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Abstract. In this paper we study the unidirectional transport
effect for Brownian ratchets modeled by Fokker–Planck-type equa-
tions. In particular, we consider the adiabatic and semiadiabatic
limits for tilting ratchets, generic ratchets with small diffusion,
and the multi-state chemical ratchets. Having established a linear
relation between the bulk transport velocity and the bi-periodic
solution, and using relative entropy estimates and new functional
inequalities, we obtain explicit asymptotic formulas for the trans-
port velocity and qualitative results concerning the direction of
transport. In particular, we prove the conjecture by Blanchet,
Dolbeault and Kowalczyk that the bulk velocity of the stochastic
Stokes’ drift is non-zero for every non-constant potential.

1. Introduction

Brownian ratchets or Brownian motors are generic terms for tiny de-
vices which are able to produce unidirectional transport of matter when
all acting forces and gradients vanish after averaging over space and
time, and at the presence of (and often due to) overdamped Brownian
motion [2, 15, 19, 27, 32, 33]. Motor proteins are generally considered
to be the most celebrated example of Brownian ratchets [1]. However,
during recent years there has been a huge progress [18] in realizing
and observing bulk motion without net bias in SQUIDs, Josephson
junctions, cold atoms in optical lattices, nanopores, etc., as well as in
microfluidics experiments. The Stokes’ drift with diffusion is also an ex-
ample of a Brownian ratchet mechanism [4, 19, 21]. Although the idea
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of micro-level motors goes back to the dawn of thermodynamics, the
discovery of ratchets has boosted the contemporary nano-technological
interest in the development of hybrid and artificial molecular machines
[7, 22].

The dynamics of a ratchet can be described by the Fokker–Planck
equation

(1.1) ρt − σρxx − (Ψxρ)x = 0,

where σ is the given diffusion coefficient, and ρ(x, t) is the unknown
probability density of distribution of Brownian particles governed by a
given potential Ψ(x, t), which is supposed to be T -periodic in time t,
and to have a 1-periodic in x derivative Ψx(x, t). Note that we do not
assume the potential Ψ(x, t) itself to be x-periodic, so various tilting
regimes are allowed, and the ‘tilting forces’ are contained within the
potential.

A related model which has particular relevance in biological appli-
cations is the chemical motor. Here the particles can be in several
states, and the total amount of particles is fixed. Particles in differ-
ent states are sensitive to different time-independent potentials. The
underlying chemical processes cause transitions between the particles’
states, which we can consider to be random. This is described by the
following system of Fokker–Planck-type equations:

(1.2) (ρi)t−σ(ρi)xx−((Ψi)xρi)x+
∑
j, j 6=i

νjiρi =
∑
j, j 6=i

νijρj, i = 1, . . . , N,

where Ψi(x) are the given potentials, and σ is the diffusion coefficient
(for definiteness, we set it to be the same for all states). We assume
that (Ψi)x(x) (not the Ψi themselves) and the transition rates νij(x)
are 1-periodic.

Various particular cases of (1.1) and (1.2), including the so-called
flashing ratchets, were studied in [5, 6, 8, 9, 13, 20, 23, 24, 28, 29, 30,
37, 38]. To catch the motor effect, the majority of these papers consider
(1.1) or (1.2) with no-flux boundary conditions on a bounded segment,
and show, under appropriate assumptions, that the mass is eventually
concentrated closer to one edge of the segment than to the other. Yet
equation (1.1) with the travelling potential Ψ(x, t) = ψ(x − ωt) and
the flashing potential Ψ(x, t) = h(t)ψ(x), where ψ is 1-periodic, and

h(t) =

{
1 if kT < t ≤ (k + 1/2)T,

0 if (k + 1/2)T < t ≤ (k + 1)T,
(k = 0, 1, . . . )

was examined on the whole real line in [5, 6] and [24], respectively. In
[24] it was observed that the solutions of a homogenized equation tend
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to propagate with constant speed or not to move at all as the period
length goes to zero. In [5, 6] it was shown that with the course of time
the velocity of the centre of mass eventually becomes the same for all
solutions (see also [12]). Moreover, this asymptotic speed is equal to

(1.3) v∞ = − 1

T

∫ T

0

∫ 1

0

Ψx(x, t)g∞(x, t) dx dt,

where g∞ is the bi-periodic (in x and t) travelling wave solution to
(1.1).

In this paper, we develop a unified approach for detecting transport
for generic equations (1.1) and (1.2). We prove that the averaged ve-
locity stabilizes as time goes to infinity, and the limiting velocity is
independent of the solution. We establish a linear relation between
this velocity and a certain solution to (1.1) or (1.2), respectively. This
solution is actually the bi-periodic solution in the case of (1.1), and
is the stationary x-periodic solution vector in the case of (1.2). This
allows us to obtain a more explicit characterization of the occurrence
of unidirectional transport, its direction and bulk velocity, for 1- and
2-state tilting ratchets, in the adiabatic and semiadiabatic regimes, for
the stochastic Stokes’ drift, and for generic low-diffusion-driven 1- and
2-state ratchets (1.1) and (1.2). We also prove the conjecture stated
by Blanchet, Dolbeault, and Kowalczyk in [5] (see also [32]) that the
bulk velocity of the stochastic Stokes’ drift is non-zero for every non-
constant potential.

The paper is organized as follows. In Section 2 we set the framework
for our research. In particular, we define the transport in terms of
the asymptotic average bulk velocity and relate it to the bi-periodic
solution of an auxiliary space-periodic problem.

In Section 3 we consider the adiabatic regime for tilting ratchets, i.e.,
we suppose that the ratchet spends a long time in each of its states.
In Theorem 3.1 we justify the explicit formula (3.8) for the adiabatic
transport velocity. Developing this topic, we state an effective formula
for the direction of transport (Proposition 3.8). Finally, Theorem 3.12
gives a qualitative result showing that a major interval of monotonicity
of the potential implies a particular direction of transport. A highlight
of Section 3 is Proposition 3.14 establishing a nontrivial functional
inequality.

In Section 4 we study the so-called semiadiabatic regime for tilting
ratchets, when the overall period of tilting goes to infinity and one of
the tilting states dominates the other. We give an effective explicit
formula (4.5) for the semiadiabatic transport velocity and prove that
non-constant potentials produce nonzero semiadiabatic transport in
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one and the same direction—Theorem 4.4 and Corollaries 4.5 and 4.6.
These results are partially based on the functional inequality related
with Proposition 4.1, which also implies the conjecture of [5] (see also
[32]) that the stochastic Stokes’ drift generates unidirectional transport
for every non-constant potential.

In Section 5 we consider generic Brownian ratchets with small diffu-
sion coefficient and show that there is a connection between the trans-
port and a certain ODE. We show (Theorem 5.1) that if this ODE
does not have periodic solutions or, equivalently, if its Poincaré rota-
tion number in nonzero, there appears directed transport of mass.

In Section 6 we extend our approach to multi-state models. The
most interesting results are obtained for the case of small diffusion:
Theorem 6.3 classifies it with respect to the geometry of zeroes of the
potential gradients and establishes the direction of transport in differ-
ent cases. Finally, Theorem 6.6 treats the adiabatic and semiadiabatic
regimes for the randomly tilting ratchet.

2. Bulk velocity

2.1. Unidirectional transport. We model the dynamics of a ratchet
by the Fokker–Planck equation

(2.1)

{
ρt − σρxx − (Ψxρ)x = 0, x ∈ R, t > 0,
ρ = ρ0(x), x ∈ R.

Here Ψ(x, t) is a given potential, and ρ0 is a given initial condition.
We assume that Ψ(x, t) is T -periodic in t and its derivative Ψx(x, t) is
1-periodic in x, and we also assume that ρ0(x) satisfies the requirements

(2.2) ρ0(x) ≥ 0,

∫ ∞
−∞

ρ0(x) dx = 1,

∫ ∞
−∞
|x|ρ0(x) dx <∞.

We are interested in nonnegative solutions of (2.1). Such solutions may
be viewed as non-stationary distributions of a unit mass on R whose
movement is governed by a potential force and by diffusion.

The most interesting cases arise when Ψ is ‘unbiased’ in the sense
that

(2.3)

∫ T

0

∫ 1

0

Ψx(x, t) dx dt = 0,

i.e., the time and space average of the potential gradient vanishes.
However, for the sake of generality, in the sequel we do not assume
(2.3) unless explicitly specified.

Since the spatial regularity of the potential is not an issue, we assume
Ψ to be C4 in x, although this can definitely be relaxed. It can be
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proved by classical methods (see e.g. [31]) that if Ψ is also continuous
in (x, t), then (2.1) is uniquely solvable for any continuous initial data
ρ0 satisfying (2.2); moreover, the solution ρ(x, t) is positive for any
t > 0, and

(2.4) lim
x→±∞

|x|(|ρ(x, t)|+ |ρx(x, t)|) = 0.

A consequence of (2.4) is the conservation of mass

(2.5)

∫ ∞
−∞

ρ dx = 1

and the finiteness of the centre of mass

(2.6) x̄(t) =

∫ ∞
−∞

xρ(x, t) dx

for any t. We study the asymptotic behaviour of solutions of (2.1) as
t→∞. Properties (2.4), (2.5), and (2.6) are crucial for our approach.

To catch the unidirectional transport effect, we consider the velocity
of the centre of mass x̄(t), which is called the drift (or bulk, or ballis-
tic) velocity. Specifically, we consider the average drift velocity on the
interval [t, t + T ], and if it has a nonzero limit as t→ +∞, we say we
have unidirectional transport.

