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Abstract

We address the problem of Gribov copies in lattice QCD. The gluon propagator is computed, in
the Landau gauge, using 308 £ 5.8) 12* SU(3) configurations gauge fixed to different copies.
The results of the simulation shows that: (i) the effect of Gribov copies is small (less than 10%);
(ii) Gribov copies change essentially the lowest momenta compongnts2(6 GeV); (iii) within
the statistical accuracy of our simulation, the effect of Gribov copies is resolved if statistical errors
are multiplied by a factor of two or three. Moreover, when modelling the gluon propagator, different
sets of Gribov copies produce different sets of parameters not, necessarily, compatible within one
standard deviation. Finally, our data supports a gluon propagator which, for large momenta, behaves
like a massive gluon propagator with a mass 4f GeV.
0 2004 Elsevier B.V. All rights reserved.
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1. Introduction and motivation

Quantum chromodynamics (QCD) is the theory that describes the interaction between
qguarks and gluons. The definition of the QCBngrating functional a la Faddeev—Popov
[1-3]requires a choice of a gaugendition, uniquely satisfied in each gauge orbit, i.e., on
each set of fields related by a gauge transation. For the Landau, the Coulomb gauge
and for small field amplitudes, the gauge condition is uniquely satisfied in each gauge orbit.
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However, if large field amplitudes are involved, the gauge fixing condition has multiple
solutions in each gauge orlji,5], the Gribov copies.

Gribov copies appear when large field amplitudes are involved and rise the question
of how to define the generating functional for the nonperturbative regime of quantum
chromodynamics. Moreover, if6] it was proved that it is not possible to find a local
continuous and unambiguous gauge fixing condition for &iiyN) gauge theory defined
on the manifoldSs. A similar result for the four-torus was obtained[#j.

For the continuum formulation of QCD, Zwanziger arguefBhthat the Landau gauge
Faddeev—Popov formula

5(3A)def—d - D(A)] exp[—Sym (A)], (1)

restricted to the region where the Faddeev—Popov operator is positive definifg(A) >

0, the Gribov regionf2, provides an exact nonperturbative quantization for QCD. This re-
sult helps to eliminate some theoretical questions about the investigations of QCD using
Dyson—Schwinger equations (DSE). Nevertheless, in what concerns the nonperturbative
regime of QCD, being unable to solve exactly the DSE, the results of such studies should
be compared to lattice results. In this way one can test the validity of the approximations
and ansatz used to solve the DSE and, simultaneously, the lattice algorithms.

The formulation of gauge theories on the lattice does not require gauge fixing. As
long as one is interested only on gauge invariant operators, the lattice calculation is not
plagued with the problem of Gribov copies. However, the investigation of the Green’s
functions of the fundamental fields, such as the gluon, ghost and fermion propagators,
implies the choice of a gauge. On the lattice, typically, a simulation begins by generating
a number of thermalized gauge configurations. In order to compute, for example, the
propagators, each configuration is theratetl to satisfy a given gauge fixing condition.
Finally, the propagator is computed using dbeotated configurations. For the Landau
gauge, gauge fixing is implemented by computing a maximum of a given function defined
on the gauge orbits. Now, the problem of the Gribov copies is due to the several maxima of
the maximizing function. The first observations and studies of lattice Gribov copies were
done long agg9-14]. However, how the choice of Gribov copies changes the correlation
functions is not yet clear.

On the continuum formulation, Gribd4] studiedSU (2) gauge theory. His proposal to
solve the problem of the different copies was to restrict the functional integration space to
the so-called Gribov regiof2. The gluon propagator computed by functional integrating
the gluon fields over2 does not show the usual perturbative;d behavior but, instead,
q%/(qg*+ M*), with M being a mass scale which measures the voluns2.dfiote that the
two propagators agree for the high energy regime.

On the lattice, there was a number of studies about Gribov copies and different
observables in various gauges. In this paper we will be mainly concerned about the gluon
propagator computed in the Landau gauge. &general discussion about lattice Gribov
copies see, for examplE,5] and references therein. For ti& (2) group, the gauge and
ghost propagators versus Gribov copies were studigd6ril7]. The authors claim that
the gluon propagator is not sensible to Gribov copies in the weak coupling rédfore.
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the ghost propagator, the simulations performed by the first author shows that, close to the
continuum, the propagator is again not sensible to Gribov copies. In the second study, it is
claimed a reduction of 6% for the central value of the smallest momenta ghost propagator
and a reduction of 4% on the Kugo—Ojima paraméfBne SU(2) simulations suggest that

the influence of Gribov copies is at the level of the simulation statistical erroiS #¢8)

there is no systematic study but it is believed that the Gribov noise is contained within the
statistical error of the Monte Carlo.

In this paper we study the pure gauge lattice QCD gluon propagator in the Landau gauge
and try to understand the role of the Gribov copies. We compute the gluon propagator for
302 configurations, withs = 5.8, for a lattice size of 12 Our results show that, although
being a small effect (less than 6—-10%), the Gribov copies change the lowest momenta
components of the gluon propagator. Thiseffis illustrated fitting the gluon propagator
and comparing the results for sets of configurations built from different copies. Gribov
copies influence can go from a doubling of the statistical error, to the extreme case of
changing the functional form of the propagator.

