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Abstract

We address the problem of Gribov copies in lattice QCD. The gluon propagator is compu
the Landau gauge, using 302 (β = 5.8) 124 SU(3) configurations gauge fixed to different copie
The results of the simulation shows that: (i) the effect of Gribov copies is small (less than
(ii) Gribov copies change essentially the lowest momenta components (q < 2.6 GeV); (iii) within
the statistical accuracy of our simulation, the effect of Gribov copies is resolved if statistical
are multiplied by a factor of two or three. Moreover, when modelling the gluon propagator, diff
sets of Gribov copies produce different sets of parameters not, necessarily, compatible wit
standard deviation. Finally, our data supports a gluon propagator which, for large momenta, b
like a massive gluon propagator with a mass of 1.1 GeV.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction and motivation

Quantum chromodynamics (QCD) is the theory that describes the interaction be
quarks and gluons. The definition of the QCD generating functional à la Faddeev–Pop
[1–3] requires a choice of a gaugecondition, uniquely satisfied in each gauge orbit, i.e.
each set of fields related by a gauge transformation. For the Landau, the Coulomb gau
and for small field amplitudes, the gauge condition is uniquely satisfied in each gauge
E-mail addresses:psilva@teor.fis.uc.pt (P.J. Silva), orlando@teor.fis.uc.pt (O. Oliveira).
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However, if large field amplitudes are involved, the gauge fixing condition has mu
solutions in each gauge orbit[4,5], the Gribov copies.

Gribov copies appear when large field amplitudes are involved and rise the qu
of how to define the generating functional for the nonperturbative regime of qua
chromodynamics. Moreover, in[6] it was proved that it is not possible to find a loc
continuous and unambiguous gauge fixing condition for anySU(N) gauge theory define
on the manifoldS4. A similar result for the four-torus was obtained in[7].

For the continuum formulation of QCD, Zwanziger argued in[8] that the Landau gaug
Faddeev–Popov formula

(1)δ(∂A)det
[−∂ · D(A)

]
exp

[−SYM (A)
]
,

restricted to the region where the Faddeev–Popov operator is positive definite−∂ ·D(A) >

0, the Gribov regionΩ , provides an exact nonperturbative quantization for QCD. This
sult helps to eliminate some theoretical questions about the investigations of QCD
Dyson–Schwinger equations (DSE). Nevertheless, in what concerns the nonpertu
regime of QCD, being unable to solve exactly the DSE, the results of such studies
be compared to lattice results. In this way one can test the validity of the approxim
and ansatz used to solve the DSE and, simultaneously, the lattice algorithms.

The formulation of gauge theories on the lattice does not require gauge fixin
long as one is interested only on gauge invariant operators, the lattice calculation
plagued with the problem of Gribov copies. However, the investigation of the Gr
functions of the fundamental fields, such as the gluon, ghost and fermion propag
implies the choice of a gauge. On the lattice, typically, a simulation begins by gene
a number of thermalized gauge configurations. In order to compute, for exampl
propagators, each configuration is then rotated to satisfy a given gauge fixing conditio
Finally, the propagator is computed using these rotated configurations. For the Land
gauge, gauge fixing is implemented by computing a maximum of a given function de
on the gauge orbits. Now, the problem of the Gribov copies is due to the several max
the maximizing function. The first observations and studies of lattice Gribov copies
done long ago[9–14]. However, how the choice of Gribov copies changes the correla
functions is not yet clear.

On the continuum formulation, Gribov[4] studiedSU(2) gauge theory. His proposal
solve the problem of the different copies was to restrict the functional integration sp
the so-called Gribov regionΩ . The gluon propagator computed by functional integra
the gluon fields overΩ does not show the usual perturbative 1/q2 behavior but, instead
q2/(q4 + M4), with M being a mass scale which measures the volume ofΩ . Note that the
two propagators agree for the high energy regime.

On the lattice, there was a number of studies about Gribov copies and dif
observables in various gauges. In this paper we will be mainly concerned about the
propagator computed in the Landau gauge. Fora general discussion about lattice Grib
copies see, for example,[15] and references therein. For theSU(2) group, the gauge an
ghost propagators versus Gribov copies were studied in[16,17]. The authors claim tha
the gluon propagator is not sensible to Gribov copies in the weak coupling regime1 For
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the ghost propagator, the simulations performed by the first author shows that, close
continuum, the propagator is again not sensible to Gribov copies. In the second stu
claimed a reduction of 6% for the central value of the smallest momenta ghost prop
and a reduction of 4% on the Kugo–Ojima parameter.2 TheSU(2) simulations suggest tha
the influence of Gribov copies is at the level of the simulation statistical error. ForSU(3)

there is no systematic study but it is believed that the Gribov noise is contained with
statistical error of the Monte Carlo.

In this paper we study the pure gauge lattice QCD gluon propagator in the Landau
and try to understand the role of the Gribov copies. We compute the gluon propaga
302 configurations, withβ = 5.8, for a lattice size of 124. Our results show that, althoug
being a small effect (less than 6–10%), the Gribov copies change the lowest mo
components of the gluon propagator. This effect is illustrated fitting the gluon propagat
and comparing the results for sets of configurations built from different copies. G
copies influence can go from a doubling of the statistical error, to the extreme ca
changing the functional form of the propagator.

The paper is organized as follows.Section 2sets the field definitions and notation us
in this work. InSection 3, the Landau gauge is discussed, both on the continuum a
lattice QCD. Moreover, the algorithm used here is sketched. InSection 4, the results for
the role of Gribov copies in the gluon propagator are reported. Finally, inSection 5our
results are discussed.