Due to the periodic nature of the problem at issue, the drift velocity
is conveniently characterized by means of the following problem on the
circle S1 = R/Z:

gt − σgxx + (Fg)x = 0, (x, t) ∈ S1 × (0,∞),(2.7)

g(x, 0) = g0(x), x ∈ S1; g0(x) ≥ 0,

∫
S1

g0(x) dx = 1.(2.8)

Here F (x, t) is defined on S1 × (0,∞); generally we assume that it is
T -periodic in t.

To start with, observe that if ρ is a nonnegative solution of (2.1),
then, by linearity, the nonnegative function

(2.9) g(x, t) =
∞∑

k=−∞

ρ(x+ k, t)

solves (2.7) with F = −Ψx.
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Consider the average velocity of the centre of mass as t varies from
t0 to t0 + T :

v[t0,t0+T ] :=
x̄(t0 + T )− x̄(t0)

T

=
1

T

(∫ ∞
−∞

xρ(x, t0 + T ) dx−
∫ ∞
−∞

xρ(x, t0) dx

)
=

1

T

∫ ∞
−∞

x

∫ t0+T

t0

ρt(x, t) dt dx

=
1

T

∫ t0+T

t0

∫ ∞
−∞

x(σρxx + (Ψxρ)x) dx dt

=
1

T

∫ t0+T

t0

(
−σ
∫ ∞
−∞

ρx dx−
∫ ∞
−∞

Ψxρ dx

)
dt

= − 1

T

∫ t0+T

t0

∞∑
k=−∞

∫ 1

0

Ψx(x+ k, t)ρ(x+ k, t) dx dt

= − 1

T

∫ t0+T

t0

∫ 1

0

Ψx(x, t)g(x, t) dx dt

(here we have used (2.4) and the periodicity of Ψx). Thus we have the
following formula for the average drift velocity:

(2.10) v[t0,t0+T ] = − 1

T

∫ t0+T

t0

∫ 1

0

Ψx(x, t)g(x, t) dx dt.

Remark 2.1. We point out that the conservation of mass holds for
(2.7)–(2.8), i.e.,

(2.11)

∫
S1

g(x, t) dx = 1

for any solution thereof.

2.2. Bi-periodic solution. The notion of relative entropy and related
inequalities are a useful tool for the study of the Fokker–Planck equa-
tion (2.7).

Given g, h ∈ L1
+(S1) such that∫

S1

g dx = 1 =

∫
S1

h dx,

define the relative entropy of g with respect to h by

e[g|h] =

∫
S1

g ln
g

h
dx.
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Observe that e[g|h] ≥ 0 (the possibility e[g|h] = ∞ is not excluded).
Indeed, letting r = g/h ≥ 0 we have

e[g|h] =

∫
S1

g ln r dx =

∫
S1

(g ln r − g + h) dx

=

∫
S1

h(r ln r − r + 1) dx ≥ 0

as r ln r − r + 1 =
∫ r

1
ln ξ dξ ≥ 0. Moreover, e[g|h] = 0 if and only if

g = h almost everywhere. This follows from the definition and from
the fact that the relative entropy controls L1 distance. Specifically,
for probability densities g, h ∈ L1

+(S1) we have the known Csiszár–
Kullback inequality [11]:

(2.12) ‖g − h‖2
L1(S1) ≤ 2 e[f |g],

which holds for any probability densities g, h ∈ L1
+(S1).

Another important tool is the Log-Sobolev inequality [17], which we
need in the following form: given h ∈ L1(S1) such that∫

S1

h dx = 1, 0 < C1 ≤ h(x) ≤ C2 for a. a. x ∈ S1,

there exists b = b(C1, C2) > 0 such that

(2.13)

∫
S1

g ln
g

h
dx ≤ b

∫
S1

g
∣∣∣(ln

g

h

)
x

∣∣∣2 dx
for any probability density g ∈ L1

+(S1) such that the derivative on
the right-hand side exists almost everywhere. Observe that both sides
in (2.13) are nonnegative (possibly infinite) whenever the derivative of
the logarithm makes sense.

The integral

I[g|h] =

∫
S1

g
∣∣∣(ln

g

h

)
x

∣∣∣2 dx
on the right-hand side of (2.13) is called the entropy production term
of g and h. Thus (2.13) can be equivalently expressed as

(2.14) e[g|h] ≤ b I[g|h].

The following theorem sets the framework for our investigation of
transport. It establishes the existence of a unique time-periodic so-
lution of (2.7), which attracts other solutions and thus is our natural
object of study (cf. [13, 6, 3]). Although its proof is somewhat standard,
we present it here for completeness.
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Theorem 2.2. Suppose that F : S1 × R+ is T -periodic in the second
argument and there exists a partition 0 = t0 < t1 < · · · < tn = T of the
segment [0, T ] such that F is C3 on every segment [ti−1, ti]. Then there
exists a unique positive T -periodic in t solution g∞ of (2.7) satisfy-
ing (2.11). Moreover, if g solves (2.7)–(2.8) with the initial condition
satisfying

∫
S1
g0 ln g0 dx < ∞, then g∞ attracts g in the sense of the

entropy

(2.15) e[g(·, t)|g∞(·, t)] ≤ e[g(·, 0)|g∞(·, 0)]e−γt, t ≥ 0,

where γ = σ/b and b = b(min g∞,max g∞) is the uniform Log-Sobolev
constant for g∞.

Remark 2.3. If F has discontinuities at the points ti, we do not require
that (2.7) should hold at these points. In this case we construct solu-
tions piecewise: given the initial data at t = t0, by parabolic regularity
the solution is well defined at t = t1, then g(·, t1) is considered as the
initial condition for the segment [t1, t2], and so on.

Proof of Theorem 2.2 . First suppose that F is C3 on S1 × [0, T ]. Let

X = {g ∈ L1
+(S1) |

∫
S1

g(x) dx = 1}.

Consider the operator T : X → X that takes g0 ∈ X to g(·, T ), where g
solves (2.7)–(2.8). The operator is well defined due to the conservation
of mass and the maximum principle. As X is convex and bounded in
L1(S1), its image T (X) is precompact in X by parabolic regularity.
Hence, by the Schauder theorem, T has a fixed point, which clearly is
the initial condition for a T -periodic in time solution g∞ of (2.7). We
have yet to prove that it is the only periodic solution. By parabolic
regularity, g∞ is continuous on S1 × [0, T ] and hence bounded, and by
the strong maximum principle it is positive and thus bounded away
from 0.

Now suppose g solves (2.7) with the initial condition g0(x) ≥ 0 such
that

∫
S1 g0(x) ln g0(x) dx < ∞. We claim that the relative entropy

e[g(·, t)|g∞(·, t)] decreases. Indeed, letting r = g/g∞ we have

(2.16)
d e[g|g∞]

dt
=

d

dt

∫
S1

g ln
g

g∞
dx

=

∫
S1

gt ln
g

g∞
dx+

∫
S1

gt dx−
∫
S1

g(g∞)t
g∞

dx

=

∫
S1

(σgxx − (Fg)x) ln r dx−
∫
S1

(g∞)tr dx
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=

∫
S1

g

r
(σrxx + Frx) dx− σ

∫
S1

g
r2
x

r2
dx−

∫
S1

(g∞)tr dx

=

∫
S1

g∞(σrxx + Frx) dx− σ
∫
S1

g
r2
x

r2
dx−

∫
S1

(g∞)tr dx

=

∫
S1

(σ(g∞)xx − (Fg∞)x − (g∞)t)r dx− σ
∫
S1

g
r2
x

r2
dx

= −σ
∫
S1

(
ln

g

g∞

)2

x

g dx = −σ I[g|g∞].

As g∞ is bounded away from 0, as well as from above for (x, t) ∈
S1 × [0, T ], we have the uniform in t Log-Sobolev inequality

e[g|g∞] ≤ b I[g|g∞].

Hence

(2.17)
d e[g|g∞]

dt
≤ −σ

b
e[g|g∞]

and (2.15) follows. Moreover, the attraction (2.15) implies the unique-
ness of the periodic solution.

In the general case of piecewise continuous F , the proof works with
slight modifications. We have T = Tn ◦ · · · ◦ T1, where Ti is the resolv-
ing operator for the segment [ti−1, ti], which is compact, so we still can
apply the Schauder theorem and obtain a fixed point and a periodic so-
lution. The relative entropy e[g|g∞] is continuous and the computation
(2.16) holds in each open interval (ti−1, ti), so e[g|g∞] decreases. In-
equality (2.17) also holds in each open interval (ti−1, ti), whence (2.15)
follows. Indeed, for t1 we have

e[g|g∞]|t=t1 ≤ e[g|g∞]|t=t0e−γt1 ,
so for any t ∈ (t1, t2) we have

e ≤ e |t=t1e−γ(t−t1) ≤ e |t=0e−γt1e−γ(t−t1) = e |t=0e−γt,

and so on for the subsequent intervals. �

Corollary 2.4. Under the hypothesis of Theorem 2.2, g∞ also expo-
nentially attracts g in the sense of L1:

(2.18)

∫
S1

|g(x, t)− g∞(x, t)| dx ≤ Ce−γt/2, t ≥ 0

where C depends on g and g∞.

