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Abstract

We study the structure of graded Leibniz algebras with arbitrary di-
mension and over an arbitrary base field K. We show that any of such
algebras L with a symmetric G-support is of the form L = U +

∑
j

Ij with

U a subspace of L1, the homogeneous component associated to the unit
element 1 in G, and any Ij a well described graded ideal of L, satisfy-
ing [Ij , Ik] = 0 if j 6= k. In the case of L being of maximal length we
characterize the gr-simplicity of the algebra in terms of connections in the
support of the grading.

Keywords: Graded Leibniz algebras, Infinite dimensional Leibniz alge-
bras, Structure Theory.
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1 Introduction and previous definitions

Throughout this paper, Leibniz algebras L are considered of arbitrary dimension
and over an arbitrary base field K. It is worth to mention that, unless otherwise
stated, there is not any restriction on dim Lg or the products [Lg,Lg−1 ], where
Lg denotes the homogeneous subspace associated to g ∈ G.

Leibniz algebras were introduced as a non-antisymmetric analogue of Lie
algebras by Loday [28], being so the class of Leibniz algebras an extension of the
one of Lie algebras. The structure of this kind of algebras has been considered
in the frameworks of low dimensional algebras, nilpotence and related problems
[4, 6, 7, 10, 16, 25, 26, 32]. The simple case was introduced in [1, 2] where some
results concerning special cases of simple Leibniz algebras were also obtained.

∗Supported by the PCI of the UCA ‘Teoŕıa de Lie y Teoŕıa de Espacios de Banach’, by the
PAI with project numbers FQM298, FQM7156 and by the project of the Spanish Ministerio
de Educación y Ciencia MTM2012-15223.
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Recently, Liu and Hu have studied Leibniz algebras graded by finite root systems
of types Al, Dl and El, [27].

On the other hand, the interest on gradings on Lie algebras has been re-
markable in the last years. The gradings of classical finite dimensional simple
Lie algebras have been studied, among others works, in [8, 21, 23, 24, 30, 31].
The studies of gradings on exceptional Lie algebras are [9], [17] and [18], which
describe the group gradings on g2 and f4. The study of the gradings of the real
forms of complex Lie algebras begins in [22], where are considered the gradings
on the real forms of classical simple complex Lie algebras. The description of
the fine gradings of the real forms of the exceptional simple Lie algebras f4 and
g2 are obtained in [14]. Respect to the group gradings on superalgebras, these
have been considered, for the case of the Jordan superalgebra K10, in [15].

In the present paper we begin the study of arbitrary graded Leibniz algebras,
(not necessarily simple or finite-dimensional), introduced as the natural exten-
sion of graded Lie algebras, and over an arbitrary base field K by focussing on
their structure. In §2 we extend the techniques of connections in the support of
G developed for graded Lie algebras in [11] to the framework of graded Leibniz
algebras L, so as to show that L is of the form L = U +

∑
j

Ij with U a subspace

of L1, the homogeneous component associated to the unit element 1 in G, and
any Ij a well described graded ideal of L, satisfying [Ij , Ik] = 0 if j 6= k. The
gr-simple case is studied in §3 by characterizing the gr-simplicity of L in terms
of connections in the support of the grading.

Definition 1.1. A Leibniz algebra L is a vector space over a base field K
endowed with a bilinear product [·, ·] satisfying the Leibniz identity

[[y, z], x] = [[y, x], z] + [y, [z, x]],

for any x, y, z ∈ L.

Clearly Lie algebras are examples of Leibniz algebras.
For any x ∈ L, consider the adjoint mapping adx : L −→ L defined by

adx(z) = [z, x]. Observe that Leibniz identity is equivalent to assert that adx

is a derivation for any x ∈ L. An ideal I of L is a vector subspace such that
[I,L] + [L, I] ⊂ I.

The term grading will always mean abelian group grading. That is:

Definition 1.2. We say that a Leibniz algebra L is a graded algebra, by means
of the abelian group G, if L decomposes as the direct sum of vector subspaces

L =
⊕
g∈G

Lg

where the homogeneous spaces satisfy [Lg,Lh] ⊂ Lgh (denoting by juxtaposition
the product in G). We call the G-support of the grading to the set

ΣG := {g ∈ G \ {1} : Lg 6= 0}.
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We will also say that the G-support of the grading is symmetric if g ∈
ΣG implies g−1 ∈ ΣG. We finally note that graded Lie algebras and split
Leibniz algebras are examples of graded Leibniz algebras and so the present
paper extends the results in [11] and [13].

The usual regularity concepts will be understood in the graded sense. For
instance, a graded ideal I of L is an ideal which splits as I =

⊕
g∈G

Ig with any

Ig = I ∩ Lg, g ∈ G.

We note that the ideal I generated by {[x, x] : x ∈ L} plays an important
role in the theory since determines the (possible) non-Lie character of L. It is
straightforward to verify that if L is a graded algebra then I is also a graded
ideal and so we can write I =

⊕
g∈G

Ig, being any Ig = I∩Lg. From the Leibniz

identity, this ideal also satisfies

[L, I] = 0. (1)

The usual definition of simple algebra lack of interest in the case of Leibniz
algebras because would imply the ideal I = L or I = 0, being so L an abelian
or a Lie algebra respectively. Abdykassymova and Dzhumadil’daev introduced
in [1, 2] the following adequate definition.

