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Abstract

We study the structure of arbitrary split involutive Lie algebras. We
show that any of such algebras L is of the form L = U +

∑
j

Ij with U

a subspace of the involutive abelian Lie subalgebra H and any Ij a well
described involutive ideal of L satisfying [Ij , Ik] = 0 if j 6= k. Under
certain conditions, the simplicity of L is characterized and it is shown
that L is the direct sum of the family of its minimal involutive ideals,
each one being a simple split involutive Lie algebra.
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1 Introduction and previous definitions

1.1 Throughout this paper, involutive Lie algebras L are considered of arbitrary
dimension and over an arbitrary field K. It is worth to mention that, unless oth-
erwise stated, there is not any restriction on dim Lα, the products [Lα, (Lα)∗],
or {k ∈ K : kα ∈ Λ}, where Lα denotes the root space associated to the root α,
and Λ the set of nonzero roots of L.

In §2 we develop techniques of connections of roots in the framework of
split involutive Lie algebras so as to show that L is of the form L = U +

∑
j

Ij

with U a subspace of the involutive abelian Lie subalgebra H and any Ij a well
described involutive ideal of L satisfying [Ij , Ik] = 0 if j 6= k. In §3 and under
certain conditions, the simplicity of L is characterized and it is shown that L is
the direct sum of the family of its minimal involutive ideals, each one being a
simple split involutive Lie algebra.

∗Supported by the PCI of the UCA ‘Teoŕıa de Lie y Teoŕıa de Espacios de Banach’, by the
PAI with project numbers FQM298, FQM2467, FQM3737 and by the project of the Spanish
Ministerio de Educación y Ciencia MTM2007-60333.
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1.2 Let L be a Lie algebra over the base field K and let − : K → K be an
involutive automorphism, (we say − is a conjugation on K). An involution on
L is a conjugate-linear map, ∗ : L −→ L, (x 7→ x∗), such that (x∗)∗ = x and
[x, y]∗ = [y∗, x∗] for any x, y ∈ L. A Lie algebra endowed with an involution is an
involutive Lie algebra. An involutive subset of an involutive algebra is a subset
globally invariant by the involution. We say that L is simple if the product
is nonzero and its only ideals are {0} and L. From now on (L, ∗) denotes an
involutive Lie algebra.

1.3 Let us introduce the class of split algebras in the framework of involutive
Lie algebras. Denote by H a maximal involutive abelian subalgebra of L. For
a linear functional commuting with the involution

α : (H, ∗) −→ (K,−),

that is, α(h∗) = α(h) for any h ∈ H, we define the root space of L, (respect to
H), associated to α as the subspace

Lα = {vα ∈ L : [h, vα] = α(h)vα for any h ∈ H}.

The elements α : (H, ∗) −→ (K,−) satisfying Lα 6= 0 are called roots of L
respect to H and we denote Λ := {α : (H, ∗) −→ (K,−) : Lα 6= 0}.

We say that L is a split involutive Lie algebra, respect to H, if

L = H ⊕ (
⊕
α∈Λ

Lα).

We also say that Λ is the root system of L. Observe that, taking into account
H∗ = H, the root space associated to the zero root L0 is contained in H.

As examples of split involutive Lie algebras we have the L∗-algebras [2, 3, 4]
and the involutive Lie algebras with a Cartan decomposition considered in [1].

Lemma 1.1. For any α, β ∈ Λ ∪ {0} the following assertions hold.

1. [Lα, Lβ ] ⊂ Lα+β and, if [Lα, Lβ ] 6= 0, then α + β ∈ Λ ∪ {0}.

2. (Lα)∗ = L−α.

Proof. 1. It is an immediate consequence of Jacobi identity.
2. For any h ∈ H and vα ∈ Lα we have [h, vα]∗ = (α(h)vα)∗ = α(h)v∗α. From

here [h∗, v∗α] = −α(h)v∗α = −α(h∗)v∗α. The facts H∗ = H and ∗2 = ∗ conclude
the proof.