2. Field definitions and notation

In the lattice formulation of QCD, the gluon fieldsAa
µ are replaced by the links

(2)Uµ(x) = eiag0Aµ(x+aêµ/2) +O
(
a3) ∈ SU(3),

whereêµ are unit vectors alongµ direction. QCD is a gauge theory, therefore the fie
related by gauge transformations

(3)Uµ(x) → g(x)Uµ(x)g†(x + aêµ), g ∈ SU(3),

are physically equivalent. The set of links related by gauge transformations toUµ(x) is the
orbit of Uµ(x).

The gluon field associated to a gauge configuration is given by

(4)Aµ(x + aêµ/2) = 1

2ig0

[
Uµ(x) − U†

µ(x)
] − 1

6ig0
Tr

[
Uµ(x) − U†

µ(x)
]

up to corrections of ordera2.

1 Note that, in the strong coupling regime, Cucchieri is able to see differences on the propagator due to Gri

copies.

2 See, also,[18].
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On the lattice, due to the periodic boundary conditions, the discrete momenta availa
are

(5)q̂µ = 2πnµ

aLµ

, nµ = 0,1, . . . ,Lµ − 1,

whereLµ is the lattice length over directionµ. The momentum space link is

(6)Uµ(q̂) =
∑
x

e−iq̂xUµ(x)

and the momentum space gluon field

Aµ(q̂) =
∑
x

e−iq̂
(
x+aêµ/2

)
Aµ(x + aêµ/2)

(7)= e−iq̂µa/2

2ig0

{[
Uµ(q̂) − U†

µ(−q̂)
] − 1

3
Tr

[
Uµ(q̂) − U†

µ(−q̂)
]}

.

The gluon propagator is the gluon two point correlation function. The dimensio
lattice two point function is

(8)
〈
Aa

µ(q̂)Ab
ν(q̂

′)
〉 = Dab

µν(q̂)V δ(q̂ + q̂ ′).
On the continuum, the momentum space propagator in the Landau gauge is given b

(9)Dab
µν(q̂) = δab

(
δµν − qµqν

q2

)
D

(
q2).

Assuming that the deviations from the continuum are negligible, the lattice scalar functi
D(q2) can be computed directly from(9) as follows

(10)D
(
q2) = 2

(N2
c − 1)(Nd − 1)V

∑
µ

〈
Tr

[
Aµ(q̂)Aµ(−q̂)

]〉
, q �= 0,

and

(11)D(0) = 2

(N2
c − 1)NdV

∑
µ

〈
Tr

[
Aµ(q̂)Aµ(−q̂)

]〉
, q = 0,

where

(12)qµ = 2

a
sin

(
q̂µa

2

)
,

Nc = 3 is the dimension of the group,Nd = 4 the number of spacetime dimensions andV

is the lattice volume.

3. The Landau gauge

3.1. The continuum Landau gauge

On the continuum, the Landau gauge is defined by
(13)∂µAµ = 0.
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This condition defines the hyperplane of transverse configurations

(14)Γ ≡ {A: ∂ · A = 0}.
It is well known[4] thatΓ includes more than one configuration from each gauge orb
order to try to solve the problem of the nonperturbative gauge fixing, Gribov suggest
use of additional conditions, namely the restriction of physical configurational space
region

(15)Ω ≡ {
A: ∂ · A = 0,M[A] � 0

} ⊂ Γ,

whereM[A] ≡ −∇ · D[A] is the Faddeev–Popov operator. However,Ω is not free of
Gribov copies and does not provide a proper definition of physical configurations.

A suitable definition of the physical configurational space is given by the fundamen
modular regionΛ ⊂ Ω , the set of the absolute minima of the functional

(16)FA[g] =
∫

d4x
∑
µ

Tr
[
Ag

µ(x)Ag
µ(x)

]
.

The fundamental modular regionΛ is a convex manifold[19] and each gauge orb
intersects the interior ofΛ only once[20,21], i.e., its interior consists of nondegener
absolute minima. On the boundary∂Λ there are degenerate absolute minima, i.e., diffe
boundary points are Gribovcopies of each other[21–23]. The interior ofΛ, the region of
absolute minima of(16), identifies a region free of Gribov copies.

3.2. The lattice Landau gauge

On the lattice, the situation is similar to the continuum theory[24–26]. The interior
of Λ consists of nondegenerate absolute minima of the lattice version of(16) and Gribov
copies can occur at the boundary∂Λ. However, for a finite lattice, the boundary∂Λ, where
degenerate minima may occur, has zero measure and the presence of these minim
ignored[25].

On the lattice, the Landau gauge is defined by maximizing the functional

(17)FU [g] = CF

∑
x,µ

Re
{
Tr

[
g(x)Uµ(x)g†(x + µ̂)

]}
,

where

(18)CF = 1

NdNcV

is a normalization constant. LetUµ be the configuration that maximizesFU [g] on a given
gauge orbit. For configurations nearUµ on its gauge orbit, we have

FU

[
1+ iω(x)

] = FU [1] + CF

4

∑
x,µ

iωa(x)Tr
[
λa

(
Uµ(x) − Uµ(x − µ̂)

)

(19)− λa

(
U†

µ(x) − U†
µ(x − µ̂)

)]
,
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whereλa are the Gell-Mann matrices. By definition,Uµ is a stationary point ofF , therefore

∂F

∂ωa(x)
= iCF

4

∑
µ

Tr
[
λa

(
Uµ(x) − Uµ(x − µ̂)

)
(20)− λa

(
U†

µ(x) − U†
µ(x − µ̂)

)] = 0.

