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THE MODULAR CLASS OF A DIRAC MAP

RAQUEL CASEIRO

ABSTRACT. In this paper we study the modular classes of Dirac manifolds and
of Dirac maps, and we discuss their basic properties. We apply these results to
explain the relationship between the modular classes of the various structures
involved in the reduction of a Poisson manifold under the action by of a Poisson
Lie group.

1. INTRODUCTION

The modular class of a Poisson manifold [/ ] is a class lying in the first Poisson
cohomology group, that obstructs the existence of a volume form invariant under
all Hamiltonian vector fields. More generally, the modular class of a Lie algebroid
A can be introduced by considering the fiberwise linear Poisson structure on the
dual bundle A*. The resulting class, denoted mod A, lives in the first Lie algebroid
cohomology of A with trivial coefficients. In [], the authors introduced a certain
representation of the Lie algebroid A and showed that the modular class mod A
could be seen as a characteristic class of this representation. This approach shed
some new light into this concept and led to many other developments. For example,
using this approach, in [/, '] the authors defined the modular class of a Lie
algebroid morphism ® : A — B and showed that it is the obstruction to the
existence of a canonical relation, given by ®, between the modular classes of A
and of B. More recently, the modular class of a Poisson map was introduced in [ ]
and then extended to any Lie algebroid comorphism in [] and to skew-algebroid
relations in [ /].

In the present paper we study the modular classes of Dirac manifolds and Dirac
maps. A Dirac manifold (M, L) is a manifold M equipped with an integrable
isotropic subbundle L C TM @& T*M of the generalized tangent bundle. Geomet-
rically, they correspond to (possibly singular) presymplectic foliations of M. The
Dirac structure L has the structure of a Lie algebroid so it has automatically a
modular class. A Dirac structure L is said to be reducible if its characteristic dis-
tribution L NT M is regular and the associate foliation F is simple, so that the leaf
space M/F is smooth. A reducible Dirac structure L induces a Poisson structure
on M/F and it is completely determined by it: in fact, we will see that L is the
pullback Lie algebroid of T* (M /F) and this allows us to conclude that the modular
class of L is the pullback of the modular class of the Poisson manifold M/F.

Next, we turn to morphism between Dirac manifolds are known as Dirac maps.
There are two types of morphisms: “forward” and “backward” Dirac maps. These
are in fact canonical relations, in the sense of Weinstein, so inspired by the work
of [!/] we define their modular classes. We show that they are the obstruction
to the existence of a canonical relation between the modular classes of the Dirac
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2 RAQUEL CASEIRO

manifolds involved. Our definition somehow generalizes the modular classes of both
Lie algebroid morphisms and comorphisms.

We end the paper by applying our results on the modular class of Dirac man-
ifolds and Dirac maps to study the behaviour of the modular class of a Poisson
manifold under reduction by an hamiltonian action of a Poisson Lie group. This
case was already considered in [ '], but we will see that our approach using Dirac
geometry gives a better understanding of the relationship between the modular
classes involved.

2. MODULAR CLASSES ON LIE ALGEBROIDS

In this section we begin by recalling some facts about Lie algebroids and their
modular classes (see, e.g., [ ], [ ]).

2.1. Modular class of Lie algebroids. Let A — M be a Lie algebroid over
M, with anchor a : A — TM and Lie bracket [,-] : ['(A) x T'(4) — I'(A). We
will denote by QF(A) = I'(A¥A*) the A-forms and by XF(A) = I'(A*A) the A-
multivector fields. Given a section IT € X2(A), we denote by II* the bundle map
A* — A defined by

(IF(a), ) =TI(a, ).

The Lie algebroid structure on A, defines a differential d4 on Q°(A) and the
cohomology of the complex (Q2°(A),d4) is called Lie algebroid cohomology of A
(with trivial coefficients) and will be denoted by H*(A).

A representation of A is a vector bundle £ — M together with a flat A-
connection V (see, e.g, [1]). The usual operations & and ® on vector bundles
turn the space of representations Rep(A) into a semiring. Given a morphism of Lie

algebroids:
A B

P
LN

there is a pullback operation on representations E — ¢'E, which gives a morphism
of rings ¢' : Rep(B) — Rep(A).

