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Abstract

We present the frame L(T) of the unit circle by generators and relations in two
alternative ways. The first is the localic counterpart of the Alexandroff compact-
ification of the real line while the other can be understood as a localic analogue
of the quotient space R/Z. With an eye towards a prospective point-free de-
scription of Pontryagin duality, we then show how the usual group operations
of the frame of reals can be lifted to the new frame L(T), endowing it with a
canonical localic group structure.
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1. Introduction

One of the main differences between localic topology and classical topology
is that the category of localic spaces (i.e., the category of locales and localic
maps) is a category whose dual category (i.e., the category of frames and frame
homomorphisms) is an algebraic category [13]. This means, in particular, that
one has free frames and quotient frames, and therefore that one can present
frames and locales by generators and relations, exactly in the same way as with
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groups or many other familiar algebraic structures: if S is a set of generators,
R is a set of relations u = v, where u and v are expressions in terms of the
frame operations starting from elements and subsets of S, then there exists a
frame Frm〈S|R〉 such that for any frame L, the set of frame homomorphisms
Frm〈S|R〉 → L is in a bijective correspondence with functions f : S → L that
turn all relations in R into identities in L (see [22] for more details and some
basic examples).

This is a very useful tool that allows, for instance, to define products in the
category of locales with a construction that closely parallels the construction
of the Tychonoff topology on a product space [7, 13], with advantage to the
localic side (see [14]), or to define the frame of reals [16] just from the rationals,
independently of any notion of real number, adding a new way of introducing the
reals to the familiar classical ones (see [2]). For more examples see, for instance,
the presentations of the Vietoris locale of a locale [15], the exponentials of locally
compact locales [11], the Yosida locale of an abelian lattice-ordered group [18],
the frame of complex numbers [4, 5], the frames of upper reals and lower reals [8],
the frame of extended reals [3], the frame of partial reals [19] and the assembly
of a frame [17].

Our aim with this paper is to settle the following question posed to us by
Bernhard Banaschewski in a private communication:

Any idea how the topology of the unit circle fits in with frame presentations
by generators and relations?

We provide two equivalent alternative presentations of the frame L(T) of the
unit circle. The first is the point-free counterpart of the Alexandroff compactifi-
cation of the real line while the second is motivated by the standard construction
of the unit circle space as the quotient space R/Z. Then, we lift the group op-
erations of the frame of reals to the new frame L(T), endowing it with a localic
group structure.

The paper is organized as follows. We begin with a brief account of the
necessary background and terminology (Section 2). In Section 3 we carry the
construction of the Alexandroff extension of a frame. We then apply it to
the particular case of the frame of reals (Section 4), obtaining this way a first
presentation of the frame L(T). In Section 5 we present an alternative set of
generators and relations. In Section 6 we provide general criteria for concluding
that an equalizer e : E → L of a pair (f, g) : L → M of frame isomorphisms on
a localic group L lifts the group structure from L into E. We then use these
results, in the last section, to obtain the group structure of L(T) induced by the
canonical one in L(R).

2. Background

Frames. A frame (or locale) L is a complete lattice such that

a ∧
∨
B =

∨
{a ∧ b | b ∈ B}
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for all a ∈ L and B ⊆ L; equivalently, it is a complete Heyting algebra with
Heyting operation→ satisfying the standard equivalence a∧b ≤ c iff a ≤ b→ c.
The pseudocomplement of a ∈ L is the element

a∗ = a→ 0 =
∨
{b ∈ L | a ∧ b = 0}.

A frame homomorphism is a map h : L→M between frames which preserves
finitary meets (including the top element 1) and arbitrary joins (including the
bottom element 0). We denote by Frm the category of frames and frame ho-
momorphisms. The category of locales, denoted by Loc, is the dual category of
Frm.

An S ⊆ L is a subframe of L if it is closed under arbitrary joins and finite
meets (in particular, 0, 1 ∈ S). Note that for each a ∈ L, ↑a = {x ∈ L | x ≥ a}
and ↓a = {x ∈ L | x ≤ a} are frames (but, of course, not subframes of L).

The most typical example of a frame is the lattice OX of open subsets
of a topological space X. The correspondence X 7→ OX is clearly functorial
(by taking inverse images), and consequently one has a contravariant functor
O : Top → Frm where Top is the category of topological spaces and continuous
maps. There is also a functor in the opposite direction, the spectrum functor
Σ: Frm→ Top, which assigns to each frame L its spectrum ΣL, the space of all
homomorphisms ξ : L → {0, 1} with open sets Σa = {ξ ∈ ΣL | ξ(a) = 1} for
any a ∈ L, and to each frame homomorphism h : L → M the continuous map
Σh : ΣM → ΣL such that Σh(ξ) = ξ · h. The spectrum functor is right adjoint
to O, with adjunction maps

ηL : L→ OΣL, a 7→ Σa and

εX : X → ΣOX, x 7→ x̂ (given by x̂(U) = 1 iff x ∈ U).

The former is the spatial reflection of the frame L and the latter is the sobrifi-
cation of the space X.

For general notions and results concerning frames and locales we refer to
Johnstone [13] or the more recent Picado-Pultr [20]. Here we recall a number
of basic notions needed in the paper.

A frame L is

- regular if a =
∨
{b ∈ L | b ≺ a} for every a ∈ L, where b ≺ a (b is rather below

a) means that b∗ ∨ a = 1;

- completely regular if a =
∨
{b ∈ L | b≺≺ a} for every a ∈ L, where b≺≺ a (b

is completely below a) means that there is {cr | r ∈ Q ∩ [0, 1]} ⊆ L such that
b ≤ c0, c1 ≤ a and cr ≺ cs whenever r < s;

- compact if for each A ⊆ L such that
∨
A = 1 there exists a finite F ⊆ A such

that
∨
F = 1;

- continuous if a =
∨
{b ∈ L | b � a} for every a ∈ L, where b � a (b is way

below a) means that a ≤
∨
A for some A ⊆ L implies b ≤

∨
F for some finite

F ⊆ A.
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A frame homomorphism h : L→M is

- dense if h(a) = 0 implies a = 0;

- a quotient map if it is onto.

Of course that one-to-one frame homomorphisms are dense. On the other hand,
any dense frame homomorphism between regular frames with compact codomain
is one-to-one.

Each frame homomorphism h : L → M preserves arbitrary joins and thus
has a right adjoint h∗ : M → L given by the equivalence

h(a) ≤ b iff a ≤ h∗(b)

for all a ∈ L and b ∈ M . Specifically, h∗(b) =
∨
{a ∈ L | h(a) ≤ b} for every

b ∈M .
Given a pair of frame homomorphisms f, g : L→M , the embedding e : E ⊆

L, where E is the subframe {x ∈ L | f(x) = g(x)}, is the equalizer of f and
g in Frm. This means that for any frame homomorphism h : N → L such that
f · h = g · h there exists a unique h : N → E such that e · h = h (evidently, h is
given by h(x) = h(x) for every x ∈ N).

Compactifications of frames. Given a frame L, a compactification of L is
an onto dense frame homomorphism h : M → L with a compact regular domain
M . A frame is called compactifiable if it has a compactification. The set of all
compactifications of L is preordered by the relation (h1 : M1 → L) ≤ (h2 : M2 →
L) iff there exists a frame homomorphism g : M1 → M2 such that h2 · g = h1.
We denote by K(L) the corresponding poset induced by the usual identification
of equivalent elements. We need to recall the familiar description of K(L) in
terms of certain binary relations on L, due to Banaschewski [1].

A strong inclusion [1] on a frame L is a binary relation C on L such that

(1) If x ≤ a C b ≤ y then x C y.

(2) C is a sublattice of L× L.

(3) If a C b then a ≺ b.
(4) If a C b then a C c C b for some c ∈ L.

(5) If a C b then b∗ C a∗.

(6) a =
∨
{b ∈ L | b C a} for all a ∈ L.

An ideal J of L is called a strongly regular C-ideal if for any x ∈ J there exists
an y ∈ J such that x C y. The strongly regular C-ideals of L form a regular
subframe of the frame I(L) of all ideals of L, that we denote by

GC(L). (2.1)

Let S(L) be the set of all strong inclusions on the frame L, partially ordered
as subsets of L × L. By Proposition 2 of [1], K(L) is isomorphic to S(L). The
isomorphism is given as follows: each compactification h : M → L of L induces
a strong inclusion C given by x C y iff h∗(x) ≺ h∗(y); conversely, given a
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strong inclusion relation C on L, the map GC(L) → L given by I 7→
∨
I is a

compactification of L.
Moreover, a frame L has a least compactification if and only if it is regular

and continuous. In this case, the least compactification is given by the frame
homomorphism

∨
: Gv(L) → L, where v denotes the strong inclusion defined

by
a v b iff a ≺ b and either ↑(a∗) or ↑b is compact. (2.2)

Coproducts of frames. The coproduct L ⊕M of two frames may be con-
structed in the following simple way. First take the Cartesian product L ×M
with the usual partial order and

D(L×M) = {U ⊆ L×M | ↓U = U 6= ∅}.

