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ABsTRACT. This is a short survey about properties of invariant factors
of matrices over principal ideal domains and the possibility of extending
those properties to matrices over more general rings.

1. INTRODUCTION

Let R be a principal ideal domain (PID) and A an n x n nonsingular matrix
over R. It is well known that A is equivalent to its Smith normal form, that is,
there exist U and V invertible over R such that

Gn 0 0

0 apn—1 -~ O

0 0 - a
where a,, | an—1 | - -+ | a1 are the invariant factors of A.

The invariant factors are uniquely determined by A, as follows from the
characterization

it = B
n—k-+ dk—l(A) )
where, for each k, di(A) is the ged of all k x k minors of A, dy = 1. By the

Cauchy-Binet theorem for determinants, the dj, are invariant under equivalence.
That di_1(A) divides di(A) follows from Laplace’s theorem.

E=1,...,n,
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There is a large body of literature concerning how invariant factors behave
when adding or multiplying matrices, taking submatrices, etc. In the present
note we are concerned with the problem of extending results — specially con-
cerning products — to matrices over more general rings. For simplicity, we shall
stay within the class of integral domains. Also, invariant factors may of course
be defined for singular or rectangular matrices, and most of our remarks remain
valid in those more general situations, but we’ll work with nonsingular square
matrices only.

2. INVARIANT FACTORS OF PRODUCTS

The most important problem about invariant factors concerns their be-
haviour under matrix multiplication. Specifically, one asks: What are the pos-

sible invariant factors ¢, | --- | ¢; of a product AB, if A and B are n X n
nonsingular matrices over R with invariant factors a, | ---| a1 and by, | - - | by,
respectively?

Examples of valid relations:
¢ | az bs ,
cocy|ayagby b,

CgC5Cg‘aza3a7b2b4b5.

This problem has been solved with a variety of approaches, starting with its
p-module version in [6], where p is a prime in R. Indeed, all approaches start
by “localizing” the problem at an arbitrary prime p, working in that context,
and then recovering the global solution.

The solution in [6] immediately suggested a connection with the represen-
tation theory of GL,(C), namely the well-known question of finding which
irreducible representations of GL,(C) occur in the tensor product of two given
such irreducible representations.

To state and relate these problems we need some notation.

For each fixed prime p € R, we restrict our attention to matrices over the
local ring R, that is, we just work with powers of p:

a —p , b pP, ;o p"
where g > -+~ >y, f1 2>+ > 0By, 71 = -+ > 7, are nonnegative integers.
Denote by I(a, 3) the set of possible v in the invariant factor product prob-
lem. Then from the above we have the following examples of valid relations for
the exponents v € I(«, 5):
Ve <az+ 185 3
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Yo+ Lar+ag+ P+ Bs,
Y3+ +v9 < astazs+ar+ P2+ Ba+Bs.

Introduce the notation A, = {a = (a1,...,an) €Z" : a1 > -+ > a, > 0}.
What T. Klein proved in [6] was that I(a,3) = LR(«,/f3), where the lat-
ter is the set of v € A, which can be obtained from a and f using the
combinatorial Littlewood-Richardson rule. This is what establishes the con-
nection to representation theory. The irreducible representations of GL,(C)
are the Weyl modules V) indexed by A € A,. Then it is classical that in
the decomposition of the tensor product of two irreducible representations,
Va® Vs = @, NagyVy, the coefficient Nagy is at least 1 (i.e. V occurs in
the decomposition) if and only if v € LR(«, ), whence we have the chain of
equivalences v € I(e, ) & v € LR(a, 8) & V,, occurs in V,, ® V3.

Thus the invariant factor product problem, in its local “primary” version,
has a complete and interesting solution, although not a clearly explicit one, via
the Littlewood-Richardson rule. In particular, this solution is not given as a
family of divisibility relations of the kind exemplified above.