Representations have characteristic classes (see, e.g., [']). Here we are interested
in line bundles L € Rep(A) for which the only characteristic class can be obtained
as follows: Assume first that L is orientable, so that it carries a nowhere vanishing
section p € I'(L). Then:

vXﬂ = <a/—LaX>:u7 X e x(A)

The 1-form «,, € Q'(A) is da-closed and is called the characteristic cocycle of the
representation L. Its cohomology class is independent of the choice of section u
and defines the characteristic class of the representation L:

char(L) := [o,] € H*(A).
One checks easily that if L, L1, Ls € Rep(A), then:
char(L*) = — char(L), char(L; ® Lg) = char(Lq) 4 char(Ls).
Also, if (®,7) : A — B is a morphism of Lie algebroids, and L € Rep(B) then:
char(¢'L) = ®* char(L),

where ®* : H*(B) — H*®(A) is the map induced by ® at the level of cohomology. If
L is not orientable, then one defines its characteristic class to be the one half that
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of the representation L ® L, so the formulas above still hold, for non-orientable line
bundles.

Every Lie algebroid A — M has a canonical representation on the line bundle
L = AYPA@ ACPT*M:

Vx(wep) =£xw®p+w® £,x)u.
Then one sets [/, "]

Definition 2.1. The modular cocycle of a Lie algebroid A relative to a nowhere
vanishing section w @ p € T(A*PA @ A*PT*M) is the characteristic cocycle cwgp
of the representation L 4. The modular class of A is the characteristic class:

mod(A) := [awe,] € H'(A).

Example 2.2. For any Poisson manifold (M, 7) there is a natural Lie algebroid
structure on its cotangent bundle 7*M: the anchor is @ = 7! and the Lie bracket
on sections of A = T*M, i.e., on 1-forms, is given by:

[avﬁ]ﬂ' = £7r“a5 - £7r“ﬁa - d7T(Oé7B).

The Poisson cohomology of (M, 7) is just the Lie algebroid cohomology of T*M,
and the modular class of the Lie algebroid T*M is twice the modular class of
the Poisson manifold M (see [!'] for the definition of modular class of a Poisson
manifold):

mod(T*M) = 2mod(M, ).
2.2. Modular class of morphisms. If ® : A — B is a morphism of Lie algebroids
covering a map ¢ : M — N, the induced morphism at the level of cohomology

®* : H*(B) — H*(A), in general, does not map the modular classes to each other.
Therefore one sets ([ 7, | ]):

Definition 2.3. The modular class of a Lie algebroid morphism ® : A — B is
the cohomology class defined by:

mod(®) := mod(A) — ®* mod(B) € H'(A).

The modular class of a Lie algebroid morphism (®, ¢) : A — B may also be seen
as the characteristic class of a representation ([ ]):

mod(®) = char(L, ® ¢'(Lp)*)

It is easy to see that Lie algebroid isomorphisms have vanishing modular classes.
Let A — N be a Lie algebroid over N with anchor @ : A — TN and let
¢ : M — N be a smooth map such that

P"A={(X,v) € TuM x Ay s a(v) = ¢ X, 2 € M}

is a vector subbundle of TM @ ¢'A (i.e. it has constant rank), where ¢'A — M
denotes the pullback vector bundle.

The vector bundle ¢" A carries a structure of Lie algebroid over M, called the
pullback Lie algebroid of A, given by:

(1) the anchor a' : ¢" A — T'M is the the projection onto the first factor;
(2) the Lie bracket on sections is given by:

(X, fea),Y,g2p8)=[X,Y]+ fg® o, B, + X(9) B - Y(f) e,
for f,g € C°(M),a,5 €T(A),X,Y € X(M).
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This Lie algebroid structure turns the natural bundle map (®,¢) : ¢"A — A
into a Lie algebroid morphism, so we have a diagram of morphisms:

(b”A @ A

N

TM

Proposition 2.4. ([ ]) Let ¢ : M — N be a submersion and A — N a Lie
algebroid. Then ¢" A is a Lie algebroid over M and the modular class of the Lie
algebroid morphism (®,¢) : ¢" A — A vanishes.

This means that mod(¢" A) = ®*(mod(A)). In particular, one can always choose
modular cocycles on ¢"'A and on A that are related by ®*.

2.3. Modular class of comorphisms. Let A — M and B — N be two Lie
algebroids. A comorphism between A and B covering ¢ : M — N is a vector
bundle map ® : ¢'B — A, from the pullback vector bundle ¢' B to A, such that the
following two conditions hold:

[(i)X,th] =d[X,Y],
and

Proaa(PX) =ap(X),
for X,Y € I'(B), where ® : I'(B) — I'(A) is the natural map on sections induced
by ®.

