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Abstract

In this paper we study families of semi-classical orthogonal polynomials of class one.
We derive general second or third order ordinary differential equations (with respect
to certain parameters) for the recurrence coefficients of the three-term recurrence
relation of these polynomials and show that in particular well-known cases, e.g.
related to the modified Airy and Laguerre weights, these equations can be reduced
to the second and the fourth Painlevé equations.
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1 Motivation

The subject matter of the present paper lies within two well-known topics
of special functions: semi-classical orthogonal polynomials and the Painlevé
equations.
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Semi-classical orthogonal polynomials have been extensively studied in the
literature, from many points of view [3,16,18]. A key feature of semi-classical
orthogonal polynomials is the Pearson equation for the weight, w′(z)/w(z) =
R(z), where R is a rational function of z (see Section 2 for more details). A
frequently encountered study in problems in Mathematical Physics is the anal-
ysis of modifications of semi-classical weights as functions of some parameters
and their consequences for basic structures of the polynomials - the recurrence
relation and the deformation derivatives. In this topic, the connections with
the Painlevé equations are very well-known, showing that the three-term re-
currence relation coefficients are often governed by equations of the Painlevé
type (see, for instance, [2,6,7,8,10,15,16,22]).

Recall that the Painlevé equations (PI)—(PV I) are nonlinear second order or-
dinary differential equations having the property that all movable singularities
of an arbitrary solution are at most poles (the so-called Painlevé property). See
[9] for various properties, symmetries and application of the Painlevé equa-
tions. In this paper we shall deal with the second and the fourth Painlevé
equations which are respectively given by

y′′ = 2y3 + zy + α PII(α)

and

y′′ =
y′2

2y
+

3y3

2
+ 4zy2 + 2(z2 − α)y +

β

y
, PIV (α, β)

where α and β are arbitrary parameters. Note that by a simple scaling y(z)→
iy(−iz), where i2 = −1, equation PIV (α, β) is transformed to PIV (−α, β). A
similar scaling transformation exists also for the second Painlevé equation
changing α to −α. The second Painlevé equation has classical solutions ex-
pressible in terms of the Airy functions if and only if

α = n+ 1/2, n ∈ Z .

The fourth Painlevé equation has special solutions expressible in terms of
parabolic cylinder functions if and only if either

β = −2(2n+ 1 + εα)2, ε2 = 1, n ∈ Z , (1)

or

β = −2n2, n ∈ Z . (2)

We shall also need another form of the fourth Painlevé equation, given by

y′′ =
3

2

y′2

y
− βy3 − 2(z2 − α)y − 4z − 3

2y
, (3)

which is obtained from PIV after the change of variables y(z)→ 1/y(z).
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In this paper we focus on families of semi-classical orthogonal polynomials
in the so-called class one, w′/w = C/A, under the restrictions deg(A) ≤
1, deg(C) = 2, and some of their extensions, through a dependence para-
meter. The main goal is to obtain second order differential equations (with
respect to the parameter) for the three-term recurrence relation coefficients of
the orthogonal polynomials. Our approach uses a method similar as in [14].
As examples show, we recover some Painlevé equations in the well-known
particular cases. Our results are illustrated by the modified Airy and Laguerre
weights from [7,16,20]. We show that in these cases our general differential
equations are reduced to the second and the fourth Painlevé equations. To the
best of our knowledge, we believe that the results in Example 4 are new.

The paper is organised as follows. In Section 2 we present notations as well
as results on semi-classical orthogonal polynomials and on discrete Painelvé
equations to be used in the sequel. In Section 3 we present the main results
of the paper: the derivation of two types of differential equations for the re-
currence relation coefficients depending on some parameters to be specified in
the text. We illustrate our results by using the well-known modified Airy and
Laguerre weights from [7,16,20]. Moreover, we obtain conditions under which
the general equations are reduced to the second and fourth Painlevé equations
up to scaling transformations.

2 Preliminary results

2.1 Semi-classical orthogonal polynomials

Let u be a linear form defined on the space of polynomials with complex
coefficients P = span {xk : k ∈ N0}, and let {Pn(x) = xn + . . . } be the
sequence of monic orthogonal polynomials (SMOP) related to u, that is,

〈u, PnPm〉 = hnδn,m , hn 6= 0 , n,m ≥ 0 . (4)

It is well known that there exists a sequence of orthogonal polynomials related
to u if, and only if, the moments un = 〈u, xn〉, n ≥ 0 (where we take u0 = 1
for simplicity), satisfy ∆n 6= 0, n ≥ 0, where ∆n is the Hankel determinant,

∆n = det
[
ui+j

]n
i,j=0

, n ≥ 0 (see [21]). Furthermore, if ∆n > 0, n ≥ 0 ,

then u has an integral representation in terms of a positive Borel measure, µ,
supported on an infinite point set, I, of the real line

〈u, xn〉 =
∫
I
xn dµ(x) , n ≥ 0 , (5)
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and the orthogonality condition (4) becomes∫
I
Pn(x)Pm(x)dµ(x) = hnδn,m , hn > 0 , n,m ≥ 0 .

