
TOTAL BOUNDEDNESS AND THE AXIOM OF CHOICE
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Abstract. A metric space is Totally Bounded (also called preCompact) if it

has a finite ε-net for every ε > 0 and it is preLindelöf if it has a countable ε-net
for every ε > 0. Using the Axiom of Countable Choice (CC), one can prove

that a metric space is topologically equivalent to a Totally Bounded metric
space if and only if it is a preLindelöf space if and only if it is a Lindelöf space.

In the absence of CC, it is not clear anymore what should the definition

of preLindelöfness be. There are two distinguished options. One says that a
metric space X is:

(a) preLindelöf if, for every ε > 0, there is a countable cover of X by open

balls of radius ε ([11]);
(b) Quasi Totally Bounded if, for every ε > 0, there is a countable subset A

of X such that the open balls with centers in A and radius ε cover X.

As we will see these two notions are distinct and both can be seen as a good gen-
eralization of Total Boundedness. In this paper we investigate the choice-free

relations between the classes of preLindelöf spaces and Quasi Totally Bounded

spaces, and other related classes, namely the Lindelöf spaces.
Although it follows directly from the definitions that every pseudometric

Lindelöf space is preLindelöf, the same is not true for Quasi Totally Bounded
spaces. Generalizing results and techniques used by Horst Herrlich in [8], it

is proven that every pseudometric Lindelöf space is Quasi Totally Bounded

iff Countable Choice holds in general or fails even for families of subsets of R
(Theorem 2.5).

Introduction

In the last years of his life Horst Herrlich dedicated many of his time studying the
impact of the Axiom of Choice in Mathematics and, in particular, in set-theoretic
Topology. Of particular interest to Horst was to see how different definitions of
the same notion split in the absence of the Axiom, like he did in the pioneer paper
Compactness and the Axiom of Choice [7] with different definitions of compactness.
Following his steps, I want to give my modest contribution to this subject by looking
at the choice-free definition(s) of a preLindelöf space.

The definition of preLindelöf is inspired by the definition of preCompact metric
spaces which are more often called Totally Bounded metric spaces. Although both
names refer to the same notion, one could say that the term preCompact is more
“topological” and that Totally Bounded refers more to the metric. In other words,
a metric space X is preCompact if, for every ε > 0, it can be covered by finitely
many open balls of radius ε; and X is Totally Bounded if, for every ε > 0, there
is a finite subset F such that for every x ∈ X, exists a ∈ F such that d(x, a) < ε.
There is no doubt that both definitions coincide even in ZF, Zermelo-Fraenkel set
theory without the Axiom of Choice. The same is not true when replacing finitely
many by countably many. This leads to the definition of the two different classes
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2 GONÇALO GUTIERRES

(in ZF, as we shall see in Proposition 4.1) of preLindelöf and Quasi Totally Bounded
metric spaces, respectively.

This paper was motivated by the definition of preLindelöfness from K. Keremedis
in [11]. There, this condition was studied and compared with some other Lindelöf
related conditions. The notion of Quasi Total Boundedness was not introduced
there and it is my goal in this paper to make more clear the differences between
both classes.

It is known that, assuming the Axiom of Countable Choice, a metric space is
preLindelöf iff it is Quasi Totally Bounded iff it is Topologically Totally Bounded
iff it is Lindelöf iff it is Second Countable iff it is Separable (Proposition 1.6). We
will investigate the relations between these notions in the choice-free environment,
for metric spaces, pseudometric spaces and subspaces of the real line R. Here, a
pseudometric space is a metric space except for the fact that the distance between
two distinct points can be 0. Among these results, I emphasize Theorem 2.5 where
is stated that every pseudometric Lindelöf space is Quasi Totally Bounded if the
Countable Choice holds or drastically fails. This is a kind of result that Horst
enjoyed because it requires two completely independent proofs of the same result.
To prove it we make use of one of my favourite results from Horst Herrlich: Lin-
delöf=Compact for T1-spaces is equivalent to the failure of CC(R) – Theorem 2.1
in [8].