Equivalently, we may say that (®, ¢) is a Lie algebroid comorphism if and only
if * : A* — B* is a Poisson map for the natural linear Poisson structures on the
duals of the Lie algebroids.

When one has a Lie algebroid comorphism ® : ¢'B — A, the pullback vector
bundle ¢'B — M carries a natural Lie algebroid structure characterized by:

(X7 =[xY]
and B
a(X') = aa(®X"),
for X,Y €T(B), X' = Xo¢ €T(¢'B) and V' =Y o € T'(¢'B).
For this structure, the natural maps

#B-2 A
\x
B
are Lie algebroid morphisms.
Definition 2.5. ([/, ']) The modular class of the Lie algebroid comorphism

®: ¢'B — A is the cohomology class:
mod(®) := ®* mod(A) — j* mod(B) € H'(¢'B).

Clearly, mod(®) gives the obstruction to the existence of modular cocycles « €
Q(A) and B € Q'(B), such that

‘1)*0[ = ﬁ ogf).
Looking at characteristic classes, one notices the natural representation of ¢'B
on the line bundle L? := L4 ® gZ)!L*B, and we have:

mod(®) = char(L?).
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Example 2.6. A Poisson map ¢ : M — N defines a comorphism between cotan-
gent bundles: ® : ¢'T*N — T*M such that ®(a') = ¢*a, where o' = ao¢ €
I (¢'(T*N)), for all & € Q'(N). The modular class of the Poisson map ¢ was
defined in [ '] and we see that it is one half the modular class of the comorphism ®

induced by ¢.

3. DIRAC MANIFOLDS AND THEIR MODULAR CLASSES

Dirac structures on manifolds were introduced in ['] to unify presymplectic and
Poisson structures. In this section we recall some important properties about Dirac
manifolds (see, e.g., [, ']) and we see how their modular classes behave under Dirac
maps.

3.1. Dirac structures. Let M be a manifold and let us consider the double (or
generalized tangent bundle) TM =TM @& T*M equipped with natural projections
p:TM =-TM and p,:TM —T*M.

The symmetric fiberwise bilinear form

(1) (X +a,Y +8), = 5(6,X) + {a,Y)),
the bracket
() X4 +6)=[X,Y]+ £x5— £ya+ yd({aY) - (5,X),

X,Y € X(M),a,B € QY(M), and the anchor p : TM — TM turn TM into a
Courant algebroid. Now recall:

Definition 3.1. A subbundle L of TM is called isotropic if it is isotropic under
the symmetric form (1). It is called integrable if its space of sections I'(L) is closed
under the Courant bracket (2). An integrable maximally isotropic subbundle of
TM =TM®&T*M is a Dirac structure and, in this case, the pair (M, L) is called
a Dirac manifold.

The maximal isotropy of a Dirac structure L is encoded in its characteristic
equations:

(3) LNTM = p.(L)°, LNT*M = p(L)°.

The integrability of (M, L) provides a Lie algebroid structure on the bundle L — M
with bracket [, ]|z and anchor p|p,.

A function f € C°°(M) for which there exists a vector field Xy € X(M) such
that Xy + df € I'(L) is called L-admissible. The set of all L-admissible functions
is denoted by C7°(M) and has a Poisson bracket given by

{fr9} = Xs(9) = = Xo(f):

The fiber bundle Dy, = L NTM defines a (singular) integrable distribution over
M, that we call the characteristic distribution of L. We will denote by Fj, (or
simply F, if there is no ambiguity) the foliation of M corresponding to Dy,.

3.2. Reducible Dirac manifolds. We will be interested in Dirac manifolds for
which Dy, is a regular distribution (i.e. has constant rank). In particular, the ones
giving rise to a simple foliation F deserve a special name:

Definition 3.2. A Dirac manifold (M, L) is said to be reducible if the char-
acteristic distribution Dy = L NTM is regular and induces a simple foliation
F. This means that the quotient M/F is a smooth manifold and the projection
p: M — M/F is a submersion.
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For a reducible Dirac manifold (M, L), with characteristic distribution Dj, =
LNTM and simple foliation F, the characteristic equation D¢ = p,(L) and the
exact sequence

0— Dy —TM — p'T(M/F) — 0
guarantees that p.(L) is isomorphic to the pullback vector bundle p*T*(M/F).