Definition 1.3. A Leibniz algebra L is said to be simple if its product is nonzero
and its only ideals are {0}, I and L.

It should be noted that the above definition agrees with the definition of
simple Lie algebra, since I = {0} in this case. Of course, a graded Leibniz
algebra L is called gr-simple if [L,L] 6= 0 and its only graded ideals are {0}, I
and L.

Example 1. Consider the complex (non-Lie) Leibniz algebra L with the basis
{e, h, f, p, q} defined by the following multiplication, see [29]:

[e, h] = 2e, [h, f ] = 2f, [e, f ] = h,

[h, e] = −2e, [f, h] = −2f, [f, e] = −h,

[p, h] = p, [p, f ] = q,

[q, h] = −q, [q, e] = −p,

where omitted products are equal to zero. The Leibniz algebra L can be Z-
graded as

L =
⊕
z∈Z

Lz

where
L0 = 〈h〉, L1 = 〈p〉, L−1 = 〈q〉,

L2 = 〈e〉, L−2 = 〈f〉
and Lz = 0 for any z /∈ {0,±1,±2}. The only graded ideals of L are {0}, L and
I = L−1 ⊕ L1. Hence, L is gr-simple.
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2 ΣG-Connections and Decompositions

From now on, L denotes a graded Leibniz algebra with a symmetric G-support
ΣG, and

L =
⊕
g∈G

Lg = L1 ⊕ (
⊕

g∈ΣG

Lg)

the corresponding grading. We begin by developing connection techniques in
this framework.

Definition 2.1. Let g, g′ ∈ ΣG. We shall say that g is ΣG-connected to g′ if
there exist {g1, g2..., gn} ⊂ ΣG such that

1. g1 = g,

2. {g1g2, g1g2g3, ..., g1g2 · · · gn−1} ⊂ ΣG and

3. g1g2 · · · gn ∈ {g′, (g′)−1}.

We shall also say that {g1, ..., gn} is a ΣG-connection from g to g′.

The next result shows the ΣG-connection relation is of equivalence. Its proof
is analogous to the one for graded Lie algebras given in [11, Proposition 2.1].

Proposition 2.1. The relation ∼ in ΣG, defined by g ∼ g′ if and only if g is
ΣG-connected to g′, is of equivalence.

Given g ∈ ΣG, we denote by

Cg := {g′ ∈ ΣG : g′ is ΣG−connected to g}.

Clearly if g′ ∈ Cg then (g′)−1 ∈ Cg and, by Proposition 2.1, if h /∈ Cg then
Cg ∩ Ch = ∅.

Lemma 2.1. If g′ ∈ Cg and g′′, g′g′′ ∈ ΣG, then g′′, g′g′′ ∈ Cg.

Proof. The ΣG-connection {g′, g′′} gives us g′ ∼ g′g′′. Hence, by the transitivity
of ∼, we finally get g′g′′ ∈ Cg. To verify g′′ ∈ Cg, observe that {g′g′′, (g′)−1}
is a ΣG-connection from g′g′′ to g′′. Now, taking into account g′g′′ ∈ Cg, we
conclude as above that g′′ ∈ Cg.

Our next goal is to associate an (adequate) graded ideal I[g] to any Cg. For
Cg, g ∈ ΣG, we define

LCg,1 := spanK{[Lg′ ,L(g′)−1 ] : g′ ∈ Cg}

and
VCg

:=
⊕

g′∈Cg

Lg′ .

We denote by LCg
the following subspace of L,

LCg
:= LCg,1 ⊕ VCg

.
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Proposition 2.2. Let g ∈ ΣG. Then the following assertions hold.

1. [LCg ,LCg ] ⊂ LCg .

2. If h /∈ Cg then [LCg
,LCh

] = 0.

Proof. 1. We have

[LCg ,LCg ] = [LCg,1 ⊕ VCg ,LCg,1 ⊕ VCg ] ⊂ (2)

[LCg,1,LCg,1] + [LCg,1, VCg ] + [VCg ,LCg,1] + [VCg , VCg ].

Consider the above second summand [LCg,1, VCg ]. Taking into account LCg,1 ⊂
L1 and [L1,Lg] ⊂ Lg for any g ∈ Σg, we have [LCg,1, VCg

] ⊂ VCg
. In a similar

way [VCg
,LCg,1] ⊂ VCg

and so

[LCg,1, VCg
] + [VCg

,LCg,1] ⊂ VCg
. (3)

Consider now the fourth summand [VCg
, VCg

] in equation (2) and suppose there
exist g′, g′′ ∈ Cg such that [Lg′ ,Lg′′ ] 6= 0. If g′′ = (g′)−1, clearly [Lg′ ,Lg′′ ] =
[Lg′ ,L(g′)−1 ] ⊂ LCg,1. Otherwise, if g′′ 6= (g′)−1, then g′g′′ ∈ ΣG and Lemma
2.1 gives us g′g′′ ∈ Cg. Hence, [Lg′ ,Lg′′ ] ⊂ Lg′g′′ ⊂ VCg . In any case

[VCg , VCg ] ⊂ LCg . (4)

Finally, let us consider the first summand [LCg,1,LCg,1] in equation (2). We
have

[LCg,1,LCg,1] = [
∑

g′∈Cg

[Lg′ ,L(g′)−1 ],
∑

g′′∈Cg

[Lg′′ ,L(g′′)−1 ]].