Call a U ∈ D(L×M) saturated if

(1) for any subset A ⊆ L and any b ∈ M , if A × {b} ⊆ U then (
∨
A, b) ∈ U ,

and

(2) for any a ∈ L and any subset B ⊆M , if {a} ×B ⊆ U then (a,
∨
B) ∈ U .

The set A (resp. B) can be void; hence, in particular, each saturated set contains
the set O = {(0, b), (a, 0) | a ∈ L, b ∈ M}. It is easy to see that for each
(a, b) ∈ L×M ,

a⊕ b = ↓(a, b) ∪O is saturated.

To finish the construction take

L⊕M = {U ∈ D(L×M) | U is saturated}

with the coproduct injections

ιL = (a 7→ a⊕ 1) : L→ L⊕M, ιM = (b 7→ 1⊕ b) : M → L⊕M.

Note that one has for each saturated U ,

U =
∨
{a⊕ b | (a, b) ∈ U} =

⋃
{a⊕ b | (a, b) ∈ U},

and if a⊕ b ≤ c⊕ d and b 6= 0 then a ≤ c.

Localic groups. We recall that a localic group [12] is a group in the category
of locales, i.e. a cogroup in Frm. Specifically, it is a frame L endowed with three
frame homomorphisms

µ : L→ L⊕ L, γ : L→ L, ε : L→ 2 = {0, 1}

satisfying
(µ⊕ 1L) · µ = (1L ⊕ µ) · µ,

(ε⊕ 1L) · µ = (1L ⊕ ε) · µ = 1L, and

∇ · (γ ⊕ 1L) · µ = ∇ · (1L ⊕ γ) · µ = σL · ε
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where σL : 2 → L sends 0 to 0 and 1 to 1, and ∇ is the codiagonal homomor-
phism L⊕L→ L. A localic group L is abelian when λ ·µ = µ for the automor-
phism λ : L⊕ L→ L⊕ L interchanging the two coproduct maps L→ L⊕ L.

Here, as usual, we make the (obvious) assumption that the cartesian prod-
ucts in the construction of coproducts are associative and we will work with
the factor 2 as a void one, meaning that L ⊕ 2 = 2 ⊕ L = L with coproduct
injections

L
1L // L 2

σoo and 2
σ // L L

1Loo .

The morphisms of localic groups (usually called LG-homomorphisms)

h : (L, µ, γ, ε)→ (L′, µ′, γ′, ε′)

are frame homomorphisms h : L→ L′ such that

µ′ · h = (h⊕ h) · µ, γ′ · h = h · γ and ε′ · h = ε.

The dual of the resulting category is the category of localic groups. See [20]
or [21] for more information on localic groups.

3. The Alexandroff extension of a frame

We shall say that an element a of a frame L is cocompact provided the frame
↑a is compact. In the sequel, coK(L) denotes the set of all cocompact elements
of L.

Remarks 3.1. (1) In case L = OX for some space X, then U ∈ OX is cocompact
iff X r U is compact. This justifies our terminology.

(2) a ∈ L is cocompact if and only if for each B ⊆ L such that a ∨ (
∨
B) = 1

there exists a finite F ⊆ B such that a∨ (
∨
F ) = 1. Indeed, let a be cocompact

and let B ⊆ L satisfy a ∨ (
∨
B) = 1. Then {a ∨ b | b ∈ B} is a cover of ↑a and

therefore there is a finite F ⊆ B such that 1 =
∨
b∈F (a ∨ b) = a ∨ (

∨
F ). For

sufficiency, let B be a cover of ↑a. Then a ∨ (
∨
B) = 1 and thus there exists a

finite F ⊆ B such that 1 = a ∨ (
∨
F ) =

∨
F .

(3) coK(L) is a filter of L. Indeed:

(i) 1 ∈ coK(L). (↑1 = {1} is obviously compact).

(ii) If a ∈ coK(L) and a ≤ b, then b ∈ coK(L) (since ↑b ⊆ ↑a and
∨
↑b =

∨
↑a).

Consequently, coK(L) is closed under non-void joins.

(iii) If a1, a2 ∈ coK(L) then a1 ∧ a2 ∈ coK(L). In fact:
Let B be a cover of ↑(a1 ∧ a2). Then, for i = 1, 2, {ai ∨ b | b ∈ B} is a cover
of ↑ai and so there exists a finite Fi ⊆ B such that ai ∨ (

∨
Fi) = 1. Hence

1 = (a1 ∨ (
∨
F1))∧ (a2 ∨ (

∨
F2)) ≤ (a1 ∧ a2)∨

∨
(F1 ∪F2) =

∨
(F1 ∪F2), which

shows that F1 ∪ F2 is a finite subcover of ↑(a1 ∧ a2).

(4) coK(L) = L if and only if 0 is cocompact if and only if L is compact.

(5) The strong inclusion introduced in (2.2) can be equivalently stated as a v b
iff a ≺ b and either a∗ or b is cocompact.
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Proposition 3.2. For each continuous regular frame L we have:

(1) If a� 1 then a∗ ∈ coK(L).

(2) If a� b then a v b.
(3) For every b ∈ coK(L), there exists c ∈ coK(L) such that c ≺ b.
(4) If there is some b ∈ coK(L) such that b� 1, then L is compact.

Proof. (1) Let B ⊆ L such that a∗ ∨ (
∨
B) = 1. Since L is continuous, there

exists b ∈ L such that a � b � 1. Therefore, there exists a finite F ⊆ B
such that b ≤ a∗ ∨ (

∨
F ). Since L is also regular, a � b implies a ≺ b and we

conclude that 1 = a∗ ∨ b ≤ a∗ ∨ (
∨
F ).

(2) Since L is regular, it follows immediately from (1) and Remark 3.1 (5).

(3) Let b ∈ coK(L). Since L is continuous one has 1 =
∨
{a ∈ L | a� 1}. Thus

there exists some finite F ⊆ {a ∈ L | a� 1} such that b∨ (
∨
F ) = 1. Then, by

(1), a∗ ∈ coK(L) for every a ∈ F and therefore c = (
∨
F )∗ =

∧
a∈F a

∗ ∈ coK(L)
since it is a finite meet of cocompact elements. Finally, c∗ ∨ b ≥ (

∨
F )∨ b = 1.

(4) Let b ∈ coK(L) such that b � 1 and consider A ⊆ L satisfying
∨
A = 1.

Then there exists a finite F1 ⊆ A such that b ∨ (
∨
F1) = 1 and a finite F2 ⊆ A

such that b ≤
∨
F2. Thus there exists a finite F = F1 ∪ F2 such that

∨
F =

(
∨
F2) ∨ (

∨
F1) ≥ b ∨ (

∨
F1) = 1.

Now, given a frame L, consider the poset

A (L) = (L× {0}) ∪ (coK(L)× {1}) ⊆ L× 2

(endowed with the componentwise order). It is easy to check that A (L) is a
frame. Indeed, it is a subframe of L × 2, as it is closed under all suprema
and finite infima (from the fact that coK(L) is a filter). In particular, for
A = (A0 × {0}) ∪ (A1 × {1}) ⊆ A (L), one has

∨
A =

{
(
∨

(A0 ∪A1), 0) if A1 = ∅,

(
∨

(A0 ∪A1), 1) if A1 6= ∅.

We refer to A (L) as the Alexandroff extension of L.

Remarks 3.3. (1) This construction is a particular case of a general procedure
introduced by Hong in [10] concerning extensions of a frame L determined by a
set of filters. Specifically, A (L) is the simple extension of L with respect to a
single filter, namely, coK(L).

(2) In the case that L is the frame OX of open sets of a topological space X,
A (L) is isomorphic to the lattice of open sets of the Alexandroff extension of
X.

Proposition 3.4. A (L) is a compact frame.
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Proof. Let A ⊆ A (L) such that
∨
A = (1L, 1). Then

∨
(A0 ∪ A1) = 1L and

there exists some b ∈ coK(L) such that (b, 1) ∈ A. Consequently, there exists a
finite F ⊆ A0∪A1 such that b∨ (

∨
F ) = 1L. It follows that for the finite subset

B = ((F ∩A0)× {0}) ∪ ((F ∩A1)× {1}) ∪ {(b, 1)} ⊆ A

one has
∨
B = (b ∨ (

∨
F ), 1) = (1L, 1).

Recall (2.1) and (2.2).

Proposition 3.5. Let L be a non-compact continuous regular frame. The map
f : Gv(L)→ A (L) given by

f(I) =

{
(
∨
I, 0) if I ∩ coK(L) = ∅,

(
∨
I, 1) otherwise,

is a frame isomorphism with inverse g : A (L)→ Gv(L) given by

g(a, 0) = {x ∈ L | x� a} and g(b, 1) = {x ∈ L | x ≺ b}

for every a ∈ L and b ∈ coK(L).

Proof. Consider the map ϕ : Gv(L)→ 2 defined by

ϕ(I) =

{
0 if I ∩ coK(L) = ∅,

1 otherwise.