Moreover, the the injective map p* : C*°(M/F) — Cr (M) identifies the set of L-
admissible functions with C°°(M/F). This defines a Poisson bracket on C*°(M/F)
so that M/F is a Poisson manifold with Lie algebroid T#(M/F). In fact, there is
a one-one correspondence between reducible Dirac manifolds (M, L) and Poisson
structures on the quotient manifold M/F (see [/, ' (]).

Given any Dirac manifold (M, L) with a regular characteristic distribution one
can always choose a bivector IT on M such that (see [|]):

L={X+Tfa+a: X € Dy,a € DY} = Dy, & graph(IT*| py ).
The pair (Dy,II) is called a characteristic pair of L. In general, this pair is not
unique. When L is reducible, given any characteristic pair (Dy,II), one has:
poll = .
where p : M — M/F is the projection and 7 is the bivector determined by the
Poisson bracket on C°°(M/F).

Proposition 3.3. Let (M,L) be a reducible Dirac manifold with characteristic
foliation F and projection p : M — M/F. Then L is isomorphic to the pullback
Lie algebroid p*T*(M/F).

For the proof of we need the following Lemma which follows from a straightfor-

ward computation using Cartan’s magic formula.

Lemma 3.4. Let p: M — N be a smooth map and m € X?(N) a bivector on N.
Then

fap" [, Bl =9£x(P*B) — f £y (p o) + d(fp e, Y),
for XY € X(M), f,g € C=(M) and o, B € Q*(N), such that p. X, = f(2) 7 () p(a)
and p.Yy, = g(z) 7 (B)p(a), = € M.
Proof of Proposition 3.3. Let (D,II) be a characteristic pair of L and let 7 the
Poisson bivector on M/F induced by L. Then

L={X+M(a)+a: X €D,ae D’} and p,Il=m.
By definition, the pullback Lie algebroid of T*(M/F) is the bundle

P (M) F) = {(X, @) € TuM @ T}y (M/F) : p.X = nta,x € M},

and the bundle map ¥ : p"T*(M/F) — L,
X+ar— (X,p*a)

gives an isomorphism between p"'T*(M/F) and L as vector bundles.

The anchors of p"'T*(M/F) and L are clearly related by ¥. So consider X,Y €
X(M), a,8 € QM/F) and f,g € C=(M), such that, p.X = frfa and p.Y =
gﬂﬁﬁ, we have

V[X+fRaY+gefl=Y(X,Y]+X(9®[-Y(f)® at fglopb],)
= (X, Y], X(9)p"B-Y(f)p'a+ fgp" o, Bl,)
Using Lemma 3.4 we conclude that
VX+foaY+gep=[X+paY+pb,

and, consequently, W is a Lie algebroid isomorphism. (|
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3.3. Modular classes of Dirac manifolds. One defines the modular class of
a Dirac manifold (M, L) to be mod L, the modular class of the underlying Lie
algebroid. If its characteristic distribution Dy, has constant rank, it is integrable,
hence defines a Lie algebroid, and we have the modular class mod Dy,.

Recalling that for a distribution T'F the modular class is the obstruction to the
existence of a transverse volume form to F, we immediately obtain:

Proposition 3.5. Let (M, L) be a reducible Dirac manifold with characteristic
distribution Dy,. Then mod Dy = 0.

Proof. Any volume form on M /F pulls back to a non-vanishing transverse volume
form to F. This means that mod Dy, = 0. O

On the other had, Propositions 2.4 and 3.3 yield immediately:

Proposition 3.6. Let (M, L) be a reducible Dirac manifold with characteristic
foliation F and projection p : M — M/F. The modular class of L is the pullback
of the modular class of T*(M/F).

Proof. Tt is enough to observe that the (pullback) Lie algebroid morphism p : L —
T*(M/F) vanishes. This is obvious since this morphism is the composition of the
isomorphism L =~ p"T*(M/F) of Proposition 2.4, with the Lie algebroid morphism
p'T*(M/F) — T*(M/F) of Proposition 3.3, whose modular class vanishes. O

Example 3.7. The graph L, of a Poisson bivector m on a manifold M is a Dirac
structure which is isomorphic (as a Lie algebroid) to T*M. In this case,

mod (L) ~ mod T*M = 2mod(M, ).
This is precisely the case where D|;, = 0.

Example 3.8. The graph L, of a presymplectic 2-form w on a manifold M is a
Dirac structure isomorphic to TM. In the reducible case, M/F is a symplectic
manifold and mod(L,,) = 0.