In the more general case, whenever µ is an absolutely continuous measure
supported on some set I, and w denotes its Radon-Nikodym derivative with
respect to the Lebesgue measure, i.e. dµ(x) = w(x)dx, then we will also say
that {Pn} is orthogonal with respect to the weight w.

Monic orthogonal polynomials satisfy a three term recurrence relation [21]

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n ≥ 1 , (6)

with P0(x) = 1, P1(x) = x− β0, and γn 6= 0, n ≥ 1, γ0 = 1.

The recurrence relation coefficients, γn and βn, are given by

γ0 = 1 , γn+1 =
〈u, xPnPn−1〉
〈u, P 2

n−1〉
, βn =

〈u, xP 2
n〉

〈u, P 2
n〉

, n ≥ 0.

We also remark that the recurrence relation coefficients can also be computed
by using the ratios of Hankel determinants [21],

γn+1 =
∆n−1∆n+1

∆2
n

, ∆−1 = 1 . (7)

The constant hn in (4) is given by

h0 = 1, hn =
n∏
k=1

γk , n ≥ 1 . (8)

We introduce the moment generating function, the Stieltjes function, defined

by S(x) =
+∞∑
n=0

unx
−n−1. Note that whenever u is defined by a measure such as

(5), then S is given by

S(x) =
∫
I

dµ(s)

x− s
, x ∈ C \ I .

The sequence of functions of the second kind corresponding to {Pn} is de-
fined by

qn+1 = Pn+1S − P (1)
n , n ≥ 0 , q0 = S , (9)

where P (1)
n is the so-called associated polynomial of Pn of degree n [21]. When-

ever we are dealing with measures such as in (5), then there holds the integral
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representation

qn+1(x) =
∫
I

Pn+1(s)

x− s
dµ(s) , n ≥ 0 , q0 = S .

Note that {qn} satisfies the recurrence relation (6), with initial conditions
q−1 = 0, q0(x) = S(x). Thus, the following asymptotic expansions hold (see,
e.g., [20]):

Pn(x) = xn −

n−1∑
j=0

βj

xn−1 +

n−1∑
j=1

j−1∑
i=0

βiβj − γj

xn−2 + . . . , (10)

qn(x) = hn

 1

xn+1
+

 n∑
j=0

βj

 1

xn+2
+

n∑
j=0

γj+1 +
j∑
i=0

βiβj

 1

xn+3
+ . . .

 .(11)

Also, recall the following equality, which can be obtained from the Christoffel-
Darboux identity [5,21]

Pn+1qn − Pnqn+1 = hn , n ≥ 0 . (12)

Semi-classical orthogonal polynomials are defined as sequences of orthogonal
polynomials related to linear functionals u that satisfy a distributional equa-
tion with polynomial coefficients [18],

D(Au) = ψu , (13)

being D the derivative operator. To Eq. (13) one associates the class [18], a
non-negative integer given by the minimum value of max {deg(ψ)−1, deg(A)−
2}, for all pairs of polynomials (A,ψ) satisfying (13).

Equation (13) is equivalent to a differential equation for the Stieltjes function,

AS ′ = CS +D , C = ψ − A′ , (14)

with D a polynomial given in terms of A,C.

If u is positive-definite admitting an integral representation via a weight func-
tion w with support on the real line, then the semi-classical character of u is
equivalent to the so-called Pearson equation

Aw′ = Cw . (15)

Here, C is the same an in (14).
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In the present paper we shall consider the class one. Essentially, we will con-
sider weight functions w satisfying (15) under conditions

deg(A) ≤ 3 , deg(C) = 2 or deg(A) = 3 , deg(C) < 2 . (16)

In the sequel we will use the following matrices, for n ≥ 0:

Yn =

Pn+1 qn+1/w

Pn qn/w

 , (17)

which satisfy the difference equation

Yn = AnYn−1 , An =

x− βn −γn
1 0

 , n ≥ 1 ,

with initial conditions Y0 =

x− β0 q1/w
1 q0/w

.

The theorem that follows gives a characterization of semi-classical weights.

Theorem 1 [4,16] Let {Pn} be a SMOP with respect to a weight w, and
let {qn} be the corresponding sequence of functions of the second kind. The
weight w is semi-classical and satisfies w′/w = C/A if, and only if, Yn =Pn+1 qn+1/w

Pn qn/w

 satisfies the differential system

AY ′n = (Bn − C/2 I)Yn , n ≥ 1 , (18)

where I is the identity matrix and

Bn =

 ln Θn

−Θn−1/γn − ln

 (19)

with ln,Θn being polynomials of uniformly bounded degrees.

Remark 1 Let us take w′/w = C/A under conditions (16). Set

A(x) = a3x
3 + a2x

2 + a1x+ a0 , C(x) = c2x
2 + c1x+ c0 ,

ln(x) = `n,2x
2 + `n,1x+ `n,0 , Θn(x) = θn,1x+ θn,0 .