It is easy to check that ϕ is a frame homomorphism. Putting ϕ together with
the frame homomorphism

∨
: Gv(L)→ L, we get the frame homomorphism

f : Gv(L)→ L× 2

given by I 7→ (
∨
I, ϕ(I)). Obviously, f(Gv(L)) ⊆ A (L). As an abuse of

notation, we shall consider A (L) as the codomain of f . Since f is dense, A (L)
is compact and Gv(L) is regular, we conclude that f is one-to-one.

The subsets g(a, 0) = {x ∈ L | x � a} and g(b, 1) = {x ∈ L | x ≺ b}
are obviously ideals of L for any a ∈ L and b ∈ coK(L). On the other hand,
given a ∈ L and x ∈ g(a, 0), by the continuity of L there exists y ∈ L such
that x� y � a. Since L is regular, y ∈ g(a, 0) and, by Proposition 3.2 (2), we
conclude that x v y. Thus g(a, 0) is a strongly regular v-ideal. Further, given
b ∈ coK(L) and x ∈ g(b, 1), one has that x v b. Then there exists y ∈ L such
that x v y v b and so y ∈ g(b, 1). It follows that g(b, 1) is a strongly regular
v-ideal.

Moreover, we know by Proposition 3.2 (3) that g(b, 1)∩coK(L) 6= ∅ for every
b ∈ coK(L) and thus f(g(b, 1)) = (

∨
g(b, 1), 1). Finally, since L is non-compact,

it follows from Proposition 3.2 (4) that g(a, 0)∩coK(L) = ∅ for every a ∈ L and
so f(g(a, 0)) = (

∨
g(a, 0), 0). Accordingly, since L is regular and continuous, we

conclude that f · g = 1A (L), and thus f is onto.

This shows that for non-compact continuous regular frames, the first pro-
jection π1 : A (L) → L defined by π1(a, 0) = a and π1(b, 1) = b is the least
compactification of L. We call it the Alexandroff compactification of L.
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4. The Alexandroff compactification of L(R)

Let L(R) denote the frame of reals [2], that is, the frame generated by all
ordered pairs (p, q) of rationals, subject to the relations

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s),
(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s,
(R3) (p, q) =

∨
{(r, s) | p < r < s < q},

(R4)
∨
{(p, q) | p, q ∈ Q} = 1.

Further, let (p,—) =
∨
q>p(p, q) and (—, q) =

∨
p<q(p, q) for each p, q ∈ Q.

Note that

(p, q)∗ = (—, p) ∨ (q,—), (p,—)∗ = (—, p) and (—, q)∗ = (q,—).

Remarks 4.1. (1) The assignment

(p, q) 7→ 〈p, q〉 ≡ {t ∈ Q | p < t < q}

for every p, q ∈ Q determines a canonical quotient frame homomorphism (see
[2, p. 10])

h : L(R)→ OQ,

since it is onto and it trivially turns the defining relations (R1)–(R4) of L(R)
into identities in OQ. Of course h is not one-to-one: e.g.,

h
(∨
{(—, q) | q2 < 2} ∨

∨
{(p,—) | p2 > 2 and p > 0}

)
= Q = h(1).

Nevertheless, it is a dense map. Indeed, since {(p, q) | p, q ∈ Q} is a join-basis
of L(R), it is enough to prove that h((p, q)) = ∅ implies (p, q) = 0, but this is
easy since 〈p, q〉 = ∅ implies that p ≥ q and by (R3) it follows that (p, q) = 0.
In particular, (p, q) = 0 if and only if p ≥ q in Q.

(2) L(R) is a continuous and regular frame [2]. Indeed, one has that (r, s) �
(p, q), and in consequence also (r, s) ≺ (p, q), whenever p < r < s < q. Accord-
ingly, the least compactification of L(R) does exist.

It is well known that (p, q)∗ is a cocompact element of L(R) for any p, q ∈ Q
(since the frame ↑((—, p) ∨ (q,—)) is compact for any p, q ∈ Q, see [2]). We
characterize the cocompact elements of L(R) as follows:

Proposition 4.2. The following are equivalent for each a ∈ L(R):

(1) a is cocompact.

(2) There exist p, q ∈ Q such that (p, q)∗ ≤ a.

(3) There exist p, q ∈ Q such that (p, q) ∨ a = 1.

Proof. (3) =⇒ (2) is obvious and (2) =⇒ (1) follows from Remark 3.1 (3).
Finally, if a is cocompact then, since a ∨

∨
{(p, q) | p, q ∈ Q} = 1, there exists

{(pi, qi)}ni=1 such that a ∨ (
∨n
i=1(pi, qi)) = 1. Consequently, a ∨ (p, q) = 1 for

p = minni=1 pi and q = maxni=1 qi.
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Since any element of L(R) is a join of basic generators (p, q) (by relation
(R1)), we have the following characterization:

Corollary 4.3. An element a of L(R) is cocompact if and only if there exist
p, q ∈ Q and {pi, qi}i∈I ⊆ Q such that

a = (p, q)∗ ∨
∨
i∈I

(pi, qi).

Consequently, in A (L(R)) any element is a join of elements of the form

((p, q), 0) and ((p, q)∗, 1) (p, q ∈ Q).

As we will show in detail, this yields an equivalent description of A (L(R)), in
terms of generators and relations, with the elements

q

p
(p, q) ≡ ((p, q), 0)

q

p
and

︷ ︷
p, q ≡ ((p, q)∗, 1)

as basic generators.

Let A(R) be the frame presented by generators (p, q) and
︷ ︷
p, q, with p, q ∈ Q,

and subject to the following relations:

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s),
(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s,
(R3) (p, q) =

∨
{(r, s) | p < r < s < q},

(S1)
︷ ︷
p, q ∧

︷ ︷
r, s =

︷ ︷
p, s whenever p ≤ r ≤ q ≤ s,

(S2)
︷ ︷
p, q ∨

︷ ︷
r, s =

︷ ︷
p ∨ r, q ∧ s,

(S3)
︷ ︷
p, q =

∨
{
︷ ︷
r, s | r < p and q < s},

(S4) (p, q) ∧
︷ ︷
r, s = (p, q ∧ r) ∨ (p ∨ s, q),

(S5) (p, q) ∨
︷ ︷
r, s = 1 whenever p < r and s < q.

We have:

Lemma 4.4.

(1) If p ≥ q then (p, q) = 0.

(2) If p ≤ r and s ≤ q then
︷ ︷
p, q ≤

︷ ︷
r, s.

(3) If q ≤ r or s ≤ p then (p, q) ≤
︷ ︷
r, s.

(4) If p < r ≤ q ≤ s then (p, q) ∨
︷ ︷
r, s =

︷ ︷
q, s.

(5) If r ≤ p ≤ s < q then (p, q) ∨
︷ ︷
r, s =

︷ ︷
r, p.

(6) If p ≤ q < r ≤ s then
︷ ︷
p, q ∧

︷ ︷
r, s =

︷ ︷
p, s ∨ (q, r).

(7) If p > q then
︷ ︷
p, q = 1.

(8) If p < r < s < q then (r, s)≺≺ (p, q) and
︷ ︷
r, s≺≺

︷ ︷
p, q.
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Proof. (1) Apply (R3).

(2) Apply (S3).

(3) If q ≤ r then, by (S4), (p, q) ∧
︷ ︷
r, s = (p, q) ∨ (p ∨ s, q) = (p, q). Similarly, if

s ≤ p then (p, q) ∧
︷ ︷
r, s = (p, q ∧ r) ∨ (p, q) = (p, q)

(4) Let p, q, r, s ∈ Q such that p < r ≤ q ≤ s. Since p < r and s < s+1 it follows

by (S5) that (p, s + 1) ∨
︷ ︷
r, s = 1. Then, by (R2), (p, q) ∨ (r, s + 1) ∨

︷ ︷
r, s = 1.

Hence, by (S1), (S4) and (3),︷ ︷
q, s =

︷ ︷
q, s ∧ ((p, q) ∨ (r, s+ 1) ∨

︷ ︷
r, s)

= (
︷ ︷
q, s ∧ (p, q)) ∨ (

︷ ︷
q, s ∧ (r, s+ 1)) ∨ (

︷ ︷
q, s ∧

︷ ︷
r, s)

= (p, q) ∨ (r, q) ∨ (s, s+ 1) ∨
︷ ︷
r, s = (p, q) ∨

︷ ︷
r, s.

(5) Similar to (4).

(6) If p ≤ q < r ≤ s, then, by properties (4) and (5) and (R1), one has︷ ︷
p, q ∧

︷ ︷
r, s = ((q, s+ 1) ∨

︷ ︷
p, s) ∧ ((p− 1, r) ∨

︷ ︷
p, s)

= ((q, s+ 1) ∧ (p− 1, r)) ∨
︷ ︷
p, s = (q, r) ∨

︷ ︷
p, s.

(7) Let r ∈ Q such that q < r < p. By (S5),
︷ ︷
p, q = (r, r) ∨

︷ ︷
p, q = 1.