Proof. It suffices to combine (2.15) with the Csiszár–Kullback inequal-
ity (2.12). �
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Returning to problem (2.1), put

(2.19) v∞ = − 1

T

∫ T

0

∫ 1

0

Ψx(x, t)g∞(x, t) dx dt,

where g∞ is the periodic solution of (2.7) with F = −Ψx satisfy-
ing (2.11). Combining (2.10) and (2.18), we easily obtain the next
result.

Corollary 2.5. Suppose that Ψ(x, t) is C4-smooth in x, and F = −Ψx

satisfies the hypothesis of Theorem 2.2. Then for any solution ρ of
(2.1) with the initial condition ρ0 satisfying (2.2) we have

(2.20) |v[t0,t0+T ] − v∞| ≤ Ce−γt0/2,

where γ > 0 is the same as in Theorem 2.2 and depends only on g∞,
and C depends on ρ and g∞.

We conclude that under the hypothesis of Corollary 2.5 the limiting
average drift velocity is the same for all solutions of (2.1) and is deter-
mined by the periodic equation (2.7). For this reason in what follows
we mostly concentrate on equation (2.7).

2.3. Tilting and tilted ratchets. An important class of unbiased
potentials are the tilting potentials, which have the form

(2.21) Ψ(x, t) = ψ(x) +H(t)x,

where the base potential ψ(x) is 1-periodic in x, and H(t) is T -periodic
in t and characterized by the property

(2.22)

∫ T

0

H(t) dt = 0.

Given the periodicity of ψ, equation (2.22) is equivalent to (2.3).
We obtain a typical tilting potential by letting

(2.23) H(t) = h(t)ω,

where ω ∈ R characterizes the swing of the tilt, and

(2.24) h(t) =

{
1 if kT < t ≤ (k + 1/2)T,

−1 if (k + 1/2)T < t ≤ (k + 1)T,
(k = 0, 1, . . . ).

The tilting potential corresponding to (2.24) periodically switches be-
tween the tilted potentials ψ(x)± ωx. Thus the tilted potential

(2.25) ψ(x) + ωx

is a useful example of an obviously ‘biased’ potential (here ψ satisfies
the same conditions as above and ω is a number).
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Remark 2.6. Observe that if Ψ is a tilting ratchet potential (2.21), then

(2.26) v[t0,t0+T ] = − 1

T

∫ t0+T

t0

∫ 1

0

ψx(x)g(x, t) dx dt.

To prove this, substitute (2.21) in (2.10) and use the conservation of
mass (2.11) and the zero mean condition (2.22). Consequently,

(2.27) v∞ = − 1

T

∫ T

0

∫ 1

0

ψx(x, t)g∞(x, t) dx dt.

It is useful to consider the stationary periodic equation

(2.28) σgxx + ((ψx + ω)g)x = 0, (t, x) ∈ (0,∞)× S1,

where ψx is the derivative of a C4 1-periodic function ψ. This equation
can be treated by elementary methods. Put

α = α(ω) = eω − 1;

β+ = β+(ω, ψ) =

∫ 1

0

eωx+ψ(x) dx;

β− = β−(ω, ψ) =

∫ 1

0

e−ωx−ψ(x) dx;

β = β(ω, ψ) =

∫ 1

0

∫ x

0

eωy+ψ(y)−ωx−ψ(x) dy dx,

and define

(2.29) A(ω, ψ) =
α

αβ + β+β−
, B(ω, ψ) =

β+

αβ + β+β−
.

Remark 2.7. Observe that A(ω, ψ) > 0 for ω > 0 and A(0, ψ) = 0. A
simple reflection argument (ψ(x) 7→ ψ(1 − x), ω 7→ −ω) shows that
A(ω, ψ) < 0 for ω < 0. In particular, A(ω, ψ) exists for any ω and
continuous ψ (i.e., the denominator does not vanish). Consequently,
B(ω, ψ) also exists.

Proposition 2.8. Suppose ψ : R → R is continuously differentiable
and 1-periodic; then (2.28) has a unique solution g∗ such that

g∗(x) ≥ 0,

∫ 1

0

g∗(x) dx = 1.

Moreover, g is given by

(2.30) g∗ = e−(ωx+ψ(x))/σ

(
B

(
ω

σ
,
ψ

σ

)
+ A

(
ω

σ
,
ψ

σ

)∫ x

0

e(ωy+ψ(y))/σ

)
.

Proof. The proof is straightforward, cf. [5]. �
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Observe that g∗ is the normalized time-periodic solution of (2.7) with
F = −(ψx + ω). Applying Theorem 2.2, we immediately obtain the
following corollary.

Corollary 2.9. If g solves{
gt − σgxx − ((ψx + ω)g)x = 0, x ∈ S1, t > 0,
g(x, 0) = g0(x), x ∈ S1,

,

where g0 ∈ L1(S1) is as in (2.8), and g0 ln g0 ∈ L1, then

(2.31) e[g(·, t)|g∗] ≤ e[g(·, 0)|g∗]e−γt, t ≥ 0,

where γ only depends on the lower and upper bounds of g∗ and on σ.

Remark 2.10. The normalized periodic solution g∗ of (2.28) satisfies

σg∗x + (ψx + ω)g∗ = σA

with A = A(ω/σ, ψ/σ). Integrating, we get

(2.32) σA =

∫ 1

0

(ψx + ω)g∗ dx.

Incidentally, we see that

(2.33) v∞ = −
∫ 1

0

(ψx + ω)g∗ dx = −σA,

where v∞ is the asymptotic drift velocity for the tilted potential ψ+ωx
(with arbitrary T > 0).

3. Adiabatic limit for tilting ratchets

3.1. Asymptotic speed. In this section we consider the tilting
ratchet given by

(3.1)

{
ρt − ρxx − ((ψx + h(t)ω)ρ)x = 0, x ∈ R, t > 0,
ρ = ρ0(x), x ∈ R; ρ0(x) ≥ 0,

∫∞
−∞ ρ0(x) dx = 1,

where h is defined by (2.24) and for convenience σ = 1. We focus on
the adiabatic limit of (3.1), i.e., on its behaviour when T , the period
of the tilting, is large. In this case we allow the diffusion to fully
take its effect. Thus the transport in the adiabatic limit can be said
to be driven by diffusion. Generally, the two tilted potentials ψ(x) ±
ωx corresponding to problem (3.1) are not symmetric and produce
drift velocities of different absolute values. For this reason the limiting
average drift velocity of the tilting ratchet is nonzero.
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The following theorem gives an effective formula for the adiabatic
drift velocity. Before we state it, we introduce some notations. Con-
sider the corresponding periodic problem

(3.2) gt − gxx − ((ψx + h(t)ω)g)x = 0 x ∈ S1, t > 0;

∫
S1

g dx = 1.

It switches between the modes

(3.3) gt − gxx − ((ψx + ω)g)x = 0 x ∈ S1;

∫
S1

g dx = 1

and

(3.4) gt − gxx − ((ψx − ω)g)x = 0 x ∈ S1;

∫
S1

g dx = 1,

spending a long time in each of them.
Let g+ and g− be the stationary solutions of (3.3) and (3.4) respec-

tively. By γ+ and γ− denote the inverses of the Log-Sobolev constants
(see (2.14)) for the relative entropies

Σ+[g] = e[g|g+], Σ−[g] = e[g|g−],

so by Corollary 2.9 for solutions of (3.3) we have the entropy decay

(3.5) Σ+[g(·, t)] ≤ Σ+[g(·, t0)]e−γ+(t−t0) (t ≥ t0),

and similarly for solutions of (3.4) we have

(3.6) Σ−[g(·, t)] ≤ Σ−[g(·, t0)]e−γ−(t−t0) (t ≥ t0).

Let g∞ be the time-periodic solution of (3.2) with period T and let
A(ω) = A(ω, ψ) and A(−ω) = A(−ω, ψ) be defined according to (2.29).
As g∞ is time-periodic, the asymptotic drift velocity of (3.1) can be
expressed as

(3.7) v∞(T ) = − 1

T

∫ T

0

∫ 1

0

ψx(x)g∞(x, t) dx dt

(see (2.27)). Finally, put

(3.8) v∞∞ = −A(ω) + A(−ω)

2
= −1

2

∫ 1

0

ψx(x)(g+(x) + g−(x)) dx,

where the last equality is due to (2.32).

Theorem 3.1. Suppose ψ ∈ C4(R) is 1-periodic; then
(3.9)

|v∞(T )−v∞∞| ≤
23/2

T
max |ψx(x)|

(√
Σ+[g−]

γ+

+

√
Σ−[g+]

γ−

)
+o

(
1

T

)
.
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In particular, if v∞∞ 6= 0, for large T there is nonzero unidirectional
transport.

Before we prove Theorem 3.1 we must obtain some auxiliary results.
Put

M+ = max

∣∣∣∣ln g−g+

∣∣∣∣√2, M− = max

∣∣∣∣ln g+

g−

∣∣∣∣√2.

and consider the functions

φ+(R) = R +M+

√
R, φ−(R) = R +M−

√
R.

Observe that φ+ and φ− are continuous and increasing on R+.

Lemma 3.2. For any probability density g ∈ L1(S1) such that g ln g ∈
L1(S1), we have

|Σ+[g]− Σ+[g−]| ≤ φ+(Σ−[g]),(3.10)

|Σ−[g]− Σ−[g+]| ≤ φ−(Σ+[g]).(3.11)

Proof. A straightforward computation yields

Σ+[g]− Σ+[g−] =

∫
S1

g ln
g

g+

dx−
∫
S1

g− ln
g−
g+

dx

=

∫
S1

(
g ln

g

g−
+ (g − g−) ln

g−
g+

)
dx,

whence

|Σ+[g]− Σ+[g−]| ≤ Σ−[g] +
M+√

2
‖g − g−‖L1(S1).