1. Definitions and Preliminary Results

We start this section with a list of definitions of set-theoretic axioms which will
be used throughout the paper. All results in this paper take place in the setting of
ZF.

Definitions 1.1.

(a) The Axiom of Countable Choice (CC) states that every countable family
of non-empty sets has a choice function.

(b) The Countable Union Condition (CUC) states that a countable union of
countable sets is countable.

(c) CC(ℵ0) is the Axiom of Countable Choice restricted to non-empty families
of countable sets.

(d) CC(R) is the Axiom of Countable Choice restricted to families of non-empty
sets of real numbers.

Remark 1.2. Note that CC⇒CUC⇒CC(ℵ0).

Proposition 1.3. ([3, p.76], [9, p.15]) The following conditions are equivalent to
CC (respectively CC(R)):

(i) every countable family of non-empty sets (resp. subsets of R) has an infinite
subfamily with a choice function;

(ii) for every countable family (Xn)n∈N of non-empty sets (resp. subsets of R),
there is a sequence which takes values in an infinite number of the sets Xn.

Condition (i) of the previous proposition is known as the partial Axiom of Count-
able Choice (PCC).

Given a (pseudo)metric space, an open ball of radius ε > 0 in X is a set B such
that there exists x ∈ X with B = {y ∈ X | d(x, y) < ε}. We denote an open ball of
radius ε > 0 and center x by Bε(x). Clearly, an open ball may have more than one
center. This fact motivates us to distinguish between the following two notions, (a)
and (b).

Definitions 1.4. Let (X, d) be a (pseudo)metric space. We say that X is:
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(a) preLindelöf (PL) if, for every ε > 0, there exists a countable family A of
open balls of radius ε such that X =

⋃
A;

(b) Quasi Totally Bounded (QTB) if, for every ε > 0, there exists a countable

set A ⊆ X such that X =
⋃
a∈A

Bε(a);

(c) topologically preLindelöf (TPL) if it is topologically equivalent to a preLin-
delöf space;

(d) topologically Quasi Totally Bounded (TQTB) if it is topologically equivalent
to a Quasi Totally Bounded space;

(e) Totally Bounded (TB) if for every ε > 0, there exists a finite set A ⊆ X

such that X =
⋃
a∈A

Bε(a);

(f) topologically Totally Bounded (TTB) if it is topologically equivalent to a
Totally Bounded space.

Definitions 1.5. Let (X, d) be a (pseudo)metric space and T (d) the induced topol-
ogy. We say that X is:

(a) Lindelöf (L) if every cover of X by elements of T (d) has a countable sub-
cover.

(b) Second Countable (SC) if (X, T (d)) has a countable base.
(c) Separable (S) if it has a countable dense subset.

The fact that, for a (pseudo)metric space, these three definitions are equivalent
and equivalent to topologically Total Boundedness in ZFC, Zermelo-Fraenkel set
theory with the Axiom of Choice, is well-known. Maybe less known is that they are
also equivalent to the definitions (a)-(d) of 1.4. It is surprising that if a metric space
can be covered by countably many open balls of radius ε, for every ε, so it can for
any other equivalent metric.

Proposition 1.6 (ZF+CC). For a (pseudo)metric space X, the following proper-
ties are equivalent:

(i) X is Lindelöf;
(ii) X is Second Countable;
(iii) X is Separable;
(iv) X is topologically Totally Bounded;
(v) X is Quasi Totally Bounded;

(vi) X is topologically Quasi Totally Bounded;
(vii) X is preLindelöf;
(viii) X is topologically preLindelöf.

Proof. The equivalences between (i), (ii), (iii) and (iv) can be seen in many intro-
ductory books of Topology (e.g. [2]). It is not difficult to see that CC suffices to
prove these equivalences.

It is clear that, under CC, (iv)⇒(vi)⇔(viii) and that (iii)⇒(v)⇔(vii)⇒ (viii).
It is now enough to prove that (vi) implies (iii), which is the same as to prove

that (v) implies (iii). Let X be a QTB metric space. By definition, for all n ∈ N,
exists a countable set An ⊆ X such that X =

⋃
a∈An

B1/n(a). The set A =
⋃

nAn

is dense in X and, by the Countable Union Condition, it is countable. �

Some of these implications remain valid in ZF. We will write A → B to say that
every space with the property A also has the property B.