(8) First note that (p, q) ∧
︷ ︷
p, q = 0 for every p < q in Q. Indeed, by (S4),

(p, q) ∧
︷ ︷
p, q = (p, p) ∨ (q, q) which is 0 by (R3). Therefore (p, q) ≤

︷ ︷
p, q
∗

and︷ ︷
p, q ≤ (p, q)∗. Then, by (S5), for every p < r < s < q in Q we have

(r, s)∗ ∨ (p, q) ≥
︷ ︷
r, s ∨ (p, q) = 1 and

︷ ︷
r, s
∗
∨
︷ ︷
p, q ≥ (r, s) ∨

︷ ︷
p, q = 1.

Hence (r, s) ≺ (p, q) and
︷ ︷
r, s ≺

︷ ︷
p, q. From this it follows readily that

(r, s) ≺ (p+r2 , q+s2 ) ≺ (p, q) and
︷ ︷
r, s ≺

︷ ︷
p+r
2 , q+s2 ≺

︷ ︷
p, q.

This interpolation can be repeated indefinitely and we get (r, s)≺≺ (p, q) and︷ ︷
r, s≺≺

︷ ︷
p, q.

Combining Lemma 4.4 with (R3) and (S3), we obtain immediately the fol-
lowing:

Proposition 4.5. A(R) is completely regular.

Further, we have:

Lemma 4.6. The set of generators of A(R) forms a join-basis.
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Proof. We only need to check that finite meets of generators are expressible as

joins of generators. By (R1) and (S4), (p, q)∧(r, s) and (p, q)∧
︷ ︷
r, s are obviously

joins of generators. So it remains to check the case
︷ ︷
p, q ∧

︷ ︷
r, s. We may assume

that p ≤ q and r ≤ s since the other cases are straightforward, by Lemma 4.4 (7).
Further, we may assume without loss of generality that p ≤ r. If p ≤ r ≤ q ≤ s
we are done by (S1). If p ≤ r ≤ s < q, then

︷ ︷
p, q ∧

︷ ︷
r, s =

︷ ︷
p, q, by Lemma 4.4 (2).

Finally, the case p ≤ q < r ≤ s follows from Lemma 4.4(6).

Theorem 4.7. The assignments

(p, q) 7→ ((p, q), 0) and
︷ ︷
p, q 7→ ((p, q)∗, 1)

determine a frame isomorphism Ψ: A(R)→ A (L(R)).

Proof. In order to show that Ψ is a frame homomorphism it suffices to check
that it turns the defining relations (R1)–(R3) and (S1)–(S5) into identities in
the frame A (L(R)). Of course, it turns (R1)–(R3) into identities trivially, so
we only have to check it for relations (S1)–(S5).

(S1) Let p ≤ r ≤ q ≤ s in Q. Then

Ψ
(︷ ︷
p, q
)
∧Ψ

(︷ ︷
r, s
)

= ((p, q)∗ ∧ (r, s)∗, 1)

= (((—, p) ∨ (q,—)) ∧ ((—, r) ∨ (s,—)), 1)

= ((—, p ∧ r) ∨ (s, p) ∨ (q, r) ∨ (s ∨ q,—), 1)

= ((—, p) ∨ (s,—), 1) = ((p, s)∗, 1) = Ψ
(︷ ︷
p, s
)
.

(S2) Let p, q, r, s ∈ Q. Then

Ψ
(︷ ︷
p, q
)
∨Ψ

(︷ ︷
r, s
)

= ((p, q)∗ ∨ (r, s)∗, 1) = ((—, p) ∨ (q,—) ∨ (—, r) ∨ (s,—), 1)

= ((—, p ∨ r) ∨ (q ∧ s,—), 1) = ((p ∨ r, q ∧ s)∗, 1)

= Ψ
(︷ ︷
p ∨ r, q ∧ s

)
.

(S3) Let p, q ∈ Q. Then

Ψ
(︷ ︷
p, q
)

= ((p, q)∗, 1) = ((—, p) ∨ (q,—), 1) =
( ∨
r<p

(—, r) ∨
∨
s>q

(s,—), 1
)

=
∨
{((r, s)∗, 1) | r < p and q < s} =

∨{
Ψ
(︷ ︷
r, s
)
| r < p and q < s

}
.

(S4) Let p, q, r, s ∈ Q. Then

Ψ(p, q) ∧Ψ(
︷ ︷
r, s) = ((p, q), 0) ∧ ((r, s)∗, 1) = ((p, q) ∧ ((—, r) ∨ (s,—)), 0)

= ((p, q ∧ r) ∨ (p ∨ s, q), 0) = Ψ(p, q ∧ r) ∨Ψ(p ∨ s, q).

(S5) If p < r and s < q in Q, then

Ψ(p, q) ∨Ψ
(︷ ︷
r, s
)

= ((p, q), 0) ∨ ((r, s)∗, 1) = ((p, q) ∨ (—, r) ∨ (s,—), 1)

= (((p,—) ∨ (—, r) ∨ (s,—)) ∧ ((—, q) ∨ (—, r) ∨ (s,—)), 1)

= (((p ∧ s,—) ∨ (—, r)) ∧ ((—, q ∨ r) ∨ (s,—)), 1) = 1

12



since p ∧ s < r and s < q ∨ r.
Moreover, by Corollary 4.3, Ψ is obviously onto. In order to verify that Ψ

is also one-to-one, we only have to check that it is dense, since A (L(R)) is a

compact regular frame and A(R) is regular. First, note that Ψ
(︷ ︷
p, q
)
6= (0, 0)

for any p, q ∈ Q. Furthermore, Ψ(p, q) = (0, 0) implies that (p, q) = 0 in L(R).
Consequently, p ≥ q by Remark 4.1. Then, (p, q) = 0 in A(R), by (R3). The
conclusion now follows from Lemma 4.6.

Summarizing, since L(R) is a non-compact continuous regular frame [2],
A(R) is its Alexandroff compactification.

5. An alternative presentation for A (L(R)): the frame of the unit
circle

In this section we provide an equivalent presentation for A (L(R)). The
motivation for it comes from the description of the unit circle space as a quotient
of R.

Definition 5.1. The frame of the unit circle is the frame L(T) generated by
all ordered pairs (p, q), for p, q ∈ Q, subject to the defining relations

(T1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s) whenever q ∨ s− p ∧ r ≤ 1,

(T2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s,
(T3) (p, q) =

∨
{(r, s) | p < r < s < q},

(T4)
∨
p,q∈Q(p, q) = 1,

(T5) (p, q) = (p+ 1, q + 1).

Remarks 5.2. (1) If p ≥ q then (p, q) = 0, by (T3).

(2) If q − p > 1 then (p, q) = 1. Indeed, by (T5), (T2) and (T3) one has

(p, q) =
n+1∨
m=0

(p+m, q +m) = (p, q + n+ 1) = (p− bpc − 1, q + n− bpc)

≥ (0, n)

for every n ∈ N. Given r, s ∈ Q, (T5) and (T3) ensure that

(r, s) = (r − brc, s− brc) ≤ (0, bsc − brc+ 1) ≤ (p, q).

Hence (p, q) ≥
∨
r,s∈Q(r, s) = 1 by (T4).

(3) For any p, q ∈ Q satisfying 0 < q − p ≤ 1 one has (p, q) = (r, s) for some
0 ≤ r < 1 and r < s ≤ r + 1 (just take r = p− bpc and s = q − bpc).
(4) Comparing (T1) with (R1) one notice some restriction on p, q, r, s. The
reason for it is that with no such restriction in (T1) we would have, for any
p, q ∈ Q satisfying q−p ≤ 1, (p, q) = (p, q)∧ (p+1, q+1) = (p+1, q), which is 0
by remark (1). This would lead ultimately to the unwanted fact L(T) = {0 = 1}!
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Accordingly, L(T) is not isomorphic to the quotient L(R) modulo the congruence
generated by the pair ((p, q), (p+ 1, q + 1)).

(5) If p < r < s < q then (r, s)≺≺ (p, q). Indeed, if q − p > 1, then the result
follows immediately from remark (2) above. On the other hand, if q − p ≤ 1,
then it follows from (T1) that (r, s)∧ (s−1, r) = 0. Therefore (s−1, r) ≤ (r, s)∗

and consequently (r, s)∗∨ (p, q) ≥ (s−1, r)∨ (p, q) = (s−1, q) = 1, by (T2) and
remark (2). Hence (r, s) ≺ (p, q). From this it follows that

(r, s) ≺ (p+r2 , q+s2 ) ≺ (p, q)

and since this interpolation can be continued indefinitely we conclude that
(r, s)≺≺ (p, q).

Combining Remark 5.2 (5) with (T3), we obtain immediately the following:

Proposition 5.3. L(T) is completely regular.

Next we establish the precise relation between L(T) and the usual space T
of the unit circle.

Proposition 5.4. The spectrum of L(T) is homeomorphic to the space [0, 1〉
endowed with the topology generated by the family of sets 〈p, q〉 and [0, p〉∪〈q, 1〉
for every p < q in Q ∩ 〈0, 1〉.

Proof. For each x ∈ [0, 1〉 let hx : L(T)→ 2 be given by

hx(p, q) = 1 iff x ∈ 〈p− bpc, q − bpc〉 ∪ 〈p− bpc − 1, q − bpc − 1〉.