By equating coefficients in (18), we have
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`n,2 = (n+ 1)a3 + c2/2 , (20)

`n,1 = a3(ηn + β0) + (n+ 1)a2 + c1/2 , (21)

`n,0 = λn,0 − θn,1 , (22)

λn,0 = −2a3(νn + β0ηn − γ1) + (n+ 1)a1 + c0/2

+(ηn + β0)(a3(ηn + β0) + a2) , (23)

θn,1 = −γn+1((2n+ 3)a3 + c2) , (24)

θn,0 = −γn+1 {2a3(ηn + (n+ 2)βn+1 + β0) + a2(2n+ 3) + c2βn+1 + c1} ,(25)

with

ηn =
n∑
k=1

βk , νn =
n∑

1≤i<j≤n
βiβj −

n∑
k=2

γk , n ≥ 1 . (26)

Also, we have

a1 + c0 + (2a2 + c1)β0 + (3a3 + c2)β
2
0 + (3a3 + c2)γ1 = 0 . (27)

Condition (27) can also be obtained by finding the expansion of the Stieltjes
function S at infinity from the differential equation AS ′ = CS + D. We can
find the first few moments u0 = 1, u1 = β0, u2 = −(1 + c0 + c1β0)/c2 and by
computing γ1 using (7) we get (27).

Throughout the paper, f ′ will denote the derivative of f with respect to x and
ḟ denotes the derivative of f with respect to some parameter to be specified
in the context.

2.2 Discrete Painlevé equations for the recurrence relation coefficients of
semi-classical orthogonal polynomials

We collect some results on discrete Painlevé equations for semi-classical or-
thogonal polynomials of class one. They follow from [13], taking B ≡ 0. These
results concern differential equations for the Stieltjes function, AS ′ = CS+D
under the assumption deg(A) ≤ 1.

Theorem 2 [13] Let S be a Stieltjes function satisfying AS ′ = CS +D with

A(x) = a0 6= 0 , C(x) = c2x
2 + c1x+ c0 , D(x) = d1x+ d0 ,

where d1 = −c2, d0 = −c2β0−c1 and c2 6= 0. Let {Pn} be the SMOP associated
with S, satisfying the recurrence relation (6),

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n = 0, 1, 2, . . . ,

with βn 6= 0 , n = 0, 1, 2, . . . .
Set η = c2, µ = c0/2, λ = c1. The recurrence relation coefficients βn, γn are
related through the following discrete system:
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βn(ηβn + λ) = −(ηγn + µ)− (ηγn+1 + µ) , n ≥ 1 , (28)

η(βn + βn+1) + λ =
−na0 + γ1(η(β0 + β1) + λ)

γn+1

, n ≥ 1 . (29)

Moreover, the sequences

xn = ηβn + λ/2 , zn = η2 (−na0 + γ1(η(β0 + β1) + λ)) (30)

satisfy the alternative discrete Painlevé equation dPI

zn−1
xn−1 + xn

+
zn

xn + xn+1

= −x2n + γ , γ = (λ/2)2 − 2µη (31)

with the initial conditions x0 = ηβ0 + λ/2, x1 = ηβ1 + λ/2 .

Theorem 3 [13] Let S be a Stieltjes function satisfying AS ′ = CS +D with

A(x) = x− t , C(x) = c2x
2 + c1x+ c0 , D(x) = d1x+ d0 ,

where d1 = −c2, d0 = −c2β0−c1 and c2 6= 0. Let {Pn} be the SMOP associated
with S, satisfying the recurrence relation (6),

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n = 0, 1, 2, . . . .

Then the sequences

xn =
k1c2

k2(c1 + c2t) + βnc2
, (32)

yn =
k22(2n+ c0 + 2c2γn + c2t

2 + c1t)

2c2k21
, (33)

satisfy

xn−1xn =
2(k22(2n+ c0 + c2t

2 + c1t)− 2c2k
2
1yn)

c2k21(c20 − 4y2n)
(34)

and

yn + yn+1 =
k2xn(c1 + 2c2t)− c2k1

c2k1x2n
, (35)

where k1 and k2 are constants. The initial conditions are given by

x0 =
c2k1

k2(c1 + c2β0 + c2t)

and y0, which is obtained from the formulae above with n = 0.
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2.3 Differential Toda-type systems for the recurrence relation coefficients of
semi-classical orthogonal polynomials

There might be parameters in the weight, and so the recurrence relation co-
efficients become functions of these parameters. In case the weight is of the
form w(x) exp(tx), the coefficients of the orthogonal polynomials depend on t
and they satisfy the Toda system (this is a well-known result, see, for instance,
[14,19] and the references therein).

Theorem 4 [19] The recurrence relation coefficients of polynomials orthogo-
nal with respect to the weight w = w0(x) exp(tx) on the real line satisfy the
Toda system

γ̇n = γn(βn − βn−1), (36)

β̇n = γn+1 − γn. (37)

The initial conditions βn(0) and γn(0) correspond to the recurrence relation
coefficients of the orthogonal polynomials for the weight w0(x).