Remark 1.7. Most of the equivalent conditions of Proposition 1.6 do not depend
on the points, then in these cases it does not matter if one works with metric or
with pseudometric spaces. To make it precise, a pseudometric space is preLindelöf
(Lindelöf, Second Countable, Totally Bounded) if and only if its metric reflection
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is preLindelöf (Lindelöf, Second Countable, Totally Bounded). Clearly the same is
not true for Quasi Total Boundedness or Separability. We recall that the metric
reflection is the quotient space resulting from identifying the points for which the
distance between them is equal to zero.

The fact that the metric reflection of a Separable (Quasi Totally Bounded) pseu-
dometric space is Separable (Quasi Totally Bounded) is equivalent to the Axiom of
Countable Choice. The proof is straightforward and can be done using the pseudo-
metric space defined in Theorem 2.5 below.

Proposition 1.8 (ZF). For (pseudo)metric spaces, the following implications are
valid.

(a) S → SC.
(b) SC → TTB.
(c) TTB → TQTB → TPL.
(d) TB → QTB → PL.
(e) L → PL.
(f) S → QTB.

Proof. The usual proof of (a) remains valid in ZF and (c), (d) and (e) are trivial.
The fact that every Second Countable metric space is topologically Totally Bounded
(b) relies on the fact that a Second Countable metric space can be embedded in
[0, 1]ℵ0 . It was pointed out in [4] that this fact holds true in ZF, and this is enough
in view of the previous remark. In [1], it is given a detailed proof.

(f) If (X, d) is Separable, then exists A ⊆ X such that A is countable and dense
in X. Clearly, for every ε > 0, X =

⋃
a∈ABε(a). �

2. Lindelöf spaces

In this section we will investigate if the Lindelöf condition is still stronger, in ZF,
than the conditions of being preLindelöf or Quasi Totally Bounded.

The implication L → PL is quite obvious, but it is not immediate to conclude
that L→ QTB. Although this last implication is not valid for pseudometric spaces,
in ZF, it is valid for metric spaces. We will show these two facts in Theorem 2.5
and Proposition 2.1, respectively.

Proposition 2.1. Every Lindelöf metric space is Quasi Totally Bounded.

Proof. Let X be a Lindelöf metric space. Fix ε > 0. Since in a metric space the
singleton sets are closed, for every x ∈ X the sets Bε(x) \ {x} are open. Define now
A := {x ∈ X | (∀y ∈ X)[(x 6= y)⇒ Bε(x) 6= Bε(y)]} .

Consider the open cover of X,

U := {Bε(x) |x ∈ A} ∪ {Bε(x) \ {x} |x 6∈ A} .
Since y ∈ Bε(x) if and only if x ∈ Bε(y), for all x, y in X, we have that Bε(x) 6=

Bε(y) \ {y} and that for all x 6= y in X \A, Bε(x) \ {x} 6= Bε(y) \ {y}. For this last
statement notice that if x 6∈ A, there is z 6= x such that Bε(x) = Bε(z), and thus
for every y ∈ X, x ∈ Bε(y) if and only if z ∈ Bε(y).

From the above observations we may conclude that every element of U can only
be written in one form.

Since X is Lindelöf, there are (xn)n in A and (yn)n in X \A such that

{Bε(xn) |n ∈ N} ∪ {Bε(yn) \ {yn} |n ∈ N}
is a countable subcover of U . This implies that X =

⋃
n (Bε(xn) ∪Bε(yn)) and so

X is a Quasi Totally Bounded metric space. �

Theorem 2.2. [10] Every Second Countable space is Lindelöf if and only if the
Axiom of Countable Choice for subsets of R (CC(R)) holds.
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Theorem 2.3. [8] Every Lindelöf T1-space is Compact if and only if CC(R) does
not hold.

Corollary 2.4. Every Lindelöf space, for which the T0-reflection is T1, is Compact
if and only if CC(R) does not hold.