In terms of the gluon field, this condition reads

(21)
∑
µ

Tr
[
λa

(
Aµ(x + aµ̂/2) − Aµ(x − aµ̂/2)

)] +O
(
a2) = 0,

or

(22)
∑
µ

∂µAa
µ(x) +O(a) = 0,

i.e., (20) is the lattice equivalent of the continuum Landau gauge condition. The latti
Faddeev–Popov operatorM(U) is given by the second derivative of(17).

Similarly to the continuum theory, on thelattice one defines the region of stationa
points of(17)

(23)Γ ≡ {
U : ∂ · A(U) = 0

}
,

the Gribov’s regionΩ of the maxima of(17),

(24)Ω ≡ {
U : ∂ · A(U) = 0 andM(U) � 0

}
and the fundamental modular regionΛ defined as the set of the absolute maxima of(17).

A proper definition of the lattice Landau gauge chooses from each gauge orb
configuration belonging to the interior ofΛ.

3.3. Gauge fixing algorithm

On the lattice, gauge fixing is implemented by maximizingFU [g]. In this work, the
gauge fixing algorithm used is a Fourieraccelerated steepest descent method (SD
defined in[27]. In each iteration, the algorithm chooses

(25)g(x) = exp

[
F̂−1α

2

p2
maxa

2

p2a2 F̂

(∑
ν

∆−ν

[
Uν(x) − U†

ν (x)
] − trace

)]
,

where

(26)∆−ν

(
Uµ(x)

) = Uµ(x − aêν) − Uµ(x),

p2 are the eigenvalues of(−∂2), a is the lattice spacing and̂F represents a fast Fourie
transform (FFT). For the parameterα we use the value 0.08[27]. For numerical purpose
it is enough to expand to first order the exponential in(25), followed by a reunitarization
of g(x).

On the gauge fixing process, the quality of the gauge fixing is measured by∑

(27)θ = 1

V Nc x

Tr
[
∆(x)∆†(x)

]
,
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where

(28)∆(x) =
∑
ν

[
Uν(x − aêν) − U†

ν (x) − h.c.− trace
]

is the lattice version of∂µAµ = 0.

4. The gluon propagator

In this work only pure gauge quenched configurations are considered. The Wilson
configurations were generated with version 6 of MILC code[28].

The functionFU has many maxima—see, for example,[29]. In each gauge orbit, th
different maxima are different configurations and, therefore, the gluon propagator ch
according to the chosen set of maxima. In order to study such dependence, 302
configurations were generated for a 124 lattice and forβ = 5.8, using a combined update
4 over-relaxed and 5 quasi-heat bath Cabbibo–Mariani updates, with a separation b
configurations of 3000 combined updates.To each gauge configuration, 500 SD gau
fixings, starting from different randomly chosen points, were performed requiring

(29)θ = 1

V Nc

∑
x

Tr
[
∆(x)∆†(x)

] = 1

V Nc

∑
x

|∂ · A|2 < 10−15.

From these 500 SD, on each gauge orbit, we keep the gauge configurations associate
the largest maximum ofFU (named MAX in the following), the smallest maximum ofFU

(named MIN) and three random values ofFU (RND1, RND2, RND3), generated startin
the gauge fixing process by choosing always the same randomg(x) matrices. A further
gauge fixing (named ID), starting the gauge fixing process by setting allg(x) = 1, was
performed to all gauge configurations. Another gauge fixing (named RND), starting t
gauge fixing process by choosing always the same randomg(x) matrices, was performe
to all configurations.

4.1. Bare gluon propagator

The scalar functionD(q2), computed according toEqs. (10) and (11), after averaging
over equivalent momenta,3 is shown inFig. 1 as function ofq̂ and as function ofq . The
figures includeD(q2) as function of momenta of type(q,0,0,0), (q, q,0,0), (q, q, q,0)

and (q, q, q, q) for all availableq in our lattice. The figures forD(q2) are reported in
Table 1. From now on, unless stated clearly, we will consider only the data referrin
D(q2) as function ofq .

Fig. 1 and Table 1show that, for the gluon propagator, the effect of Gribov cop
is small and visible for the smallest momenta. Indeed, comparing the different
propagators to the MAX propagator, it comes that, within one standard deviation, th
3 For example, for each gauge configuration the quoted value for momenta(1,0,0,0) is the average over
(1,0,0,0), (0,1,0,0), (0,0,1,0) and(0,0,0,1) values. Similarly, for(1,1,0,0) aZ4 average is performed, etc.
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(a)

(b)
Fig. 1. Bare gluon propagator. Statistical errors were computed using the jackknife procedure. (a) Scalar function
as function ofq̂. (b) Scalar function as function ofq.
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Table 1
Bare gluon scalar function. The numbers in parentheses are the statisticalerrors, computed using the jackkni
procedure, on the last digits ofD(q2)

nµ |q| D(q2)

MAX ID RND MIN

(0,0,0,0) 0.0000 36.68(46) 36.30(49) 35.71(47) 34.23(47)
(1,0,0,0) 0.5176 13.436(79) 13.496(79) 13.556(75) 13.780(77)
(2,0,0,0) 1.0000 2.848(18) 2.873(17) 2.881(19) 2.955(17)
(3,0,0,0) 1.4142 1.0363(64) 1.0397(64) 1.0415(63) 1.0566(61)
(4,0,0,0) 1.7320 0.5769(34) 0.5772(30) 0.5771(34) 0.5767(34)
(5,0,0,0) 1.9319 0.4278(24) 0.4280(25) 0.4293(24) 0.4316(25)
(6,0,0,0) 2.0000 0.3892(32) 0.3868(32) 0.3878(30) 0.3840(32)