Taking now into account Leibniz identity we get∑
g′,g′′∈Cg

[[Lg′ ,L(g′)−1 ], [Lg′′ ,L(g′′)−1 ]] ⊂

∑
g′,g′′∈Cg

([[Lg′ , [Lg′′ ,L(g′′)−1 ]],L(g′)−1 ] + [Lg′ , [L(g′)−1 , [Lg′′ ,L(g′′)−1 ]]]) ⊂

⊂
∑

g′∈Cg

[Lg′ ,L(g′)−1 ] = LCg,1.

That is,
[LCg,1,LCg,1] ⊂ LCg,1 (5)

From equations (2)-(5) we conclude [LCg
,LCg

] ⊂ LCg
.

2. We have as in 1. that

[LCg
,LCh

] ⊂ [LCg,1,LCh,1] + [LCg,1, VCh
] + [VCg

,LCh,1] + [VCg
, VCh

]. (6)

Let us suppose that there exist g′ ∈ Cg and h′ ∈ Ch such that [Lg′ ,Lh′ ] 6= 0.
Then g′h′ ∈ ΣG and we have as consequence of Lemma 2.1 that g is con-
nected to h, a contradiction. From here [VCg , VCh

] = 0. Taking into ac-
count this equality and the fact (g′)−1 ∈ Cg for any g′ ∈ Cg, we can argue
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with Leibniz identity in [[Lg′ ,L(g′)−1 ],Lh′ ] and in [Lg′ , [Lh′ ,L(h′)−1 ]] to get
[[Lg′ ,L(g′)−1 ],Lh′ ] = [Lg′ , [Lh′ ,L(h′)−1 ]] = 0. Now a same argument can be
applied to verify [[Lg′ ,L(g′)−1 ], [Lh′ ,L(h′)−1 ]] = 0. Taking into account equation
(6) we have proved 2.

Proposition 2.2 let us assert that for any g ∈ ΣG, LCg
is a (graded) subalge-

bra of L that we call the subalgebra of L associated to Cg. Now, the following
results can be proved as in [11, Theorem 2.1] and [11, Theorem 2.2] respectively.

Theorem 2.1. The following assertions hold.

1. For any g ∈ ΣG, the graded subalgebra LCg
= LCg,1 ⊕ VCg

of L associated
to Cg is a graded ideal of L.

2. If L is gr-simple, then there exists a ΣG-connection from g to g′ for any
g, g′ ∈ ΣG, and L1 =

∑
g′∈ΣG

[Lg′ ,L(g′)−1 ].

Theorem 2.2. For the complementary vector space U of spanK{[Lg,Lg−1 ] :
g ∈ ΣG} in L1, we have

L = U +
∑

g∈ΣG/∼

I[g],

where any I[g] is one of the graded ideals LCg
of L described in Theorem 2.1,

satisfying [I[g], I[g′]] = 0 if [g] 6= [g′].

Definition 2.2. The annihilator of a Leibniz algebra L is the set Z(L) = {x ∈
L : [x,L] + [L, x] = 0}.

The next corollary follows as in [11, Corollary 2.1].

Corollary 2.1. If Z(L) = 0 and L1 =
∑

g∈ΣG

[Lg,Lg−1 ], then L is the direct sum

of the graded ideals given in Theorem 2.1-1,

L =
⊕

[g]∈ΣG/∼

I[g].

3 The gr-simple components

In this section we focus on the gr-simplicity of graded Leibniz algebras by
centering our attention in those of maximal length. This terminology is tak-
ing borrowed from the theory of gradations of Lie and Leibniz algebras, (see
[3, 5, 19, 20]). See also [5, 11, 13, 33] for examples.

Definition 3.1. We say that a graded Leibniz algebra L is of maximal length
if L1 6= 0 and dim Lg = 1 for any g ∈ ΣG.
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As an example of a graded Leibniz algebra of maximal length we can take
the graded Leibniz algebra given in Example 1. Our target is to characterize
the gr-simplicity of L in terms of connectivity properties in ΣG. We begin with
a preliminary result which holds for non-necessarily of maximal length graded
Leibniz algebras.

Lemma 3.1. Let L be a graded Leibniz algebra with Z(L) = 0 and satisfying
L1 =

∑
g∈ΣG

[Lg,Lg−1 ]. If I is a graded ideal of L such that I ⊂ L1 then I = {0}.

Proof. Suppose there exists a nonzero graded ideal I of L such that I ⊂ L1.
Then [I,

⊕
g∈ΣG

Lg] + [
⊕

g∈ΣG

Lg, I] ⊂ (
⊕

g∈ΣG

Lg) ∩ L1 and so

[I,
⊕

g∈ΣG

Lg] + [
⊕

g∈ΣG

Lg, I] = 0.

From here, the fact Z(L) = 0 gives us that necessarily [I,L1] + [L1, I] 6= 0.
Taking into account L1 =

∑
g∈ΣG

[Lg,Lg−1 ], there exists g0 ∈ ΣG such that

either [I, [Lg0 ,Lg−1
0

]] 6= 0 or [[Lg0 ,Lg−1
0

], I] 6= 0. By Leibniz identity one of
the following products is nonzero: [I,Lg0 ] ⊂ Lg0 ∩ L1, [I,Lg−1

0
] ⊂ Lg−1

0
∩ L1,

[Lg0 , I] ⊂ Lg0 ∩ L1, [Lg−1
0

, I] ⊂ Lg−1
0
∩ L1. In any case we have a contradiction

since Lg0 ∩ L1 = Lg−1
0
∩ L1 = 0. So I = {0}.