However, the weight might depend on the parameter in a different way. The
result that follows is given in [16, Theorem 2], but here we state it according
to our notation for SMOP.

Theorem 5 [16] Let {Pn} be the SMOP with respect to the semi-classical
weight w satisfying w′/w = C/A with the conditions

(i) A(x) =
m∏
k=1

(x− xk), xi 6= xj, i 6= j,

(ii) the residues εk = C(xk)/A
′(xk) are not integers, k = 1, . . . ,m ,

and where we assume that at least one of the xk’s depend on a parameter t.
Then, we have the following Toda-type equations:

γ̇n
γn

=
m∑
k=1

(
Θn−2(xk)

γn−1
− Θn−1(xk)

γn

)
ẋk

A′(xk)
, (38)

β̇n =
m∑
k=1

(ln(xk)− ln−1(xk))
ẋk

A′(xk)
, (39)

where ln,Θn are the polynomials introduced in Theorem 1.

Next we give some remarks on the proof of Theorem 5 which will be used later
on.
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Remark 2 Under the notations of Theorem 1, define the matrix Hn such that
Ẏn = HnYn, that is,

Hn = ẎnY−1n . (40)

Thus, we have

Hn =
1

hn

Ṗn+1qn − Pnq̇n+1 + ẇ
w
qn+1Pn − Ṗn+1qn+1 + Pn+1q̇n+1 − ẇ

w
qn+1Pn+1

Ṗnqn − Pnq̇n + ẇ
w
qnPn −Ṗnqn+1 + Pn+1q̇n − ẇ

w
qnPn+1


(41)

with hn given in (8), and where (12) was used to compute det(Yn).

Recall the system given in (18), AY ′n = (Bn − C/2 I)Yn. The compatibility

between
∂Y ′n
∂t

and
∂Ẏn
∂z

yields

∂

∂t

(
Bn − C/2 I

A

)
= H′n +Hn

Bn
A
− Bn

A
Hn . (42)

Then, equations (38)–(39) follow from (42), taking into account the asymptotic
expansion of (41) (for details see [16, pp. 224-225]).

Furthermore, it should be emphasized that equation (42) is of particular rel-
evance when dealing with the case deg(A) = 0. In such a case, assuming
that ẇ/w = E/A, with E some polynomial, the matrix Hn is now expected
to have polynomial entries (see [12, Section 2]). Hence, for some degrees of
A,C,E, the matrices Bn,Hn are easy to determine, and, consequently, differ-
ential equations for the recurrence relation coefficients βn, γn are expected to
be enclosed.

3 Main results

3.1 Case deg(A) = 0

In this subsection we shall deal with the weight w that satisfies the differential
equation of the form w′/w = (c2x

2 + c1x + c0)/a0. Let us write w′/w =
c̃2x

2 + c̃1x+ c̃0. The general solution is given by the exponential cubic weight,

w(x) = c exp(c̃0x+ c̃1x
2/2 + c̃2x

3/3) ,

where c is an arbitrary constant.
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3.1.1 Differential equations using Toda systems

In this subsection we assume the dependence on the parameter of the form
w = w0(x) exp(tx). Then, the coefficients of the Pearson equation for w depend
on t. Note that the recurrence relation coefficients, βn = βn(t) and γn = γn(t),
satisfy the discrete equations (28), (29) as well as the differential equations
(36), (37).

The main objective of this subsection is to deduce a differential equation for
βn and to show how in the particular case of the modified Airy weight such
an equation is reduced to the second Painlevé equation.

Theorem 6 Let w be a semi-classical weight such that w′/w = C/A, with

A(x) = a0 6= 0 , C(x) = c2x
2 + c1x+ c0 , c2 6= 0 .

Let {Pn} be the SMOP with respect to w, satisfying the recurrence relation (6),

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n = 0, 1, 2, . . . ,

with βn 6= 0 , n = 0, 1, 2, . . . .
Set η = c2, µ = c0/2, λ = c1. Assuming a t-dependence in the weight of the
form w0(x) exp(tx), the recurrence relation coefficients βn = βn(t), n ≥ 1,
satisfy the following second order differential equation

η2β̈n = 2η2β3
n + 3ηλβ2

n +H1βn +H2 , (43)

where

H1 = λ2+4ηµ−λη̇+ηλ̇ , H2 = 2γ1η(λ+η(β0+β1))+2λµ+2ηµ̇−2µη̇−2na0η .

Here we assume that a0, η, λ and µ depend on t.

PROOF. To obtain the differential equation (43), we first take the four equa-
tions (28), (29), (36) with n replaced by n+1, and (37). From the first equation
we find γn. From the second equation we find βn+1. Next we substitute these
expressions into the third and the fourth equations. Finally, eliminating γn+1

between the resulting equations, we get a second order differential equation
for βn.

Note that using (27) and (36) with n = 1 we can express β1 in terms of β̇0
and β0 (see example below).