The corollary is straightforward since the T0-reflection (the quotient space which
identifies the points with he same closure) does not modify the topology. In partic-
ular, we have that the failure of CC(R) implies that every Lindelöf pseudometric
space is Compact.

With this last result in place, we are able to proof that, in the pseudometric case,
there are Lindelöf spaces which are not Quasi Totally Bounded.

Theorem 2.5. Every Lindelöf pseudometric space is Quasi Totally Bounded if and
only if CC holds or CC(R) fails.

Proof. (⇐) If CC holds, then the usual proof works. If CC(R) fails every Lindelöf
pseudometric space is Compact, hence Totally Bounded and consequently QTB.

(⇒) Let (Xn)n be a countable family of non-empty sets. Define X =
⋃

n(Xn ×
{n}) and a pseudometric d on X with

d((x, n), (y,m)) = 1 if n 6= m; and d((x, n), (y, n)) = 0 .

If CC(R) holds, then since (X, d) is second countable, it follows, by Theorem 2.2,
that X is Lindelöf, and by our hypothesis, X is also QTB. This means that there
exists a sequence (xk)k of points in X such that X =

⋃
k B1/2(xk). Finally, the set

{π1 (xk) | k ∈ N}, where π1 is the canonical projection, must intersect all the sets
Xn which means that CC also holds. That is CC(R) implies CC. �

The next diagram shows the implications which are known to be true in ZF.

SC
//
TTB

// TQTB //
TPL

S
//

OO

QTB

OO

//
PL

OO

L

66
OO

// pseudometrics // metrics

3. Subspaces of the Reals

Before studying the set-theoretic status of the implications between preLin-
delöfness, Quasi Total Boundedness and the other properties for metric spaces,
we will see what happens for subspaces of R. Clearly, if an implication is not true
for subspaces of R it is also not true for metric spaces in general.

The metric space R, with the Euclidean metric, is Separable (hence SC, TTB, PL,
QTB) and it is Lindelöf if and only if CC(R) holds (see [10]). So, using Theorem
2.2, it is clear that the condition A → L for subspaces of R is equivalent to CC(R)
with A being any of the other conditions written before.

Before proceeding, we will prove a result that help us showing the Theorem 3.2
below. The technique employed to prove this proposition is also used to prove some
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results in my PhD Thesis [6, p.23] and it was suggested by my supervisor Horst
Herrlich.

Proposition 3.1. The following conditions are equivalent:

(i) CC(R), the Axiom of Countable Choice for subsets of R;
(ii) PCC(R), the partial Axiom of Countable Choice for subsets of R;
(iii) CC(dR), the Axiom of Countable Choice for dense subspaces of R;
(iv) PCC(dR), the partial Axiom of Countable Choice for dense subspaces of

R.

Proof. The equivalence (i)⇔(ii) is in the Proposition 1.3. It is clear that (i)⇒(iii)⇒(iv).
Now, it is only necessary to prove that (iv)⇒(ii).

Let (An)n be a countable family of non-empty subsets of R. Consider the col-
lection (qk, sk)k∈N of all open intervals with rational endpoints and the bijective
functions fk : R→ (qk, sk).

Now we define, for every n, the set Bn =
⋃

k fk(An). By the way they were
built, each of the sets Bn is dense in R. By (iv) there is a sequence (bϕ(n))n with
ϕ an increasing sequence of naturals and bϕ(n) ∈ Bϕ(n), for every n ∈ N. We
define also k(n) := min{k ∈ N | bϕ(n) ∈ fk(Aϕ(n))}. The sequence (aϕ(n))n, with

aϕ(n) := f−1
k(n)(bϕ(n)) ∈ Aϕ(n), is the desired partial choice function. �

Theorem 3.2. The following conditions are equivalent to CC(R):

(i) every dense subspace of R is Lindelöf;
(ii) every dense subspace of R is Separable [6];
(iii) every dense subspace of R is Quasi Totally Bounded;
(iv) every dense subspace of R is preLindelöf.

Proof. Every subspace of R is Lindelöf if and only if every subspace of R is Separable
if and only if CC(R) holds ([10]). Then, it is clear that CC(R) implies (i) and (ii).
From Propositions 1.8 and 2.1, (i)⇒(iii) and (ii)⇒(iii)⇒(iv).