Let us return to a graded Leibniz algebra of maximal length L. In fact, from
now on L = L1 ⊕ (

⊕
g∈ΣG

Lg) will denote such an algebra. Consider any nonzero

graded ideal I of L, then the maximal length of L gives us

I = (I ∩ L1)⊕ (
⊕
g∈ΣI

Lg) (7)

where ΣI := {g ∈ ΣG : Lg ∩ I 6= 0} = {g ∈ ΣG : Lg ⊂ I}. In the particular, (an
important) case I = I, we get

I = (I ∩ L1)⊕ (
⊕

g∈ΣI

Lg). (8)

From here, we can write
ΣG = ΣI∪̇Σ¬I, (9)

where
ΣI := {g ∈ ΣG : Lg ∩ I 6= 0} = {g ∈ ΣG : Lg ⊂ I}

and
Σ¬I := {g ∈ ΣG : Lg ∩ I = 0}.

Consequently
L = L1 ⊕ (

⊕
g∈Σ¬I

Lg)⊕ (
⊕

h∈ΣI

Lh). (10)
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Now, observe that the concept of ΣG-connectivity among the elements of ΣG

given in Definition 2.1 is not strong enough to detect if a given g ∈ ΣG belongs
to ΣI or to Σ¬I. Consequently we lose the information respect to whether a
given Lg is contained in I or not, which is fundamental to study the gr-simplicity
of L. So, we are going to refine the concept of ΣG-connection in the setup of
maximal length graded Leibniz algebras.

In the following, we suppose ΣI and Σ¬I are symmetric, that is, satisfying
that if g ∈ ΣΥ then g−1 ∈ ΣΥ, for Υ ∈ {I,¬I}. Then we note that in case
L1 =

∑
g∈ΣG

[Lg,Lg−1 ], the decomposition given by equation (10) and equation

(1) show
L1 =

∑
g∈Σ¬I

[Lg,Lg−1 ]. (11)

Definition 3.2. Let g, g′ ∈ ΣΥ with Υ ∈ {I,¬I}. We say that g is Σ¬I-
connected to g′, denoted by g ∼¬I g′, if there exist

g2, ..., gn ∈ Σ¬I

such that

1. {g1, g1g2, g1g2g3, ..., g1g2 · · · gn−1gn} ⊂ ΣΥ where g1 := g, and

2. g1g2 · · · gn ∈ {g′, (g′)−1}.

The set {g1, ..., gn} is called a Σ¬I-connection from g to g′.

Proposition 3.1. The following assertions hold.

1. The relation ∼¬I is of equivalence in Σ¬I.

2. If Z(L) = 0 and L1 =
∑

g∈ΣG

[Lg,Lg−1 ], then the relation ∼¬I is of equiva-

lence in ΣI.

Proof. 1. Can be proved in a similar way to Proposition 2.1.
2. Let h ∈ ΣI. Taking into account Z(L) = 0 and L1 =

∑
g∈ΣG

[Lg,Lg−1 ],

Leibniz identity and equation (1) give us that there exists g ∈ Σ¬I such that
[Lh,Lg] 6= 0, being g 6= h−1 by the symmetry of ΣI and equation (1). Hence, the
symmetry of Σ¬I and the character of ideal of I let us assert that {h, g, g−1} is a
Σ¬I-connection which gives us h ∼¬I h and consequently ∼¬I is reflexive in ΣI.
The symmetric and transitive character of ∼¬I in ΣI follows as in Proposition
2.1.

Let us introduce the notion of ΣG-multiplicativity in the framework of graded
Leibniz algebras of maximal length, in a similar way to the ones for graded Lie
algebras, split Lie triple systems and split Leibniz algebras (see [11, 12, 13] for
these notions and examples).
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Definition 3.3. We say that a graded Leibniz algebra of maximal length L is
ΣG-multiplicative if the below conditions hold.

1. Given g, g′ ∈ Σ¬I such that gg′ ∈ ΣG then [Lg,Lg′ ] 6= 0.

2. Given g ∈ Σ¬I and h ∈ ΣI such that gh ∈ ΣI then [Lh,Lg] 6= 0.

Another interesting notion related to graded Leibniz algebras of maximal
length L is those of Lie-annihilator. Write L = L1 ⊕ (

⊕
g∈Σ¬I

Lg) ⊕ (
⊕

h∈ΣI

Lh),

(see equation (10)).

Definition 3.4. The Lie-annihilator of a graded Leibniz algebra of maximal
length L is the set

ZLie(L) = {x ∈ L : [x, L1 ⊕ (
⊕

g∈Σ¬I

Lg)] + [L1 ⊕ (
⊕

g∈Σ¬I

Lg), x] = 0}.

Clearly the above definition agrees with the definition of annihilator of a Lie
algebra, since in this case ΣI = ∅. We also have Z(L) ⊂ ZLie(L).