Now it remains to apply the Csiszár–Kullback inequality (2.12) and
obtain (3.10).

Inequality (3.11) is proved by swapping g+ and g−. �

Note that the periodic solution g∞ of (3.2) implicitly depends on T ,
which is a parameter of tilting.

Lemma 3.3. We have

(3.12) lim
T→∞

Σ+[g∞(·, 0)] = Σ+[g−]; lim
T→∞

Σ−[g∞(·, T/2)] = Σ−[g+].

Proof. We only prove the first limit in (3.12), as the proof of the second
one is completely analogous.

Take an arbitrary R > 0 and for any ε > 0 choose Tε > 0 in such a
way that

(Σ+[g−] + ε)e−γ+Tε/2 ≤ R,

(Σ−[g+] + φ−(R))e−γ−Tε/2 ≤ φ−1
+ (ε).
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Now take T > Tε and let T be the resolving operator for (3.2) taking
g(·, 0) to g(·, T ). We claim that T maps the set

X = {g0 ∈ W 1
2 (S1) ∩ {probability densities} | |Σ+[g0]− Σ+[g−]| ≤ ε}

into itself. To prove this, consider a solution g of (3.2) with the initial
condition g(·, 0) = g0 ∈ X. Thanks to the conservation of mass, it only
remains to prove that

(3.13) |Σ+[g(·, T )]− Σ+[g−]| ≤ ε.

Indeed, making use of (3.10), (3.11), and the attraction (3.5) and (3.6)
we consequently obtain

Σ+[g(·, 0)] = Σ+[g0] ≤ Σ+[g−] + ε;

Σ+[g(·, T/2)] ≤ Σ+[g0]e−γ+T/2 ≤ (Σ+[g−] + ε)e−γ+T/2 ≤ R;

Σ−[g(·, T/2)] ≤ Σ−[g+] + φ−(Σ+[g(·, T/2)]) ≤ Σ−[g+] + φ−(R);

Σ−[g(·, T )] ≤ Σ[g(·, T/2)]e−γ−T/2 ≤ (Σ−[g+] + φ−(R))e−γ−T/2 ≤ φ−1
+ (ε);

|Σ+[g(·, T )]− Σ+[g−]| ≤ φ+(Σ−[g(·, T )]) ≤ φ+(φ−1
+ (ε)) = ε,

so (3.13) holds, and X is invariant under T . Moreover, X is closed
in W 1

2 (S1), convex, bounded in L1(S1), and by parabolic regularity
T : X → X is continuous and T (X) is precompact in W 1

2 (S1). By the
Schauder fixed point theorem T has a fixed point in X, which is the
initial data for a time-periodic solution of (3.2). Due to uniqueness of
such a periodic solution, this fixed point coincides with g∞(·, 0). This
implies that |Σ+[g∞(·, 0)]−Σ+[g−]| ≤ ε whenever T ≥ Tε, and the first
limit in (3.12) is proved. �

Proof of Theorem 3.1. Using (3.7) and (3.8), we estimate the difference
on the left-hand side of (3.9) as follows:

|v∞(T )− v∞∞|

=

∣∣∣∣− 1

T

∫ T

0

∫ 1

0

ψxg∞ dx dt+
1

2

∫ 1

0

ψx(g+ + g−) dx

∣∣∣∣
=

∣∣∣∣∣− 1

T

∫ T/2

0

∫ 1

0

ψxg∞ dx dt−
1

T

∫ T

T/2

∫ 1

0

ψxg∞ dx dt

+
1

T

∫ T/2

0

∫ 1

0

ψxg+ dx dt+
1

T

∫ T

T/2

∫ 1

0

ψxg− dx dt

∣∣∣∣∣
≤ 1

T

∫ T/2

0

∫ 1

0

|ψx(g∞ − g+)| dx dt+
1

T

∫ T

T/2

∫ 1

0

|ψx(g∞ − g−)| dx dt
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≤ 1

T
max
x∈[0,1]

|ψx(x)|

(∫ T/2

0

‖g∞ − g+‖L1(S1) dt+

∫ T

T/2

‖g∞ − g−‖L1(S1) dt

)
.

Applying the Csiszár–Kullback inequality, we obtain

|v∞(T )− v∞∞|

≤
√

2

T
max
x∈[0,1]

|ψx(x)|

(∫ T/2

0

√
Σ+[g∞] dt+

∫ T

T/2

√
Σ−[g∞] dt

)
.

As g∞(x, t) solves (3.3) for t ∈ [0, T/2) and (3.4) for t ∈ [T/2, T ), we
can apply the entropy attraction (3.5) and (3.6) and obtain

|v∞(T )− v∞∞|

≤
√

2

T
max
x∈[0,1]

|ψx(x)|
(√

Σ+[g∞(·, 0)]

∫ T/2

0

e−γ+t/2 dt

+
√

Σ−[g∞(·, T/2)]

∫ T

T/2

e−γ−(t−T/2)/2 dt

)
≤ 23/2

T
max
x∈[0,1]

|ψx(x)|
(

1

γ+

√
Σ+[g∞(·, 0)] +

1

γ−

√
Σ−[g∞(·, T/2)]

)
.

The last estimate and the limits (3.12) yield (3.9). �

Remark 3.4. The proof of Lemma 3.3 gives opportunity to estimate
the term o(1/T ) on the right-hand side of (3.9).

Remark 3.5. If ψ is fixed, v∞∞ = −(A(ω) + A(−ω))/2 is an analytic
function of ω. Consequently, it either identically equals 0 or has at
most countably many zeroes without accumulation points.

Remark 3.6. Having in mind (2.33), we see that the adiabatic drift
velocity v∞∞ equals the arithmetic mean of the limiting drift velocities
for the tilted potentials ψ(x)± ωx.

Remark 3.7. Observe that given ψ and ω, it is trivial to compute A(ω)
numerically. In this sense Theorem 3.1 is effective.

3.2. Bulk transport direction. There is another formula that allows
one to determine the direction of the adiabatic transport. Put
(3.14)

J = J(ψ, ω) =

2

∫ 1

0

∫ x

0

sinh(ψ(x)− ψ(y)) sinh[ω(x− y − 1/2)] dy dx

sinh(ω/2)
.
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Proposition 3.8. If ω 6= 0, the sign of v∞∞ coincides with the sign of
J . Consequently, if J > 0 (J < 0), then the adiabatic transport goes in
the positive (respectively, negative) direction.

Proof. Using the definition of A (2.29), write

1

A(ω)
=

1

eω − 1

(
(eω − 1)

∫ 1

0

∫ x

0

eψ(y)−ψ(x)+ω(y−x) dy dx

+

∫ 1

0

∫ 1

0

eψ(y)−ψ(x)+ω(y−x) dy dx

)

=
1

eω − 1

(
eω
∫ 1

0

∫ x

0

eψ(y)−ψ(x)+ω(y−x) dy dx

+

∫ 1

0

∫ 1

x

eψ(y)−ψ(x)+ω(y−x) dy dx

)

=
eω/2

eω − 1

∫ 1

0

∫ x

0

(
eψ(y)−ψ(x)+ω(y−x+1/2)

+ e−(ψ(y)−ψ(x)+ω(y−x+1/2)) dy dx
)

=
1

sinh(ω/2)

∫ 1

0

∫ x

0

cosh(ψ(y)− ψ(x) + ω(y − x+ 1/2)) dy dx.

Substituting −ω for ω, we obtain

1

A(−ω)
= −

∫ 1

0

∫ x
0

cosh(ψ(y)− ψ(x)− ω(y − x+ 1/2)) dy dx

sinh(ω/2)
.

Summing and converting the difference of hyperbolic cosines into prod-
uct, we get

1

A(ω)
+

1

A(−ω)
= J.

Now it suffices to observe that as A(ω) and A(−ω) have opposite signs,
so do the sums A(ω) + A(−ω) = −2v∞∞ and 1/A(ω) + 1/A(−ω) =
J . �

Example 3.9. Symmetric potentials satisfying ψ(x) = ψ(1− x) do not
produce adiabatic transport. This follows e.g. from Proposition 3.8.
Indeed, if ψ is symmetric, by changing the variables x′ = 1−y, y′ = 1−x
in (3.14) we get J(ψ, ω) = −J(ψ, ω), whence J = 0. Note however,
that symmetric potentials can produce transport if the tilting regime
is asymmetric in time unlike (2.24), see below.
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Example 3.10. Supersymmetric potentials (see [32]) satisfying −ψ(x) =
ψ(x + 1/2) do not produce adiabatic transport either. This, too, can
be derived from Proposition 3.8. Indeed, utilizing in (3.14) the change
of variables x′ = y + 1/2, y′ = x− 1/2 on the set

Q =

{
(x, y) :

1

2
≤ x ≤ 1, 0 ≤ y ≤ 1

2

}
,

and the change of variables x′′ = x + 1/2, y′′ = y + 1/2 on the rest of
the triangle

{(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x} \Q,
we deduce that J = 0.

Example 3.11. Simple examples of asymmetric potentials such as
ψ(x) = cos(2πxm) suggest that if ψ increases (decreases) on a ma-
jor interval, then the direction of adiabatic transport is positive (resp.
negative). The following theorem justifies this claim.