Theorem 7 Under assumptions in Theorem 6, the recurrence relation co-
efficient βn = βn(t), n ≥ 1, satisfies the following third order differential
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equation:

η3
...
β n = η(6η2β2

n + 6ηλβn + λ2 + 4ηµ− 2λη̇ + 2ηλ̇)β̇n + η(2ηλ̇− 2λη̇)β2
n

+(η2λ̈− ηλη̈ + 4η2µ̇− 2ηη̇λ̇+ ηλλ̇+ 2λη̇2 − 4ηµη̇ − λ2η̇)βn
−2λµη̇ + 4µη̇2 + 2ηλµ̇− 4ηη̇µ̇− 2ηµη̈ + 3η2µ̈. (44)

PROOF. Take equations (28), (36) with n replaced by n+1, and (37). From
the first equation we get γn+1. Substituting this expression into the other two
equations, we obtain two equations: the first one involves γ̇n, γn, βn, βn+1, and
the second one involves β̇n, βn, γn. Augmenting these two equations with the
last with n replaced by n+ 1, we get a system of three equations from where
we eliminate βn+1 and γn, thus obtaining a third order equation for βn.

Example 1 Take w(x) = exp(x3/3 + tx), the modified Airy weight with the
appropriate contour of integration in the complex plane. It is known (see [16]
and the references therein) that the recurrence relation coefficients are related
to the second Painlevé equation. Let us show how to reproduce this result using
(43). Here A(x) = 1, C(x) = x2 + t. Equation (43) becomes

β̈n = 2β3
n + 2tβn + 2γ1(β0 + β1)− 2n+ 1. (45)

Condition (27) is then t + β2
0 + γ1 = 0. Differentiating this equation with

respect to t and using equation γ̇1 = γ1(β1 − β0) = −(t + β2
0)(β1 − β0) from

(36) with n = 1, we get an expression for β0, β̇0, β1, from which we can find
β1. Explicitly,

β1 =
1 + tβ0 + β3

0 + 2β0β̇0
t+ β2

0

.

We can substitute this formula into (45) and get

β̈n = 2β3
n + 2tβn − 4β3

0 − 4β0(t+ β̇0)− 2n− 1.

If

β̇0 = −t− β2
0 , (46)

then we get the second Painlevé equation (up to scaling of variables) for the
function βn, namely

β̈n = 2β3
n + 2tβn − 2n− 1. (47)

By changing variables βn(t) → 21/3y(21/3t) we get PII(−n + 1/2) for y(z),
where z = 21/3t. Note that parameters of PII in this case are as in (1). A
standard linearization of (46) gives the Airy equation. Moreover, when taking
n = 0 in equation (47), we can easily show that all solutions of (46) satisfy
it. Thus, we get a family of classical solutions of the second Painlevé equation
which are expressible in terms of the Airy function for the function β0.
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Equation (7) is reduced to

...
β n = 6β2

nβ̇n + 2tβ̇n + 2βn

and, clearly, (47) solves it.

Moreover, we see that in order to reduce equation (43) to the second Painlevé
equation up to scaling transformations, we need conditions on the coefficients
of C(x) (for instance, if c2 = 1, then c1 = 0 and c0 is linear), which gives only
very special weights.

3.1.2 Differential equations using Toda-type systems

We can also derive similar equations with respect to some parameter t. Indeed,
not necessarily when w = w0(x) exp(tx).

Lemma 1 Let w be a semi-classical weight under some dependence on a pa-
rameter t, satisfying w′/w = C/A, ẇ/w = E/A, with A(x) = a0, C(x) =
c2x

2 + c1x + c0, E(x) = e2x
2 + e1x + e0. Let {Pn} be the SMOP with respect

to w, satisfying the recurrence relation (6),

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n = 0, 1, 2, . . . .

The matrix Hn defined in (41) is given as follows:

Hn =

 γn+1
e2
a0

− γn+1

(
e2
a0

(x+ βn+1) + e1
a0

)
e2
a0

(x+ βn) + e1
a0

ḣn
hn
− e2

a0
(x2 + γn+1 + λn)− e1

a0
x− e0

a0

 (48)

where

λn =
n∑
j=0

 j∑
i=0

βiβj

+
n∑
j=1

j−1∑
i=0

βiβj

−
 n∑
j=0

βj

2

.