It only remains to prove that (iv)⇒CC(R). By Proposition 3.1, it suffices to
prove that (iv) implies the Axiom of Countable Choice for dense subspaces of R.
Let (An)n be a family of dense subspaces of R. Using the fact that every open
interval is homeomorphic to R, one can consider A2n dense in (n, n+ 1) and A2n+1

dense in (−n−1,−n). The set A =
⋃

nAn is dense in R. By (iv), there is a countable
family (Bn)n such that each Bn is an open ball of radius 1/2 and A =

⋃
nBn. Since

A is dense in R, each open ball has a unique center and so, for every n ∈ N, there
is only one xn such that Bn = B1/2(xn). The sequence (xn)n induces a choice
function of (An)n. �

Corollary 3.3. The following conditions are equivalent to CC(R):

(i) every subspace of R is Quasi Totally Bounded;
(ii) every subspace of R is preLindelöf.

Proposition 3.4. The following conditions are equivalent to CC(R):

(i) every preLindelöf subspace of R is Separable;
(ii) every preLindelöf subspace of R is Lindelöf;
(iii) every preLindelöf subspace of R is Quasi Totally Bounded;
(iv) every Quasi Totally Bounded subspace of R is Separable.

Proof. From the previous results 1.8, 2.1 and 3.2, we know that CC(R)⇒(i)⇒(iv)
and that CC(R)⇒(ii)⇒(iii).

(iii)⇒CC(R) Let (An)n be a countable family of dense subspaces of R. Without
loss of generality, one may consider, for every n ≥ 1, the set An to be a dense

subspace of

(
n∑

k=1

k,

n∑
k=1

k +
1

n

)
.
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The set A =
⋃

nAn is preLindelöf. Let ε > 0 and let i ∈ N be such that

ε ∈ [1/i, i − 1]. For n > i, the sets An are open balls of radius ε and
⋃i

n=1An

is Totally Bounded because, in R, Total Boundedness coincides with Boundedness.
Now, by hypothesis A is also Quasi Totally Bounded which means that there is a
sequence (xk)k in A such that A =

⋃
k B1(xk). This sequence must take values in

each of the sets An, which finishes the proof.
(iv)⇒CC(R) Every Bounded subset of R is Totally Bounded and then Quasi

Totally Bounded. So, we have that every bounded subset of R is Separable. But
this last condition it is equivalent to say that every subspace of R is Separable which
is equivalent to CC(R) ([10]). �

To finish this section, we will address a problem raised in [12, Remark 3.2(B)].
There it is stated that “every Sequentially Compact subspace of R is preLindelöf”
if and only if the Axiom of Countable Choice holds for Sequentially Compact sub-
spaces of R (CC(scR)), enlarging a result from [5]. Although the result is true,
the proof is not correct because what it is really shown is that “every Sequentially
Compact subspace of R is QTB” if and only if CC(scR) holds.

Next, we will fix that proof (Theorem 2.10). For doing so, we need a couple of
preliminary results.

Definitions 3.5.

(a) A topological space is Sequentially Compact if every sequence has a conver-
gent subsequence.

(b) A metric space is Complete if every Cauchy sequence converges.

Lemma 3.6. [5]

(a) Every Sequentially Compact metric space is Complete.
(b) A Bounded subspace of R is Complete if and only if it is Sequentially Com-

pact.

The previous lemma shows that there is no difference in considering choice for
families of Complete or of Sequentially Compact subspaces of R.

Proposition 3.7. The following conditions are equivalent:

(i) the Axiom of (Countable) Choice for Complete (or Sequentially Compact)
subspaces of R;

(ii) R is the only Complete and dense subspace of R;
(iii) the partial Axiom of Countable Choice for Complete (or Sequentially Com-

pact) subspaces of R;
(iv) the partial Axiom of Countable Choice for Complete (=Sequentially Com-

pact) and dense subspaces of [0, 1].