Proposition 3.6 can be extended to the more general setting of a Dirac structure
L of a Poisson manifold bialgebroid (T*M,TM,w). We recall that a Dirac
structure L on the Poisson manifold Lie bialgebroid (T'M,T*M, ) is an integrable
maximally isotropic subbundle of TM = TM @& T*M equipped with the bilinear
symmetric bracket (1), the anchor a = p + 7% p, and the Courant bracket

X +a,Y + 8] = [X,Y] + £.Y — £5X — %dﬁ(@, V) — (8, X))

{0, B}, + £x5— £ya+ 5d((0,Y) — (3, X))

for X + o, Y + 8 € I(TM).
Ordinary Dirac manifolds are simply Dirac structures on the Poisson manifold
Lie bialgebroid (T'M,T*M,0).

Proposition 3.9. Let (M, n) be a Poisson manifold and L a Dirac structure on
the Lie bialgebroid (TM,T*M, ). Consider the vector bundle map ® : L — TM
given by

X+ar— X +a)=X+7'a+o

The image of L by ® defines an ordinary Dirac structure on M with the same char-
acteristic foliation as L. Moreover ®(L) and L are isomorphic as Lie algebroids.

In particular, if L is reducible then it is isomorphic to p"*T*(M/F), where F is
the characteristic foliation of L and p: M — M/F is the natural projection.
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Proof. The map & is clearly a bijection, so it remains to prove that it preserves Lie
algebroid structures. Let X + a,Y + 8 € I'(L), then

X +aY+5], =X, Y]+ £)Y —igd: X + [, 8], + £x8 — iyda)
=[X,Y]+ £5Y —igd. X + 7% ([, ], + £xB —iyda)
+ o, B, + £x0 —iyda.
.= [W”aﬂrﬁﬁ] and
DX +a,Y + 8] = [X +7°a,Y + 78] + £x 1 niaf — iy yaipda
= [®(X +a),d(Y +B)].

Finally, notice that anchors are preserved:

Since 7 is a Poisson tensor, we have 7t [a, 3]

ar(X +a) =X +r'a = ag)(X + fa+a) = ap) - (X +a), X +acL.
O

Since modular classes of Lie algebroid isomorphisms vanish, we conclude again
that:

Corollary 3.10. The modular class of any reducible Dirac structure L on a Poisson
manifold Lie bialgebroid (T M, T*M, ) is obtained by pulling back the modular class
of T*(M/FL).

4. MODULAR CLASS OF A DIRAC MAP

We now turn our attention to the modular class of Dirac maps.

4.1. Dirac maps. We begin by recalling some definitions and properties of Dirac
maps.

Definition 4.1. Let (M, L) and (N, K) be two Dirac manifolds and ¢ : M — N a
smooth map.
(i) The b-image, or the backward image, of K by ¢ is the bundle over M:
Bs(K)={X+¢'a € T,M&T;M: ¢pX +a € Ky, v €M}.
We say that ¢ : (M, L) — (N, K) is a b-Dirac map, or a backward Dirac
map, if
L = By(K).
(ii) The f-image, or the forward image, of L by ¢ is the bundle over M:

Fs(L) = {(;S*X ta€TymNaTiyN: X +¢*acly, ac M}.

We say that ¢ : (M, L) — (N, K) is an f-Dirac map, or a forward Dirac
map, if
¢'K = Fy(L).

In general, a forward Dirac map is not a backward Dirac map, nor vice-versa.
However, for diffeomorphisms these two notions are equivalent. A diffeomorphism
which is also a Dirac map is called a Dirac diffeomorphism.

Example 4.2. Let (M, L) be a Dirac manifold and i : S < M a submanifold.
Then L|g := B;(L) is always a Dirac structure on S and i : (S, L|g) — (M, L) is a
b-Dirac map. For example, if w is a presymplectic form on M and L, is its graph,
then Ll|g is the graph of the pullback i*w.

Example 4.3. For a reducible Dirac manifold (M, L), the projection p : M —
M/ F is both an f-Dirac and a b-Dirac map between (M, L) and (M /F, graph mys/ r).
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Example 4.4. (Poisson Dirac submanifold) Let (M, 7y ) be a Poisson manifold and
i: S < M a Poisson Dirac submanifold (see []). This means that S has a Poisson
structure mg such that the symplectic foliation of S is given by the intersection of
the symplectic foliation of M with S. Then i : (S, graphmg) — (M, graphmys) is a
b-Dirac map (and T'S N7 (T'S%) = {0}).