It is easy to show that hx turns the defining relations (R1)–(R5) into identities
and so hx ∈ ΣL(T). Let ρ : [0, 1〉 → ΣL(T) be given by ρ(x) = hx. In order
to show that ρ is one-to-one, let x1 6= x2 in [0, 1〉. If, say, x1 < x2, there exist
p, q ∈ Q such that x1 < p < x2 < q < 1 and then hx1

(p, q) = 0 and hx2
(p, q) = 1

and so hx1 6= hx2 .
The function ρ is also onto. Indeed, given h ∈ ΣL(T), we distinguish two

cases:

(i) If h((0, 1)) = 0 then, by (R2),

h((p, q)) = h((0, 1) ∨ (p− bpc, q − bpc)) = h((0, (q − bpc) ∨ 1))

for every p, q ∈ Q and so

h((p, q)) = 1 ⇐⇒ q − bpc > 1 ⇐⇒ 0 ∈ 〈p− bpc − 1, q − bpc − 1〉
⇐⇒ 0 ∈ 〈p− bpc, q − bpc〉 ∪ 〈p− bpc − 1, q − bpc − 1〉
⇐⇒ h0((p, q)) = 1.

Hence h = h0 = ρ(0).

(ii) If h((0, 1)) = 1 then, by (R3) and the compactness of 2, there exist p0, q0 ∈
Q such that 0 < p0 < q0 < 1 and h((p0, q0)) = 1. Then

0 <
∨
{p ∈ 〈0, 1〉 ∩Q | h((p, 1)) = 1} =

∧
{q ∈ 〈0, 1〉 ∩Q | h((0, q)) = 1} < 1.
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Let

xh =
∨
{p ∈ 〈0, 1〉 ∩Q | h((p, 1)) = 1} =

∧
{q ∈ 〈0, 1〉 ∩Q | h((0, q)) = 1}.

Then

h((p, q)) = 1 ⇐⇒ xh ∈ 〈p− bpc, q − bpc〉 ∪ 〈p− bpc − 1, q − bpc − 1〉

and therefore h = hxh
= ρ(xh).

It remains to show that ρ is a homeomorphism. For each open set Σ(p,q) of
ΣL(T),

ρ−1(Σ(p,q)) = {x ∈ [0, 1〉 | hx ∈ Σ(p,q)} = {x ∈ [0, 1〉 | hx((p, q)) = 1}
= {x ∈ [0, 1〉 | x ∈ 〈p− bpc, q − bpc〉 ∪ 〈p− bpc − 1, q − bpc − 1〉}
= [0, q − bpc − 1〉 ∪ 〈p− bpc, (q − bpc) ∧ 1〉.

Hence ρ is continuous. On the other hand, for each p, q ∈ Q such that 0 < p <
q < 1,

ρ(〈p, q〉) = {hx ∈ ΣL(T) | p < x < q} = {h ∈ ΣL(T) | h(p, q) = 1} = Σ(p,q)

and
ρ([0, p〉 ∪ 〈q, 1〉) = {hx ∈ ΣL(T) | 0 ≤ x < p or q < x < 1}

= {h ∈ ΣL(T) | h(q, p+ 1) = 1} = Σ(q,p+1)

are open sets of ΣL(T).

Corollary 5.5. The spectrum of L(T) is homeomorphic to the unit circle T.

Remark 5.6. It should be added that the homeomorphism ρ : [0, 1〉 → ΣL(T)
induces a frame isomorphism OΣL(T)→ O([0, 1〉) taking Σ(p,q) to the interval
〈p, q〉, as seen in the proof above of Proposition 5.4. Combining this with the
definition of the spatial reflection of a frame L, we conclude that the frame
homomorphism L(T) → O(T) taking (p, q) to 〈p, q〉 is the spatial reflection
map.

Finally, we investigate the relation between the frames L(T) and A(R).

Proposition 5.7. Let ϕ : Q → 〈0, 1〉 ∩ Q be an order isomorphism. The map
Φ: A(R)→ L(T) defined by

(p, q) 7→ (ϕ(p), ϕ(q)) and
︷ ︷
p, q 7→ (ϕ(q), ϕ(p) + 1)

for all p, q ∈ Q is an onto frame homomorphism.

Proof. In order to show that Φ is a frame homomorphism we only need to
check that Φ turns the defining relations (R1)–(R3) and (S1)–(S5) of A (L(R))
into identities in L(T). We first note that Remarks 5.2 (1) and (2) imply that

Φ(p, q) = 0 whenever q ≤ p and that Φ
(︷ ︷
p, q
)

= 1 whenever q < p.
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(R1) follows directly from (T1) since ϕ(p)− ϕ(q) ≤ 1 for all p, q ∈ Q.

(R2) and (R3) follow directly from (T2) and (T3), respectively.

(S1) Let p ≤ r ≤ q ≤ s in Q. Then, by (T1),

Φ
(︷ ︷
p, q
)
∧ Φ

(︷ ︷
r, s
)

= (ϕ(q), ϕ(p) + 1) ∧ (ϕ(s), ϕ(r) + 1)

= (ϕ(q) ∨ ϕ(s), ϕ(p) ∧ ϕ(r) + 1) = (ϕ(s), ϕ(p) + 1) = Φ
(︷ ︷
p, s
)
,

since ((ϕ(p)+1)∨(ϕ(r)+1))−(ϕ(q)∧ϕ(s)) = ϕ(r)+1−ϕ(q) ≤ 1 as ϕ(r) ≤ ϕ(q).

(S2) Let p, q, r, s ∈ Q. Then

Φ
(︷ ︷
p, q
)
∨ Φ

(︷ ︷
r, s
)

= (ϕ(q), ϕ(p) + 1) ∨ (ϕ(s), ϕ(r) + 1)

= (ϕ(q) ∧ ϕ(s), ϕ(p) + 1) ∨ (ϕ(s), ϕ(p) ∨ ϕ(r) + 1)

= (ϕ(q) ∧ ϕ(s), ϕ(p) ∨ ϕ(r) + 1) = Φ
(︷ ︷
p ∨ r, q ∧ s

)
,

(by (T3) and (T2) since ϕ(q) ∧ ϕ(s) ≤ ϕ(s) < ϕ(p) + 1 ≤ ϕ(p) ∨ ϕ(r) + 1).

(S3) Let p, q ∈ Q. Since ϕ is an order isomorphism, then, by (T3),∨{
Φ
(︷ ︷
r, s
)
| r < p and q < s

}
=
∨
{(ϕ(s), ϕ(r) + 1) | r < p and q < s}

=
∨
{(ϕ(s), ϕ(r) + 1) | ϕ(q) < ϕ(s) < ϕ(r) + 1 < ϕ(p) + 1}

= (ϕ(q), ϕ(p) + 1) = Φ
(︷ ︷
p, q
)
.

(S4) Let p, q, r, s ∈ Q. We distinguish several cases:

(i) If q ≤ p or r ≤ p < q ≤ s then, by (T1),

Φ(p, q) ∧ Φ
(︷ ︷
r, s
)

= 0 = Φ(p, q ∧ r) ∨ Φ(p ∨ s, q).

(ii) If s < r, p < q ≤ r ≤ s or r ≤ s ≤ p < q then, by (T2) and (T3),

Φ(p, q) ∧ Φ
(︷ ︷
r, s
)

= (ϕ(p), ϕ(q)) = Φ(p, q ∧ r) ∨ Φ(p ∨ s, q).

(iii) If r ≤ p ≤ s < q then by (R1),

Φ(p, q) ∧ Φ
(︷ ︷
r, s
)

= (ϕ(s), ϕ(q)) = Φ(p, q ∧ r) ∨ Φ(p ∨ s, q).

(iv) If p < r ≤ q ≤ s then by (R1) and (R5),

Φ(p, q) ∧ Φ
(︷ ︷
r, s
)

= (ϕ(p), ϕ(r)) = Φ(p, q ∧ r) ∨ Φ(p ∨ s, q).

(v) If p < r ≤ s < q then by (iv) and (v),

Φ(p, q) ∧ Φ
(︷ ︷
r, s
)

= (ϕ(p), ϕ(r)) ∨ (ϕ(s), ϕ(q)) = Φ(p, q ∧ r) ∨ Φ(p ∨ s, q).
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(S5) Let p < r and s < q in Q. If s ≤ p then s < r and so Φ(
︷ ︷
r, s) = 1.

Otherwise, if p < s then ϕ(p) < ϕ(s) < ϕ(q) < ϕ(r) + 1 and using (T2),

Φ(p, q) ∨ Φ(
︷ ︷
r, s) = (ϕ(p), ϕ(q)) ∨ (ϕ(s), ϕ(r) + 1) = (ϕ(p), ϕ(r) + 1)

= Φ(
︷ ︷
r, p) = 1.

In all, this shows that Φ is actually a frame homomorphism. The ontoness
of Φ follows from Remark 5.2 (3). Indeed, given p, q ∈ Q such that 0 ≤ p < 1
and p < q ≤ p+ 1 one has

Φ(ϕ−1(p), ϕ−1(q)) = (p, q) if q ≤ 1 and

Φ
(︷ ︷
ϕ−1(q − 1), ϕ−1(p)

)
= (p, q) if q > 1.