(1,1,0,0) 0.7320 6.693(32) 6.752(35) 6.760(35) 7.100(38)
(2,2,0,0) 1.4142 1.1303(61) 1.1266(61) 1.1349(56) 1.1422(55)
(3,3,0,0) 2.0000 0.4377(20) 0.4390(20) 0.4398(21) 0.4401(21)
(4,4,0,0) 2.4495 0.2635(13) 0.2636(12) 0.2637(13) 0.2646(13)
(5,5,0,0) 2.7320 0.2026(10) 0.2020(10) 0.2024(10) 0.2019(10)
(6,6,0,0) 2.8284 0.1866(13) 0.1863(12) 0.1867(13) 0.1859(12)

(1,1,1,0) 0.8966 4.123(27) 4.109(26) 4.131(27) 4.295(27)
(2,2,2,0) 1.7320 0.6725(41) 0.6737(44) 0.6693(41) 0.6736(42)
(3,3,3,0) 2.4495 0.2734(16) 0.2747(16) 0.2723(16) 0.2761(16)
(4,4,4,0) 3.0000 0.1681(10) 0.1688(10) 0.1692(10) 0.1709(10)
(5,5,5,0) 3.3461 0.13105(75) 0.13264(75) 0.13147(74) 0.13156(79)
(6,6,6,0) 3.4641 0.1216(10) 0.1222(10) 0.1208(10) 0.1230(11)

(1,1,1,1) 1.0353 2.775(33) 2.795(33) 2.831(34) 2.972(38)
(2,2,2,2) 2.0000 0.4674(53) 0.4664(56) 0.4730(54) 0.4674(56)
(3,3,3,3) 2.8284 0.2018(25) 0.1993(25) 0.1995(25) 0.1967(24)
(4,4,4,4) 3.4641 0.1238(16) 0.1233(15) 0.1228(16) 0.1251(15)
(5,5,5,5) 3.8637 0.0982(12) 0.0972(12) 0.0981(10) 0.0965(11)
(6,6,6,6) 4.0000 0.0894(14) 0.0904(15) 0.0899(15) 0.0898(14)

ID propagator agrees with theD(q2) MAX for almost all the momenta considered. T
exception beingD(q2) for the momenta associated tonµ = (5,5,5,0), compatible with the
MAX value only within two standard deviations. Note that only the ID and MAX val
agree for the infrared regime. The RND propagator agrees, within one standard deviati
with the MAX propagator for all momenta but the zero momenta. The zero mom
RND propagator agrees with the MAXD(0) only within two standard deviations. Th
strongest deviation from the MAX propagator occurs whenD(q2) is computed using th
smallest of the maxima ofFU . The MIN propagator agrees, within one standard deviat
with MAX for momenta |q| � 1.7320 for momenta of type(q,0,0,0), |q| � 2.000
for (q, q,0,0), |q| � 3.3461 for momenta(q, q, q,0) and |q| � 3.4641 for (q, q, q, q)

momenta. For smaller momenta the differences between theD(q2) values can achiev
six standard deviations. Indeed, the agreement between the MIN and MAX values

in the table are: six standard deviations fornµ = (1,1,0,0); four standard deviations for
nµ = (1,1,1,0) and(2,0,0,0); three standard deviations fornµ = (0,0,0,0), (1,0,0,0)
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Fig. 2.D(q2)/DMAX (q2) as function ofq for ID, RND and MIN propagators. Statistical errors were compu
using the bootstrap method. The quoted errors correspond toa 68% confidence limit of the distributions obtain
from 5000 bootstrap samples.

and (1,1,1,1); two standard deviations fornµ = (2,2,0,0), (3,0,0,0), (3,3,3,3) and
(4,4,4,0). The lattice data shows clearly that Gribov copies change the low mom
(q < 1.7320) components of the gluon propagator.

For zero momentum, the largest propagator occurs when the configurations are
fixed to the fundamental modular region. The absolute difference between the MIN,
and ID to the MAX zero momenta propagator central values are 6.7%, 2.6% and 1
respectively. These numbers can be read as anorder of magnitude of the maximal chan
on the gluon propagator due to Gribov copies. For the other momenta, it is not alway
that the largest value ofD(q2) is associated to the MAX propagator. This can be see
Fig. 2.

Fig. 2 suggests that the ratio between the propagators to the MAX propagato
function of q , that converges to one for the larger momenta. Moreover, the figure s
clearly that the MIN propagator is different from the MAX propagator for momenta sm
thanq ∼ 1.7. FromFig. 2one can quantify again the change on the gluon propagato
to Gribov copies. For the MIN propagator, the effect of Gribov copies is, at most, a f
of 5–10%. For the RND and ID propagators, the effect of Gribov copies is not so dra
(a factor smaller than 5%).

Fig. 2 could suggest that the ratio between the propagators to the MAX propa

would be a constant factor. To test this hypothesis, inFig. 3 the propagators are plotted
after rescaling the different gluon fields to reproduce the central value of the zero momenta
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(a)

(b)

Fig. 3. Scaled gluon propagator. Statistical errors were computed using the jackknife procedure. (a
D(q2)DMAX (0)/D(0) as function ofq for all momenta. (b)D(q2)DMAX (0)/D(0) as function ofq for the

larger momenta.
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Fig. 4.χ2/d.o.f. for the uncorrelated fits ofD(q2)/DMAX (q2) to a constant.i is the number of lower moment
not considered in the fit.