The next two propositions show how b-Dirac maps and f-Dirac maps between
reducible Dirac manifolds can be pushed to the quotient Poisson manifold.

Proposition 4.5. A b-Dirac map between reducible Dirac manifolds that preserves
the characteristic foliation induces a b-Dirac map between the graphs of the Poisson
structures on the reduced manifolds.

Proof. Let ¢ : (M,L) — (N, K) be a b-Dirac map preserving the characteristic
foliations Fr and Fg, i.e., ¢(Fr) C Fgx. Then we have an induced map ¢ :
M/F — N/Fg and we need to prove that:

B3 (L ~L

For this, we choose a characteristic pair (D|,II) for (M, L), let x € M and
choose any element

7TN/}'K) T™M/Fp "

775\/1/& (@) +a€Lnys lp@):

Then p*a € DY and II*(p*a) + p*a € L,. Since ¢ is a b-Dirac map, there exists
B € DY such that ¢*8 = p*a and ¢.I1*(¢*B) + 8 € Ky fq: N — N/Fk
is the projection, then there is 3 € T;(¢(x))(N/FK) such that ¢*3 = B and
G0 I (9" q*B) = 7T F, B Since ¢op = qod, we have ¢y rd* S = Ty 7, f
and p*a = ¢*¢* B = p*¢* 5, which gives o = ¢* 3 (since p is a submersion).

In conclusion, we showed that for any element

W?w/h (@) +a€Lny,y,
we can find § € T*(N/Fg) with a = ¢* and
92_5*71'5\/1/]% (a) + B € L‘IFN/}'K'
proving our claim. U

An f-Dirac map always preserves the characteristic foliation, so in this case we
have:

Proposition 4.6. An f-Dirac map between reducible Dirac manifolds induces a
Poisson map between the reduced Poisson manifolds and, consequently, an f-Dirac
map between the graphs of the Poisson structures on the reduced manifolds.

Proof. Let ¢ : (M, L) — (N, K) be an f-Dirac map between reducible Dirac mani-
folds, i.e., for each z € M,

Ky = {¢*X +BE€Tyu)yN ®Ty, )N: X +¢"B€ Lx} = Fy(La).

It is clear that if X € Dy, then d¢(X) € Dy, so ¢ induces amap ¢ : M/F — N/F.
Let f,g € C¥(N) =2 C*°(N/Fk), then fo¢ and go¢ are L-admissible functions.
Moreover
{fod.god}, () = (Xfop(®),de(g00)) = (0 Xfo0(2),dp(z)9)
(Xy,dg) (¢(z)) ={f, 9}k (6(2)).

This shows that ¢ preserves the Poisson bracket between admissible functions
and, consequently, the map ¢ : M/F, — N/Fk induced by ¢ is a Poisson map. O
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Since Poisson maps induce Lie algebroid comorphisms between cotangent bun-
dles [| ] we conclude that:

Corollary 4.7. An f-Dirac map between reducible Dirac structures induces a Lie
algebroid comorphism between the cotangent bundles of the reduced manifolds.

Proposition 4.8. If ¢ : (M,L) — (N, K) is both an f-Dirac map and an immer-
sion, then ¢ is also a b-Dirac map and defines a Lie algebroid comorphism between
L and K.

Proof. Since ¢ is an f-Dirac map and an immersion, we may define the bundle map
U : ¢'K — L given by:

Y 48— (¢.)7'Y + 8.
To prove that U preserves brackets and anchors, for X + a,Y + 8 € I'(K) we set:
(X +a) =(X+a)ep e(¢'K), (Y +8) :=( +pB)-¢cl($'K).
Then
GuoaroW(X +a) = du(d) ' X = X = ax(X + a),

so U preserves anchors. Also, we find that:

V(X +0a), (Y +8)] =V (X,Y]+ £xB— £ya+d(a,Y))
= (¢) X, Y] +¢" (£xB— £ya+d(a,Y))
= [(¢) 7' X, (¢) Y] + £py-1x0" B+
— £pyyeiat+d(¢ e, (6.)7Y)
= [U(X +a), ¥(Y +B)]

so U also preserves brackets. O

The next proposition shows that the pullback Lie algebroid of a Dirac manifold
by a submersion is, in fact, a backward Dirac image.