Consider the graded Leibniz algebra L =
⊕
z∈Z

Lz given in Example 1, that

we know is of maximal length. Since I = L−1 ⊕ L1 we have ΣI = {±1} and
Σ¬I = {±2}. From here, and taking in to account the multiplication in L, it is
easy to verify that L is ΣG-multiplicative. We also have that in this example
ZLie(L) = {0}.

Lemma 3.2. Suppose L1 =
∑

g∈ΣG

[Lg,Lg−1 ] and L is ΣG-multiplicative. If Σ¬I

has all of its elements Σ¬I-connected, then any nonzero graded ideal I of L such
that I ∩ (

⊕
g∈Σ¬I

Lg) 6= {0} satisfies that L1 ⊂ I and that for any g ∈ Σ¬I, either

Lg ⊂ I or Lg−1 ⊂ I.

Proof. By equations (7) and (9) we can write

I = (I ∩ L1)⊕ (
⊕

gi∈Σ¬I,I

Lgi
)⊕ (

⊕
hj∈ΣI,I

Lhj
)

where Σ¬I,I = Σ¬I ∩ ΣI and ΣI,I = ΣI ∩ ΣI . Since I ∩ (
⊕

g∈Σ¬I

Lg) 6= {0} we

have Σ¬I,I 6= ∅ and so we can fix some g0 ∈ Σ¬I,I being then

Lg0 ⊂ I. (12)

For any g′ ∈ Σ¬I \ {g0, g
−1
0 }, the fact that g0 and g′ are Σ¬I-connected gives

us a Σ¬I-connection {g1, g2, ..., gn} ⊂ Σ¬I from g0 to g′ such that g1 = g0,

g1g2, g1g2g3, ..., g1g2g3 · · · gn−1 ∈ Σ¬I

and
g1g2g3 · · · gn ∈ {g′, (g′)−1}.
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Consider g1, g2 and g1g2. Since g1, g2 ∈ Σ¬I, the ΣG-multiplicativity and max-
imal length of L show 0 6= [Lg1 ,Lg2 ] = Lg1g2 , and by equation (12)

0 6= Lg1g2 ⊂ I.

We can argue in a similar way from g1g2, g3 and g1g2g3 to get

0 6= Lg1g2g3 ⊂ I.

Following this process with the Σ¬I-connection {g1, ..., gn} we obtain that

0 6= Lg1g2g3···gn
⊂ I

and so either Lg′ ⊂ I or L(g′)−1 ⊂ I. That is,

Lµ ⊂ I for any g′ ∈ Σ¬I and some µ ∈ {g′, (g′)−1}.

Since L1 =
∑

g∈Σ¬I

[Lg,Lg−1 ], (see equation (11)), we get L1 ⊂ I.

Lemma 3.3. Suppose L1 =
∑

g∈ΣG

[Lg,Lg−1 ], ZLie(L) = 0 and L is ΣG-multipli-

cative. If Σ¬I has all of its elements Σ¬I-connected, then any nonzero graded
ideal I of L such that I ∩ (

⊕
g∈Σ¬I

Lg) 6= {0} satisfies L1 ⊕ (
⊕

g∈Σ¬I

Lg) ⊂ I.

Proof. By Lemma 3.2, for any g ∈ Σ¬I, either Lg ⊂ I or Lg−1 ⊂ I. Let us show
that there exists g0 ∈ Σ¬I such that Lg0 ⊂ I and Lg−1

0
⊂ I. To do that, suppose

there is not any g0 ∈ Σ¬I such that Lg0 ⊂ I and Lg−1
0

⊂ I. Since L1 6= 0 by
the maximal length of L, and L1 =

∑
g∈ΣG

[Lg,Lg−1 ], we can take some g0 ∈ Σ¬I

such that
[Lg0 ,Lg−1

0
] 6= 0 or [Lg−1

0
,Lg0 ] 6= 0 (13)

with Lg0 ⊂ I and Lg−1
0

∩ I = {0}. Let us suppose [Lg0 ,Lg−1
0

] 6= 0. Taking
into account ZLie(L) = 0, L1 =

∑
g∈ΣG

[Lg,Lg−1 ] =
∑

h∈Σ¬I

[Lh,Lh−1 ] and Leibniz

identity, there exists h ∈ Σ¬I such that [Lh, [Lg0 ,Lg−1
0

]] + [[Lg0 ,Lg−1
0

],Lh] 6= 0,
being so Lh ⊂ I. That is, h ∈ Σ¬I,I . By Leibniz identity, either

[[Lh,Lg0 ],Lg−1
0

] + [[Lg0 ,Lh],Lg−1
0

] 6= 0 (14)

or
[[Lh,Lg−1

0
],Lg0 ] + [Lg0 , [Lg−1

0
,Lh]] 6= 0. (15)

If equation (14) holds, then hg0 ∈ Σ¬I,I and we get by ΣG-multiplicativity
[Lh,Lh−1g−1

0
] = Lg−1

0
⊂ I which is a contradiction. By the other hand, if

equation (15) holds, then hg−1
0 ∈ Σ¬I,I and we also get by ΣG-multiplicativity

[Lhg−1
0

,Lh−1 ] = Lg−1
0

⊂ I, a contradiction. Finally, note that if [Lg0 ,Lg−1
0

] = 0
and by equation (13) we have the case [Lg−1

0
,Lg0 ] 6= 0, we obtain as above
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a contradiction. Consequently, there exists g0 ∈ Σ¬I such that Lg0 ⊂ I and
Lg−1