PROOF. Under the assumption ẇ/w = E/A with E a polynomial, the ma-
trix Hn has polynomial entries (see [12, Section 2]). Thus, in the account of
(41) and the asymptotic expansions (10) and (11), the terms in O(xk), k ≥ 0,
are obtained from

1

hn

 ẇwqn+1Pn − ẇ
w
qn+1Pn+1

ẇ
w
qnPn Pn+1q̇n − ẇ

w
qnPn+1

 . (49)

The use of the asymptotic expansions (10) and (11) in (49), together with
γn+1 = hn+1/hn (cf. (8)), yields (48).
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Theorem 8 Under the conditions and notations in Lemma 1, equation (42)
gives the following Toda-type system for the recurrence relation coefficients:

a0c2γ̇n+1 = (e2c1 − e1c2)(βn − βn+1)γn+1, (50)

a0c
2
2β̇n = e1c2(c0 + c1βn + c2(β

2
n + 2γn+1))

−e2(a0c2 + c1(c0 + c1βn + c2(β
2
n + 2γn+1))), (51)

(e2c1 − e1c2)(c0 + c1βn+1 + c2(β
2
n+1 + γn+1 + γn+2)) = 0, (52)

c0ȧ0 + a0(e1 − ċ0) = 0, 2a0e2 + c1ȧ0 − a0ċ1 = 0, c2ȧ0 − a0ċ2 = 0. (53)

The second factor in condition (52) is equation (28) with n replaced by n+ 1.
Moreover, system (50), (8), (52) implies

(e2c1 − e1c2)(βn − βn+1)(c1 + c2(βn + βn+1)) + a0c2(2e2 + c2(β̇n + β̇n+1)) = 0.

PROOF. The entries of the matrix Bn defined in (19) are given by

ln(x) =
c2
2
x2 +

c1
2
x+

c0
2

+ c2γn+1 , Θn(x) = −γn+1(c2x+ c2βn+1 + c1) .

By collecting the coefficients in x in (42) and eliminating ḣn, we obtain the
result after simplifying expressions using (53).

Example 2 Let us take w(x) = exp(x3/3 + tx). This example was already
studied in [16]. However, we shall use equations derived in this subsection.

We have A(x) = 1, C(x) = x2 + t, E(x) = x, and

Bn =

x22 + t
2

+ γn+1 −γn+1(x+ βn+1)

x+ βn −(x
2

2
+ t

2
+ γn+1)

 , Hn =

0 − γn+1

1 − x+ ḣn
hn

 . (54)

Theorem 8 gives

˙γn+1 = (βn+1 − βn)γn+1 , (55)

β̇n = t+ 2γn+1 + β2
n , (56)

γn+2 = −γn+1 − β2
n+1 − t , (57)

β̇n+1 + β̇n = β2
n − β2

n+1. (58)

Note that equation (55) is the same as equation (36). By simple manipulations
we can also recover (37). The second and the third order differential equations
for βn are the same as in the previous subsection.

14



3.2 Case deg(A) = 1

In this subsection we shall deal with the weight w that satisfies the differential
equation of the form w′/w = (c2x

2+c1x+c0)/(x−α) with the general solution

w(x) = ce
1
2
(x−α)(c2(3α+x)+2c1)(x− α)α(αc2+c1)+c0 ,

where c is an arbitrary constant.

In the subsections below we will use the same method as in [14] to derive
differential equations. It is as follows.

Assume that we are given six equations of the form

f(xn, βn) = 0 , (59)

g(yn, γn) = 0 , (60)

f1(xn−1, xn, yn) = 0 , (61)

f2(xn, yn, yn+1) = 0 , (62)

g1(βn−1, βn, γn, γ̇n) = 0 , (63)

g2(β̇n, γn, γn+1) = 0 , (64)

where the functions on the left-hand sides also depend on the coefficients (as
functions of some parameter t) of the Pearson equation for the weight, and
xn = xn(t), yn = yn(t), βn = βn(t), γn = γn(t). Equations (59), (60) intro-
duce new quantities xn and yn related to the recurrence relation coefficients;
equations (61), (62) are discrete equations as in Theorem 3; equations (63),
(64) are the Toda-type equations. The aim is to derive an ordinary differential
equation for the function xn. To do this we first find expression of xn−1 in
terms of xn and yn to be used later on from equation (61). From equations
(59) and (60) we find expressions of βn in terms of xn and of γn in terms of
yn. Substituting them into (64), we find yn+1 in terms of xn, ẋn and yn. Sub-
stituting this expression into (62) we notice that we can express yn in terms
of xn and ẋn. Expressions of βn and γn in terms of xn and yn found earlier can
also be substituted into equation (63), from where we get ẏn in terms of xn−1,
xn and yn. Substituting xn−1 found at the beginning, we get equation for ẏn,
xn and yn. Hence, replacing yn by its expression in terms of xn and ẋn, we get
the required second order differential equation for xn.

3.2.1 Differential equations using Toda systems

In this subsection we assume that the parameter with respect to which we
shall derive a differential equation is the parameter t in the weight w =
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w0(x) exp(tx). In this case Theorem 4 is applicable. Throughout this subsec-
tion we assume the t−dependence of the polynomial C in the Pearson equation
w′/w = C/A.

To derive differential equations we use the algorithm described at the begin-
ning of the section. We have the following result.

Theorem 9 Let w be a semi-classical weight such that w′/w = C/A, with

A(x) = x− α , C(x) = c2x
2 + c1x+ c0 , c2 6= 0 .

Let {Pn} be the SMOP with respect to w, satisfying the recurrence relation (6),

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n = 0, 1, 2, . . . .