Proposition 4.9. Let ¢ : M — N be a submersion and (N, K) a Dirac manifold.
Then By (K) is a Lie algebroid isomorphic to the pullback Lie algebroid MK,

Proof. Since ¢ is a submersion, the vector bundle map ¥ : By(K) — ¢ K given
by:

X +¢"fr— (X,0.X + ),
is a vector bundle isomorphism. It remains to prove that it is a Lie algebroid

morphism, if B,(K) is equipped with the bracket and the anchor induced by TM.
It is easy to see that U preserves anchors:

a' o U(X +a)=X =ap,x)(X +0a), X+acByK).

To prove that ¥ also preserves Lie brackets let X +a,Y + 8 € I'(By(K)) such
that B(X +a) = 5, fi © (2 + i) and V(Y +§) = 5, g3 @ (3 + ), for some
oY =3 g;y5 and B =3, g;";.
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Therefore

V(X + Y + Bl 0) = ¥ [ (X YT+ £x | Do | +
J

() g

=W(X, Y]+ figid" (£a,% — £y +d i, y;)) +

2%}

+ 2 X(g,)0" = Y (fi)o" i)
= (X Y], o [X, Y]+ Zfigj (L7 = £y i+ d (i y5)) +

+ Z X(gi)v — Z Y (fi)pi)

=[U(X +a),U(Y + B)lguk-
(|
Corollary 4.10. If a submersion ¢ : (M,L) — (N, K) is a b-Dirac map then it is
also an f-Dirac map and the Lie algebroid L is isomorphic to the pullback ¢" K.
We also recover Proposition 3.3 in this way:
Corollary 4.11. Let (M, L) be a reducible Dirac manifold and p : M — M/F the
projection, then L is a Lie algebroid isomorphic with p'L =~ p"T*(M/F).

™™/ F

Corollary 4.12. Let ¢ : (M,L) — (N, K) be both a submersion and b-Dirac map
between reducible Dirac manifolds. Then it induces a Lie algebroid morphism and
a Lie algebroid comorphism between T*(M/Fy,) and T*(N/Fk).

4.2. Modular classes of Dirac maps. We are able to compare the modular
classes of Dirac manifolds related by Dirac maps, for the following special class:

Definition 4.13. A Dirac map ¢ : (M, L) — (N, K) is called admissible if
R(z,¢>(m)) = {(X + ¢*a, P X + a) X+ qu*oz €Ly, X +aé€ Kfi’(z)} ($ S M),
defines a vector subbundle of TM x TN over graph ¢.

Example 4.14. An f-Dirac map ¢ : (M,L) — (N, K) such that L Nker ¢, has
constant rank is admissible. In particular, if L is the graph of a Poisson bivector,
then ¢ is admissible.

Example 4.15. A b-Dirac map ¢ : (M, L) — (N, K) such that ker ¢* N ¢'K has
constant rank is admissible. In particular, if K is the graph of a pre-symplectic
form, then ¢ is admissible.

For any smooth map ¢ : M — N, the vector subbundle of TM x TN
I*={(v+¢*a,¢.v+a) € TuM x Ty yN: 2 € M} CT(M x N)

is a Dirac structure supported on graph¢ [/, ’]. It has a natural Lie algebroid
structure over graph ¢, where the anchor is the projection

a(X +¢"a, ¢ X +a) = (X, 0.X),
and the Lie bracket on sections is induced by the Courant bracket on T(M x N).

Notice that for an admissible map ¢, the Lie algebroid structure on I'? induces
a natural Lie algebroid structure on R (over graph ¢) and we have:
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Proposition 4.16. Let ¢ : (M,L) — (N,K) be an admissible Dirac map. The
vector bundle R has a Lie algebroid structure over graph ¢ and the projection maps

(4) R——>1

N

The Lie algebroid morphisms ¢ and j induce morphisms at the cohomology level
i*: H*(L) — H*(R) and j* : H*(L) — H*(R). This leads to a natural definition
of modular class of Dirac maps, which is a class comparing the modular classes of
L and K under a Dirac map.

K

are Lie algebroid morphisms.

Definition 4.17. The modular class of an admissible Dirac map ¢ : (M, L) —
(N, K) is the class:

mod ¢ = i*mod L — j*mod K € H*(R).

Example 4.18. Let ¢ : (M, my) — (N,7mn) be a Poisson map. Then ¢ defines
an f-Dirac map between (M, Lr,,) and (N, Ly, ). In this case, the Lie algebroid
R is naturally isomorphic to the Lie algebroid ¢'(T*N) and the modular class of
the Dirac map ¢ coincides with the modular class of the comorphism defined by ¢
(under this isomorphism).

