,4}) were built and the results are shown in
Table 3. The highest performance was accomplislyethé model that considers the four
attributes (Table 3). Considering=0.5 in the 4-factor random forest predictive model

12



addition to reach an AUC of 73%, we also obtainececuracy of 70%, a precision of 72%

and a recall equal to 83%.

3.2.2. 6-fold Cross-Validation Analysis

The suitability and performance of the 4-factordam forest predictive model were also
assessed by a 6-fold cross-validation proceduris. @ifocess consisted in the partitioning of
the original dataset, into 6 complementary subsssh with 23 patients. Each subset was
used once as testing set, whereas the remainirenfsaivere all used to train the model. This
process was applied 6 times such that each comptanyesubset was used once as testing
set. Similarly to the previous situation, the btrags samples had 500 instances. The process

was repeated 100 times, obtaining an average AUIDG8fand standard deviation of 0.03.

3.2.3. Model Validation

In order to validate the predictive model, we ramtioselected 24 elements from the dataset,
obtaining two subsets from the original sample. mae sample composed by the remaining
114 observations was used to train the model, whéde24 separated elements were then used
to validate the model. The validation process vegeated 100 times producing an average
AUC of 0.69 with standard deviation of 0.03. Comsidg a=0.5, we obtained an average
accuracy of 0.68 and standard deviation of 0.09ther validation sample set. Figure 2
illustrates the histogram generated by the accunzyes obtained in 100 iterations
consideringa= 0.5. Each bargb[ of the histogram quantifies the number of iteras that
resulted in an accuracy value betwegfinclusive) and (exclusive). It is worth noting that
the worst accuracy value in the [0.6,0.7[ intemwak 0.62. Therefore, and as can also be seen
in Figure 2, 80% of the total iterations (thathe sum of the frequencies of the last 6 bars of
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the histogram) resulted in an accuracy higher 62 (proportion of patients in class “1”).
This means that in 80 out of 100 run iterations dlassifications obtained were better than
classifying all patients as belonging to class (dlass that comprises 62% from the total size

of the dataset).

4. Discussion

We applied several data mining classifiers for mtaty xerostomia induced by radiation
treatments in head-and-neck cancer patients atdi2hs. The basis of a predictive study is
the set of explanatory features that characteteedriginal sample set. The majority of
available radiobiological models only incorporatese information in the analyses. In Naga
et al. [15], the authors determined that the amalgan be enriched and be more reliable by
carefully select the most adequate explanatoryfeatand increasing larger datasets. Naga et
al. performed analogous studies to investigateothdrapy outcomes [15, 20]. They did not
evaluate the performance of their methodologiesdiyputing the AUC but correlated their
approaches with other equivalent applications.

Beetz and his colleagues also constructed predictiodels to study xerostomia and sticky
saliva at 6 months of treatments [18, 48], focushmegr attention into two different treatment
techniques, precisely, three-dimensional conformadiotherapy and IMRT. Concerning the
first treatment, they obtained AUC values of 82% &4%, respectively. When considering
IMRT, the values were significantly lower, 66% abi8%, respectively. These values were
also lower than those reached by our 4-factor ranfiwest classifier (our forecasting model
that resulted in a better performance), when cenid the same treatment technique, which
was equal to 73%. The studies performed by Beett lais colleagues present two
drawbacks: the use of small datasets and theraiion of patients with moderate to severe

xerostomia or sticky saliva at baseline. This amgented inherent complications in the
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construction of the classification model, but canmdlect the real scenario of therapies and
possibly not leading to reliable predictions.

The present work can also be compared with prewiau® of the same authors [16], where
an AUC of 73% was also achieved, but considerirgigaificant smaller dataset (only 49
patients) and a considerably higher number oftattes (15 predictive features), preventing
further validation tests to be performed.

A compromise between the number of elements anduheer of attributes used is of great
importance in predictive analysis to guarantee @geerformance of the model and to avoid
overfitting. Commonly, a concession of 10 obsenvadi per predictive variable is assumed.
Nevertheless, the 1:10 rule is somewhat arbitrisigreover, the total sample size is highly
significant. According to Steyerberg et al. [25¢r fsmall datasets, the external clinical
knowledge should be a priority. We used the vaki@pertise of the medical team to select
a small number of features that were consideradfa®ncing most the future occurrence of
xerostomia. The random forest predictive modeletam the set of four attributes suggested
by clinicians, was the data mining approach thasented better results regarding the
prediction of aptness for xerostomia induced byiateah at 12 months. The classifier
produced results with high predictive capabilitjhyowing that clinical experience and
knowledge was really an excellent support for prenk studies.

As far as the authors know, this was the first tthre random forests encompassing only pre-
treatment predictors were applied with the aim etiednining a potential adverse-effect of
xerostomia in radiation treatments. The majorityavéilable approaches was only based on
dosimetry data [11, 15, 20]. Consequently, thegeliptive models might not be as accurate
for individualized clinical decision-support systdéon routine care [49]. Our 4-factor random

forest approach, being based on a small set ofdmitreatment known attributes revealed a
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good performance. Thus, it might have a great adinutility being capable of correctly
estimate the class for new patients.