The paper is organized as followection 2sets the field definitions and notation used
in this work. InSection 3 the Landau gauge is discussed, both on the continuum and in
lattice QCD. Moreover, the algorithm used here is sketche&dction 4 the results for
the role of Gribov copies in the gluon propagator are reported. Finallgeition Sour
results are discussed.

2. Field definitions and notation
In the lattice formulation of QCD, the gluon fields; are replaced by the links

Uy (x) = els0hux+08u/2) 4 0(a%) € SU(3), 2)
wheree¢,, are unit vectors along direction. QCD is a gauge theory, therefore the fields
related by gauge transformations

Up(x) = g U, (x)g (x +aé,), geSUM), ©)

are physically equivalent. The set of links related by gauge transformatiéngo is the
orbit of Uy, (x).
The gluon field associated to a gauge configuration is given by

1 1
Au(x +aé,/2)=—[U,(x) = Ul x)]| = —Tr[U,.(x) = Ul (x 4
u( 1/2) 2l.go[ W) = U ()] S [Up(x) — U ()] (4)
up to corrections of order?.

1 Note that, in the strong coupling regime, Cucchieri iedb see differences on the propagator due to Gribov

copies.
2 see, alsof18].
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On the lattice, due to the periodic boundaonditions, the discrete momenta available
are

. 2mny

qu = , ne=01...,L,—1 (5)

alL,
whereL , is the lattice length over directign. The momentum space link is

U@ = e Uy (x) (6)
and the momentum space gluon field

Ap@ =) e I0FaR L (x4 ady/2)
X
e—iéua/Z 1
= U@§) —UN =) — =Tr[U.(§) — Ul (=]} 7
220 {[ w(@) = Up(=9)] = 3TrUL@) = U q)]} )
The gluon propagator is the gluon two point correlation function. The dimensionless
lattice two point function is

(AL@AL@)) = D@V +4). t)
On the continuum, the momentum space propagator in the Landau gauge is given by
ab ¢~ a qugv
Db (g) =34 b(é,w -~ ;2 )D(qz). 9)

Assuming that the deviations from the cantum are negligible, the lattice scalar function
D(¢?) can be computed directly fro®) as follows

2

D’ = e D, DV ?T [AL@ A =D]). a#0, (10)
and
D) = NZ=DNGV ;(Tf[Au(é)Au(—c?)]), q=0, (11)
where
= 2Sin dua 12
= sn( 7). @2

N, = 3 is the dimension of the group; = 4 the number of spacetime dimensions &hd
is the lattice volume.

3. TheLandau gauge

3.1. The continuum Landau gauge

On the continuum, the Landau gauge is defined by

9. A, =0. (13)
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This condition defines the hyperplaof transverse configurations
I'={A:9-A=0}. (14)

Itis well known[4] that I" includes more than one configuration from each gauge orbit. In
order to try to solve the problem of the nonperturbative gauge fixing, Gribov suggested the
use of additional conditions, namely the restriction of physical configurational space to the
region

2={A:9-A=0,M[A]20}CT, (15)

where M[A] = —V - D[A] is the Faddeev—Popov operator. Howewer,s not free of
Gribov copies and does not provide a progefinition of physical configurations.

A suitable definition of the physical conficational space is given by the fundamental
modular regionA C £2, the set of the absolute minima of the functional

Falgl =/d4x > T AS () A% ()] (16)
"

The fundamental modular region is a convex manifold19] and each gauge orbit
intersects the interior oft only once[20,21], i.e., its interior consists of nondegenerate
absolute minima. On the boundaiyl there are degenerate absolute minima, i.e., different
boundary points are Gribasopies of each othg21-23] The interior ofA, the region of
absolute minima of16), identifies a region free of Gribov copies.

3.2. The ldtice Landau gauge

On the lattice, the situation is similar to the continuum thej@4~26] The interior
of A consists of nondegenerate absolute minima of the lattice versigi®pand Gribov
copies can occur at the boundart. However, for a finite lattice, the boundaiyt, where
degenerate minima may occur, has zero measure and the presence of these minima can be
ignored[25].

On the lattice, the Landau gauge is defined by maximizing the functional

Fylgl=Cr ) Re{Tr[g0)Uu(0)g" (x + ]}, (17)
X, p
where
1
Cr= NaN.V (18)

is a normalization constant. Lét, be the configuration that maximizé% [g] on a given
gauge orbit. For configurations ney;, on its gauge orbit, we have

c
Fy[l+iox)]=Fylll+ TF > ief () THA (U () = Upx — )

X,

-2 (Ut - Ul =), (19)
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wherepr? are the Gell-Mann matrices. By definitioli,, is a stationary point of”, therefore

)= 4 & LT () = Ut = )
—~ A“(U;(x) ~ Ul (x — )] =0. (20)
In terms of the gluon field, this condition reads
D T (Au(x +aft/2) — Au(x —afi/2))] + O(a®) =0, (21)
or '
ZS#AZ()C)—G—O(Q) =0, (22)
1

i.e., (20) is the lattice equivalent of the contium Landau gauge condition. The lattice
Faddeev—Popov operatdf(U) is given by the second derivative (7).
Similarly to the continuum theory, on tHattice one defines the region of stationary
points of(17)
r={u:a-AWU)=0}, (23)
the Gribov’s regiorn2 of the maxima o{17),
2={U:9-AU)=0andM () >0} (24)

and the fundamental modular regidndefined as the set of the absolute maximé&la).
A proper definition of the lattice Landau gauge chooses from each gauge orbit, the
configuration belonging to the interior of.