MAX scalar function. As seen inFig. 3, the propagators differ by more than one stand
deviation for certain momenta. If, instead of rescaling the gluon field to reproduce th
momenta MAX scalar function, the matching is done, for example, fornµ = (6,0,0,0),
thenD(0) = 36.68± 0.46, 36.53± 0.50, 35.84± 0.47 and 34.70± 0.48 for the MAX, ID,
RND and MIN propagators, respectively. The MAX, ID and RNDD(0) are compatible
within one standard deviation. The MIND(0) agrees with MAX value only within thre
standard deviations. In order to further test the hypothesis under discussion,D/DMAX
was fitted to a constant. No correlations were considered in the fits. Theχ2/d.o.f. for
these fits are reported inFig. 4. Although, in general, the values of theχ2/d.o.f. decrease
as one excludes more lower momenta, they are always too high to conclude that
RND and MIN propagators differ, from the MAX propagator, by a multiplicative facto
particular, the difference between MIN, ID and MAX propagators is clearly not a cons
The RND/MAX ratio is compatible with a constant for the largest momenta consider

In conclusion, the analysis of the raw data for the bare gluon propagator sugges
the effect of Gribov copies is small, but observable (clearly, less than a 10% facto
is stronger for smaller momenta. Moreover, Gribov copies have almost no effect o
high momentum components of the gluon propagator. The data reported inTable 1shows
that the effect of Gribov copies can be overcame if one multiplies the statistical erro
a factor of 2 to 3 for the smaller momenta (aq � 1.73). This doubling of the statistica
error can be either, a general property associated to the effect of Gribov copies, or a res
due to the limited statistics used here. Note that in theSU(2) study of[16], the number

of configurations used for the larger lattices (124, 164) and for the largerβ (= 2.7) was
about half or less than half of the configurations used in our simulation. The investigation
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of D(q2)/DMAX (q2) shows that the propagators associated to the Gribov copies nam
ID, RND and MIN differ from the MAX propagator by more than a constant factor.

4.2. Gribov copies and gluon propagator models

In the previous section, it was argued that the ID, RND and MIN propagators d
differ from the MAX propagator by a constant factor. The question we would lik
investigate now being: is it possible to quantify the differences, due to Gribov co
when modelling the gluon propagator? To try to answer this question, we will study t
of D(q2) to a functional form.

In [30] a number of gluon propagator models were studied. Our simulation acc
limited range of momenta and, certainly, finite space and/or finite volume effects a
negligible. Instead of performing a detailed study of several functional forms, we cho
investigate the model which,according to Leinweber et al.[30], describes better the lattic
data.

Let us assume that the scalar function is given by

(30)D
(
q2) = Z

[
AM2α

(q2 + M2)1+α
+ L(q2,M2)

q2 + M2

]
,

where

(31)L
(
q2,M2) =

[
1

2
ln

[(
q2 + M2)(q−2 + M−2)]]−dD

is an infrared-regulated version of the one-loop logarithm correction to the g
propagator and, for pure gauge theories,dD = 13/22.

According to the results of the previous section, Gribov copies seem to chang
gluon propagator for the low energy momenta. Therefore, to measure such an eff
will consider three different types of uncorrelated fits. A fit to the highest momenta
fit) using the following functional form

(32)D
(
q2) = Z

q2

{
1

2
ln

(
q2

Λ2

)}−dD

,

a one-loop corrected perturbative gluon propagator. A fit to the lowest momenta (I
assuming that

(33)D
(
q2) = AM2α(

q2 + M2
)1+α

and a fit of(30) to all lattice data.
In order to compare our results with[30], we take their central values fora−1 at

β = 6.0 andβ = 6.2 and scalea to β = 5.8 using the results of two-loop calculation
This procedure gives, respectively,a−1 = 1.463 GeV anda−1 = 1.590 GeV. The averag
of the two values beinga−1 = 1.53± 0.06 GeV (a = 0.13 fm).
Fig. 5 showsq2D(q2) as function ofq for all sets of gauge fixed configurations. The
results for the different momenta shows that, in our simulation, the finite space/volume
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Fig. 5.q2D(q2) as function ofq for MAX, ID, RND and MIN propagators. The points not connected by line
refer to (q,0,0,0) momenta. The points connected by dotted lines refer to(q, q,0,0) momenta, the points
connected by dashed lines to(q, q, q,0) momenta and the points connected by dashed-dotted lines to(q, q, q, q)

momenta. Statistical errors were computed using the jackknife procedure.

Table 2
Fits of the higher momenta of typenµ = (n,0,0,0) to the one-loop corrected perturbative gluon propagator(32).
The fitting range goes fromn = 3 to n = 6. For larger fitting ranges, theχ2/d.o.f. becomes too large (> 18). It
is possible to fit the data using a smaller fitting range (n = 4 to n = 6). However, we do not report the figure
because such a fit would have only one degree of freedom. Statistical errors were computed using the bootst
method. The quoted errors correspond toa 68% confidence limit of the distributions obtained from 5000 bootstra
samples

Z Λ χ2/d.o.f.

MAX 1 .473+11
−11 0.8076+71

−69 0.08

ID 1.4578+98
−98 0.8181+65

−65 0.48

RND 1.4620+97
−98 0.8167+66

−67 0.44

MIN 1.4243+98
−98 0.8465+66

−62 2.78

effects are not negligible—an effect of the order of 10% from(q,0,0,0) to the other
types of momenta. Since the different types of momenta have different finite space/volum
effects, we will not include different types of momenta in the fits. The exception being t
IR fits.