0
⊂ I. From here, for any g′ ∈ Σ¬I \ {g0, g

−1
0 }, the fact that g0 and

g′ are Σ¬I-connected, the ΣG-multiplicativity and the maximal length of L
give us as in Lemma 3.2 a Σ¬I-connection {g0, g2, ..., gn} ⊂ Σ¬I from g0 to g′

such that Lg0g2g3···gn
= Lζ ⊂ I for some ζ ∈ {g′, (g′)−1}. Now we also have

that {g−1
0 , g−1

2 , ..., g−1
n } is a Σ¬I-connection from g−1

0 to g′ but satisfying now
[[· · · [Lg−1

0
,Lg−1

2
], · · · ],Lg−1

n
] = Lζ−1 ⊂ I and so Lg′ + L(g′)−1 ⊂ I for any g′ ∈

Σ¬I. Since by Lemma 3.2 we also have L1 ⊂ I we get L1 ⊕ (
⊕

g∈Σ¬I

Lg) ⊂ I.

Proposition 3.2. Suppose L1 =
∑

g∈ΣG

[Lg,Lg−1 ], ZLie(L) = 0 and L is ΣG-

multiplicative. If Σ¬I and ΣI have all of their elements Σ¬I-connected, then
any nonzero graded ideal I of L such that I ∩ (

⊕
g∈Σ¬I

Lg) 6= {0} satisfies I = L.

Proof. By Lemma 3.3, L1 ⊕ (
⊕

g∈Σ¬I

Lg) ⊂ I. If I ⊂ L1 ⊕ (
⊕

g∈Σ¬I

Lg) then

I = L1 ⊕ (
⊕

g∈Σ¬I

Lg) and, by equation (10), we have

L = I ⊕ I.

Since [I, I] ⊂ [L, I] = {0} and [I, I] ⊂ I∩I = {0} we get I ⊂ ZLie(L) = 0 which
implies L = I.

Consider then the case in which I * L1 ⊕ (
⊕

g∈Σ¬I

Lg). Then there exists

h0 ∈ ΣI such that Lh0 ⊂ I, that is, h0 ∈ ΣI,I . Taking into account that ΣI have
all of their elements Σ¬I-connected, we can argue with the ΣG-multiplicativity
and the maximal length of L as in Lemma 3.2 to conclude that given any h ∈ ΣI,
there exists a Σ¬I-connection {h0, g2, ..., gn} from h0 to h such that

[[· · · [Lh0 ,Lg2 ], · · · ],Lgn ] ⊂ Lζ

and so Lζ ⊂ I for some ζ ∈ {h, h−1}. That is,

ζ ∈ ΣI,I for any h ∈ ΣI and some ζ ∈ {h, h−1}.

Let us show that there exists some h1 ∈ ΣI,I such that h−1
1 ∈ ΣI,I . Indeed, in

the opposite case. That is, there is not any h ∈ ΣI,I such that h−1 ∈ ΣI,I , we
can write

ΣI = ΣI,I ∪̇(ΣI,I)−1 (16)

where (ΣI,I)−1 := {h−1 : h ∈ ΣI,I} and denote by K :=
⊕

h∈ΣI,I

Lh−1 , being

then

L = I ⊕K with K 6= 0

as consequence of equations (10) and (16). Observe that [L1⊕ (
⊕

g∈Σ¬I

Lg),K] ⊂

[L, I] = 0. We also have [K,
⊕

g∈Σ¬I

Lg] = 0. In fact, if there were k0 ∈ (ΣI,I)−1
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and g0 ∈ Σ¬I such that
[Lk0 ,Lg0 ] 6= 0, (17)

since k0g0 ∈ ΣI we would get by the ΣG-multiplicativity of L, the symmetries
of Σ¬I and ΣI, and the fact Lk−1

0
⊂ I that 0 6= [Lk−1

0
,Lg−1

0
] = Lk−1

0 g−1
0

⊂ I.
That is, k−1

0 g−1
0 ∈ ΣI,I . Hence, k0g0 ∈ (ΣI,I)−1 and so [Lk0 ,Lg0 ] ⊂ K. But the

fact Lg0 ⊂ I also gives us [Lk0 ,Lg0 ] ⊂ I and so [Lk0 ,Lg0 ] ⊂ I ∩K = {0}, which
contradicts equation (17). Therefore, [K,

⊕
g∈Σ¬I

Lg] = 0. By Leibniz identity

and the fact L1 =
∑

g∈ΣG

[Lg,Lg−1 ] =
∑

h∈Σ¬I

[Lh,Lh−1 ] we also get [K, L1] = 0.

That is, K ⊂ ZLie(L) = 0, which contradicts the fact K 6= 0. So there exists
some h1 ∈ ΣI,I such that h−1

1 ∈ ΣI,I .
We can argue with the above h1 ∈ ΣI,I as we did as the beginning of

the proof with h0 to get that for any h ∈ ΣI there exists a Σ¬I-connection
{h1, g2, ..., gn} from h1 to h such that [[· · · [Lh1 ,Lg2 ], · · · ],Lgn

] ⊂ Lζ ⊂ I for
some ζ ∈ {h, h−1}. Taking into account h−1

1 ∈ ΣI,I , we also have that

{h−1
1 , g−1

2 , ..., g−1
n }

is a Σ¬I-connection from h−1
1 to h satisfying

[[· · · [Lh−1
1

,Lg−1
2

], · · · ],Lg−1
n

] = L−1
ζ ⊂ I

and so Lh + Lh−1 ⊂ I for any h ∈ I. From here I ⊂ I and so I = L.