3.3. Gauge fixing algorithm
On the lattice, gauge fixing is implemented by maximizifg[g]. In this work, the

gauge fixing algorithm used is a Fouriaccelerated steepest descent method (SD) as
defined in[27]. In each iteration, the algorithm chooses

g(x) = exp[F‘l pma)(l (ZA [Uv(x) — U (0)] - trace>:|, (25)
where
Ay (Up(x)) =Up(x — aéy) — Up(x), (26)

p? are the eigenvalues ¢f-92), a is the lattice spacing anfi represents a fast Fourier
transform (FFT). For the parametemwe use the value 0.027]. For numerical purposes,
it is enough to expand to first order the exponentiglis), followed by a reunitarization
of g(x).

On the gauge fixing process, the quality of the gauge fixing is measured by

I (27)
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where

Ax) =Y [Uy(x —aé,) - Ul (x) — h.c.— tracq (28)

v

is the lattice version 0§, A, = 0.

4. Thegluon propagator

In this work only pure gauge quenched configurations are considered. The Wilson action
configurations were generated with version 6 of MILC c{i2i.

The functionFy; has many maxima—see, for examg29]. In each gauge orbit, the
different maxima are different configurations and, therefore, the gluon propagator changes
according to the chosen set of maxima. In order to study such dependence, 302 gauge
configurations were generated for # 1&tice and fos = 5.8, using a combined update of
4 over-relaxed and 5 quasi-heat bath Cabbibo—Mariani updates, with a separation between
configurations of 3000 combined updat@&s. each gauge configuration, 500 SD gauge
fixings, starting from different randomly chosen points, were performed requiring

1 1 u
~ zx:Tr[A(x)AT(x)] =N Zx: 19- A2 <1015, (29)

0=
VN,

From these 500 SD, on each gauge orbit, wefkthe gauge configurations associated to
the largest maximum ofy (named MAX in the following), the smallest maximum B
(named MIN) and three random valuesif (RND1, RND2, RND3), generated starting
the gauge fixing process by choosing always the same ragdejnmatrices. A further
gauge fixing (named ID), starting the gauge fixing process by setting(ajl= 1, was
performed to all gauge configurations. Ahet gauge fixing (named RND), starting the
gauge fixing process by choosing always the same randeinmatrices, was performed
to all configurations.

4.1. Bare gluon propagator

The scalar functiorD(¢2), computed according tBgs. (10) and (11)after averaging
over equivalent momentais shown inFig. 1 as function ofj and as function of. The
figures includeD(4?) as function of momenta of typg, 0,0, 0), (7, ¢, 0,0), (¢,¢,q,0)
and (g, ¢, q,q) for all availableg in our lattice. The figures foD(g?) are reported in
Table 1 From now on, unless stated clearly, we will consider only the data referring to
D(g?) as function of.

Fig. 1 and Table 1show that, for the gluon propagator, the effect of Gribov copies
is small and visible for the smallest momenta. Indeed, comparing the different gluon
propagators to the MAX propagator, it comémt, within one standard deviation, the

3 For example, for each gauge configuration the quoted value for monikrdz0, 0) is the average over
(1,0,0,0), (0,1,0,0), (0,0,1,0) and(0, 0, 0, 1) values. Similarly, for(1, 1, 0, 0) a Z4 average is performed, etc.
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Fig. 1. Bare gluon propagator. Statisti errors were computed using thekfaaife procedure. (a) Scalar function

as function of;. (b) Scalar function as function qf.
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Bare gluon scalar function. The nuntbén parentheses are the statistieadors, computed using the jackknife
procedure, on the last digits dif(qz)

nu lq| D(q?)