Theorem 3.12. Suppose that ψ ∈ C4(S1) strictly increases along an

oriented arc
−−−→
[α, β]. Let h : S1 × [0, 1]→ S1 be a homotopy such that

(1) h(·, 0) is the identity mapping on S1;
(2) for any λ ∈ [0, 1) the mapping h(·, λ) : S1 → S1 is C4;

(3) h(·, 1) preserves the orientation on the oriented arc
−−−→
[α, β];

(4) h(·, 1) maps the oriented arc
−−−→
[β, α] onto a single point.

Let v∞∞(λ) be the asymptotic velocity corresponding to ψλ :=
ψ(h(·, λ)), where 0 ≤ λ < 1. Then v∞∞(λ) > 0 if λ is sufficiently
close to 1.

Proof. Without loss of generality, ω > 0 and α = 0 = h(α, λ) for
λ ∈ [0, 1]. We use Proposition 3.8. Since for any x ∈ S1 we have
ψλ(x) → ψ1(x) as λ → 1, by the Lebesgue dominated convergence
theorem we obtain

(3.15) J(ω, ψλ)→ J(ω, ψ1)

=
2

sinh(ω/2)

∫ 1

0

∫ x

0

sinh(ψ1(x)− ψ1(y)) sinhω(x− y − 1/2) dy dx.

The homotopy h maps the interior of the arc
−−−→
[α, β] onto S1 \ {0} and

preserves the orientation, so ψ1 increases on the interval (0, 1). Now
the right-hand side of (3.15) is positive by Proposition 3.14 (see below).
Consequently, if λ is sufficiently close to 1, J(ω, ψλ) is also positive and
so is v∞∞(λ). �
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Remark 3.13. In the notations of Theorem 3.12 the exact formula for
the limiting velocity is

(3.16) lim
λ→1

v∞∞(λ) = −A(ω, ψ1) + A(−ω, ψ1)

2
.

It does not depend on the values of the initial potential ψ on the arc−−−→
[β, α] that collapses to a point.

It remains to prove the following functional inequality.

Proposition 3.14. Let f : [0, 1] → R be any increasing continuous
function, ϕ : [0,+∞) → R be a convex C1-smooth function, and Φ :
R→ R be an odd continuous function such that x > 0 implies Φ(x) > 0.
Then

(3.17)

1∫
0

x∫
0

ϕ (f(x)− f(y)) Φ (x− y − 1/2) dy dx ≥ 0.

Moreover, if f is strictly increasing and ϕ is strictly convex (in the
sense that ϕ′ is strictly increasing), then inequality (3.17) is strict.

We first prove two auxiliary statements.

Lemma 3.15. Let ϕ be as above, and x1, . . . , x2m, m ∈ N, be a collec-
tion of non-negative numbers. Then

(3.18)
m∑
i=1

ϕ

(
m+1∑
j=1

xi+j−1

)
≥

m+1∑
i=1

ϕ

(
m∑
j=1

xi+j−1

)
.

If ϕ is strictly convex and the numbers x1, . . . , x2m are positive, then
this inequality is strict.

Proof. It suffices to observe that all the partial derivatives of the func-

tion F (x1, . . . , x2m) =
m∑
i=1

ϕ

(
m+1∑
j=1

xi+j−1

)
−

m+1∑
i=1

ϕ

(
m∑
j=1

xi+j−1

)
are

non-negative (and even positive provided ϕ is strictly convex and
x1, . . . , x2m are positive), and F (0, . . . , 0) = 0. �

Lemma 3.16. Let ϕ and f be as above, and a < b be two positive
numbers. Then

(3.19)

a∫
0

ϕ (f(x+ b)− f(x)) dx ≥
b∫

0

ϕ (f(x+ a)− f(x)) dx.

If f is strictly increasing, ϕ is strictly convex, and a/b is a rational
number, then inequality (3.19) is strict.
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Proof. Assume first that the ratio a/b is equal to m/m + 1 with some
natural number m. After rescaling, without loss of generality we may
suppose that a = m. In this case, inequality (3.19) may be rewritten
as

(3.20)
m∑
i=1

1∫
0

ϕ (f(x+ i+m)− f(x+ i− 1)) dx

≥
m+1∑
i=1

1∫
0

ϕ (f(x+ i+m− 1)− f(x+ i− 1)) dx,

or

(3.21)
m∑
i=1

1∫
0

ϕ

(
m+1∑
j=1

f(x+ i+ j − 1)− f(x+ i+ j − 2)

)
dx

≥
m+1∑
i=1

1∫
0

ϕ

(
m∑
j=1

f(x+ i+ j − 1)− f(x+ i+ j − 2)

)
dx,

and thus the statement of the lemma follows from Lemma 3.15.
If a/b is a rational number m

n
, with m,n ∈ N, m < n, then it can be

decomposed as m
m+1
· m+1
m+2
· · · · · n−1

n
, and the statement of the lemma

follows from the previous case. By continuity, the non-strict inequality
(3.19) holds for all irrational a/b. �

Proof of Proposition 3.14. We make a change of variables in the double
integral (3.17), and conclude that it is equal to

(3.22)

1/2∫
−1/2

1/2−ξ∫
0

ϕ (f(y + ξ + 1/2)− f(y)) Φ(ξ) dy dξ

=

1/2∫
0

( 1/2−ξ∫
0

ϕ (f(y + ξ + 1/2)− f(y)) dy

−
1/2+ξ∫
0

ϕ (f(y − ξ + 1/2)− f(y)) dy
)

Φ(ξ) dξ ≥ 0
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by Lemma 3.16. When f is strictly increasing and ϕ is strictly convex,
this integral is strictly positive since the set

(3.23)
{
ξ ∈

(
0,

1

2

) ∣∣∣ 1/2−ξ∫
0

ϕ (f(y + ξ + 1/2)− f(y)) dy

>

1/2+ξ∫
0

ϕ (f(y − ξ + 1/2)− f(y)) dy
}

is open and non-empty (since it contains the rational numbers), and
therefore has non-zero Lebesgue measure. �

4. Semiadiabatic limit and the stochastic Stokes’ drift

Consider the tilting ratchet with the potential

(4.1) Ψ(x, t) = ψ(x) +H(t)x,

where

(4.2) H(t) =

{
Ω, 0 < t < τ,

ω, τ < t < T,

and as usual ψ(x) is 1-periodic in x and H(t) is T -periodic in T . We
assume that the non-bias condition (2.22) is satisfied, i.e.,

(4.3) Ωτ + ω(T − τ) = 0.

We regard T , τ , and ω as the independent parameters of the tilting
ratchet; Ω can be expressed via the independent parameters by means
of (4.3).

We study the regime (4.1) in the so-called semiadiabatic limit sup-
posing that T is large, τ/T is small, and ω is constant. It follows
from (4.3) that in the semiadiabatic limit |Ω| is large.

As before, let v∞ = v∞(ω, T, τ) denote the eventual drift velocity
given by (2.19). Further, let g∗ be the 1-periodic solution of the problem

(4.4) gxx + ((ψx + ω)g)x = 0,

∫ 1

0

g(x) dx = 1,

which also satisfies

g∗x + (ψx + ω)g∗ = A(ω)

with A(ω) defined by (2.29) (see Remark 2.10). Put

(4.5) v∞∞(ω) = −
∫ 1

0

ψxg
∗ dx ≡ ω − A(ω).
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Our main result concerning the semiadiabatic tilting is that v∞∞(ω)
is the asymptotic average drift velocity as T → ∞ and τ/T → 0, and
its sign coincides with the sign of ω provided that ψ is nontrivial. For
definitiveness we assume that ω > 0.

First we address the positivity of v∞∞. It will follow from the next
proposition.

Proposition 4.1. Given ω > 0, the functional

(4.6) Vω(F ) = α(ω)

1∫
0

x∫
0

F (y)

F (x)
dy dx+

1∫
0

1∫
0

F (y)

F (x)
dy dx,

where α(ω) = eω − 1 and F ∈ C[0, 1], F (x) > 0 for all x ∈ [0, 1],
attains its global minimum α(ω)/ω when and only when F (x) = Ceωx.

Proof. Since the functional is homogeneous of degree zero, it suffices to
prove that under the additional restriction

(4.7)

1∫
0

F (y) dy = 1,

the only minimizer is F (x) = ω
α(ω)

eωx.

LetG(x) = 1+α(ω)
x∫
0

F (y) dy. ThenG(0) = 1, G(1) = eω, G′(·) > 0,

and our functional becomes

(4.8) Ṽω(G) = α(ω)

1∫
0

G(x)

G′(x)
dx.

Let now H(x) = lnG(x). Then H(0) = 0, H(1) = ω, H ′(·) > 0, and

(4.9) ˜̃Vω(H) = α(ω)

1∫
0

1

H ′(x)
dx.

The Cauchy–Bunyakovskii–Schwarz inequality implies that

(4.10)

1∫
0

1

H ′(x)
dx ≥ 1

1∫
0

H ′(x) dx

=
1

ω
,

and the equality holds only if H ′(x) ≡ ω. This means that the
minimum of Vω is achieved merely if H(x) = ωx, G(x) = eωx and
F (x) = ω

α(ω)
eωx. �
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Remark 4.2. It is interesting to observe that the functionals (4.6) and
(4.8) neither are convex nor fit into the framework of general L1-lower
semicontinuity criteria which go back to [35] (see e.g. [16] for a review).