Proposition 3.3. Suppose L1 =
∑

g∈ΣG

[Lg,Lg−1 ],Z(L) = 0 and L is ΣG-multipli-

cative. If ΣI has all of its elements Σ¬I-connected, then any nonzero graded
ideal I of L such that I ⊂ I satisfies either I = I or I = I ⊕P with P a graded
ideal of L.

Proof. By equations (7), and (9) we can write

I = (I ∩ L1)⊕ (
⊕

hj∈ΣI,I

Lhj
)

with ΣI,I = ΣI ∩ ΣI . Observe that the fact Z(L) = 0 implies

I ∩ L1 = {0}. (18)

Indeed, [L1, I ∩ L1] + [Lg, I ∩ L1] + [I ∩ L1, I] ⊂ [L, I] = 0 for any g ∈ ΣG,
and if [I ∩ L1,Lg] = 0 for some g ∈ Σ¬I then Lg ⊂ I, being then g ∈ ΣI,
a contradiction. So [I ∩ L1,Lg] = 0 for any g ∈ Σ¬I. From here, we also
have [I ∩ L1,L1] = 0 as consequence of Leibniz identity and the fact L1 =∑
g∈ΣG

[Lg,Lg−1 ] =
∑

h∈Σ¬I

[Lh,Lh−1 ]. We have showed I ∩ L1 ⊂ Z(L) = 0. Hence,

we can write
I =

⊕
hj∈ΣI,I

Lhj
,
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with ΣI,I 6= ∅, and so we can take some h0 ∈ ΣI,I such that Lh0 ⊂ I. We can
argue with the ΣG-multiplicativity and the maximal length of L as in Propo-
sition 3.2 to conclude that given any h ∈ ΣI, there exists a Σ¬I-connection
{h0, g2, ..., gn} from h0 to h such that

0 6= [[· · · [Lh0 ,Lg2 ], · · · ],Lgn
] = Lζ ⊂ I

for some ζ ∈ {h, h−1}. That is

ζ ∈ ΣI,I for any h ∈ ΣI and some ζ ∈ {h, h−1}.

Suppose h−1
0 ∈ ΣI,I . Then we also have that {h−1

0 , g−1
2 , ..., g−1

n } is a Σ¬I-
connection from h−1

0 to h satisfying

0 6= [[· · · [Lh−1
0

,Lg−1
2

], · · · ],Lg−1
n

] = Lζ−1 ⊂ I

and so Lh + Lh−1 ⊂ I for any h ∈ ΣI. Equations (8) and (18) let us now
conclude I = I.

Now suppose there is not any h0 ∈ ΣI,I such that h−1
0 ∈ ΣI,I . Then we can

write ΣI = ΣI,I ∪̇(ΣI,I)−1 where (ΣI,I)−1 = {h−1 ∈ ΣI : h ∈ ΣI,I} and, (joint
with equations (8) and (18)), assert that by denoting P :=

⊕
h∈ΣI,I

Lh−1 we have

I = I ⊕ P.

Let us finally show that P is an ideal of L. We have [L, P ] ⊂ [L, I] = 0 and

[P,L] ⊂ [P,L1] + [P,
⊕

g∈Σ¬I

Lg] + [P,
⊕

h∈ΣI

Lh] ⊂ P + [P,
⊕

g∈Σ¬I

Lg].

Let us consider the last summand [P,
⊕

g∈Σ¬I

Lg] and suppose there exist h0 ∈

ΣI,I and g0 ∈ Σ¬I such that [Lh−1
0

,Lg0 ] 6= 0. Since Lh−1
0

⊂ P ⊂ I, we get
h−1

0 g0 ∈ ΣI. By the ΣG-multiplicativity of L, the symmetries of Σ¬I and
ΣI, and the fact Lh0 ⊂ I we obtain 0 6= [Lh0 ,Lg−1

0
] = Lh0g−1

0
⊂ I, that is

h0g
−1
0 ∈ ΣI,I . Hence, h−1

0 g0 ∈ (ΣI,I)−1 and so [Lh−1
0

,Lg0 ] ⊂ P . Consequently
[P,

⊕
g∈Σ¬I

Lg] ⊂ P and P is a graded ideal of L.

We introduce the definition of gr-primeness in the framework of graded Leib-
niz algebras following the same motivation that in the case of gr-simplicity (see
Definition 1.3).

Definition 3.5. A graded Leibniz algebra L is said to be gr-prime if given two
graded ideals I, P of L satisfying [I, P ] + [P, I] = 0, then either I ∈ {0, I} or
P ∈ {0, I}.

As an example of a gr-prime graded Leibniz algebra we have the graded
Leibniz algebra given in Example 1. We also note that the above definition
agrees with the definition of gr-prime Lie algebra, since I = {0} in this case.

Under the hypotheses of Proposition 3.3 we have:

13



Corollary 3.1. If furthermore L is gr-prime, then any nonzero graded ideal I
of L such that I ⊂ I satisfies I = I.