MAX ID RND MIN
(0,0,0,0) 0.0000 3668(46) 36.30(49) 35.71(47) 34.23(47)
(1,0,0,0) 05176 13436(79) 13.496(79) 13.556(75) 13.780(77)
(2,0,0,0) 1.0000 2848(18) 2.87317) 2.881(19) 2.95517)
(3,0,0,0) 1.4142 10363 64) 1.039764) 1.041563) 1.056661)
(4,0,0,0) 1.7320 0576934) 0.577230) 0.5771(34) 0.576734)
(5,0,0,0) 1.9319 0427824 0.428Q25) 0.429324) 0.431625)
(6,0,0,0) 2.0000 0389232 0.386832) 0.387830) 0.3840(32)
(1,1,0,0) 0.7320 6693(32) 6.752(35) 6.760(35) 7.100(38)
(2,2,0,0 1.4142 1130361) 1.126661) 1.134956) 1.142255)
(3,3,0,0) 2.0000 0437720) 0.4390(20) 0.439821) 0.4401(21)
(4,4,0,0) 2.4495 0263513) 0.2636(12) 0.263713) 0.264613)
(5,5,0,0) 2.7320 0202610 0.2020(10) 0.202410) 0.201910)
(6,6,0,0) 2.8284 0186613 0.186312) 0.186713) 0.185912)
(1,1,1,0 0.8966 4123(27) 4.109(26) 4.131(27) 4.295(27)
(2,2,2,0) 1.7320 0672541) 0.673744) 0.669341) 0.673642)
3,3,3,0 2.4495 0273416) 0.274716) 0.272316) 0.2761(16)
4,4,4,0) 3.0000 0168110 0.168810) 0.169210) 0.170910)
(5,5,5,0) 3.3461 01310575) 0.1326475) 0.1314774) 0.1315679)
(6,6,6,0) 3.4641 0121610 0.122210) 0.120810) 0.123011)
(1,111 1.0353 277533 2.79533) 2.831(34) 2.972(39)
(2,2,2,2) 2.0000 0467453 0.466456) 0.473054) 0.467456)
3,3,3,3 2.8284 0201825 0.199325) 0.199525) 0.196724)
4,4,4,4) 3.4641 0123816) 0.123315) 0.122816) 0.1251(15)
(5,5,5,5) 3.8637 0098212 0.097212) 0.0981(10) 0.096511)
(6, 6, 6, 6) 4.0000 0089414 0.0904(15) 0.0899115) 0.089814)

ID propagator agrees with thB(g2) MAX for almost all the momenta considered. The
exception being (¢2) for the momenta associateditp = (5, 5, 5, 0), compatible with the
MAX value only within two standard deviations. Note that only the ID and MAX values
agree for the infrared regime. The RND prgp#or agrees, within one standard deviation,
with the MAX propagator for all momenta but the zero momenta. The zero momenta
RND propagator agrees with the MAX(0) only within two standard deviations. The
strongest deviation from the MAX propagator occurs whigg?) is computed using the
smallest of the maxima df;. The MIN propagator agrees, within one standard deviation,
with MAX for momenta |¢| > 1.7320 for momenta of typéq, 0,0, 0), |¢| > 2.000

for (¢,¢,0,0), |¢| > 3.3461 for momentdyq, ¢, ¢q,0) and |¢| > 3.4641 for (¢, q,q,q)
momenta. For smaller momenta the differences betweerDilg€) values can achieve

six standard deviations. Indeed, the agreement between the MIN and MAX values quoted
in the table are: six standard deviations figr= (1, 1, 0, 0); four standard deviations for
n,=(1,1,1,0) and(2, 0, 0, 0); three standard deviations fey, = (0,0, 0, 0), (1,0, 0, 0)
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Fig. 2.D(q2)/DMAx (q2) as function ofg for ID, RND and MIN propagators. Statistical errors were computed
using the bootstrap method. The quoted errors correspoa@886 confidence limit of the distributions obtained
from 5000 bootstrap samples.

and (1, 1,1, 1); two standard deviations for, = (2,2,0,0), (3,0,0,0), (3,3,3,3) and
(4,4,4,0). The lattice data shows clearly that Gribov copies change the low momenta
(¢ < 1.7320) components of the gluon propagator.

For zero momentum, the largest propagator occurs when the configurations are gauge
fixed to the fundamental modular region. The absolute difference between the MIN, RND
and ID to the MAX zero momenta propagatentral values are 6.7%, 2.6% and 1%,
respectively. These numbers can be read asrder of magnitude of the maximal change
on the gluon propagator due to Gribov copies. For the other momenta, it is not always true
that the largest value db(¢?) is associated to the MAX propagator. This can be seen in
Fig. 2

Fig. 2 suggests that the ratio between the propagators to the MAX propagator is a
function of ¢, that converges to one for the larger momenta. Moreover, the figure shows
clearly that the MIN propagator is different from the MAX propagator for momenta smaller
thang ~ 1.7. FromFig. 2one can quantify again the change on the gluon propagator due
to Gribov copies. For the MIN propagator, the effect of Gribov copies is, at most, a factor
of 5-10%. For the RND and ID propagators, the effect of Gribov copies is not so dramatic
(a factor smaller than 5%).

Fig. 2 could suggest that the ratio between the propagators to the MAX propagator
would be a constant factor. To test this hypothesigsign 3 the propagators are plotted
after rescaling the different gluon fields to reproduce the central value of the zero momenta
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Fig. 4.X2/d.0.f. for the uncorrelated fits oD(qz)/DMAx (q2) to a constanti is the number of lower momenta
not considered in the fit.