Proof. The equivalence between (i) and (ii) is in [5] and between (i) and (iii) is in
[12]. It is clear that (iii) implies (iv) and so it is only necessary to be shown that
(iv) implies (ii).

Let A be a Complete and dense subspace of R and x ∈ R. Define An := A∩ [x−
1
n , x + 1

n ], n ≥ 1 and fn : [x − 1
n , x + 1

n ] → [0, 1] a bijective continuous function.
From the completeness of A, one can conclude that each of the spaces fn(An)
is Sequentially Compact, and they are also dense in [0, 1] because A is dense in
R. By (iv) there is a partial choice of (fn(An))n which induces a partial choice of
(An)n, (aϕ(k))k∈N with ϕ an increasing sequence on natural numbers. The sequence
(aϕ(k))k∈N is a Cauchy sequence and converges to x, then x ∈ A. So, we have proved
that A = R which means that R has no proper subspaces which are Complete and
dense. �

Theorem 3.8. The following conditions are equivalent:
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(i) the Axiom of (Countable) Choice for Complete subspaces of R;
(ii) every Complete subspace of R is Separable;
(iii) every Complete subspace of R is Quasi Totally Bounded;
(iv) every Complete subspace of R is preLindelöf;
(v) every Sequentially Compact subspace of R is Quasi Totally Bounded;

(vi) every Sequentially Compact subspace of R is preLindelöf.

Proof. Every Sequentially Compact metric space is Complete, every Quasi Totally
Bounded metric space is preLindelöf and every Separable metric space is Quasi
Totally Bounded. Then, (ii)⇒(iii)⇒(iv)⇒(vi) and (iii)⇒(v)⇒(vi). The equivalence
between (i) and (ii) is in [5].

We will now show that (vi)⇒(i). From the previous proposition, it is only nec-
essary to prove the partial Countable Choice for Sequentially Compact and dense
subspaces of [0, 1]. Let (Xn)n be a countable family of Sequentially Compact and
dense subspaces of [0, 1]. Without loss of generality, one can consider Xn ⊆ [n, n+1]
dense in the respective intervals. Since each of the spaces Xn is Sequentially Com-
pact, the space X =

⋃
nXn is Sequentially Compact unless it has an unbounded

sequence. If X has an unbounded sequence, then it induces a partial choice function
in the family (Xn)n. If such a sequence does not exist, X is Sequentially Compact
and, by (vi), it is preLindelöf. The preLindelöf property implies that there is (Bn)n
such that X =

⋃
nBn where each Bn is an open ball of radius 1/2. Since X is dense

in [0,+∞], the centers of the open balls are unique, which induces the desired choice
function of (Xn)n. �

Remark 3.9. In [5] and [12] there are several other conditions equivalent to the
ones of Proposition 3.7 and Theorem 3.8.

4. Metric Spaces

In the next two sections we will look at the relations between the notions we have
been studying, in the realms of the metric spaces and of the pseudometric spaces.
We will mainly be interested in the reverse implications of the ones in the diagram
on page 5.

As it was stated in Remark 1.7, results involving only preLindelöf, Lindelöf,
Second Countable and Totally Bounded spaces are identical for metric or for pseu-
dometric spaces.

We start with the result which relates the two notions we have looking at more
carefully.

Proposition 4.1. If every preLindelöf metric space is Quasi Totally Bounded, then
CC(R) and CC(ℵ0).

Proof. The first part follows from Proposition 3.4. For the second part, let (Xn)n
be a countable family of non-empty countable sets. Define the metric space (X, d)
with X =

⋃
n(Xn × {n}), d ((x, n), (x, n)) = 0 and, for (x, n) 6= (y,m),

d((x, n), (y,m)) :=

{
2 if n 6= m
1
n if n = m .

The space (X, d) is preLindelöf. For ε > 2, X is an open ball of radius ε. For
ε ≤ 2, choose k to be the smallest natural number such that 1

k < ε. If n ≥ k, then
Xn × {n} is an open ball of radius ε and if n < k and x ∈ Xn, then {x} = Bε(x).
Since the finite union of countable sets is countable, (X, d) is preLindelöf.