Proposition 4.3. Given a 1-periodic ψ ∈ C4(R) and ω > 0, v∞∞
satisfies

(4.11) 0 ≤ v∞∞ ≡ ω − A(ω) < ω.

Moreover, v∞∞ = 0 if and only if ψ is constant.

Proof. Elementary properties of A (see Remark 2.7) yield the upper
bound in (4.11). The lower bound is a corollary of Proposition 4.1.
Indeed, put F (x) = eψ(x)+ωx and write

A =
α(ω)

Vω(F )
,

where Vω is given by (4.6). According to Proposition 4.1, we have

A ≤ α(ω)

α(ω)/ω
= ω,

and the lower bound in (4.11) is proved. Moreover, the bound is at-
tained if and only if F (x) = Ceωx, with some constant C > 0, i.e., if
and only if ψ(x) ≡ lnC is constant. �

Write the Log-Sobolev inequality associated with g∗ in the form

(4.12)

∫
S1

g ln
g

g∗
dx ≤ 1

γ

∫
S1

g

∣∣∣∣(ln
g

g∗

)
x

∣∣∣∣2 dx.
Put

(4.13) M0 = max
x∈[0,1]

|ψx(x)|, M1 = max
x∈[0,1]

∣∣∣∣g∗x(x)

g∗(x)

∣∣∣∣ .
The following statements characterize the semiadiabatic limit of the

tilting ratchets.

Theorem 4.4. Suppose that ψ ∈ C4(R) is 1-periodic and ω > 0,
0 < τ < T ; then the average drift velocity v∞(ω, T, τ) satisfies

(4.14) |v∞(ω, T, τ)− v∞∞(ω)| ≤ (M0 + v∞∞(ω))
τ

T

+
23/2M0M

1/2
1

γ
ω1/2 1

T 1/2

(
1 +

1

eγT (1−τ/T ) − 1

)1/2

.

The proof will be given later in this section.
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Corollary 4.5. Under the hypothesis of Theorem 4.4, for any ω > 0,
we have

(4.15) lim
T→∞
τ/T→0

v∞(ω, T, τ) = v∞∞(ω),

the limit is uniform in ω ∈ (0, ω0] for any ω0 > 0, and the rate of
convergence is O(T−1/2 + τ/T ).

Proof. It suffices to observe that by Proposition 4.3 we have v∞∞(ω) ≤
ω and that

(4.16) 1 +
1

eγT (1−τ/T ) − 1

remains bounded as T →∞ and τ/T → 0. �

Combining Corollary 4.5 and Proposition 4.3, we get the following
corollary.

Corollary 4.6. For any non-constant 1-periodic ψ ∈ C4 and any ω >
0, we have v∞∞(ω) > 0, if T is sufficiently large and τ/T is sufficiently
small.

In other words, Corollary 4.6 means that the semiadiabatic transport
goes in the positive/negative direction according to the sign of ω.

Before proving Theorem 4.4, we introduce some notations and prove
a lemma. Denote by

Σ[g] = e[g|g∗]
the relative entropy with respect to g∗, and let

I[g] =

∫
S1

g

∣∣∣∣(ln
g

g∗

)
x

∣∣∣∣2 dx
be the corresponding entropy production term, then the Log-Sobolev
inequality (4.12) can be written as

(4.17) Σ[g] ≤ 1

γ
I[g].

In the case of semiadiabatic tilting, equation (2.7) splits into

gt − gxx − ((ψx + Ω)g)x = 0, (t, x) ∈ (0, τ)× S1;(4.18)

gt − gxx − ((ψx + ω)g)x = 0, (t, x) ∈ (τ, T )× S1.(4.19)

We consider (4.18)–(4.19) in the class

(4.20) g ≥ 0;

∫
S1

g(x, t) dx = 1.
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As usual, g∞ denotes the unique T -periodic in t solution of (4.18)–
(4.20), existing due to Theorem 2.2. Note that the function g∞ itself
implicitly depends on the parameters of tilting T , τ , and ω.

Lemma 4.7. We have

(4.21) Σ[g∞(·, τ)] ≤M1ωT

(
1 +

1

eγT (1−τ/T ) − 1

)
.

Proof. We start with an a priori estimate for a solution g of (4.18)–
(4.20). First we estimate the entropy for t ∈ [0, τ ]. Put r = g/g∗, then
rt = gt/g

∗, and (ln r)t = gt/g. We have:

d

dt
Σ[g] =

d

dt

∫
S1

g ln r dx =

∫
S1

gt ln r dx+

∫
S1

gt dx.

Plugging in (4.18), using the conservation of mass (4.20) and integrat-
ing by parts, we proceed as follows:

d

dt
Σ[g] =

∫
S1

(gxx + ((ψx + Ω)g)x) ln r dx

= −
∫
S1

g
r2
x

r2
dx+

∫
S1

g

r
(rxx − (ψx + Ω)rx) dx

= − I[g] +

∫
S1

g∗(rxx − (ψx + Ω)rx) dx

≤
∫
S1

r(g∗xx + ((ψx + Ω)g∗)x) dx.

As g∗ solves (4.4), we obviously have

g∗xx + ((ψx + Ω)g∗)x = (Ω− ω)g∗x,

whence

d

dt
Σ[g] ≤ (Ω− ω)

∫
S1

rg∗x dx = (Ω− ω)

∫
S1

g
g∗x
g∗
dx,

and using the conservation of mass once again, we obtain

d

dt
Σ[g] ≤M1|Ω− ω|.

This yields

Σ[g(·, τ)] ≤M1τ |Ω− ω|+ Σ[g(·, 0)]

whenever Σ[g(·, 0)] exists. Using (4.3), we can write the last inequality
in the form

(4.22) Σ[g(·, τ)] ≤M1ωT + Σ[g(·, 0)].
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Now for t ∈ [τ, T ] the function g solves equation (4.19) and g∗ is the
stationary solution of the same equation, so by Corollary 2.9

Σ[g] ≤ Σ[g(·, τ)]e−γ(t−τ).

From this inequality and (4.22) we get

(4.23) Σ[g(·, T )] ≤ (M1ωT + Σ[g(·, 0)])e−γ(T−τ).

Denote by T the operator taking a probability density u ∈ L1(S1) to
g(·, T ), where g solves (4.18)–(4.19) with the initial condition g|t=0 = u,
and put

(4.24) R =
M1ωT

eγ(T−τ) − 1
.

It follows from (4.23) that T maps the set

X = {u ∈ W 1
2 (S1) ∩ {probability densities} | Σ[u] ≤ R}

into itself. Moreover, X is a convex closed subset of W 1
2 (S1) and by

parabolic regularity T : X → X is continuous and T (X) is precompact
in W 1

2 (S1). Hence by the Schauder fixed point theorem T has a fixed
point in X, which is the initial data for a time-periodic solution of
(4.18)–(4.19). However, such periodic solution is unique, so the fixed
point found above coincides with g∞(·, 0). Therefore, Σ[g∞(·, 0)] ≤ R
and (4.21) follows from (4.22). �

Proof of Theorem 4.4. We have:

(4.25) |v∞(ω, T, τ)− v∞∞(ω)|

=

∣∣∣∣− 1

T

∫ T

0

∫
S1

ψxg∞ dx dt+

∫
S1

ψxg
∗ dx

∣∣∣∣
≤ 1

T

∣∣∣∣∫ τ

0

∫
S1

ψxg∞ dx dt

∣∣∣∣
+

1

T

∣∣∣∣∫ T

τ

∫
S1

ψx(g∞ − g∗) dx dt
∣∣∣∣+

τ

T

∣∣∣∣∫
S1

ψxg
∗ dx

∣∣∣∣
≤ τ

T
(M0 + v∞∞(ω)) +

M0

T

∫ T

τ

‖g∞ − g∗‖L1(S1) dt

(here we have used the conservation of mass for g∞). We now esti-
mate the last term. Using the Csiszár–Kullback inequality and the
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attraction (2.31), we have

M0

T

∫ T

τ

‖g∞ − g∗‖L1(S1) dt ≤
M0

T

∫ T

τ

√
2 Σ[g∞] dt

≤ M0

T

√
2 Σ[g∞(·, τ)]

∫ T

τ

e−γ(t−τ)/2 dt ≤ 1

T

2M0

γ

√
2 Σ[g∞(·, τ)].

Estimating the entropy Σ[g∞(·, τ)] by means of (4.21), we have

M0

T

∫ T

τ

‖g∞−g∗‖L1(S1) dt ≤
1

T

23/2M0

γ

(
M1ωT

(
1 +

1

eγT (1−τ/T ) − 1

)) 1
2

.

Combining this inequality with (4.25), we obtain (4.14). �

We finish this section by considering the travelling potential

(4.26) Ψ(x, t) = ψ(x− ωt),
where ψ is 1-periodic and ω is a constant. The corresponding ratchet
model [5, 6] coincides with the one for the stochastic Stokes’ drift [4, 21].
In [5] it was conjectured that the average drift velocity of this ratchet is
positive for positive ω (cf. also [32, Section 4.4.1]). It is straightforward
to check (cf. [6]) that the corresponding periodic solution of (2.7) with
F = −Ψx satisfying (2.11) is

g∞ = g∗(x− ωt),
where g∗ is defined above in this section. Then the corresponding bulk
velocity is

(4.27) v∞ = − 1

T

∫ T

0

∫ 1

0

ψx(x− ωt)g∗(x− ωt) dx dt

= −
∫ 1

0

ψx(x)g∗(x) dx ≡ ω − A(ω).

