
The minmax regret robust shortest path problem
in a finite multi-scenario model

Marta M. B. Pascoal∗, Marisa Resende

March 31, 2014

Department of Mathematics, University of Coimbra
Apartado 3008, EC Santa Cruz, 3001-501 Coimbra, Portugal

Phone: +351 239 791150, Fax: +351 239 832568

Institute for Systems Engineering and Computers – Coimbra (INESCC)
Rua Antero de Quental, 199, 3000-033 Coimbra, Portugal

E-mails: {marta, mares}@mat.uc.pt

Abstract

The robust shortest path problem is a network optimization problem that can be defined to deal with
uncertainty of costs associated with the arcs of a network. Two models have been considered for the
robust shortest path problem: interval data and discrete data sets. This work addresses the robust
shortest path problem with a minmax regret objective function on a finite multi-scenario model. This
problem consists in finding an optimal path in the sense that it has the minimum maximum deviation
from the shortest one over all scenarios. With this goal some properties of the problem and of its
optimal solutions are derived. These results allow to introduce three approaches, a labeling algorithm,
an algorithm based on ranking loopless paths, and a hybrid algorithm which ranks loopless paths in a
suitable way to apply the early elimination of useless solutions. The algorithms are tested on random
networks and compared with a previous method for the same problem. The obtained computational
results are reported and discussed. They show that the labeling and the hybrid approaches outperform
the others.

Keywords: network, scenario, minmax regret, robust shortest path, labeling, ranking

1 Introduction

Finding a shortest path between two nodes of a network is a well known problem that consists in computing

a path with the least cost, when each arc is associated with a single deterministic value. Trying to model

reality, these cost values are not always known or sometimes they are not accurate. In [6], Dias and Clímaco

assume that only partial information is known about the problem, address the shortest path problem from a

multicriteria and a decision making point of view and present algorithms to compute the set of non dominated

paths taking into account the available information, under certain conditions. Perny and Spanjaard [20] make

a similar assumption and deal with dominance rules in a state space graph for the same purpose. Another

approach that has been used to cope with uncertainty is robust optimization [12]. Two types of uncertainty

models have been considered: interval data models and discrete data models. In the first of these models the

costs range within given intervals, whereas in the second the costs can belong to discrete finite sets. When the

information given in different scenarios is aggregated, several criteria can be used. One of the most common
∗Corresponding author

1



aims at minimizing the worst case for all scenarios. When the goal is to find paths between a pair of nodes,

two versions can be considered. The first, known as minmax shortest path problem or absolute robust

shortest path problem, consists of finding the path with the minimum maximum cost over all scenarios. The

second, known as minmax regret robust shortest path problem or robust deviation shortest path problem,

aims at finding the path with the minimum maximum deviation cost with respect to the optimum solution

in each scenario. The present work is dedicated to the latter problem and considers a finite set of possible

cost scenarios.

In 1992, the absolute version of the robust shortest path problem with a finite set of scenarios was studied

by Murthy and Her [18]. They introduced a labeling algorithm based on a multicriteria approach to solve

the problem exactly. The method includes a dominance test between labels as well as pruning techniques

developed with the goal of discarding some of them. Later, in 1998, Yu and Yang [22] introduced the relative

version of the problem with a discrete set of scenarios. This work presented pseudo-polynomial algorithms

for the problem, based on dynamic programming, as well as a more specific method designed for layered

networks. It was also shown that the problem is strongly NP-hard if the number of scenarios is unlimited.

Then, a heuristic was developed to compute an approximate optimal solution, since the exact approach

revealed to be ineffective for problems with large cost upper bounds or a large number of scenarios. In 2010,

Bruni and Guerriero [2] developed heuristic rules for guiding the search performed by Murthy and Her’s

algorithm for the absolute robust shortest path problem.

Other works have focused on a similar problem but considered that each arc cost ranges within a given

interval. The first work on this subject was proposed in 2001, by Karasan, Pinar and Yaman, and addressed

the case of acyclic networks [11]. In this paper a finite number of scenarios containing the optimum solution

could be determined by combining the upper and lower limits of the cost intervals. Several exact techniques

were introduced later by Montemanni et al., which extended the determination of a robust shortest path

for general networks [15, 16, 17]. More recently, Catanzaro, Labbé and Salazar-Neumann [4] proposed

preprocessing tools for reducing a network with the goal of speeding up the determination of a robust

shortest path on an interval data model. Recent surveys on these topics can be found in [3, 9, 10].