Corollary 5.8. The set of generators of L(T) forms a join-basis.

Proof. This is an immediate consequence of Lemma 4.6 and the fact that the
set of generators of A(R) is mapped by Φ onto the set of generators of L(T).

Remark 5.9. Of course, the ontoness of Φ also gives an alternative proof of the
fact that L(T) is a completely regular frame, since A(R) is completely regular
(Proposition 4.5).

Proposition 5.10. Let f : L(R) → L(R) be the frame isomorphism given by
(p, q) 7→ (p+ 1, q+ 1) for all p, q ∈ Q. The equalizer of the pair (f, 1L(R)) is the
map e : L(T)→ L(R) defined by

(p, q) 7→
∨
n∈Z

(p+ n, q + n).

Proof. Obviously, f is a frame isomorphism with inverse f−1 given by (p, q) 7→
(p−1, q−1) for each p, q ∈ Q. In order to prove that e is a frame homomorphism,
we will check that it turns defining relations (T1)–(T5) into identities in L(R):

We note that if q−p ≤ 0 then e(p, q) = 0 and if q−p > 1 then p+n < p+n+
1 < q+n < q+n+ 1 for every n ∈ Z and thus e(p, q) =

∨
n∈N(p+n, q+n) = 1

by repeated application of (R2).

(T1) Let p, q, r, s ∈ Q such that q ∨ s− p ∧ r ≤ 1. Then

q + n ≤ r + n+ 1 ≤ r +m

for each m > n in Z and

s+m ≤ p+m+ 1 ≤ p+ n
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for each m < n in Z and so (p+ n, q + n) ∧ (r +m, s+m) = 0 for every m 6= n
in Z. Hence

e(p, q) ∧ e(r, s) =
( ∨
n∈Z

(p+ n, q + n)
)
∧
( ∨
m∈N

(r +m, s+m)
)

=
∨

n,m∈Z
((p+ n, q + n) ∧ (r +m, s+m))

=
∨
n∈Z

((p+ n, q + n) ∧ (r + n, s+ n))

=
∨
n∈Z

((p ∨ r) + n, (q ∧ s) + n) = e(p ∨ r, q ∧ s).

(T2) Let p, q, r, s ∈ Q such that p ≤ r < q ≤ s. It is easy to check that
e(p, q) ∨ e(r, s) ≤ e(p, s). On the other hand

e(p, q) ∨ e(r, s) =
∨
n∈Z

(p+ n, q + n) ∨
∨
m∈N

(r +m, s+m)

≥
∨
n∈Z

((p+ n, q + n) ∨ (r + n, s+ n)) =
∨
n∈Z

(p+ n, s+ n) = e(p, s).

(T3) Let p, q ∈ Q. Then∨
n∈Z

e(p, q) =
∨
n∈Z

(p+ n, q + n) =
∨
n∈Z

∨
p+n<r<s<q+n

(r, s)

=
∨
n∈Z

∨
p<r<s<q

(r + n, s+ n) =
∨

p<r<s<q
e(r, s).

(T4)
∨
p,q∈Q e(p, q) ≥ e(0, 2) =

∨
n∈Z(n, n+ 2) = 1.

(T5) Let p, q ∈ Q. Then

e(p, q) =
∨
n∈Z

(p+ n, q + n) =
∨
n∈Z

(p+ n+ 1, q + n+ 1) = e(p+ 1, q + 1).

Now, let
E = {x ∈ L(R) | f(x) = x}

be the equalizer of f and 1L(R). Obviously, by the definition of e, one has
that e(p, q) ∈ E for every p, q ∈ Q. Since {(p, q)}p,q∈Q generates L(T), then
e(L(T)) ⊆ E. On the other hand, if x ∈ E and p, q ∈ Q are such that (p, q) ≤ x
in L(R) then (p + 1, q + 1) = f(p, q) ≤ f(x) = x and f(p − 1, q − 1) = (p, q) ≤
x = f(x). Consequently, (p − 1, q − 1) ≤ x (since f is an isomorphism). By
induction, it follows that (p+ n, q + n) ≤ x for every n ∈ Z and thus

e(p, q) =
∨
n∈Z

(p+ n, q + n) ≤ x.

Hence

x =
∨
{(p, q) | (p, q) ≤ x} =

∨{ ∨
n∈Z

(p+ n, q + n) | (p, q) ≤ x
}

=
∨
{e(p, q) | (p, q) ≤ x} = e (

∨
{(p, q) | (p, q) ≤ x})

18



and therefore e(x) ∈ e(L(T)). In conclusion, e(L(T)) = E. It suffices now to
show that e is one-to-one. Let

h : L(R)→ ↑((—, 0) ∨ (1,—))

be the frame homomorphism given by x 7→ x∨ (—, 0)∨ (1,—). For each p, q ∈ Q
such that 0 ≤ p < 1 and p < q ≤ p+ 1 one has

(h · e)(p, q) =
∨
n∈Z

(p+ n, q + n) ∨ (—, 0) ∨ (1,—)

= (p− 1, q − 1) ∨ (p, q) ∨ (—, 0) ∨ (1,—) ≥ (p, q) ∨ (—, 0) ∨ (1,—).

Indeed:

• for each n ≥ 2, (p− n, q − n) ≤ (p− n, 0) ≤ (—, 0) by (R3);

• for each n ≥ 1, (p+ n, q + n) ≤ (1, q + n) ≤ (1,—) also by (R3).

Moreover, (h · e)(p, q) 6= 0 by Remark 4.1. Then we may conclude that h · e is
dense by the fact that the set of generators of L(T) is a join-basis combined with
Remark 5.2 (2). Since L(T) is a regular frame and ↑((—, 0) ∨ (1,—)) is regular
and compact, it follows that h · e, and hence e, is one-to-one.

From now on, when convenient, we will identify the frame of the unit circle
with the complete sublattice e(L(T)) of L(R).

Corollary 5.11. L(T) is compact.

Proof. This is now obvious since the frame homomorphism

h · e : L(T)→ ↑((—, 0) ∨ (1,—))

is one-to-one and ↑((—, 0) ∨ (1,—)) is a compact frame.

Corollary 5.12. L(T) is spatial.

Proof. Classically, the exponential map exp : R → T, x 7→ e2πix, may be de-
scribed as the coequalizer ofthe pair of continuous functions 1R, γ : R → R
(γ(x) = x − 1). Since the contravariant functor O : Top → Frm is a left ad-
joint, it turns colimits into limits. So one has the equalizer diagram

O(T)
O(exp) // O(R)

O(γ) //

O(1R)
// O(R)

in Frm. It suffices now to combine the proposition with the well known re-
sult that L(R) is isomorphic to O(R) (we note that the proof of this result
is constructively valid under the assumption that the closed intervals [p, q] are
compact, see [2, Remark 4]).

Of course, the spatiality of L(T) follows immediately from Corollary 5.11,
albeit with the Prime Ideal Theorem.
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Corollary 5.13. The frame homomorphism Φ from Proposition 5.7 is an iso-
morphism.

Proof. It remains to show that Φ is one-to-one. Since A(R) is regular and L(T)
is both regular and compact, it suffices to check that Φ is a dense map. So let

p, q ∈ Q. Then Φ(
︷ ︷
p, q) = (ϕ(q), ϕ(p) + 1) 6= 0. In fact, applying the equalizer e

of the proposition, we have e(Φ(
︷ ︷
p, q)) = e(ϕ(q), ϕ(p) + 1), which is non-zero by

the canonical frame homomorphism L(R) → O(Q) (recall Remark 4.1), since
ϕ(q) < 1 < ϕ(p) + 1. Similarly, Φ(p, q) 6= 0 whenever p < q, i.e. (p, q) 6= 0. By
Lemma 4.6 we conclude that Φ is dense.

Remark 5.14. It is a straightforward exercise to check that the inverse of Φ is
given by

Φ−1(p, q) =



0 if q ≤ p,

(ϕ−1(p− bpc), ϕ−1(q − bpc)) if p < q ≤ bpc+ 1,︷ ︷
ϕ−1(q − bpc − 1), ϕ−1(p− bpc) if p < bpc+ 1 < q ≤ p+ 1,

1 if q > p+ 1,

for every p, q ∈ Q. Applying Lemma 4.4, this simplifies to

Φ−1(p, q) =

(ϕ−1(p− bpc), ϕ−1(q − bpc)) if q ≤ bpc+ 1,︷ ︷
ϕ−1(q − bpc − 1), ϕ−1(p− bpc) if bpc+ 1 < q.

Further, by Remark 5.2 (2), this leads to

Φ−1(p, q) =

(ϕ−1(p), ϕ−1(q)) if q ≤ 1,︷ ︷
ϕ−1(q − 1), ϕ−1(p) if 1 < q

for all p, q ∈ Q and 0 ≤ p < 1.

6. Induced localic group structures

In this section, we analyze when an equalizer like the one of Proposition 5.10
lifts the localic group structure from the codomain into the domain. This will
be the crucial step in the description next section of the localic group structure
of L(T).