The fits of the highest momenta to the asymptotic form(32)are reported inTables 2–5
for all types of momenta. The first point to remark is that the gluon propagator s
perturbatively foraq �

√
2 for momenta associated tonµ = (n,0,0,0) and nµ =
(n,n,0,0), for aq � 2.450 for nµ = (n,n,n,0) momenta and foraq � 1.035 for nµ =
(n,n,n,n) momenta; i.e., the asymptotic form describes quite well the lattice data for
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Table 3
Fits of the higher momenta of typenµ = (n,n,0,0) to the one-loop corrected perturbative gluon propagator(32).
The fitting range goes fromn = 2 or 3 up ton = 6. Statistical errors were computed using the bootstrap metho
The quoted errors correspond to a 68% confidence limit ofthe distributions obtained from 5000 bootstrap samp

nµ = (2,2,0,0) nµ = (3,3,0,0)

Z Λ χ2/d.o.f. Z Λ χ2/d.o.f.

MAX 1 .7846+61
−67 0.7208+46

−41 1.44 1.861+19
−19 0.659+15

−14 0.14

ID 1.7867+51
−64 0.7184+45

−35 0.44 1.823+17
−17 0.688+13

−13 0.15

RND 1.7776+57
−59 0.7285+41

−38 0.82 1.829+18
−17 0.686+13

−14 0.27

MIN 1.7617+56
−55 0.7413+39

−37 0.52 1.804+15
−17 0.706+14

−12 0.72

Table 4
Fits of the higher momenta of typenµ = (n,n,n,0) to the one-loop corrected perturbative gluon propagator(32).
The fitting range goes from 3 up ton = 6. For larger fitting ranges, theχ2/d.o.f. becomes too large (> 2). It
is possible to fit the data using a smaller fitting range (n = 4 to n = 6). However, we do not report the figure
because such a fit would have only one degree of freedom. Statistical errors were computed using the bootst
method. The quoted errors correspond toa 68% confidence limit of the distributions obtained from 5000 bootstra
samples

Z Λ χ2/d.o.f.

MAX 2 .100+37
−36 0.534+27

−27 0.78

ID 2.165+35
−40 0.498+27

−24 1.29

RND 2.150+40
−39 0.499+27

−27 0.09

MIN 2.092+36
−33 0.555+25

−27 0.80

Table 5
Fits of the higher momenta of typenµ = (n,n,n,n) to the one-loop corrected perturbative gluon propagator (32).
The fitting range goes fromn = 1 or 2 up ton = 6. Statistical errors were computed using the bootstrap metho
The quoted errors correspond to a 68% confidence limit ofthe distributions obtained from 5000 bootstrap samp

nµ = (1,1,1,1) nµ = (2,2,2,2)

Z Λ χ2/d.o.f. Z Λ χ2/d.o.f.

MAX 2 .099+9
−11 0.5944+47

−45 0.39 2.112+27
−31 0.584+22

−19 0.51

ID 2.076+8
−11 0.6043+50

−41 0.52 2.102+27
−31 0.584+24

−20 0.64

RND 2.0756+79
−97 0.6122+48

−42 1.12 2.064+26
−28 0.621+22

−20 1.48

MIN 2.0146+72
−93 0.6516+46

−41 1.20 2.091+31
−30 0.590+22

−23 1.05

sufficiently large momenta. Perturbative scaling starts at momentaq ∼1.6–3.7 GeV,
a value compatible with the figure quoted in[30], 2.7 GeV.

In what concerns the effect of Gribov copies at high momenta, the results given

Tables 2–4show that, for the same data and fitting range, the MAX, ID and RND values
are compatible within one standard deviation. For momenta associated tonµ = (n,n,n,n)
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and for the largest fitting range,4 theZ andΛ values are compatible within two standa
deviations. On the other side, the MIN fitted parameters are not compatible with the
figures; the exception being the fit to(q, q, q,0) momenta and the fit to the smallest fittin
range reported inTable 5.

In what concerns the stability of results, in general, the fitted parameters are not
against a change in the fitting range. Probably, this is due to the limited number of dif
momenta available in the simulation. If one compares the results of the larger fitting r
whereZ andΛ are compatible within one standard deviation for the different type
momenta, it comes thatZ increases andΛ decreases as one goes fromnµ = (n,0,0,0) to
nµ = (n,n,n,n) by a factor of∼ 1.4. Such a large correction is an indication of import
finite space effects—remember that the lattice spacing is∼ 0.13 fm. If one compares ou
values forΛ with those reported in[30], the numbers given inTables 2–5are, typically,
larger than those reported by Leinweber et al.

The discussion of the IR properties of the gluon propagator requires data for
momenta. In our simulation one has only a limited access to the infrared regime of
This is a serious limitation to a proper investigation of the low energy gluon propag
Nevertheless, we have tried to find the combination of the smaller momenta which i
reproduced by(33). Unfortunately, to achieve such a goal, we had to combine diffe
types of momenta. Below, we will show the results of such investigation. The re
should be aware of the physical meaning, or lack of meaning, of the numbers re
here. We would like to remember that our main goal is to see if there are differenc
the propagators, due to the choice of Gribov copies.