The conjecture of [5] (for any non-constant ψ) thus follows from our
Proposition 4.3.

5. Small diffusion coefficient

We are now interested in applying the bulk velocity representation
(2.19) for finding sufficient conditions of transport in the case of small σ.

The result concerns generic piecewise smooth potentials Ψ(x, t)
which are T -periodic in t and whose x-derivatives are 1-periodic in x.

Theorem 5.1. Assume that the ODE

(5.1) y′(t) = F (y(t), t)
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(where F = −Ψx is as in Theorem 2.2) has no T -periodic solutions.
Then v∞ 6= 0 for sufficiently small σ. Moreover,

(5.2) sign v∞ = sign(y(T )− y(0))

for every solution y to (5.1).

Proof. Given a sequence σn → 0, consider the corresponding T -periodic
solutions g∞n to (2.7) satisfying (2.11), and the bulk velocities v∞n
defined by (2.19). If the theorem is not true, {σn} can be chosen
in such a way that every v∞n violates (5.2). Consider the following
auxiliary equation

(5.3) ζt + (Fζ)x = 0, (t, x) ∈ (0,∞)× R.

It is easy to see that the solution ζ of (5.3) can be expressed in the form
ζ(x, t) = [z(s(x, t))]x, where zx(x) = ζ(x, 0), and s solves the problem

(5.4)

{
st + Fsx = 0,
s(x, 0) = x, x ∈ R.

The sequence of corresponding positive periodic solutions {g∞n}
to (2.7), (2.11) is bounded in L∞(0, T ;L1(S1)), and {∂g∞n

∂t
} is bounded

in L∞(0, T ;W−2
1 (S1)), so, by the Aubin–Lions–Simon lemma [36], with-

out loss of generality, g∞n converges strongly in C([0, T ];H−1(S1)) to
some ζ∞. Due to (2.19), for large n, the sign of v∞n coincides with the
sign of

(5.5) v∞0 =
1

T

∫ T

0

〈ζ∞(·, t), F (·, t)〉H−1(S1)×H1(S1) dx dt,

provided v∞0 6= 0.
Let z∞ ∈ L2

loc(R) be such that (z∞)x(x) = ζ∞(x, 0) (obviously,
ζ∞(·, 0) can be considered as a distribution on R). Since 〈g∞n(·, 0), 1〉 =
1, in the limit we have 〈ζ∞(·, 0), 1〉 = 1, so z∞

∣∣
[0,1]

is a non-constant

function. The functions g∞n are positive by Theorem 2.2, so ζ∞(·, 0) ≥
0 in the sense of distributions on S1, whence z∞ is essentially a non-
decreasing function.

Passing to the limit, we see that ζ∞ solves (5.3) in the sense of
distributions. Hence,

(5.6) ζ∞(x, t) = [z∞(s(x, t))]x,

and

(5.7) [z∞(s(x, t))]t + F (x, t)ζ∞(x, t)

= [z∞(s(x, t))]t + F (x, t)[z∞(s(x, t))]x = 0
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in the sense of distributions. The second equality is obvious if z∞ is
smooth, and the general case follows from the dominated convergence
theorem.

But (5.5) and (5.7) yield

(5.8) v∞0 = − 1

T

∫ T

0

∫ 1

0

[z∞(s(x, t))]t dx dt

=

∫ 1

0
(z∞(x)− z∞(s(x, T )) dx

T
.

Solving (5.4) by the method of characteristics we infer that x = y(T ),
where y(t) is the solution of (5.1) with the initial condition y(0) =
s(x, T ). Since S1 is compact and (5.1) has no T -periodic solutions, the
difference

d(y) = y(T )− y(0)

is separated from zero, and its sign does not change for all solutions of
(5.1). Consequently, v∞0 6= 0 (otherwise z∞

∣∣
[0,1]

would be a constant).

We conclude that v∞0 and v∞n (for large n) have the same sign as d(y),
reaching a contradiction. �

Remark 5.2. Observe that (5.1) has no T -periodic solutions if and only
if there exists an unbounded trajectory or, in other words, if and only if
the corresponding Poincaré’s rotation number [10] is nonzero. Hence,
the sign of the rotation number coincides with the sign of v∞0. A
related observation was made in [34] for diffusion-free tilting ratchets.
Our conjecture is that limσ→0 v∞ = r/T , where r is the rotation number
(cf. [34]).

Remark 5.3. Existence of periodic orbits is unstable with respect to
perturbations of F , thus, in a general position, v∞ is non-zero for small
σ. Unfortunately, as R. Ortega and F. Zanolin pointed out in a per-
sonal communication, there are no criteria of the form that ‘some set
of assumptions on F implies non-existence of T -periodic solutions to
(5.1)’. In [25], the non-existence of periodic solutions to (5.1) with a
tilting potential of the form Fsin(y, t) = H(t) − sin y, where H is T -
periodic and satisfies (2.22), was discovered. There, it was observed
that this phenomenon contrasts with the behaviour of the equation

(5.9) y′′(t) = Fsin(y(t), t),

which always admits T -periodic solutions. However, for this particular
class of tilting potentials there is some hope to get a criterion using a
trick from [26], transforming (5.1) into a Ricatti equation. The discrete
analogue of the problem produces Arnold tongues.
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6. Multi-state models

We now consider another class of ratchet models, where the particles
can be in several states, and the total amount of particles is fixed.
Particles in different states are sensitive to different time-independent
potentials. The particles can randomly change their states with rates
νij(x) ≥ 0 (from j-th state to i-th state; i, j = 1, . . . , N ; i 6= j), calling
forth the bulk transport. This leads to the following general Cauchy
problem for a system of Fokker–Planck-type equations:

(6.1)

{
(ρi)t − σ(ρi)xx − ((Ψi)xρi)x +

∑
j, j 6=i

νjiρi =
∑
j, j 6=i

νijρj,

ρi(x, 0) = ρi0(x),

which we again consider for all x ∈ R and t > 0.
Here Ψi(x) are given C4-regular potentials, ρi0 are given initial mass

distributions, and σ is the diffusion coefficient (for definiteness, we set
it to be the same for all states). We assume that (Ψi)x(x) and νij(x)
are 1-periodic and that ρi0(x) satisfy the requirements

(6.2) ρi0(x) ≥ 0,
N∑
i=1

∞∫
−∞

ρi0(x) dx = 1,

∞∫
−∞

|x|ρi0(x) dx <∞.

Standard arguments show that (6.1) has a unique solution for any
continuous vector function ρ0(x) = (ρi0) satisfying (6.2); moreover, for
any t > 0, the components ρi(x, t) of the solution vector ρ(x, t) are
positive. Moreover, the classical estimates [14] for the fundamental
matrix of solutions to (6.1) imply

(6.3) lim
x→±∞

|x|(|ρ(x, t)|+ |ρx(x, t)|) = 0.

Let

(6.4) ρ̃(x, t) =
N∑
i=1

ρi(x, t)

be the total density function. Adding the equations of (6.1) gives

(6.5) ρ̃t − σρ̃xx −
N∑
i=1

((Ψi)xρi)x = 0.

As in Section 2, (6.3) and (6.5) yield conservation of the total mass

(6.6)

∫ ∞
−∞

ρ̃(x, t) dx = 1,
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and finiteness of the centre of mass

(6.7) x̄(t) =

∫ ∞
−∞

xρ̃(x, t) dx

for any t. Similarly to Section 2, we are interested in the properties of
the velocity of the centre of mass x̄(t).

We consider the following auxiliary problem on S1 × (0,∞):

(6.8)


(gi)t − σ(gi)xx − ((Ψi)xgi)x +

∑
j, j 6=i

νjigi =
∑
j, j 6=i

νijgj,

gi(x) > 0,
N∑
i=1

∫
S1 gi(x) dx = 1.

Observe that if a vector ρ with positive components solves (6.1), then

(6.9) g(x, t) =
∞∑

k=−∞

ρ(x+ k, t)

solves (6.8). The convergence of this series follows from the properties
of the fundamental matrix of solutions to (6.1).

Then the velocity of the centre of mass is

(6.10) ṽ(t) :=
∂x̄

∂t
(t) =

∫ ∞
−∞

xρ̃t(x, t) dx

=

∫ ∞
−∞

x

(
σρ̃xx +

N∑
i=1

((Ψi)xρi)x

)
dx

= −
∫ ∞
−∞

(
σρ̃x +

N∑
i=1

(Ψi)xρi

)
dx

= −
N∑
i=1

∫ 1

0

(Ψi)xgi dx.

We need the following result on existence of a unique attractor
for (6.8).

Proposition 6.1. There exists a unique regular stationary solution
vector g∞(x) = (gi∞) to (6.8). Moreover, there exists γ > 0 such
that, for any smooth solution g to (6.8), there exists a positive constant
C = C(g) such that

(6.11) |g(x, t)− g∞(x)| ≤ Ce−γt, (x, t) ∈ S1 × (0,∞).

Proof. The existence and uniqueness can be proved similarly to [9,
Theorem 4.1], and the stability follows in the same way as in [20,
Theorem 4.1]. �
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We can now put

(6.12) ṽ∞ := −
N∑
i=1

∫ 1

0

(Ψi)x(x)gi∞(x) dx,

arriving at the following bound.

Corollary 6.2. For any solution of (6.1), we have

(6.13) |ṽ(t)− ṽ∞| ≤ Ce−γt,

where C depends only on ρ0.