A subset Λ0 of Λ is called a root subsystem if α ∈ Λ0 implies −α ∈ Λ0 and
if α, β ∈ Λ0, α + β ∈ Λ then necessarily α + β ∈ Λ0. For a root subsystem Λ0

of Λ, we define HΛ0 := spanK{[Lα, (Lα)∗] : α ∈ Λ0} and VΛ0 :=
⊕

α∈Λ0

Lα. It is

straightforward to verify that LΛ0 := HΛ0 ⊕ VΛ0 is an involutive Lie subalgebra
of L that we call the involutive Lie subalgebra associated to the root subsystem
Λ0.
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2 Connections of Roots. Decompositions

In the following, L denotes a split involutive Lie algebra with L = H⊕ (
⊕

α∈Λ

Lα)

the corresponding root spaces decomposition. We begin by developing connec-
tions of roots techniques in this setting.

Definition 2.1. Let α and β be two nonzero roots. We say that α is connected
to β if there exist α1, ..., αn ∈ Λ such that

{α1, α1 + α2, α1 + α2 + α3, ....., α1 + ... + αn−1 + αn}

is a family of nonzero roots, α1 = α and α1 + ... + αn−1 + αn ∈ ±β. We also
say that {α1, ..., αn} is a connection from α to β.

The next result shows the connection relation is of equivalence.

Proposition 2.1. The relation ∼ in Λ defined by α ∼ β if and only if α is
connected to β is of equivalence.

Proof. {α} is a connection from α to itself and therefore α ∼ α.
Let us see the symmetric character of ∼: If α ∼ β, there exists a connection

{α1, α2, α3, ..., αn−1, αn} ⊂ Λ

from α to β, then

{α1, α1 + α2, ..., α1 + α2 + · · ·+ αn−1, α1 + α2 + · · ·+ αn−1 + αn} ⊂ Λ, (1)

α1 = α and α1 + α2 + · · · + αn−1 + αn ∈ {β,−β}. Hence, we can distinguish
two possibilities. In the first one

α1 + α2 + · · ·+ αn−1 + αn = β (2)

and in the second one

α1 + α2 + · · ·+ αn−1 + αn = −β. (3)

Suppose we have the first one. By the symmetry of Λ, we can consider the set
of nonzero roots

{α1 + α2 + · · ·+ αn−1 + αn,−αn,−αn−1, ...,−α3,−α2} ⊂ Λ.

By equation (1), this family of elements in Λ clearly satisfy

α1 + α2 + · · ·+ αn−1 + αn ∈ Λ,

α1 + α2 + · · ·+ αn−1 + αn − αn = α1 + α2 + · · ·+ αn−1 ∈ Λ,

α1 + α2 + · · ·+ αn−1 + αn − αn − αn−1 = α1 + α2 + · · ·+ αn−2 ∈ Λ,

...
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α1 + α2 + · · ·+ αn−1 + αn − αn − αn−1 · · · − α3 − α2 = α1 ∈ Λ.

Being also α1 + α2 + · · ·+ αn−1 + αn = β (by equation (2)), and α1 = α. From
here, β is connected to α, that is, β ∼ α.

Suppose now we are in the second possibility given by equation (3). In this
case we have as above that {−α1 − α2 − · · · − αn−1 − αn, αn, αn−1, ..., α2} is a
connection from β to α and ∼ is symmetric.

Finally, suppose α ∼ β and β ∼ γ, and write {α1, ..., αn} for a connection
from α to β and {β1, ..., βm} for a connection from β to γ. If m > 1, then
{α1, ..., αn, β2, ..., βm} is a connection from α to γ in case α1 + ...+αn = β, and
{α1, ..., αn,−β2, ...,−βm} in case α1 + ... + αn = −β. If m = 1, then γ ∈ ±β
and so {α1, ..., αn} is a connection from α to γ. Therefore α ∼ γ and ∼ is of
equivalence.