3. INEQUALITIES AND DIVISIBILITY RELATIONS

At the end of the 1990s, a spectacular connection to another, completely
different, matrix problem, which had long been suspected, was established.
Starting from a 1912 paper by H. Weyl [12], a lot of attention had been given
to finding relations between the eigenvalues of two Hermitian matrices and
those of their sum. Let vy > --- > @, and §; > --- > [, be arbitrary real
numbers and put o = (aq,...,,), 8 = (B1,...,0n). The question is: What
are the possible spectra 73 > --- > v, of a sum A + B, where A and B are
n x n Hermitian matrices with spectra a and 3, respectively?

Denote by E(a, ) the set of possible v = (y1,...,7v). We wish to describe
E(«, B). Since it is the set of spectra of matrices of the form D, + UDgU*,
where D, = diag(a), Dg = diag(f) and U runs over the unitary group, we
know that F(a, ) is compact and connected, as the map sending a Hermitian
matrix to its spectrum is continuous.

The Hermitian sum problem attracted the attention of many mathematicians
throughout the 20th century. The most important contribution came from A.
Horn in [3], where a deep analysis was carried out and an important conjecture
was proposed, according to which the full solution should come as a complicated
collection, recursively defined, of linear inequalities relating the three n-tuples.

This is not the place to tell the full story of what happened (we refer the
interested reader to [1], [2] and [11]; for later developments see [4]). The main
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protagonist was A. Klyachko, who in [7] proved, among other important results
on E(a, ), that the set is indeed described by a set of linear inequalities of
the type mentioned by Horn. These inequalities are precisely those obtained
by looking at sums of scattered eigenvalues of a Hermitian matrix as extrema
of Rayleigh traces of the matrix on Schubert varieties, and then considering
conditions for the intersection of those varieties. These conditions are, in turn,
describable in terms of the Littlewood-Richardson rule (the so-called Schubert
calculus). Additional combinatorial work by Knutson and Tao [8] finally yielded
Horn’s conjecture.

A fascinating by-product of this work is that, for o, € A,, the v € A,
occurring in E(a, ) are exactly the n-tuples in LR(«, 3). In other words, we
have I(«,8) = E(a,8) N Z™. From this we get a description of I(«a, 3) by a
system of linear inequalities, recursively defined from lower dimensions due to
the form of Horn’s conjecture. Therefore, the original invariant factor problem
for products of matrices has a solution in terms of (a long family of) divisibility
relations.

4. ELEMENTARY DIVISOR DOMAINS

The above results on invariant factors and their known proofs all depend
crucially on the p-localization argument.

Now, invariant factors may be defined for matrices over more general rings.
The more natural rings in this context are the elementary divisor domains
(EDDs) introduced by Kaplansky in [5]. These are the integral domains R
where every matrix over R is equivalent to a Smith normal form exactly as
above. This is a strictly larger class of rings than PIDs, and arguments using
reduction to the primary case do not work here, as EDDs are not in general
unique factorization domains.

So a question naturally arises: what can we say about invariant factors of
matrices over EDDs? Of course, results established using only the Smith normal
form, without reduction to the primary case, immediately carry over to EDDs.
An example is the general relation

aidj | Citj—n,
valid for invariant factors of products with notations as above. This was proved
in [10] using just the Smith normal form, although stated for matrices over
PIDs.
Another example concerns invariant factors of sums, rather than products.
If ¢y | -+ | ¢1 are now the invariant factors of A + B, one has that

ged{ai, bj} | Civjon-
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This was also proved in [10] in a form valid for EDDs.

But what about the huge family of divisibility relations, mentioned in the
previous section, valid for invariant factors of products of matrices over PIDs
(and which actually give the complete answer to the product problem in that
setting)? Extending those results to EDDs presents an interesting challenge,
necessitating a change in the proofs.

And it would bring an added bonus, since, by a localization argument due to
Krull [9], any divisibility relation generally valid in EDDs actually generalizes
to GCD domains, rings where every finite collection of elements has a ged inside
the ring. This technique was essentially already used by Kaplansky in [5].
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