Assuming a t-dependence in the weight of the form w0(x) exp(tx) and, thus,
the dependence on t of the polynomial C, the function xn = xn(t)

xn =
k1c2

k2(c1 + αc2) + βnc2
(65)

satisfies the following second order differential equation:

ẍn =

(
2− k22

2

)
ẋ2n
xn

+
(
F1xn + F2 + F3

1

xn

)
ẋn+F4x

3
n+F5x

2
n+F6xn+F7+F8

1

xn
,

(66)
where

F1 =
k22(1− k2ċ1)

k1c2
+
k32c1ċ2
k1c22

,

F3 = 2k1

(
1− 1

k22

)
,

F2 =
2α

k2
− k2c1

c2
+

c1
k2c2

− 2k2α ,

F4 =
k21c

2
0

2k22
+
k22(2k2ċ1 − k22 ċ21 − 1)

2k21c
2
2

+
k32(k2c1ċ1ċ2 − c1ċ2)

k21c
3
2

− k42c
2
1ċ

2
2

2k21c
4
2

,

F5 =
1

k1c2
(2k2α + ċ0 + αċ1 − 2k22αċ1 − k2c̈1) +

k2
k1c32

(k2c
2
1ċ2 − 2c1ċ

2
2)

+
1

k1c22
(k2c1 − k22c1ċ1 − ċ2 − 2nċ2 − c0ċ2 + (2k22 − 1)αc1ċ2 + 2k2ċ1ċ2 + k2c1c̈2) ,

F6 =
1

c2
(2k2ċ1 − c0 − 3αc1 − 2− 2n)− ċ1

k2c2
− c1

2c22
(c1 + 4k2ċ2) +

c1ċ2
k2c22

− 3α2 ,
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F7 =
4k1α

k2
+

2k1c2
k2c2

,

F8 =−3k21
2k22

.

PROOF. The theorem is proved computationally using the algorithm for
(32), (33), (34), (35) (with t replaced by α in all four equations), (36) and
(37).

Example 3 Let A(x) = x−α, C(x) = c2x
2+c1x+c0 with c2 = 2b, c1 = t−2αb,

c0 = ν −αt. This case corresponds to the modified Laguerre weight considered
in [20]. The weight function is given by

w(x) = (x− α)νebx
2+tx,

where b < 0. We notice that in this case and when k2 = 1, the structure
of the differential equation (66) resembles the alternative form of the fourth
Painlevé equation (3). Indeed, if α = 0, then by the substitution xn(t) =
2
√
bk1/y(−t/(2

√
b)) we get that the function y(z), where z = −t/(2

√
b), satis-

fies the fourth Painlevé equation PIV (−1−2n−ν,−8b2k41ν
2). Note that in [20]

only third order difference equation for the recurrence relation coefficients is
given. However, as we see, in order to get the fourth Painlevé equation up to
scaling transformation, one needs the extra condition α = 0. Moreover, if we
take k1 such that 4b2k41 = 1, then we have parameters of the fourth Painlevé
equation satisfying condition (1). If additionally b = −1, then we have the case
of the weight considered in [14] and the computations and the results agree by
taking k1 = −1/

√
2.

We can further study when equation (66) can be reduced to the fourth Painlevé
equation up to a scaling transformation. By taking xn(t) = p1/y(p2t) we get
that the function y(z) with z = p2t satisfies PIV with B = −p41(−1−2n+A)2/2
when k2 = 1 and C(x) = −x2/(2p22) + xt +

√
−2B/p21, A(x) = x, which

esentially gives the case considered at the beginning of this example.

3.2.2 Differential equations using Toda-type system

In this subsection we assume that the parameter with respect to which we shall
derive a differential equation is the root of A(x), that is, A(x) = x − t. We
also assume the t−dependence of the polynomial C in the Pearson equation
w′/w = C/A. Now, Theorem 5 is applicable. We have the following result.

Theorem 10 For the SMOP with respect to w such that w′/w = C/A with
A(x) = x − t, C(x) = c2x

2 + c1x + c0, the recurrence relation coefficients of
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(6) satisfy the following Toda-type system:γ̇n = c2γn(βn − βn−1),
β̇n = 1 + c2(γn+1 − γn).

(67)

PROOF. We have

Θn(x) = −(c1 + c2x+ c2βn+1)γn+1

and
ln(x) = 1 + n+ (c0 + c1x+ c2x

2 + 2c+ 2γn+1)/2.

Substituting these expresions to (38) and (39) with m = 1 we get the desired
result.

To derive differential equations we use the algorithm described at the begin-
ning of the section. We have the following result.

Theorem 11 Let w be a semi-classical weight such that w′/w = C/A, with

A(x) = x− t , C(x) = c2x
2 + c1x+ c0 , c2 6= 0 .

Let {Pn} be the SMOP with respect to w, satisfying the recurrence relation (6),

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n = 0, 1, 2, . . . .