We denote by
Λα := {β ∈ Λ : β ∼ α}.

Let us observe that {α} is a connection from α to −α. So −α ∈ Λα.

Proposition 2.2. Let α ∈ Λ. Then the following assertions hold:

1. Λα is a root subsystem.

2. If γ ∈ Λ satisfies that γ /∈ Λα, then [Lβ , Lγ ] = 0 and [[Lβ , (Lβ)∗], Lγ ] = 0
for any β ∈ Λα.

Proof. 1. Given β ∈ Λα, there exists a connection {α1, ....., αn} from α to β. It
is clear that {α1, ....., αn} also connects α to −β and therefore −β ∈ Λα. Given
β, δ ∈ Λα such that β + δ ∈ Λ, there exists a connection {α1, ....., αn} from α to
β. Hence, {α1, ....., αn, δ} is a connection from α to β+δ in case α1+...+αn = β
and {α1, ....., αn,−δ} in case α1 + ... + αn = −β. So β + δ ∈ Λα.

2. Let us suppose that there exists β ∈ Λα such that [Lβ , Lγ ] 6= 0 with
γ /∈ Λα, then β + γ ∈ Λ and we have as in 1. that α is connected to β +
γ. Since Λα is a root subsystem then γ ∈ Λα, a contradiction. Therefore
[Lβ , Lγ ] = 0 for any β ∈ Λα and γ /∈ Λα. As −β ∈ Λα for any β ∈ Λα, we also
have that [(Lβ)∗, Lγ ] = [L−β , Lγ ] = 0. By applying Jacobi identity we obtain
[[Lβ , (Lβ)∗], Lγ ] = 0.

Theorem 2.1. The following assertions hold

1. For any α ∈ Λ, the involutive Lie subalgebra

LΛα = HΛα ⊕ VΛα

of L associated to the root subsystem Λα is an (involutive) ideal of L.

2. If L is simple, then there exists a connection from α to β for any α, β ∈ Λ.
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Proof. 1. We have by Proposition 2.2 that [Lβ , Lγ ] = 0 and that [[Lβ , (Lβ)∗], Lγ ] =
0 for any β ∈ Λα and γ /∈ Λα. As we also have Λα is a root subsystem we get,

[LΛα
, L] = [

⊕
β∈Λα

[Lβ , (Lβ)∗]⊕
⊕

β∈Λα

Lβ ,H ⊕ (
⊕

β∈Λα

Lβ)⊕ (
⊕

γ /∈Λα

Lγ)] ⊂ LΛα
.

2. The simplicity of L implies LΛα
= L and therefore Λα = Λ.

Theorem 2.2. For a vector space complement U of spanK{[Lα, (Lα)∗] : α ∈ Λ}
in H, we have

L = U +
∑

[α]∈Λ/∼

I[α],

where any I[α] is one of the involutive ideals LΛα
of L described in Theorem

2.1-1, satisfying [I[α], I[β]] = 0 if [α] 6= [β].

Proof. By Proposition 2.1, we can consider the quotient set Λ/ ∼:= {[α] : α ∈
Λ}. Let us denote by I[α] := LΛα .We have I[α] is well defined and by Theorem
2.1-1 and is an involutive ideal of L. Therefore

L = U +
∑

[α]∈Λ/∼

I[α].

By applying Proposition 2.2-2 we also obtain [I[α], I[β]] = 0 if [α] 6= [β].

Let us denote by Z(L) the center of L.

Corollary 2.1. If Z(L) = 0 and [L,L] = L, then L is the direct sum of the
involutive ideals given in Theorem 2.1,

L =
⊕

[α]∈Λ/∼

I[α].

Proof. From [L,L] = L it is clear that L =
∑

[α]∈Λ/∼
I[α]. The direct character of

the sum now follows from the facts [I[α], I[β]] = 0, if [α] 6= [β], and Z(L) = 0.