The present work considers the minmax regret as the robustness criterion on a finite multi-scenario model

to determine an optimal path between a pair of nodes of a network. Three exact methods are developed

for dealing with the robust shortest path problem. The first is a labeling algorithm including cost lower

and upper bounds to discard uninteresting solutions. The second is an algorithm supported by a loopless

paths ranking under a specific scenario and imposing halting conditions defined by the costs of the solutions

determined along the process. Finally, the third is also a ranking approach enhanced with cost bounds,

similar to the first method, designed with the purpose of fostering the generation of new paths and of cost

bounds that will likely lead to a smaller number of iterations than the second method.

The next section is dedicated to the definition of the minmax regret robust shortest path problem, the

introduction of notation and the derivation of properties concerning the optimum solution and its cost.

Section 3 is devoted to the algorithms presentation. In Section 4 an example of the application of the three

algorithms is presented. In Section 5 computational experiments comparing the proposed algorithms and the

method by Yu and Yang are presented and the obtained results are discussed. Conclusions and comments

on future research are drawn in the last section.

2



2 Problem definition and notation

Hereinafter a finite multi-scenario model is represented as G(V,A, Sk), where G is a directed graph with a

set of nodes V = {1, . . . , n}, a set of m arcs A ⊆ {(i, j) : i, j ∈ V and i 6= j} and a finite set of scenarios

Sk := {1, . . . , k}, k > 1. For each arc (i, j) ∈ A, i and j are named the tail and the head node, respectively,

and csij represents its cost in scenario s, s ∈ Sk. It is assumed that the graph contains no parallel arcs.

A path from i to j, i, j ∈ V , in graph G, also called an (i, j)-path, is an alternating sequence of nodes

and arcs of the form

p = 〈v1, (v1, v2), v2, . . . , (vr−1, vr), vr〉,

with v1 = i, vr = j and where vl ∈ V , for l = 2, . . . , r− 1, and (vl, vl+1) ∈ A, for l = 1, . . . , r− 1. The sets of

arcs and of nodes in a path p are denoted by A(p) and V (p), respectively. Given two paths p, q, such that

the destination node of p is also the initial node of q, the concatenation of p and q is the path formed by p

followed by q, and is denoted by p � q.
Because it is assumed that graphs do not contain parallel arcs, in the following paths will be represented

simply by their sequence of nodes. A cycle, or loop, is a path from a node to itself. A path is said to be

loopless if all its nodes are different.

The cost of a path p in scenario s, s ∈ Sk, is defined by

cs(p) =
∑

(i,j)∈A(p)

csij . (1)

With no loss of generality, 1 and n denote the origin and the destination nodes of the graph G, respectively.

For simplicity of presentation, it will also be assumed that no arcs arrive at 1 and no arcs start at n in G.

The set of all (1, n)-paths in G is represented by P .

Let pl,sij represent the l-th shortest (i, j)-path in G, i, j ∈ V , for a given scenario s ∈ Sk. In order to

simplify the notation, pl,s is used to denote the l-th shortest (1, n)-path in scenario s, i.e. pl,s1n, and LBs
i is

used to denote the cost of the shortest (i, n)-path in scenario s, i.e. cs(p1,sin ).

The minmax regret robust shortest path problem corresponds to determining a path in P with the least

maximum robust deviation, i.e. satisfying

arg min
p∈P

RC(p), (2)

where RC(p) is the robustness cost of p, defined by

RC(p) := max
s∈Sk

RDs(p), (3)

where RDs(p) represents the robust deviation of a path p under scenario s, s ∈ Sk, defined by

RDs(p) := cs(p)− LBs
1. (4)

Any optimal solution of (2) is called a robust shortest path.

The set of scenarios in which RC(p) occurs, i.e. the set of scenarios for which the robust deviation of

p ∈ P is maximized, will be denoted by S(p) := {arg maxs∈Sk
RDs(p)}.