Example 4.19. Let (M,7as) be a Poisson manifold and ¢ : S <— M a Poisson
Dirac submanifold. When dim(7},S° Nker a/|,.) does not depend on = € S, one says
that S is a Poisson Dirac submanifold of constant rank. In this case the inclusion
¢: (S, Lrs) — (M, Ly,,) is an admissible b-Dirac map.

In order to see the meaning of the modular class of ¢ observe that it lies in the
first cohomology group of the Lie algebroid (over graph ¢):

Rz,p(z)) = {(Wﬁs¢*a + (b*a,wgwa + a) o€ kerr(qb*?rﬁsqb* — WM)} , zeS
which is clearly isomorphic to the Lie algebroid (over S)
K = ker(¢pumsd* — mar) C ¢ (T*M) = TEM.
Notice that this Lie algebroid K is equipped with the Lie bracket

[a!’ﬁ!} = [O"m-M
and the anchor a(a') = 779\4(04), where o' = ao¢ € T'(¢'(T*M)) and B' = Bog €
L(¢'(T*M)), for a, B € QY(M). From diagram (4) we have

R=K——=T"S
S
T M
so we see that the modular class of ¢ is given by
i*mod T*S — j* mod T*M = 2(i* mod(S, ms) — j* mod(M, 7)) € H(K).

The isomorphism above shows that when ¢ : S < M is a Poisson submanifold,
then mod ¢ coincides with the relative modular class already introduced in [].

It follows from the definition that a Dirac diffeomorphism has vanishing modular
class, since in that case ¢ and j in (4) are both Lie algebroid isomorphism. This is
also clear from the following proposition:
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Proposition 4.20. Let ¢ : (M,L) — (N, K) be a b-Dirac map, which is also a
submersion. Then mod ¢ = 0.

Proof. Since ¢ is a submersion and a b-Dirac map, then by Corollary 4.10 it is also
an f-Dirac map and ¢"K = L (as Lie algebroids). By Proposition 2.4, we know
that the modular class of the pullback map

U: "KL - K
vanishes. This means mod L = ¥* mod K and we obtain:
mod ¢ =i*mod L — j*mod K = (Voi)*mod K — j* mod K = 0.
O

Corollary 4.21. Let (M, L) be a reducible Dirac manifold with characteristic foli-
ation F. The projection p: (M,L) — (M/F, Ly) has vanishing modular class.

Example 4.22. Let (M, 7) be a Poisson manifold, (G, 7g) a Poisson-Lie group
and let G x M — M be a Poisson action which is hamiltonian in the sense of
Lu [/ 7]. This means that there exists a smooth map x : M — G* with values in
the dual, 1-connected, Poisson-Lie group, which is equivariant relative to the left
dressing action of G on G*, and satisfies the moment map condition:

by =mi(r*¢h), Véeg

where ¢& € Q1(G*) is the left-invariant 1-form satisfying ¢%|. = € € T/ G* = g.

When the action is proper and free, one has a unique quotient Poisson structure
on M /G for which the projection ¢ : M — M /G is a surjective, Poisson submersion
whose modular class vanishes (see [!]). In this case the identity e € G* is a regular
value of k and the Dirac manifold (M, L,) pulls back to a Dirac structure L. on
the level set K~ 1(e) (see []). The characteristic distribution of L. coincides with
the distribution tangent to the G-orbits on x~1(e). This means that

M//G :=r"'(e)/G

inherits a Poisson structure meq induced by L. and ¢ = ¢|Fl<€) s (k7 e), Le) —
(M//G, Lz, ) is both a b-Dirac map and an f- Dirac map. Moreover, by Propo-
sition 3.3, one has L. = ¢"T*(M//G) and mod ¢ = 0. Therefore, we obtain a

commutative diagram:
M
M/G

KHe)

N

M/ /G

where the inclusions are b-Dirac maps and the projections are both b-Dirac maps
and f-Dirac maps, between the induced Dirac manifolds.

Now Proposition 4.20 shows that the modular classes of the forward Dirac maps
in the above diagram vanish. This gives a more direct and simple explanation
for the result in [ '], where we have already proved, without making use of Dirac
structures, that the projection ¢ : M — M/G has vanishing modular class (as a
Poisson map) and that there exists a modular vector field on M, tangent to x~1(e),
whose projection onto M//G is a modular vector field of this Poisson manifold.
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