The set of momenta associated5 to nµ = (0,0,0,0), (1,0,0,0), (1,1,0,0) and
(2,0,0,0) is well described by the model function(33). The fitted parameters are report
in Table 6for the different propagators. Although,the lattice data is well described b
(33), not all fitted parameters are compatible within one standard deviation. Indee
MIN propagator values are not compatible with any of the other propagators. The
and ID propagators all have the sameA parameter. TheA from the RND fit is, within two
standard deviations, compatible with the MAX figures. In what concerns the gluon
M, the MAX and ID values are compatible within one standard deviation but MAX
RND are compatible within three standard deviations. For the parameterα, the MAX and
ID values are compatible within one standard deviation but MAX and RND are comp
within two standard deviations. Note that the gluon massM computed from the IR regim
of QCD is not compatible, within one standard deviation, with the values ofΛ from the
UV regime—seeTables 2–5. The values ofM andα for MAX are the smallest figures i
Table 6. From these fittings, one can quantify the effect due to Gribov copies as a t
three sigma effect on the parameters.

Finally, let us discuss the fittings of(30) to all lattice data. The results of the fits a
reported inTable 7 for momentanµ = (n,0,0,0), in Table 8 for nµ = (n,n,0,0), in
Table 9for nµ = (n,n,n,0) and inTable 10for nµ = (n,n,n,n) momenta. Theχ2/d.o.f.
shows that, in general, the lattice data is well described by(30). The exceptions are the fi

4 In physical units, the fitting range includes momenta from 1.6 GeV up to 6.1 GeV.

5 q = 0, 0.52, 0.73 and 1 or, in physical units,q = 0, 0.80, 1.12 and 1.53 GeV, respectively. Note that the

number of degrees of freedom for this fit is one.
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Table 6
The infrared propagator. Statistical errors were computed using the bootstrap method. The quoted erro
correspond to a 68% confidence limit of the distributions obtained from 5000 bootstrap samples

A M α χ2/d.o.f.

MAX 17.72+26
−24 0.6947+62

−59 1.278+23
−21 0.048

ID 18.19+29
−27 0.7076+67

−68 1.312+25
−24 0.031

RND 18.78+29
−27 0.7237+68

−64 1.363+26
−24 1.032

MIN 22.81+43
−44 0.8189+94

−96 1.675+37
−38 1.561

Table 7
Fits to all lattice data for momenta associated tonµ = (n,0,0,0) to the functional form(30). Statistical errors
were computed using the bootstrap method. The quotederrors correspond to a 68% confidence limit of t
distributions obtainedfrom 5000 bootstrap samples

Z A M α χ2/d.o.f.

MAX 1 .581+11
−13 12.63+29

−28 0.737+12
−12 1.982+56

−56 0.22

ID 1.564+11
−11 13.04+30

−27 0.748+11
−11 2.004+52

−52 0.39

RND 1.580+10
−10 13.82+30

−27 0.780+11
−11 2.134+52

−48 0.74

MIN 1.559+09
−12 15.69+32

−32 0.841+12
−12 2.320+54

−56 3.45

to the MIN data, momentanµ = (n,0,0,0), and ID propagator, momentanµ = (n,n,n,0).
For these two cases theχ2/d.o.f. is quite large, meaning that the lattice data is
described by(30).

To identify the effect of Gribov copies the different fits are compared for the sam
type of momenta. The data onTables 7–10shows that, for all types of momenta, t
fitted parameters for the MIN propagator are not compatible with the correspo
parameters for the MAX propagator. For momenta associated tonµ = (n,0,0,0), the
ID and MAX propagators parameters are compatible within one standard deviation. Th
RND and MAXZ values are compatible, within the same level of precision, theα andM

values are compatible within 2σ andA is compatible within three standard deviations. F
nµ = (n,n,0,0) momenta, ID and RND parameters are compatible with the MAX va
only within two standard deviations. The exception being theα from RND propagator
which agrees with the MAX figures within 1σ . For nµ = (n,n,n,0), RND and MAX
values are compatible within two standard deviations. For the ID parameters, theZ value
is, within two standard deviation, compatible with the MAX value and all remain
parameters are compatible within 1σ . Fornµ = (n,n,n,n), the MAX, RND and ID fitted
parameters are compatible within one standard deviation; theZ for the ID and MAX are
compatible within 2σ . Note that, in general, the MAX propagator has the largerZ value
and the smallestA, M andα. Again, like in the IR fits one can quantify the effect d
to Gribov copies as a two to three sigma effect. From the fittings it is not possib
establish, clearly, which parameters are less sensible to Gribov copies. Note that th

nµ = (n,n,n,n) momenta, although having large statistical errors and with the exception
of the MIN propagator, they do not distinguish the Gribov copies.



ce

ce

ce

ainst
194 P.J. Silva, O. Oliveira / Nuclear Physics B 690 (2004) 177–198

Table 8
Fits to all lattice data for momenta associated tonµ = (n,n,0,0), with n from 0 to 6, to the functional form(30).
Statistical errors were computed using the bootstrap method. The quoted errors correspond to a 68% confiden
limit of the distributions obtained from 5000 bootstrap samples

Z A M α χ2/d.o.f.

MAX 1 .8565+34
−41 10.46+20

−18 0.7283+76
−72 1.990+32

−31 1.15

ID 1.8478+33
−39 11.02+18

−18 0.7493+72
−68 2.061+28

−29 0.12

RND 1.8430+31
−38 10.96+20

−18 0.7524+77
−70 2.046+30

−28 0.45

MIN 1.8055+32
−35 13.94+20

−22 0.8569+74
−78 2.389+29

−30 0.33

Table 9
Fits to all lattice data for momenta associated tonµ = (n,n,n,0), with n from 0 to 6, to the functional form(30).
Statistical errors were computed using the bootstrap method. The quoted errors correspond to a 68% confiden
limit of the distributions obtained from 5000 bootstrap samples

Z A M α χ2/d.o.f.