The idea behind minimizing the maximum robust deviation is to find a path with the best deviation

in all scenarios, with respect to the shortest path in each one. A problem that resembles this one is the

minmax shortest path problem [18]. The latter is an absolute version of problem (2), for which the robust

3



deviation of a path p is replaced by its cost in each scenario. That is, the objective function to minimize

is maxs∈Sk
{cs(p)}. Both problems have the same optimum solution if the shortest paths over all scenarios

have the same cost in the scenario where their cost is minimum, that is LBs
1 is a constant for any s ∈ Sk.

2.1 Properties of the optimal solutions

A robust shortest path may not be unique, as shown by the network depicted in Figure 1. In this example, a

case with two scenarios, the paths p1,1 = 〈1, 2, 4〉 and p1,2 = 〈1, 3, 4〉 are the shortest from 1 to 4 for scenarios

1 and 2, respectively. There exist two (1, 4)-paths, p1,1 and q = 〈1, 2, 3, 4〉, with the minimum robustness

cost 2 (S(p1,1) = {2} and S(q) = {1}). Therefore, they are both robust shortest paths.

1

1, 0

4, 1

2
0, 4

2, 3

3
0, 1

4

i
c1ij , c

2
ij

j

Figure 1: Network

The following result is a consequence of definitions (3) and (4).

Lemma 1. For every p ∈ P , RC(p) ≥ 0. Moreover, RC(p) = 0 if and only if p is a shortest path in every

scenario s ∈ Sk.

Taking (2) and Lemma 1 into account, one can also establish under what conditions a shortest path for

a scenario can be a robust shortest path as well.

Lemma 2. If p ∈ P is a shortest path in every scenario s ∈ Sk, then p is a robust shortest path and

S(p) = Sk.

In order to develop algorithms that compute a path with the minimum robustness cost, other properties

must be established. An important result concerns the cyclic nature of an optimal solution. In fact, any

robust shortest path on an acyclic network G is naturally loopless. Nevertheless, when G is a general network,

there may exist robust shortest paths that contain loops, as shown in Figure 2, resultant from the inclusion

of arc (2, 1) in the network of Figure 1. Such inclusion does not affect the optimality of the loopless paths

p1,1 = 〈1, 2, 4〉 and q = 〈1, 2, 3, 4〉, however, q′ = 〈1, 2, 1, 2, 4〉 is a new robust shortest (1, 4)-path containing

the loop 〈1, 2, 1〉, given that RC(q′) = RC(p1,1) = RC(q) = 2 (S(q′) = S2).

1
1, 0

4, 1

2
0, 4

2, 3

1, 0

3
0, 1

4

i
c1ij , c

2
ij

j

Figure 2: Network with a cycle

4



Although a robust shortest path may not be unique, Yu and Yang [22] proved the existence of a loopless

one considering networks with non-negative arc costs. This result is still valid for networks without cycles

with negative cost in any scenario, as stated in Lemma 3.

Lemma 3. Let G be a network with no cycles with negative cost in any scenario, then there exists a loopless

optimal solution of (2) in G.

Proposition 1 presents another property of robust shortest paths that will be used later, concerning an

upper bound on its cost under particular conditions.

Proposition 1. Let p ∈ P . If q is any robust shortest path, then cs(q) ≤ cs(p), for any scenario s ∈ S(p).

Proof. Let p ∈ P and s be any element of S(p). Attending to the definition of S(p) and to (3), RC(p) =

RDs(p). By contradiction, assume q is a path satisfying cs(q) > cs(p). Then, attending to (3) and (4), one

deduces that RC(q) ≥ RDs(q) > RDs(p) = RC(p). Consequently, q cannot satisfy (2) and be a robust

shortest path.

3 Algorithms

The results established at Subsection 2.1 are a motivation for developing three algorithms to solve (2). All

of them allow to obtain a loopless robust shortest (1, n)-path. The first one is based on a labeling approach,

whereas the others are based on the ranking of loopless paths by non-decreasing order of their costs for a

fixed scenario and use the cost upper bound introduced in Proposition 1. Moreover, the third is a hybrid

version of the previous two, which uses both ranking and pruning techniques. The methods are presented

in the following.