By our hypothesis, the space (X, d) is QTB, which means that there is a sequence
(xk)k such that X =

⋃
k B1(xk). This sequence must intersect all of the sets Xn

which implies that (Xn)n has a choice function. �

Proposition 4.2. For metric spaces, each of the following statements is true.
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(a) TPL → PL ⇒ CC(R)+CUC.
(b) TQTB → QTB ⇒ CC(R)+CUC.
(c) QTB → L ⇒ CC(R)+CUC.
(d) QTB → SC ⇒CUC.

Proof. (⇒CC(R)) Every subspace of R is topologically equivalent to a bounded
subspace of R and so it is topologically Totally Bounded. Corollary 3.3 says that
every subspace of R is PL (or QTB) if and only if CC(R). It is easily verifiable, after
Theorem 3.2, that every bounded subspace of R is Lindelöf if and only if CC(R).

(⇒CUC) Define X =
⋃

n(Xn × {n}) and a metric d on X with

d((x, n), (y,m) = max

{
1

n
,

1

m

}
for (x, n) 6= (y,m); and d((x, n), (x, n)) = 0.

The space (X, d) is QTB (hence PL) because if one defines Zn :=
⋃

k≤nXk × {k},
for ε > 1

n , X =
⋃

z∈Zn
Bε(z) and Zn is countable.

(a) and (b). Let d′ be the discrete metric on X. It is not hard to see that both
d and d′ induce the discrete topology on X. This means that (X, d′) is TQTB and
TPL. From our assumptions, (X, d) is PL. The open balls of radius 1 for the metric
d′ are the singleton sets. Since countably many open balls of radius 1 cover X, X
must be countable itself.

(c) and (d). The metric space (X, d) is QTB and X has the discrete topology.
A discrete space can only be Lindelöf or Second Countable if it is countable, and
so X is countable as we want to prove. �

In a similar way of the part (d) of the last proposition, can be proven that the
implication TB → SC is not a theorem of ZF.

Taking into consideration that S → SC and that QTB → PL, the next corollary
is straightforward after Propositions 3.4 and 4.2.

Corollary 4.3. For metric spaces, each of the following statements is true.

(a) PL → SC ⇒ CUC.
(b) QTB → S ⇒ CC(R)+CUC.
(c) PL → S ⇒ CC(R)+CUC.
(d) PL → L ⇒ CC(R)+CUC.

Theorem 4.4. For metric spaces, the following implications are equivalent to
CC(R):

(i) SC → S;
(ii) SC → QTB;
(iii) SC → PL.

Proof. From Theorem 3.8, one has that CC(R) is equivalent to (i) (see also [11]).
Since S → QTB → PL –Proposition 1.8– (i)⇒(ii)⇒(iii). Every subspace of R is
Second Countable and every subspace of R is preLindelöf if and only if CC(R)
holds – Corollary 3.3. These two facts yeld that (iii) implies CC(R). �

We finish this section by showing two equivalences between some of the implica-
tions we have seen are not provable in ZF, following what it was done in [11].

Proposition 4.5.

(a) For metric spaces, if PL → L then PL → S.
(b) For (pseudo)metric spaces, if QTB → L then QTB → S.

The result of (a) is stated in [11, Theorem 12(ii)], but the proof presented there
is incorrect. We will follow that proof until the point where some form of choice was
used (in particular, choosing centers from open balls). To be easier for the reader,
a complete proof is presented.
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Proof. We will only prove (a), because the proof of (b) is similar and easier.
Let (X, d) be a preLindelöf metric space. One can consider the metric bounded

by 1. Define Y = X × N and a metric in Y

d′((x, n), (y,m)) :=


1
nd(x, y) if n = m

max{ 1
n ,

1
m} if n 6= m .