3 The simple components

In this section we study if any of the components in the decomposition given in
Corollary 2.1 is simple. Under certain conditions we give an affirmative answer.
From now on char(K) = 0.

Lemma 3.1. Let L = H ⊕ (
⊕

α∈Λ

Lα) be a split Lie algebra. If I is an ideal of L

then I = (I ∩H)⊕ (
⊕

α∈Λ

(I ∩ Lα)).
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Proof. We can see L = H ⊕ (
⊕

α∈Λ

Lα) as a weight module respect to the split

Lie algebra L, with maximal abelian subalgebra H, in the natural way. The
character of ideal of I gives us that I is a submodule of L. It is well-known that
a submodule of a weight module is again a weight module. From here, I is a
weight module respect to L, (and H), and so I = (I ∩H)⊕ (

⊕
α∈Λ

(I ∩ Lα)).

Lemma 3.2. Let L be a split Lie algebra with Z(L) = 0. Then there is not any
nonzero ideal of L contained in H.

Proof. Suppose there exists a nonzero ideal I of L such that I ⊂ H. We have
[I,H] ⊂ [H,H] = 0. We also have that the fact [I,

⊕
α∈Λ

Lα] ⊂ I ⊂ H implies

α(I) = 0 for any α ∈ Λ and so [I,
⊕

α∈Λ

Lα] = 0. From here I ⊂ Z(L) = 0, a

contradiction.

Definition 3.1. We say that a split Lie algebra L is root-multiplicative if α, β ∈
Λ are such that α + β ∈ Λ, then [Lα, Lβ ] 6= 0.

As examples of root-multiplicative split involutive Lie algebras we have the
semisimple separable L∗-algebras and the semisimple locally finite involutive
split Lie algebras over a field of characteristic zero. Indeed, as we can take
a locally finite involutive split subalgebra dense in any L∗-algebra [2, 3, 4], it
is enough to consider a semisimple locally finite involutive split Lie algebra L,
but it is well known that in any of such an algebras, if α, β, α + β ∈ Λ then
[Lα,Lβ ] = Lα+β , (see [5, Proposition I.7 (v) and Theorem III.19]), and so L is
a root-multiplicative involutive split Lie algebra.

Following the terminology of the theory of graduations on Lie algebras, we
say that an involutive split Lie algebra L is of maximal length if dim Lα = 1
for any α ∈ Λ. Observe that if L is of maximal length, then Lemma 3.1 let us
assert that given any nonzero ideal I of L then

I = (I ∩H)⊕ (
⊕

α∈ΛI

Lα) where ΛI ⊂ Λ. (4)

As examples of involutive Lie algebras of maximal length we have the involutive
Lie algebras considered in [1].

Proposition 3.1. Let L be a split involutive Lie algebra, root-multiplicative, of
maximal length and satisfying Z(L) = 0, [L,L] = L. If L has all its nonzero
roots connected then any ideal I of L satisfies I∗ = I.

Proof. Consider I a nonzero ideal of L. By Lemma 3.2 and equation (4) we can
write I = (I ∩H)⊕ (

⊕
α∈ΛI

Lα) with ΛI ⊂ Λ and ΛI 6= ∅. Consider any α0 ∈ ΛI

being so Lα0 ⊂ I. Let us show that (Lα0)
∗ ⊂ I. Since α0 6= 0, and taking into

account that the facts L = [L,L] and Corollary 2.1 imply H =
∑

β∈Λ

[Lβ , (Lβ)∗],
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we have that there exists β ∈ Λ satisfying α0([Lβ , (Lβ)∗]) 6= 0. The maximal
length of L gives us now that

[[Lβ , (Lβ)∗], Lα0 ] = Lα0 . (5)

If β ∈ ±α0, we have as consequence of (L−α0)
∗ = Lα0 and equation (5) that

(Lα0)
∗ = [(Lα0)