Our best predictive method was also evaluated usisgmpling techniques and validated on
independent datasets. All possible combinatiorth@ffour chosen attributes were tested. As
can be seen in Table 3, using AUC as the measufreafiscriminative ability of the models,
the best model was the one considering all fouibates simultaneously. Although the
dosimetric feature revealed the most significanivanmate prognostic ability, these results
highlight the importance of considering other atites in addition to dosimetric information.
The 4-factor classifiers yielded a probability astiag in a numerical value that represents
the degree to which a patient is a member of ¢lHssThe obtained results by LOOCV for
the random forest approach displayed a high AUQesaf 0.73, which revealed a high
performance of the predictive model, highly coreistwith the true classifications. All
similar systems and classification approaches tigeged exhibit poor values of AUC
measure. The high accuracy value (70%) as welakigh precision (72%) and recall (83%)
values, obtained for the most commonly used thidshalue of 0.5, reinforced the great
performance and consistence of the 4-factor ranidoest model. These values mean that our
4-factor random forest model was able to corrgatédicting the xerostomia class for 70% of
the patients. Additionally, from all patients esdited by the 4-factor random forest model as
having aptness for xerostomia 12 months after IMRR% really developed this
complication. For the 86 patients that really pnésé xerostomia after 12 months of
radiation therapy, our predictive 4-factor randarest model correctly predicted 83%.

When applying a 6-fold cross-validation proceduréhie best reached forecasting model, the
average AUC presented also a good value, 0.69. dergthe very small average standard
deviation, resulting in an AUC of 0.69+0.03, reeghbnce again that the model was able of

correctly estimating the aptness for xerostomiapgamation after 12 months of the beginning
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of radiation therapy for new head-and-neck canediepts. Validation analysis produced
similar AUC results and thus equally high perforeem@nd discriminative ability of the 4-

factor random forest model to make the predictibms new patients. In the scope of
validation analyses, we also explored the accurasults obtained when considering the
most commonly used threshold, 0.5, which resultedn accuracy of 0.68+0.09. Indeed, in
80% of the studied cases the obtained accuracyupeoda value higher than 0.62, which
means that in 80% of the analyzed cases, the pi@cwere better than classifying all

patients as belonging to class “1” (which compri62%o from the total 138 head-and-neck

cancer patients).

5. Conclusion

Random forests proved to be good classifiers fedigting the binary response “risk for
xerostomia at 12 months induced by radiation thertqgatments”, showing a high
discriminative ability. The role of the four attutes: age, gender, severity of xerostomia prior
to radiation therapy and planned mean physical dosthe contralateral and ipsilateral
parotids appeared to be of main importance to éweldpment of the radiation therapy side-
effect xerostomia. The corresponding 4-factor ramdorest model can make highly reliable
predictions of xerostomia complication. The impod& of detecting prior to treatment, the
radiation-induced complications has, as major athge the possibility of optimizing
treatment plans trying to avoid this complicatiorableast minimize such side-effect.

Future work will examine other aspects of nonlineardeling outcomes, such as applying
data mining algorithms to address not only the tsteom and long term estimates of radiation

treatment-induced complications but also the tumesponse prediction problem. The
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developed models, as well as the obtained resalts io the future, be integrated in the

optimization processes of radiation treatment glan
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Table 1. Demographic, clinical and treatment information flee population cohort used in
this study. The average patients age is 56.8, avishandard deviation of 11.9 (the ages are

comprised between 17.8 and 84.8).

Characteristics N (%)

Gender

Female 20 (14)

Male 118 (86)
Stage AJCC

| 3(2)

I 10 (7)

I 31 (23)

\Y; 94 (68)
Surgery

Yes 60 (43)

No 78 (57)
Type of radiotherapy

Non-Concomitant 64 (46)

Concomitant 74 (54)
Overall treatment time (days)

<44 85 (62)

>44 53 (38)
Xerostomia at baseline

Yes 9(7)

No 129 (93)
Total 138 (100)

! American Joint Committee on Cancer

Table 2.Dosimetry for the parotid glands.

DmeanzSD (Gy)

Parotid Glands (min—max)
Patients with xerostomia Patients without xerostomia
Ipsilateral 39.0£7.4 37.118.1
(24.8 - 61.6) (17.6 — 56.4)
Contralateral 35.247.4 33.1+8.3
(12.5-55.1) (4.9-471)
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Table 3. AUC obtained for all possible n-factor random &irepredictive models
(ne{1,2,3,4}). The mean dose in the parotid glandheaverage between both planned mean

(physical) doses in the contralateral and ipsiétearotids.

Features AUC
Gender 0.50
Xerostomia at baseline 0.52
Age 0.63
Mean dose in parotid glands 0.68
Xerostomia at baseline and Gender 0.50
Age and Gender 0.50
Xerostomia at baseline and Age 0.59
Mean dose in parotid glands and Age 0.65
Mean dose in parotid glands and Xerostomia at baseke 0.66
Mean dose in parotid glands and Gender 0.68
Mean dose in parotid glands, Xerostomia at baselinend Gender 0.67
Mean dose in parotid glands, Age and Gender 0.69
Mean dose in parotid glands, Xerostomia at baselinend Age 0.70
Mean dose in parotid glands, Xerostomia at baselind\ge and Gender 0.73
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Figure 1. ROC curve generated by the following predictivedels: A. Random Forest, B:

TPR
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Stochastic Boosting, C. Support Vector Machine Neural Network, E. Model-
based Clustering, F. Logistic Regression. All medeere applied to the dataset
by a LOOCYV technique. The diagonal line produce®d& of 0.5. TPR and FPR
are, respectively, the True and False PositiveRate
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Figure 2. Histogram generated by the accuracy values, olttdimethe validation dataset
with 24 random samples, in the 100 iterations ffier threshold value of 0.5, when
considering the 4-factor random forest model. Tiséogram cells are left-opened

and right-closed intervals.
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Table Legends

Table 1. Demographic, clinical and treatment information flee population cohort used in
this study. The average patients age is 56.8, avistandard deviation of 11.9 (the

ages are comprised between 17.8 and 84.8).

Table 2. Dosimetry for the parotid glands.

Table 3. AUC obtained for all possible n-factor random &irepredictive models

(ne{1,2,3,4}). The mean dose in the parotid glandshis average between both
planned mean (physical) doses in the contralaser@dlipsilateral parotids.
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