MAX 1 .9410+36
−48 10.26+27

−27 0.7371+94
−91 2.018+39

−40 1.71

ID 1.9535+36
−47 10.40+28

−25 0.7484+97
−89 2.071+41

−39 2.46

RND 1.9289+40
−45 11.05+29

−29 0.773+10
−10 2.144+41

−42 1.60

MIN 1.9090+36
−42 12.83+27

−26 0.8460+95
−91 2.355+37

−38 0.68

Table 10
Fits to all lattice data for momenta associated tonµ = (n,n,n,n), with n from 0 to 6, to the functional form(30).
Statistical errors were computed using the bootstrap method. The quoted errors correspond to a 68% confiden
limit of the distributions obtained from 5000 bootstrap samples

Z A M α χ2/d.o.f.

MAX 2 .018+12
−13 10.38+73

−81 0.756+24
−28 2.15+10

−12 0.48

ID 1.993+11
−13 11.07+75

−78 0.780+24
−26 2.22+10

−11 0.44

RND 2.001+10
−12 10.42+72

−66 0.764+24
−23 2.117+98

−95 1.12

MIN 1.9239+70
−87 14.30+74

−69 0.896+21
−20 2.535+89

−86 0.57

Table 11

(q,0,0,0) (q, q,0,0) (q, q, q,0) (q, q, q, q)

α 1.982+56
−56 1.990+32

−31 2.018+39
−40 2.15+10

−12

M (MeV) 1128+18
−18 ± 44 1114+12

−11 ± 44 1128+14
−14 ± 44 1157+37

−43 ± 45

From the analysis ofTables 7–10one can check which parameters are robust ag
change of fitting momenta. Indeed, lookingonly to the fundamental modular region

propagators, it comes that theoverall normalization parameterZ is a function of the type of
momenta considered. At 1σ , the differentZ values are not compatible with each other. For
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the same level of precision, thenµ = (n,n,0,0), nµ = (n,n,n,0) andnµ = (n,n,n,n)

fitted parameters which measures the relative normalization of the infrared to ultraviol
propagator components,A, are compatible with each other. On the other hand,M andα

parameters are robust against change of momenta. All four values reported in the ta
compatible within one standard deviation. Our results forα andM are shown inTable 11
where the second error inM represents the error in the lattice spacing. Curiously, th
values are compatible, within one standard deviation with the values quoted in[30], namely
α = 2.2+0.1+0.2

−0.2−0.3 andM = (1020±100±25)MeV. Note that the values forM andα quoted
for the fittings to all lattice data are not, in general, compatible with the same param
computed from the IR and UV fits. Probably, this is due to using a relatively small la
that does not enable a clear separation between the low energy and high energy regimes
QCD.

5. Discussion and conclusions

In this paper the problem of the Gribov copies in lattice QCD is addressed. To
understand the role of Gribov copies in lattice QCD, the gluon propagator was compu
with 302 configurations for a 124 lattice and forβ = 5.8 using the overrelaxed quasi-he
bath.

The analysis of the raw data shows that Gribov copies change only the low mo
components of the gluon propagator. In our simulation, only for momentaaq < 1.7320
(q < 2.6 GeV) there are significant differences between the MIN and MAX propagato
The RND data is not compatible, within one standard deviation, with the MAX propagato
only for zero momentum. The study performed here shows that, typically, the c
of different Gribov copies changes the propagator in such a way that the fi
become compatible within two-to-three standard deviations. Note, however, that f
pathological case of the MIN propagator the deviation relative to the MAX propagato
be as large as six standard deviations effects. This result seems to suggest that in t
of the IR limit of the gluon propagator, the statistical errors should be multiplied by a fact
of two or three in order to take into account possible deviations due to Gribov cop
this is true for the statistical accuracy of our study, this may not hold when larger stat
bigger lattices are considered. That the Gribov copies change essentially the IR limit
propagator can be seen inFig. 6, whereD(q2) is plotted against〈FU 〉.

The properties observed for the raw scalar data are observed when we model the
data. A difference, due to the choice of Gribov copies, of up to two-to-three sta
deviations is seen on the fitted parameters. Note that this is observed even if the
energy momenta have the largest absolute errors, i.e., their contribution to theχ2 is not so
relevant. To our mind, a deviation of this order of magnitude is, probably, a good me
of the influence of the Gribov copies on the gluon propagator.

In what concerns the gluon propagator itself, the results of our simulation forM and
α support the results quoted in a previous investigation using much larger lattices[30].

Remember that, for the MAX propagators, these parameters are robust against a change on
the type of fitted momenta. It is interesting,that the lattice data supports quite well a gluon
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(a)

(b)

Fig. 6. Evolution ofD(q2) with 〈FU 〉. Scalar function associated to (a)n = (0,0,0,0); (b) n = (1,0,0,0); (c)
n = (1,1,0,0); (d) n = (1,1,1,0). After ordering the gauge fixed configurations associated with the sets MAX
ID, RND, MIN, RND1, RND2 and RND3 according to theFU value, the gluon scalar function is comput
picking always configurations within the same class of values ofFU . Statistical errors were computed using t
jackknife procedure.

propagator which, for large momenta, behaves like a massive vector with a mass

order of the hadronic scale. Remember that a massive gluon propagator, with a gluonic
mass of the order of 1 GeV, has some phenomenological support[31].
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(c)

(d)

Fig. 6. (Continued).
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