∗, [Lβ , (Lβ)∗]] ⊂ I. If β /∈ ±α0, as α0 and β are connected,
the root-multiplicativity and the maximal length of L give us a connection
{γ1, ...., γr} from α0 to β such that γ1 = α0, γ1 + γ2, ..., γ1 + γ2 + ... + γr ∈ Λ,
γ1 + γ2 + ... + γr ∈ ±β and

[Lγ1 , Lγ2 ] = Lγ1+γ2 , [[Lγ1 , Lγ2 ], Lγ3 ] = Lγ1+γ2+γ3 , ...,

[[...[[Lγ1 , Lγ2 ], Lγ3 ], ...], Lγr
] = Lεβ ,

with ε ∈ ±1. From here, we deduce that either Lβ ⊂ I or L−β = (Lβ)∗ ⊂ I. In
both cases

[Lβ , (Lβ)∗] ⊂ I (6)

and, as by equation (5), we have (Lα0)
∗ = [(Lα0)

∗, [Lβ , (Lβ)∗]] then we get
(Lα0)

∗ ⊂ I. Hence, (
⊕

α∈ΛI

Lα)∗ =
⊕

α∈ΛI

Lα. Finally, the fact H =
∑

β∈Λ

[Lβ , (Lβ)∗]

and equation (6) give us
H ⊂ I. (7)

As H∗ = H we get, in particular, (I ∩H)∗ = I ∩H. From here, and taking into
account (

⊕
α∈ΛI

Lα)∗ =
⊕

α∈ΛI

Lα, equation (4) let us conclude I∗ = I.

Theorem 3.1. Let L be a split involutive Lie algebra, root-multiplicative, of
maximal length and satisfying Z(L) = 0, [L,L] = L. Then L is simple if and
only if it has all its nonzero roots connected.

Proof. The first implication is Theorem 2.1-2. To prove the converse, write
L = H⊕ (

⊕
α∈Λ

Lα) and consider I a nonzero ideal of L. By equation (7) we have

H ⊂ I. Given any α ∈ Λ and taking into account α 6= 0 and the maximal length
of L, we have [H,Lα] = Lα and so Lα ⊂ I. We conclude I = L and therefore L
is simple.

Theorem 3.2. Let L be a split involutive Lie algebra, root-multiplicative, of
maximal length and satisfying Z(L) = 0, [L,L] = L. Then L is the direct sum
of the family of its minimal ideals. Each one being a simple split involutive Lie
algebra having all its nonzero roots connected.

Proof. By Corollary 2.1, L =
⊕

[α]∈Λ/∼
I[α] is the direct sum of the involutive

ideals I[α] = HΛα
⊕ VΛα

= (
∑

β∈[α]

[Lβ , (Lβ)∗)]) ⊕ (
⊕

β∈[α]

Lβ) having any I[α] its

root system, Λα, with all of its roots connected. Taking into account that
Λα = [α] is a root subsystem, we have that Λα has all of its roots Λα-connected,
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(connected through roots in Λα). We also have that any of the I[α] is root-
multiplicative as consequence of the root-multiplicativity of L. Clearly I[α] is of
maximal length, and finally ZI[α](I[α]) = 0, (where ZI[α](I[α]) denotes the center
of I[α] in I[α]), as consequence of [I[α], I[β]] = 0 if [α] 6= [β], (Corollary 2.1), and
Z(L) = 0; and also I[α] = [I[α], I[α]] by the facts L = [L,L] and [I[α], I[β]] = 0 if
[α] 6= [β]. We can apply Theorem 3.1 to any I[α] so as to conclude I[α] is simple.
It is clear that the decomposition L =

⊕
[α]∈Λ/∼

I[α] satisfies the assertions of the

theorem.

References

[1] Calderón A.J., On involutive Lie algebras having a Cartan decomposition,
Bull. Austral. Math. Soc. 69 (2004) 191-202.
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