The function xn = xn(t)

xn =
k1c2

k2(c1 + c2t) + βnc2
(68)

satisfies the following second order differential equation:

ẍn =

(
2− k22

2

)
ẋ2n
xn

+
(
G1xn +G2 +G3

1

xn

)
ẋn+G4x

3
n+G5x

2
n+G6xn+G7+G8

1

xn
,

(69)
where

G1 =
k32c1ċ2
k1c22

− k32 ċ1
k1c2

− k32
k1
,

G2 =
c1 + 2c2t

k2
− k2(c1 − 2c2t) +

ċ2
c2
,

G3 = 2k1c2

(
1− 1

k22

)
,

G4 =− k42
2k21

+
k21c

2
0c

2
2

2k22
− k42 ċ1
k21c2

+
k42c1ċ1ċ2
k21c

3
2

− k42c
2
1ċ

2
2

2k21c
4
2

+
k42(2c1ċ2 − ċ21)

2k21c
2
2

,
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G5 =
1

k1
(c1 − k22c1 + 2c2t− 2k22c2t+ ċ0 + ċ1t− 2k22 ċ1t)

+
1

k1c2
(k2ċ2 − k22c1ċ1 − 2nċ2 − c0ċ2 − c1ċ2t+ 2k22c1ċ2t− k2c̈1)

+
1

k1c22
(k22c

2
1ċ2 + 3k2ċ1ċ2 + k2c1c̈2)−

3k2c1ċ
2
2

k1c32
,

G6 =
c1ċ2
k2c2

− 2k2c1ċ2
c2

− ċ1 + 2c2
k2

− c21
2

+ 2k2ċ1 − 3c1c2t− c2(2n− 2k2 + c0 + 3c2t
2) ,

G7 =
2k1c1c2 + 4k1c

2
2t

k2
,

G8 =−3k21c
2
2

2k22
.

PROOF. The theorem is proved computationally using the algorithm for
(32), (33), (34), (35), (67).

Example 4 Let A(x) = x−t, C(c) = c2x
2+c1x+c0 with c2 = 2b, c1 = a−2bt,

c0 = ν − at. This case corresponds to the modified Laguerre weight considered
in [20]. The weight function is given by

w(x) = (x− t)νebx2+ax (70)

where b < 0, a < 0. We notice that in this case and when k2 = 1, the
structure of the differential equation (69) resembles the alternative form of
the fourth Painlevé equation (3). Indeed, if a = 0, then by the substitution
xn(t) = −2

√
bk1/y(

√
bt) we get that the function y(z), where z =

√
bt, satisfies

the fourth Painlevé equation PIV (−1 − 2n − ν,−8b2k41ν
2). Note that in [20]

only difference equation for the recurrence relation coefficients is given and it
is conjectured that if one obtains the differential equation with respect to the
parameter, then one gets one of the Painlevé equations. However, as we see,
in order to get the fourth Painlevé equation up to scaling transformation, one
needs the extra condition a = 0. Moreover, if we take k1 such that 4b2k41 = 1,
then we have parameters of the fourth Painlevé equation satisfying condition
(1). If additionally b = −1, then we have the case of the weight considered in
[7] ( w(x) = |x− t|νe−x2), and by a scaling we get that the recurrence relation
coefficients are related to PIV (1 + 2n + ν,−2ν2), which agrees with the result
in [7].

We can further study when equation (69) can be reduced to the fourth Painlevé
equation up to a scaling transformation. By taking xn(t) = p1/y(p2t) we get
that the function y(z) with z = p2t satisfies PIV (1 − 2n − ν,−8ν2k41p

4
2) when

k2 = 1 and C(x) = −2p22x
2 + 2p22tx+ ν, which gives the case considered at the

beginning of this example with b = −p22, a = 0.
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4 Discussion

In this paper we derived general differential equations for the recurrence re-
lation coefficients of the semi-classical orthogonal polynomials of class one
with an additional assumption that the degree of A in (14) or (15) is at most
one. In particular cases we showed a connection to the second and the fourth
Painlevé equations. Moreover, we considered the modified Laguerre weight
(70) (see [20]) and deduced differential equations with respect to two different
parameters.

In general terms, our approach uses a method similar as in [14]. Other meth-
ods are available in the extensive literature on Painlevé equations and semi-
classical orthogonal polynomials. For instance, some differential equations for
βn deduced in Theorem 6 can also be obtained using pairs of Backlund trans-
formations as in [11].

There are several open problems to be emphasized. Firstly, by considering
different combinations on roots of A, to show a connection of the recurrence
relation coefficients to other discrete and differential Painlevé equations. An-
other open problem is to deduce differential equations in larger classes than the
semi-classical one, for instance, the Laguerre-Hahn class [17]. Here, in the ac-
count of the results of [13], we conjecture that the structure of these equations
will be similar to the case considered in this paper, and for some examples of
Laguerre-Hahn polynomials, for instance in the case of the associated poly-
nomials, there will also be a connection to the Painlevé equations. Finally, it
would also be interesting to systematically study the general equations to find
all the cases when we have the second and the fourth Painlevé equations, not
necessarily up to scaling transformations.
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