MAX scalar function. As seen iRig. 3, the propagators differ by more than one standard
deviation for certain momenta. If, instead of rescaling the gluon field to reproduce the zero
momenta MAX scalar function, the matching is done, for examplezfo+= (6, 0, 0, 0),
thenD(0) = 36.68+ 0.46, 3653+ 0.50, 3584+ 0.47 and 3470+ 0.48 for the MAX, ID,

RND and MIN propagators, respectively. The MAX, ID and RNI¥0) are compatible
within one standard deviation. The MIR(0) agrees with MAX value only within three
standard deviations. In order to further test the hypothesis under discussi@nyax

was fitted to a constant. No correlations were considered in the fitsxfheo.f. for

these fits are reported Fig. 4 Although, in general, the values of thé/d.o.f. decrease

as one excludes more lower momenta, they are always too high to conclude that the ID,
RND and MIN propagators differ, from the MAX propagator, by a multiplicative factor. In
particular, the difference between MIN, ID and MAX propagators is clearly not a constant.
The RND/MAX ratio is compatible with a constant for the largest momenta considered.

In conclusion, the analysis of the raw data for the bare gluon propagator suggests that
the effect of Gribov copies is small, but observable (clearly, less than a 10% factor) and
is stronger for smaller momenta. Moreover, Gribov copies have almost no effect on the
high momentum components of the gluon propagator. The data reporfatlz 1shows
that the effect of Gribov copies can be overcame if one multiplies the statistical errors by
a factor of 2 to 3 for the smaller momentag(< 1.73). This doubling of the statistical
error can be either, a general property assteci to the effect of Gribov copies, or a result
due to the limited statistics used here. Note that inSb&2) study of[16], the number
of configurations used for the larger lattices {126%) and for the largep (= 2.7) was
about half or less than half of the configurations used in our simulation. The investigation
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of D(¢?)/Duax (¢%) shows that the propagators associated to the Gribov copies hamed as
ID, RND and MIN differ from the MAX propagator by more than a constant factor.

4.2. Gribov copies and gluon propagator models

In the previous section, it was argued that the ID, RND and MIN propagators do not
differ from the MAX propagator by a constant factor. The question we would like to
investigate now being: is it possible to quantify the differences, due to Gribov copies,
when modelling the gluon propagator? To try to answer this question, we will study the fit
of D(¢?) to a functional form.

In [30] a number of gluon propagator models were studied. Our simulation access a
limited range of momenta and, certainly, finite space and/or finite volume effects are no
negligible. Instead of performing a detailed study of several functional forms, we chose to
investigate the model whiclgccording to Leinweber et dB0], describes better the lattice
data.

Let us assume that the scalar function is given by

AMZot L(qz’ M2)
D(q%) = Z[(q2+ M2+ + 42+ M2 } (30)
where
1 v
L(q? M?) = [5 In[(¢? + M?)(g 2+ M—Z)]] (31)

is an infrared-regulated version of the one-loop logarithm correction to the gluon
propagator and, for pure gauge theorigs—= 13/22.

According to the results of the previous section, Gribov copies seem to change the
gluon propagator for the low energy momenta. Therefore, to measure such an effect we
will consider three different types of uncorrelated fits. A fit to the highest momenta (UV-
fit) using the following functional form

Dlg?) = %{%m(%)}d (32)

a one-loop corrected perturbative gluon propagator. A fit to the lowest momenta (IR-fit),
assuming that

AM%
(CIZ + MZ) 1+a

and a fit of(30) to all lattice data.

In order to compare our results wif80], we take their central values far-! at
B =6.0 andpB = 6.2 and scale: to 8 = 5.8 using the results of two-loop calculations.
This procedure gives, respectively,! = 1.463 GeV and: 1 = 1.590 GeV. The average
of the two values being~—! = 1.53+ 0.06 GeV @ = 0.13 fm).

Fig. 5showsg2D(¢?) as function ofy for all sets of gauge fixed configurations. The
results for the different momenta showstthia our simulation, the finite space/volume

D(q?) = (33)
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Fig. 5.q2D(q2) as function ofg for MAX, ID, RND and MIN propagatorsThe points not connected by lines
refer to (¢,0,0,0) momenta. The points connected by dotted lines refefgtg, 0,0) momenta, the points
connected by dashed lines(p, ¢, ¢, 0) momenta and the points connected by dashed-dotted lingsdoq, ¢)
momenta. Statistical errors were cpated using the jackknife procedure.

Table 2

Fits of the higher momenta of typg, = (1, 0, 0, 0) to the one-loop corrected perbative gluon propagat¢B2).
The fitting range goes from = 3 to n = 6. For larger fitting ranges, the?/d.o.f. becomes too largex(18). It

is possible to fit the data using a smaller fitting range=(4 to n = 6). However, we do not report the figures
because such a fit would have only one degree of freedtaiis®&al errors were computed using the bootstrap
method. The quoted errors correspond 8% confidence limit of the distniions obtained from 5000 bootstrap
samples

z A x2/d.of.
MAX 147311 0.8076" 3 0.08
ID 1.4578"38 0.8181752 0.48
RND 146209 0.8167"59 0.44
MIN 1.424338 0.8465" 2.78

effects are not negligible—an effect of the order of 10% frgmO, 0, 0) to the other
types of momenta. Since the different typésmmenta have different finite space/volume
effects, we will not include different type$ momenta in the fits. The exception being the
IR fits.