We begin by recalling that for any frame homomorphisms f1 : L1 →M1 and
f2 : L2 → M2, the homomorphism f1 ⊕ f2 is the unique frame homomorphism
L1 ⊕ L2 →M1 ⊕M2 making the following diagram commute:

L1

f1

��

ιL1 // L1 ⊕ L2

f1⊕f2

��

L2

ιL2oo

f2

��
M1

ιM1 // M1 ⊕M2 M2

ιM2oo
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It is clear that (f1 ⊕ f2)(
∨
i∈I(ai ⊕ bi)) =

∨
i∈I(f1(ai) ⊕ f2(bi)) and therefore

compositions of morphisms of this type satisfy (f1 ⊕ f2) · (g1 ⊕ g2) = (f1 · g1)⊕
(f2 · g2).

Our first lemma may well be known but since we have no reference for it we
include its proof. In it L and M are frames, E is a complete sublattice of L and
e denotes the inclusion frame homomorphism E → L. For each (a, b) ∈ E ×M ,
a⊕ b and a⊕ b denote the corresponding basic generator of respectively E ⊕M
and L⊕M .

Lemma 6.1. The frame homomorphism

e⊕ 1M : E ⊕M → L⊕M

is given by (e⊕ 1M )(U) =↓L×M U for each U ∈ E ×M . In particular, e⊕ 1M
is one-to-one.

Proof. Let U ∈ E ⊕M . We first show that ↓L×M U is actually an element of
L⊕M :

(1) Let A ⊆ L and b ∈ M such that A × {b} ⊆↓L×M U . Then for each
a ∈ A there exists a′ ∈ E such that a ≤ a′ and (a′, b) ∈ U . It follows that
(
∨
{a′ | a ∈ A}, b) ∈ U and thus (

∨
A, b) ∈↓L×M U .

(2) Let a ∈ L and B ⊆ M such that {a} × B ⊆↓L×M U . Then for each b ∈ B
there exists ab ∈ E such that a ≤ ab and (ab, b) ∈ U . Let a′ =

∧L
b∈B ab ∈ E.

Clearly, (a′, b) ∈ U and (a, b) ≤ (a′, b) for every b ∈ B. Hence (a,
∨
B) ≤

(a′,
∨
B) ∈ U .

Note, moreover, that for each (a, b) ∈ U

(e⊕ 1M )(a⊕ b) = a⊕ b =↓L×M (a⊕ b) ⊆↓L×M U.

Since

U =
E⊕M∨

(a,b)∈U
(a⊕ b) =

⋃
(a,b)∈U

(a⊕ b),

then

(e⊕ 1M )(U) =
L⊕M∨

(a,b)∈U
(a⊕ b) ⊆↓L×M U.

On the other hand it is clear that

↓L×M U ⊆
⋃

(a,b)∈U
(a⊕ b) ⊆

L⊕M∨
(a,b)∈U

(a⊕ b).

Hence (e⊕ 1M )(U) =↓L×M U .

Remarks 6.2. (1) We can say a little more: E⊕M is isomorphic to the subframe
of L⊕M generated by all a⊕ b, a ∈ E, b ∈M , since {a⊕ b}(a,b)∈E×M generates
E ⊕M and (e ⊕ 1M )(a ⊕ b) = a⊕ b for each (a, b) ∈ E ×M . In the following,
we will make an abuse of notation and will regard E ⊕M as that subframe of
L⊕M .

(2) We note in addition that, of course, applying Lemma 6.1 twice leads to the
fact that e⊕ e is a monomorphism.
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For the next two results, note that if f, g : L → N are complete lattice ho-
momorphism then so is their equalizer e : E → L, meaning that E is a complete
sublattice of L.

Lemma 6.3. Let f, g : L→ N be frame isomorphisms with equalizer e : E → L.
For any frame M ,

E ⊕M e⊕1M // L⊕M
f⊕1M //
g⊕1M

// N ⊕M

is an equalizer diagram in Frm.

Proof. We know by the previous lemma that E ⊕M may be regarded as the
subframe of L ⊕M generated by all a⊕ b, a ∈ E, b ∈ M . It now suffices to
show that this is precisely the subframe consisting of all U ∈ L⊕M such that
(f ⊕ 1M )(U) = (g ⊕ 1M )(U). Of course, (f ⊕ 1M )(U) = (g ⊕ 1M )(U) for every
U ∈ E ⊕M . Conversely, let U ∈ L⊕M such that (f ⊕ 1M )(U) = (g ⊕ 1M )(U)
and consider a ∈ L and b ∈M such that (a, b) ∈ U . Furthermore, let

a′ =
∨
n∈Z

hn(a),

where h = g−1 ·f , h0 = 1L, hn (n > 0) denotes the composite h·h · · ·h (n times)
and hn (n < 0) denotes the composite h−1 · h−1 · · ·h−1 (−n times). Evidently,
a ≤ a′. Moreover, a′ ∈ E. Indeed,

g(a′) =
∨
n∈Z

f(hn−1(a)) =
∨
n∈Z

f(hn(a)) = f(a′).

Notice also that (h(a), b) ∈ U since

f(a)⊕ b ≤ (f ⊕ 1P )(U) = (g ⊕ 1P )(U) ⇐⇒ (g−1f)(a)⊕ b ≤ U.

Then, by symmetry, (h−1(a), b) ∈ U . Proceeding inductively we eventually
conclude that (hn(a), b) ∈ U for every n ∈ Z and thus (a′, b) ∈ U . In summary,
we have proved that for any (a, b) ∈ U there is some (a′, b) ≥ (a, b) still in U
with a′ ∈ E. This guarantees that U ∈ E ⊕M .

Proposition 6.4. Let

E1
e1 // L1

f1 //
g1

// M1 and E2
e2 // L2

f2 //
g2

// M2

be equalizers in Frm with f1, g1, f2 and g2 frame isomorphisms. Then the ho-
momorphism

E1 ⊕ E2
e1⊕e2 // L1 ⊕ L2
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is the limit of the diagram

M1 ⊕ L2

L1 ⊕ L2

f1⊕1L2
44

g1⊕1L2

44

1L1
⊕f2

**1L1
⊕g2 **

L1 ⊕M2

Proof. Let h : N → L1 ⊕ L2 be a frame homomorphism such that

(1L1
⊕ f2) · h = (1L1

⊕ g2) · h and (f1 ⊕ 1L2
) · h = (g1 ⊕ 1L2

) · h.

By Lemma 6.3,

L1 ⊕ E2

1L1
⊕e2 // L1 ⊕ L2

1L1
⊕f2 //

1L1
⊕g2

// L1 ⊕M2

is an equalizer so there exists h′ : N → L1 ⊕ E2 such that (1L1 ⊕ e2) · h′ =
h. We have then the following commutative diagram, where 1M1 ⊕ e2 is a
monomorphism (by Lemma 6.1).

M1 ⊕ E2
1M1
⊕e2

**
L1 ⊕ E2

f1⊕1E2
44

g1⊕1E2

44

1L1
⊕e2

**

M1 ⊕ L2

L1 ⊕ L2

f1⊕1L2
44

g1⊕1L2

44

1L1
⊕f2

**1L1
⊕g2 **N

h′

FF

h
44

L1 ⊕M2

Then, immediately, (f1 ⊕ 1E2) · h′ = (g1 ⊕ 1E2) · h′. Finally, since e1 ⊕ 1E2 is
the equalizer of f1 ⊕ 1E2 and g1 ⊕ 1E2 (again by Lemma 6.3), there is some h′′

making the leftmost triangle in the following diagram

E1 ⊕ E2
e1⊕1E2

**

M1 ⊕ E2
1M1
⊕e2

**
L1 ⊕ E2

f1⊕1E2
44

g1⊕1E2

44

1L1
⊕e2

**

M1 ⊕ L2

L1 ⊕ L2

f1⊕1L2
44

g1⊕1L2

44

1L1
⊕f2

**1L1
⊕g2 **N

h′

OO

h′′

RR

h
44

L1 ⊕M2

to commute.
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Now let (L, µ, γ, ε) be an arbitrary localic group and

E
e // L

f //
g

// M

an equalizer where f and g are frame isomorphisms such that

(f ⊕ 1L) · µ · e = (g ⊕ 1L) · µ · e, (1L ⊕ f) · µ · e = (1L ⊕ g) · µ · e (7.3.1)

and
f · γ · e = g · γ · e. (7.3.2)

Under these conditions, it is possible to lift the localic group structure of L
into E, in the following manner:

(LG1) (7.3.1) and Proposition 6.4 lead to an µ : E → E⊕E satisfying (e⊕e)·µ =
µ · e.

(LG2) (7.3.2) and the fact that e is the equalizer of f and g yield an γ : E → E
satisfying e · γ = γ · e.

(LG3) ε : E → 2 is the composite ε · e.

Remark 6.5. Note that ε may be defined alternatively using the equalizer. In-
deed, since f · σ · ε · e = g · σ · ε · e, then the equalizer e yields some ε′ : E → E
such that e · ε′ = σ · ε · e but, as any frame homomorphism, it factors as

E
ε′ //

ε $$

E

ε[E] = 2
j

::

Theorem 6.6. (E,µ, γ, ε) is a localic group. If L is abelian so is E.