We will prove now that with this metric Y is preLindelöf. Let ε > 0 and let n ∈ N
be such that 1

n < ε ≤ 1
n+1 . Then Bε((x, n)) =

⋃
k≥n(X×{k}) for any x ∈ X. Since

X is preLindelöf, for all k < n, there exists a countable cover Ak of X by open balls

of radius kε. The set {A×{k} |A ∈ Ak, k < n}∪
{⋃

k≥n(X × {k})
}

is a countable

cover by open balls of radius ε. Then, by hypothesis, Y is also Lindelöf.
Define the sets

Xn := {x ∈ X | (∀y ∈ X) [(x 6= y)⇒ B1/2n((x, n)) 6= B1/2n((y, n))]},
and consider the open cover U =

⋃
n Un of Y with

Un =
{
B1/2n(x, n) |x ∈ Xn

}
∪
{
B1/2n(x, n) \ {(x, n)} |x 6∈ Xn

}
.

Since Y is Lindelöf, U has a countable subcover V. As it was done in the proof
of the Proposition 2.1, one can show that each element of V determines uniquely
either its center or the element missing for the set to be an open ball of radius 1/2n.
So, the set

C =
{
x ∈ X | (∃n ∈ N)B1/2n((x, n)) ∈ V ∩ Un or B1/2n((x, n)) \ {(x, n)} ∈ V ∩ Un

}
is countable.

To complete the proof, it is only necessary to see that C is dense in X. Let x ∈ X.
For every n, there exists y ∈ C such that d′((x, n), (y, n)) < 1/2n ⇔ d(x, y) < n/2n,
which implies that C is dense in X because the sequence n/2n converges to 0. �

5. Pseudometric Spaces

Unlike with metric spaces, the situation of the equivalence between preLin-
delöfness and QTBoundedness is more clear for pseudometric spaces. We start
with the result concerning that equivalence.

Theorem 5.1. Every preLindelöf pseudometric space is Quasi Totally Bounded if
and only if the Axiom of Countable Choice holds.

Proof. That Countable Choice suffices to prove the equivalence between PL and
QTB, one has already seen in Proposition 1.6.

Let (Xn)n be a countable family of non-empty sets. Define X =
⋃

n(Xn × {n})
and a pseudometric d on X with

d((x, n), (y,m)) = 1 if n 6= m; and d((x, n), (y, n)) = 0 .

Clearly (X, d) is preLindelöf. If (X, d) is also Quasi Totally Bounded, then there
is a sequence (xk)k in X such that X =

⋃
k B1(xk). This sequence gives a choice

function of (Xn)n. �

Proposition 5.2. For pseudometric spaces, the following conditions are equivalent
to CC:

(i) every Topologically (Quasi) Totally Bounded space is Quasi Totally Bounded;
(ii) every Second Countable space is Quasi Totally Bounded.

Proof. From Proposition 1.6, CC⇒(i) and (i)⇒(ii) because SC → TTB → TQTB
(Proposition 1.8).

It is only necessary to prove that (ii) implies CC. The space (X, d) defined in
the proof of Theorem 5.1 is Second Countable and it is Quasi Totally Bounded if
and only if CC is valid. �
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Proposition 5.3. Every (Quasi) Totally Bounded pseudometric space is Separable
if and only if the Axiom of Countable Choice holds.

Proof. By Proposition 1.6, Countable Choice suffices to prove the equivalence be-
tween QTB and S.

Let (Xn)n be a countable family of non-empty sets. Define X =
⋃

n(Xn × {n}),
and a pseudometric d on X with

d((x, n), (y,m)) = max

{
1

n
,

1

m

}
if n 6= m; and d((x, n), (y,m)) = 0 if n = m.

We will see that (X, d) is Totally Bounded. Let ε > 0 and n ∈ N be such that
ε > 1

n . By finite choice, one has a finite sequence (xk)k≤n with xk ∈ Xk. Then
X =

⋃
k≤nBε((xk, k)). By our hypothesis, X is also separable which means that

there is a sequence (zn)n dense in X. Then (zn)n takes values in each Xn, hence
(Xn)n has a choice function. �

We finish this paper enlarging the implication diagram of page 5 to show the
set-theoretic status, for pseudometric spaces, of the reverse implications of that
diagram.

SC
//

��

TTB
//oo TQTB

//

��

TPL

��
S

//

OO

QTB

OO

//oo

��

PL

OO

oo

vvL

OO
66

// ZF // CC // not true in ZF // CC or not CC(R)
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