Proof. Observe that, by Proposition 3.3, we could have I = I ⊕ P with I, P
graded ideals of L, being [I, P ] + [P, I] = 0 as consequence of I, P ⊂ I. The
gr-primeness of L completes the proof.

Consider L with Z(L) = 0 and L1 =
∑

g∈ΣG

[Lg,Lg−1 ], (see Proposition 3.1).

Given any g ∈ ΣΥ,Υ ∈ {I,¬I} we denote by

CΥ
g := {g′ ∈ ΣΥ : g′ ∼¬I g}.

If g ∈ ΣΥ, let us write L1,CΥ
g

:= spanK{[Lg′ ,L(g′)−1 ] : g′ ∈ CΥ
g } ⊂ L1, and

VCΥ
g

:=
⊕

g′∈CΥ
g

Lg′ . We also denote by LCΥ
g

:= L1,CΥ
g
⊕ VCΥ

g
.

Lemma 3.4. If Z(L) = 0 and L1 =
∑

g∈ΣG

[Lg,Lg−1 ], then LCI
h

is a graded ideal

of L for any h ∈ ΣI.

Proof. From L1 =
∑

g∈ΣG

[Lg,Lg−1 ] =
∑

h∈Σ¬I

[Lh,Lh−1 ] we get L1,CI
h

= 0 and so

LCI
h

= VCI
h

=
⊕

h′∈CI
h

Lh′ .

We have [L,LCI
h
]+[LCI

h
, I] ⊂ [L, I] = 0 and [LCI

h
,L1] ⊂ LCI

h
. Finally [LCI

h
,Lg′ ] ⊂

LCI
h

for any g′ ∈ C¬I
g . Indeed, given any h′ ∈ CI

h such that [Lh′ ,Lg′ ] 6= 0 we have
h′g′ ∈ ΣI and so {h′, g′} is a Σ¬I-connection from h′ to h′g′. By the symmetry
and transitivity of ∼¬I in ΣI we get h′g′ ∈ CI

h. Hence [Lh′ ,Lg′ ] ⊂ LCI
h
. Taking

into account equation (10) we conclude LCI
h

is a graded ideal of L.

Theorem 3.1. Suppose L1 =
∑

g∈ΣG

[Lg,Lg−1 ],ZLie(L) = 0 and L is ΣG-multipli-

cative. Then, L is gr-simple if and only if it is gr-prime and ΣI, Σ¬I have all
of their elements Σ¬I-connected.

Proof. Suppose L gr-simple. If ΣI 6= ∅ and we take h ∈ ΣI, Lemma 3.4 gives
us LCI

h
is a nonzero graded ideal of L and so, (by gr-simplicity), LCI

h
= I =⊕

hj∈ΣI

Lhj
(see equations (8) and (18)). Hence, CI

h = ΣI and consequently

ΣI has all of its elements Σ¬I-connected.

Consider now any g ∈ Σ¬I and the subspace LC¬I
g

. Let us denote by I(LC¬I
g

)
the (graded) ideal of L generated by LC¬I

g
. By gr-simplicity I(LC¬I

g
) = L.

Observe that the fact that I is an ideal of L let us assert that I(LC¬I
g

) ∩
(

⊕
g′∈Σ¬I

Lg′) is contained in the linear span of the set

{[[· · · [vh, vg1 ], · · · ], vgn
]; [vgn

, [· · · [vg1 , vh], · · · ]];
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[[· · · [vg1 , vh], · · · ], vgn ]; [vgn , [· · · [vh, vg1 ], · · · ]] with 0 6= vh ∈ LC¬I
g

,

0 6= vgi
∈ Lgi

, gi ∈ C¬I
g and n ∈ N }.

From here, given any g̃ ∈ Σ¬I, the above observation and Leibniz identity give
us we can write g̃ = hg1 · · · gn with h ∈ C¬I

g , any gi ∈ Σ¬I and being the partial
products nonzero. Hence {h, g1, ..., gn} is a Σ¬I-connection from h to g̃. By the
transitivity of ∼¬I in Σ¬I we deduce that g is Σ¬I-connected to any g̃ ∈ Σ¬I.
Consequently C¬I

g = Σ¬I and we can assert that

Σ¬I has all of its elements Σ¬I-connected.

Finally, since L is gr-simple then is gr-prime.
Let us see the converse. Consider I a nonzero graded ideal of L and let us

show that necessarily either I = I or I = L. If I ⊂ I, Corollary 3.1 gives us
I = I. If I ∩ (

⊕
g∈Σ¬I

Lg) 6= {0}, Proposition 3.2 implies now I = L. Hence, we

have just to study the case in which I = (I∩L1)⊕(
⊕

hj∈ΣI,I

Lhj
), with I∩L1 6= 0.

But this possibility never happens. Indeed, if there was such an ideal, we would
have [I ∩L1,Lg] + [Lg, I ∩L1] ⊂ I ∩Lg = 0 for any g ∈ Σ¬I. From here, taking
also into account L1 =

∑
g∈ΣG

[Lg,Lg−1 ] =
∑

h∈Σ¬I

[Lh,Lh−1 ], Leibniz identity would

imply [L1, I∩L1]+[I∩L1,L1] = 0 and so I∩L1 ⊂ ZLie(L) = 0, a contradiction.
We conclude either I = I or I = L and L is gr-simple.
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