The fits of the highest momenta to the asymptotic f¢82) are reported irTables 2-5
for all types of momenta. The first point to remark is that the gluon propagator scales
perturbatively forag > +/2 for momenta associated to, = (n,0,0,0) and n,, =
(n,n,0,0), for ag > 2.450 forn, = (n,n,n,0) momenta and fotg > 1.035 forn, =
(n,n,n,n) momenta; i.e., the asymptotic form describes quite well the lattice data for
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Table 3

Fits of the higher momenta of typg, = (1, n, 0, 0) to the one-loop corrected perbative gluon propagat¢B2).

The fitting range goes from = 2 or 3 up ton = 6. Statistical errors were cgmated using the bootstrap method.
The quoted errors correspond to a 68% confidence limhe#tlistributions obtained from 5000 bootstrap samples

nu =(2,2,00 ny,=(3,3,0,0
z A x2/dof.  z A x2/d.of.
MAX  1.78468% 0.7208"3° 1.44 186119 0.659'15 0.14
ID 1.7867'2; 0718432 0.44 182317 0.688'13 0.15
RND  17776'%] 0728542 0.82 1829"18 0.686"13 0.27
MIN 1761722 0.7413"39 0.52 180413 0.706"1% 0.72

Table 4

Fits of the higher momenta of typg, = (n, n, n, 0) to the one-loop corrected parbative gluon propagat¢82).
The fitting range goes from 3 up 0= 6. For larger fitting ranges, th;@z/d.o.f. becomes too largex( 2). It

is possible to fit the data using a smaller fitting range=(4 to n = 6). However, we do not report the figures
because such a fit would have only one degree of freedtatistgal errors were computed using the bootstrap
method. The quoted errors correspond &8% confidence limit of the distuiions obtained from 5000 bootstrap
samples

z A x2/d.of.
MAX 2.100"3] 0534727 0.78
ID 2.165"3% 04983/ 1.29
RND 2150749 0.499"57 0.09
MIN 2.002"38 0.555"53 0.80

Table 5

Fits of the higher momenta of typg, = (n, n, n, n) to the one-loop corrected perbative gluon propagato8g).

The fitting range goes from = 1 or 2 up ton = 6. Statistical errors were cgmted using the bootstrap method.
The quoted errors correspond to a 68% confidence limhi@tlistributions obtained from 5000 bootstrap samples

np=(1111 np=(2.2,2.2)
z A x2/dof.  Z A x2/d.of.

MAX  2.099"%; 0594447 0.39 211227 0.584"42 051

ID 2.076'8; 0604339 0.52 210221 0.584"5 0.64

RND  20756'(9 0612238 112 206458 0621722 1.48

MIN  2.0146"(2 0.65165° 1.20 209173} 059023 1.05

sufficiently large momenta. Perturbative scaling starts at momentel.6-3.7 GeV,
a value compatible with the figure quoted80], 2.7 GeV.

In what concerns the effect of Gribov cepi at high momenta, the results given in
Tables 2—4how that, for the same data and fitting range, the MAX, ID and RND values
are compatible within one standard deviation. For momenta associaig@idn, n, n, n)
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and for the largest fitting randgethe Z and A values are compatible within two standard
deviations. On the other side, the MIN fitted parameters are not compatible with the MAX
figures; the exception being the fittg, ¢, g, 0) momenta and the fit to the smallest fitting
range reported iffable 5

In what concerns the stability of results, in general, the fitted parameters are not stable
against a change in the fitting range. Probably, this is due to the limited number of different
momenta available in the simulation. If one compares the results of the larger fitting ranges
whereZ and A are compatible within one standard deviation for the different types of
momenta, it comes that increases and decreases as one goes fropn= (n, 0, 0, 0) to
n, = (n,n,n,n) by afactor of~ 1.4. Such a large correction is an indication of important
finite space effects—remember that the lattice spacing@sl3 fm. If one compares our
values forA with those reported ifi30], the numbers given iffiables 2-5are, typically,
larger than those reported by Leinweber et al.

The discussion of the IR properties of the gluon propagator requires data for small
momenta. In our simulation one has only a limited access to the infrared regime of QCD.
This is a serious limitation to a proper investigation of the low energy gluon propagator.
Nevertheless, we have tried to find the combination of the smaller momenta which is well
reproduced by33). Unfortunately, to achieve such a goal, we had to combine different
types of momenta. Below, we will show the results of such investigation. The reader
should be aware of the physical meaning, or lack of meaning, of the numbers reported
here. We would like to remember that our main goal is to see if there are differences, on
the propagators, due to the choice of Gribov copies.