Proof. It is just a matter of checking that conditions (LG1)-(LG3) allow to
lift the commutativity of the diagrams in the definition of the localic group
(L, µ, γ, ε) to the commutativity of the corresponding diagrams in (E,µ, γ, ε).
For instance, regarding associativity of µ, that is, the commutativity of square
(A) in the next diagram

L⊕ L⊕ L

L⊕ L

(2)

µ⊕1L

))

E ⊕ Ee⊕eoo µ⊕1E // E ⊕ E ⊕ E

e⊕e⊕e
55

E
(1)

(1)

(A)

e

vv

µ

OO

µ
// E ⊕ E

e⊕e
��

1E⊕µ
OO

L

µ

OO

µ
// L⊕ L

1L⊕µ

PP

(3)
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it follows immediately from the commutativity of the outing quadrilateral (which
corresponds to the associativity of µ in L), the commutativity of subdiagrams
(1), (2) and (3) (from (LG1)), and the fact that e ⊕ e ⊕ e is a monomorphism
(from Remark 6.2 (2)).

The remaining properties may be checked in a similar way.

We shall refer to (µ, γ, ε) as the localic group structure on E induced by
(L, µ, γ, ε) and e : E → L.

7. The localic group structure of L(T)

Now we are in the position to establish the localic group structure of L(T).
For this, we need to recall from [2, p. 39] some of the familiar lattice-ordered
ring operations of L(R) (see [9] for a detailed presentation):

(1) For each r ∈ Q, the nullary operation r : L(R)→ 2 = {0, 1} given by

r(p, q) = 1 if and only if r ∈ 〈p, q〉.

(2) For each κ > 0 in Q, the unary operation ωκ : L(R) → L(R), representing
the scalar multiplication by κ, defined by

ωκ(p, q) =
(
p
κ ,

q
κ

)
.

Similarly, for each κ < 0 in Q, ωκ is given by ωκ(p, q) =
(
q
κ ,

p
κ

)
.

(3) The binary operation +: L(R)→ L(R)⊕ L(R) is defined by

+ (p, q) =
∨
r∈Q

(
(r, r + q−p

2 )⊕ (p− r, p+q2 − r)
)
.

We denote the operations

0 : L(R)→ 2, ω−1 : L(R)→ L(R) and +: L(R)→ L(R)⊕ L(R)

by ε, γ and µ, respectively. We also need the following well known result. Its
proof is a straightforward checking of the commutativity of the diagrams given
by group laws.

Proposition 7.1. The frame L(R) with frame homomorphisms ε, γ, µ is an
abelian localic group.

The general procedure of the preceding section applies to the case of L(R)
and L(T) and the equalizer of Proposition 5.10 as we now check. Recall that
the equalizer e : L(T)→ L(R) is given by

(p, q) 7→
∨
n∈Z

(p+ n, q + n)

for each p, q ∈ Q and that we may identify the frame of the unit circle L(T)
with the complete sublattice e(L(T)) of L(R).

Now, by the results in the previous section, in order to have a localic group
structure (µ, γ, ε) in L(T) induced by (L(R), µ, γ, ε) and e : L(T) → L(R), we
just have to confirm that e satisfies identities (7.3.1) and (7.3.2), that is,
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(1) (f ⊕ 1L(R)) · µ · e = (1L(R) ⊕ 1L(R)) · µ · e = (1L(R) ⊕ f) · µ · e, and

(2) f · γ · e = γ · e.

(1) First notice that if p ≥ q then (p, q) = 0 and therefore

((f ⊕ 1L(R)) · µ · e)(p, q) = ((1L(R) ⊕ 1L(R)) · µ · e)(p, q)
= ((1L(R) ⊕ f) · µ · e)(p, q) = O.

If q − p > 1 then (p, q) = 1 and so

((f ⊕ 1L(R)) · µ · e)(p, q) = ((1L(R) ⊕ 1L(R)) · µ · e)(p, q)
= ((1L(R) ⊕ f) · µ · e)(p, q) = 1⊕ 1.

Finally, if 0 < q − p ≤ 1 then

(µ · e)(p, q) =
∨
r∈Q

(
(r, r + q−p

2 )⊕
( ∨
n∈Z

(p+ n− r, p+q2 + n− r)
))
.

and therefore

((f ⊕ 1L(R)) · µ · e)(p, q) =
∨
r∈Q

(
f(r, r + q−p

2 )⊕
( ∨
n∈Z

(p+ n− r, p+q2 + n− r)
))

=
∨
r∈Q

(
(r + 1, r + q−p

2 + 1)⊕
( ∨
n∈Z

(p+ n− r, p+q2 + n− r)
))

=
∨
s∈Q

(
(s, s+ q−p

2 )⊕
( ∨
n∈Z

(p+ n− s+ 1, p+q2 + n− s+ 1)
))

=
∨
s∈Q

(
(s, s+ q−p

2 )⊕
( ∨
m∈Z

(p+m− s, p+q2 +m− s)
))

= ((1L(R) ⊕ 1L(R)) · µ · e)(p, q).

Hence (f ⊕ 1L(R)) ·µ · e = (1L(R)⊕ 1L(R)) ·µ · e. Analogously, one can check that
(1L(R) ⊕ f) · µ · e = (1L(R) ⊕ 1L(R)) · µ · e.
(2) We have, for each p, q ∈ Q,

(f · γ · e)(p, q) =
∨
n∈Z

(f · γ)(p+ n, q + n) =
∨
n∈Z

f(−q − n,−p− n)

=
∨
n∈Z

(−q − n+ 1,−p− n+ 1) =
∨
n∈Z

(−q − n,−p− n)

=
∨
n∈Z

γ(p+ n, q + n) = (γ · e)(p, q).
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By applying Theorem 6.6 we conclude that (L(T), µ, γ, ε) is a localic group.
In particular,

((e⊕ e) · µ)(p, q) = (µ · e)(p, q) =
∨
n∈Z

µ(p+ n, q + n)

=
∨
n∈Z

∨
r∈Q

(
(r, r + q−p

2 )⊕ (p+ n− r, p+q2 + n− r)
)

=
∨

n,m∈Z

∨
s∈[0,1)

((m+ s,m+ s+ q−p
2 )⊕ (p+ n−m− s, p+q2 + n−m− s))

=
∨

s∈[0,1)

( ∨
m∈Z

(m+ s,m+ s+ q−p
2 )⊕

∨
k∈Z

(p+ k − s, p+q2 + k − s)
)

= (e⊕ e)
( ∨
s∈[0,1)

((s, s+ q−p
2 )⊕ (p− s, p+q2 − s))

)
,

hence µ(p, q) =
∨
s∈[0,1)((s, s+ q−p

2 )⊕ (p− s, p+q2 − s)), and

(e · γ)(p, q) = (γ · e)(p, q) =
∨
n∈Z

γ(p+ n, q + n) =
∨
n∈Z

(−q − n,−p− n)

= e(−q,−p),

hence γ(p, q) = (−q,−p), for every p, q ∈ Q. One also has that ε(p, q) = 1 iff

ε (e(p, q)) = ε
( ∨
n∈Z

(p− n, q − n)
)

= 1.

Equivalently, ε(p, q) = 1 iff 0 ∈
⋃
n∈Z 〈p+ n, q + n〉.

In conclusion, we have proved the following about the localic group of re-
als (L(R), µ, γ, ε), the frame of the unit circle L(T) and the inclusion frame
homomorphism e : L(T)→ L(R) given by (p, q) 7→

∨
n∈Z(p+ n, q + n):

Theorem 7.2. If µ : L(T)→ L(T)⊕L(T) is the map such that (e⊕e) ·µ = µ ·e,
γ : L(T) → L(T) is the map such that e · γ = γ · e, and ε is the composite
ε · e : L(T)→ 2, then

(L(T), µ, γ, ε)

is an abelian localic group.

Remarks 7.3. (1) Recall from Corollary 5.12 that L(T) is isomorphic to O(R/Z).
Consequently, the localic group structure of L(T) also arises from the canonical
group structure of R/Z.

(2) Obviously the equalizer map e : L(T) → L(R) is an LG-homomorphism
(L(T), µ, γ, ε)→ (L(R), µ, γ, ε).

(3) Consider the neighbourhood filter of the unit of L(T),

N = {s ∈ L(T)} | ε(s) = 1},

and denote γ(a) by a−1 for every a ∈ L(T). Similarly as for L(R), it follows
from the results in [6] that we have a canonical uniformity on L(T), the left
uniformity, generated by covers

Cs = {a ∈ L(T) | a−1a ≤ s} (s ∈ N).
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Analogously, the covers

Ds = {a ∈ L(T) | aa−1 ≤ s} (s ∈ N)

and
Ts = {a ∈ L(T) | (a−1a) ∨ (aa−1) ≤ s} (s ∈ N)

form bases of uniformities, called the right and the two-sided uniformities of
L(T), respectively. Since L(T) is abelian, the three uniformities coincide. It
also follows from [6] that L(T) is complete in this uniformity.
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