Thus, the sign of the asymptotic velocity ṽ∞ determines the direc-
tion of transport. We now examine several situations when ṽ∞ can
be proved to be non-zero. For simplicity, we restrict ourselves to the
two-state models. We begin with the small diffusion case.

Theorem 6.3. Let N = 2. Suppose that the functions F1 = −(Ψ1)x
and F2 = −(Ψ2)x merely have a finite number of zeros on S1, and
do not admit common zeros. Let σ be sufficiently small, ν12(x) > 0,
ν21(x) > 0.

i) Assume that both F1 and F2 have zeros, and for every x∗ such that
F1(x∗)F2(x∗) = 0, let i∗ = 1 if F2(x∗) = 0, and i∗ = 2 if F1(x∗) = 0.
Then

(6.14) sign ṽ∞ = signFi∗(x∗),

provided the sign in the right-hand side of (6.14) is independent of x∗.
ii) Assume that only one of the functions F1 and F2 possesses zeros.

Let Fi∗ be the potential gradient which does not have zeros. Then

(6.15) sign ṽ∞ = signFi∗ .

iii) Assume that none of the functions F1 and F2 vanishes. Then

(6.16) sign ṽ∞ = sign(F1F2) sign

1∫
0

(
ν12(x)

F2(x)
+
ν21(x)

F1(x)

)
dx,

provided the integral in the right-hand side is non-zero.

Remark 6.4. In the case when F1 and F2 have common zeros or the
sign in the right-hand side of (6.14) varies, the transport still can be
present, but more subtle methods are required to establish that ṽ∞ 6= 0.

Remark 6.5. In case i), if the sign in (6.14) is positive, it is simple to
see that max(F1, F2) > 0, and there is an interval where min(F1, F2) >
0. Hence, the occurrence of unidirectional transport in the Neumann
problem setting on a bounded segment follows from [29, Theorem 1] or
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[20, Theorem 3.1]. The cases ii) and iii) are not covered by the results
of [8, 20, 29].

Proof of Theorem 6.3. Assume there is a sequence σn → 0 such that
the corresponding velocities ṽ∞n violate (6.14), or (6.15), or (6.16),
respectively.

The sequence of stationary solutions {g∞n} is bounded in [L1(S1)]2,
so, without loss of generality, g∞n converges weakly-∗ in [C∗(S1)]2 to
some ζ. For large n, the sign of ṽ∞n coincides with the sign of

(6.17) ṽ∞0 = 〈ζ1, F1〉C∗×C + 〈ζ2, F2〉C∗×C ,
provided ṽ∞0 6= 0. Observe that ζ solves the system

(6.18)

 (F1ζ1)x = ν12ζ2 − ν21ζ1,
(F2ζ2)x = ν21ζ1 − ν12ζ2,
ζi ≥ 0, 〈ζ1 + ζ2, 1〉 = 1

in the sense of distributions on S1. Adding these two equations, we see
that F1ζ1 + F2ζ2 is essentially a constant, and, due to (6.17),

(6.19) F1ζ1 + F2ζ2 = ṽ∞0.

in the sense of distributions.
Consider first cases i) and ii). The measures ζ1 and ζ2 cannot be

concentrated only at the zeros of F1F2. Indeed, if that is so, then
(6.19) implies

(6.20) F1ζ1 = F2ζ2 = 0

in the sense of distributions, so the supports of ζ1 and ζ2 are disjoint.
But (6.18) gives ν12ζ2 = ν21ζ1, so the supports should coincide, and we
get a contradiction.

Hence, there are two adjacent zeros x1 and x2 of F1F2 such that the
support of ζ1 or ζ2 intersects with the interval (x1, x2) (in the case when
F1F2 has only one zero, we can change the variable x for x̃ = x/2 in
(6.1), which doubles the number of zeros on S1, but does not affect the
transport direction).

Suppose that ṽ∞0 = 0. Then the solution of the system (6.18), (6.19)
on (x1, x2) may be written explicitly, with an unknown multiplicative
constant M 6= 0,

(6.21)

 ζ1(x) = Mexp
(∫ x̄

x
ν12(y)
F2(y)

+ ν21(y)
F1(y)

dy
)
/F1(x),

ζ2(x) = −Mexp
(∫ x̄

x
ν12(y)
F2(y)

+ ν21(y)
F1(y)

dy
)
/F2(x),

where x̄ = x1+x2
2

. This gives that F1F2 is negative on (x1, x2). Conse-
quently, x1 and x2 are zeros of the same potential — in case ii) this is
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trivial — and, for definiteness, let it be F1. Observe that one of the in-

tegrals
∫ x̄
x1

ν12(y)
F2(y)

+ ν21(y)
F1(y)

dy and
∫ x̄
x2

ν12(y)
F2(y)

+ ν21(y)
F1(y)

dy is positive. Since F1

is C1-smooth,
∫ x2
x1

1
F1(y)

dy = ±∞. Hence,
∫ x2
x1
ζ1|(x1,x2)(y) dy =∞. But

(6.18) implies
∫ x2
x1
ζ1|(x1,x2)(y) dy ≤ 1, and we arrive at a contradiction.

Assume now that F1 > 0 on (x1, x2). We then have to show that
ṽ∞0 < 0. One can check that, under the assumptions that we have
made, the only solution of (6.18), (6.19) with finite integral on (x1, x2)
is

(6.22)

 ζ1(x) = ṽ∞0

F1(x)

∫ x
x1

exp
(∫ s

x
ν12(y)
F2(y)

+ ν21(y)
F1(y)

dy
)
ν12(s)
F2(s)

ds,

ζ2(x) = ṽ∞0

F2(x)

[
1−

∫ x
x1

exp
(∫ s

x
ν12(y)
F2(y)

+ ν21(y)
F1(y)

dy
)
ν12(s)
F2(s)

ds
]
.

So ζ1 ≥ 0 and F2|(x1,x2) < 0 imply ṽ∞0 < 0. The case F1 < 0 is treated
similarly.

In case iii), the solution ζ is smooth on the whole circle S1, so it
may be identified with a 1-periodic function on R. Moreover, it has
the form

(6.23) ζ1(x) =
M

F1(x)
exp

(∫ 0

x

ν12(y)

F2(y)
+
ν21(y)

F1(y)
dy

)
+

ṽ∞0

F1(x)

∫ x

0

exp

(∫ s

x

ν12(y)

F2(y)
+
ν21(y)

F1(y)
dy

)
ν12(s)

F2(s)
ds,

(6.24) ζ2(x) = − M

F2(x)
exp

(∫ 0

x

ν12(y)

F2(y)
+
ν21(y)

F1(y)
dy

)
+

ṽ∞0

F2(x)

[
1−

∫ x

0

exp

(∫ s

x

ν12(y)

F2(y)
+
ν21(y)

F1(y)
dy

)
ν12(s)

F2(s)
ds

]
.

Due to periodicity,

(6.25) M

[
exp

(∫ 0

1

ν12(y)

F2(y)
+
ν21(y)

F1(y)
dy

)
− 1

]
+ ṽ∞0

∫ 1

0

exp

(∫ s

x

ν12(y)

F2(y)
+
ν21(y)

F1(y)
dy

)
ν12(s)

F2(s)
ds = 0.

Hence, ṽ∞0 6= 0, for the contrary would imply M = 0, and ζ ≡ 0, which
contradicts (6.18).

Assume that the right-hand side of (6.16) is positive, and ṽ∞0 is
negative (the opposite situation is completely analogous). Then at
least one of the potentials, say F1, is positive. Due to the positivity of



VELOCITY OF RATCHETS 35

the right-hand side of (6.16),

(6.26) sign

(
exp

(∫ 0

1

ν12(y)

F2(y)
+
ν21(y)

F1(y)
dy

)
− 1

)
= − signF2,

and (6.25) yields

(6.27) signM = sign ṽ∞0.

It follows from (6.23) and (6.27) that ζ1(0) < 0, which contradicts the
positivity of the solution. �

We now address the transport properties of the randomly tilting
ratchet, i.e., the model of the form

(6.28)

 (ρ1)t − (ρ1)xx − ([ψx + ω]ρ1)x + ν21ρ1 = ν12ρ2,
(ρ2)t − (ρ2)xx − ([ψx + Ω]ρ2)x + ν12ρ2 = ν21ρ1,
ρ(x, 0) = ρ0(x),

where ψ(x) is a C4-smooth 1-periodic potential, the diffusion coefficient
σ is taken to be 1; ω,Ω, ν12 > 0, ν21 > 0 are scalars (independent of x,
for simplicity), and ρ0 satisfies (6.2). We assume the following non-bias
condition (cf. (4.3)):

(6.29) Ων21 + ων12 = 0.

Denote by ṽ∞(ω, ν) the corresponding bulk velocity defined by (6.12).
The following theorem shows that the adiabatic and semi-adiabatic

bulk velocities of the randomly tilting ratchet are the same as for the
tilting ratchet. Thus, the results of the previous sections may be ap-
plied to determine the transport direction. In particular, the direction
of the semiadiabatic transport is determined by the sign of ω for every
non-constant ψ.

Theorem 6.6. Let ω be fixed. Then

(6.30) lim
ν12=ν21→0

ṽ∞(ω, ν) = −A(ω) + A(−ω)

2
;

(6.31) lim
ν21→0

ν21/ν12→0

ṽ∞(ω, ν) = ω − A(ω).

The proof is left as an exercise for the reader.
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