The set of momenta associatetb n, = (0,0,0,0), (1,0,0,0), (1,1,0,0) and
(2,0,0,0) is well described by the model functi¢®3). The fitted parameters are reported
in Table 6for the different propagators. Althougthe lattice data is well described by
(33), not all fitted parameters are compatible within one standard deviation. Indeed, the
MIN propagator values are not compatible with any of the other propagators. The MAX
and ID propagators all have the samigarameter. The from the RND fit is, within two
standard deviations, compatible with the MAX figures. In what concerns the gluon mass
M, the MAX and ID values are compatible within one standard deviation but MAX and
RND are compatible within three standard deviations. For the paramgetiee MAX and
ID values are compatible within one standard deviation but MAX and RND are compatible
within two standard deviations. Note that the gluon m#@ssomputed from the IR regime
of QCD is not compatible, within one standard deviation, with the values &om the
UV regime—sedables 2-5The values of\f anda for MAX are the smallest figures in
Table 6 From these fittings, one can quantify the effect due to Gribov copies as a two to
three sigma effect on the parameters.

Finally, let us discuss the fittings ¢80) to all lattice data. The results of the fits are
reported inTable 7for momentan, = (n,0,0,0), in Table 8for n, = (n,n,0,0), in
Table 9for n,, = (n, n, n, 0) and inTable 10for n,, = (n, n, n, n) momenta. The?/d.o.f.
shows that, in general, the lattice data is well describe(8By The exceptions are the fits

4 In physical units, the fitting range includes momenta from 1.6 GeV up to 6.1 GeV.
5 g =0, 052, Q73 and 1 or, in physical unitg; =0, 0.80, 112 and 153 GeV, respectively. Note that the
number of degrees of freedom for this fit is one.
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Table 6
The infrared propagator. Stdisal errors were computed usinget bootstrap method. The quoted errors
correspond to a 68% confidence limit of the dimftions obtained from 5000 bootstrap samples

A M a x2/d.of.
MAX 17.72+58 0.6947"22 127853 0.048
ID 18.19"22 0.7076"5% 131233 0.031
RND 187853 0.7237°8% 1.363"55 1.032
MIN 228143 0.8189" 34 16753 1561

Table 7

Fits to all lattice data for momenta associated:fo= (n, 0,0, 0) to the functional form(30). Statistical errors
were computed using the bootstrap method. The queteats correspond to a 68% confidence limit of the
distributions obtainedrom 5000 bootstrap samples

Z A M o x2/d.of.
MAX 1.581+11 1263"53 073712 1.982'20 0.22
ID 1.564" 11 13.04"39 074811 2.004122 0.39
RND 158019 1382"39 0.780'11 2134752 0.74
MIN 1.559"9 1569'35 0.841'15 2.320°2¢ 3.45

to the MIN data, momenta, = (n, 0, 0, 0), and ID propagator, momenig = (1, n, n, 0).
For these two cases the?/d.o.f. is quite large, meaning that the lattice data is not
described by30).

To identify the effect of Gribov copies ¢hdifferent fits are compared for the same
type of momenta. The data orables 7—10shows that, for all types of momenta, the
fitted parameters for the MIN propagator are not compatible with the corresponding
parameters for the MAX propagator. For momenta associateqd, te- (z, 0,0, 0), the
ID and MAX propagators parameters are cotifa within one standard deviation. The
RND and MAX Z values are compatible, within the same level of precisionpthad M
values are compatible withiro2and A is compatible within three standard deviations. For
n, = (n,n,0,0) momenta, ID and RND parameters are compatible with the MAX values
only within two standard deviations. The exception beingdhtom RND propagator,
which agrees with the MAX figures withinel For n, = (n,n,n,0), RND and MAX
values are compatible within two standard deviations. For the ID parametets vhiee
is, within two standard deviation, compatible with the MAX value and all remaining
parameters are compatible withier 1Forn,, = (n, n, n, n), the MAX, RND and ID fitted
parameters are compatible within one standard deviationZ tfeg the ID and MAX are
compatible within 2. Note that, in general, the MAX propagator has the laigemalue
and the smalles, M and«. Again, like in the IR fits one can quantify the effect due
to Gribov copies as a two to three sigma effect. From the fittings it is not possible to
establish, clearly, which parameters are less sensible to Gribov copies. Note that the fits to
n, = (n,n,n,n) momenta, although having large statistical errors and with the exception
of the MIN propagator, they do not distinguish the Gribov copies.
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Table 8

Fits to all lattice data for momenta associated o= (n, n, 0, 0), with » from 0 to 6, to the functional forr(B0).
Statistical errors were computeding the bootstrap method. The quotedoes correspond to a 68% confidence
limit of the distributions obtained from 5000 bootstrap samples

z A M o x2/d.of.
MAX 1.8565"37 1046120 0728375 1.99032 115
ID 1.8478'33 110218 074932 2.061738 0.12
RND 18430"3} 10.96"29 0.7524"17 2.046"39 0.45
MIN 1.8055'32 13.94+29 0.8569" 72 2.389"29 0.33

Table 9

Fits to all lattice data for momenta associatea jo= (n, n, n, 0), with n from 0 to 6, to the functional forr80).
Statistical errors were computeding the bootstrap method. The quotedoes correspond to a 68% confidence
limit of the distributions obtained from 5000 bootstrap samples

Z A M o x2/d.of.
MAX 1.9410°3% 10.26"57 0737137 20183 171
ID 1.9535"3% 10.40"58 0.7484 37 2071443 2.46
RND 1928942 110523 077319 2144741 1.60
MIN 1.9090"35 1283%2¢ 0.8460' 35 2355737 0.68

Table 10

Fits to all lattice data for momenta associated o= (n, n, n, n), with n from 0 to 6, to the functional forr(B0).
Statistical errors were computeding the bootstrap method. The quotedoes correspond to a 68% confidence
limit of the distributions obtained from 5000 bootstrap samples

z A M o x2/d.of.
MAX 2.018"73 103813 0.756" 53 21519 0.48
ID 199311 110773 0.780" 3¢ 222119 0.44
RND 2001773 1042472 0.764"23 211738 112
MIN 1.9239°%9 143072 0.896'2% 2.535'82 0.57
Table 11

(¢,0.0,0 (¢.4,0,0 4.4,.9.0 9.9.9.9

a 1.9822° 1.990"32 2018730 21519
M (MeV) 112818+ 44 111412+ 44 112814+ 44 115731 + 45

From the analysis ofables 7—1®mne can check which parameters are robust against
change of fitting momenta. Indeed, lookimgly to the fundamemal modular region
propagators, it comes that theerall normalization parametéris a function of the type of
momenta considered. At] the differentZ values are not compatible with each other. For
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the same level of precision, thg, = (n,n,0,0), n, = (n,n,n,0) andn, = (n,n,n,n)

fitted parameters which measures the retatiermalization of the infrared to ultraviolet
propagator componentd, are compatible with each other. On the other havidand «
parameters are robust against change of momenta. All four values reported in the tables are
compatible within one standard deviation. Our resultsf@nd M are shown inTable 11
where the second error i represents the error in the lattice spacing. Curiously, these
values are compatible, within one standard deviation with the values qud&g],inamely

a = 22752102 andM = (1020+ 100+ 25) MeV. Note that the values fow anda quoted

for the fittings to all lattice data are not, in general, compatible with the same parameters
computed from the IR and UV fits. Probably, this is due to using a relatively small lattice
that does not enable a clear separation ketwthe low energy and high energy regimes of
QCD.

5. Discussion and conclusions

In this paper the problem of the Gribov copies in lattice QCD is addressed. To try to
understand the role of Gribov copies in 1a#iQCD, the gluon propagator was computed
with 302 configurations for a 2attice and forg = 5.8 using the overrelaxed quasi-heat
bath.

The analysis of the raw data shows that Gribov copies change only the low momenta
components of the gluon propagator. In our simulation, only for momegpta 1.7320
(¢ < 2.6 GeV) there are significant differeaes between the MIN and MAX propagators.
The RND data is not compatible, within onerstiard deviation, with the MAX propagator
only for zero momentum. The study performed here shows that, typically, the choice
of different Gribov copies changes the propagator in such a way that the figures
become compatible within two-to-three standard deviations. Note, however, that for the
pathological case of the MIN propagator the deviation relative to the MAX propagator, can
be as large as six standard deviations effects. This result seems to suggest that in the study
of the IR limit of the gluon propagator, the s#dical errors should be multiplied by a factor
of two or three in order to take into account possible deviations due to Gribov copies. If
this is true for the statistical accuracy of our study, this may not hold when larger statistics,
bigger lattices are considered. That the Gribov copies change essentially the IR limit of the
propagator can be seenfig. 6, whereD(g?) is plotted againstFy ).

The properties observed for the raw scalar data are observed when we model the lattice
data. A difference, due to the choice of Gribov copies, of up to two-to-three standard
deviations is seen on the fitted parameters. Note that this is observed even if the lowest
energy momenta have the largest absolute errors, i.e., their contributiontd theot so
relevant. To our mind, a deviation of this order of magnitude is, probably, a good measure
of the influence of the Gribov copies on the gluon propagator.

In what concerns the gluon propagator itself, the results of our simulatiod fand
a support the results quoted in a previous investigation using much larger Id8i@les
Remember that, for the MAX propagators,$beg@arameters are robust against a change on
the type of fitted momenta. It is interestirigat the lattice data supports quite well a gluon
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Fig. 6. Evolution OfD(qz) with (Fy ). Scalar function associated to @)= (0,0, 0, 0); (b) » = (1,0, 0, 0); (c)
n=(1,10,0); (d)n = (11,1, 0). After ordering the gauge fixed configiions associated with the sets MAX,
ID, RND, MIN, RND1, RND2 and RND3 according to th&; value, the gluon scalar function is computed
picking always configurations within the same class of valueBpf Statistical errors were computed using the
jackknife procedure.

propagator which, for large momenta, behaves like a massive vector with a mass of the
order of the hadronic scale. Remember that a massive gluon propagator, with a gluonic
mass of the order of 1 GeV, has some phenomenological sujgigrt
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Fig. 6. Continued.
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