3.1 Labeling algorithm

The first method presented here for computing a robust shortest (1, n)-path is a labeling approach inspired

on the algorithm proposed by Murthy and Her [18] for the minmax shortest path problem. This problem

does not satisfy Bellman’s principle of optimality, that is to say that an optimal path may contain sub-

paths that are not optimal. Therefore, Murthy and Her consider each scenario as one criterion and develop

a labeling algorithm combined with dominance tests between labels to solve the problem. The method is

complemented by rules for pruning unnecessary labels. One of them is based on the use of lower bounds with

respect to each cost function of a path from a node to n. The other results from the Lagrangian relaxation

of the subproblem of the linear programming formulation obtained when the previous bounds are fixed.

Even though the robust shortest path problem cannot be solved by exactly the same process, the algorithm

described in the following has a similar inspiration. The main modification is the adaptation of the upper

bounds for the values of the current objective functions. First, some concepts and notation are introduced.

Let zi = (z1i , . . . , z
k
i ) denote a label associated with a (1, i)-path, p1i, or with node i ∈ V . More than one

(1, i)-path can be eligible to become part of the solution, and thus more than one label can be associated

with node i. In general multicriteria shortest path problems the labels zi represent the cost vector of the

associate (1, i)-path. Here they play a similar role. However, because the objective function to evaluate

(1, n)-paths depends on the robustness deviation with respect to the shortest path in all scenarios, in order

to simplify intermediate calculations, the label of node 1 is given by

z1 = (−LB1
1 , . . . ,−LBk

1 ).

5



Each component zsi of a label zi, i ∈ V , is related with the cost of the associate (1, i)-path in scenario s ∈ Sk.

Moreover, along the algorithm, when such label is selected, new labels zj can be created for any (i, j) ∈ A,

according to the formula

zj = (z1i + c1ij , . . . , z
k
i + ckij). (5)

With the above initialization, zn = (RD1(p1n), . . . , RDk(p1n)) is the vector of robust deviations of a given

(1, n)-path, p1n. Hence, the solution space is explored through the labels for node n and the optimum value

is obtained by selecting the label with the least maximum component, that is, the least robustness cost of

the (1, n)-paths. This result is stated in the following lemma.

Lemma 4. Let zn be a label for node n. The (1, n)-path associated with zn is a robust shortest path if and

only if

max
s∈Sk

{zsn} ≤ max
s∈Sk

{z′sn } (6)

for any label z′n associated with the destination node n.

Lemma 4 allows to eliminate labels zn that do not satisfy (6). Nevertheless, extending the (1, i)-paths

associated with all the existent labels zi, i ∈ V \{n}, to all possible paths with destination node n can be

computationally demanding. Therefore, two pruning techniques will be derived with the aim of discarding

in an early stage of the algorithm some of such labels that cannot be part of an optimal loopless solution,

which allows to reduce the total number of node labels that have to be stored along the calculations. For

the first reduction rule, new concepts related with the dominance of the generated labels are given.

Definition 1. Let z′i and z′′i be two labels associated with node i. Then z′i dominates z′′i if

z′1i ≤ z′′1i , . . . , z′ki ≤ z′′ki

and at least one of the inequalities is strict.

Definition 2. A label associated with node i is efficient (or non dominated) if there is no other label for

node i that dominates it.

Checking the dominance between different labels of a node is crucial to decide which can be discarded.

In fact, any label zi, i ∈ V \{n}, dominated by another label z′i can be eliminated. Proposition 2 shows

that any extension of the (1, i)-path associated with zi produces a (1, n)-path with a robustness cost that is

never smaller than the robustness cost of the (1, n)-path resultant by the same extension from the (1, i)-path

associated with z′i. The storage of repeated labels of a node can also be avoided, since robust shortest

(1, n)-paths containing their associate partial paths have the same robustness cost.

Proposition 2. Let zi and z′i be two different labels for a node i ∈ V \{n}, such that zi dominates z′i. Then,

extending the (1, i)-paths associated with zi and z′i by the same (i, n)-path, results on (1, n)-paths with labels

zn and z′n, respectively, satisfying

max
s∈Sk

{zsn} ≤ max
s∈Sk

{z′sn }.

Proof. Let pin denote the (i, n)-path that extends the (1, i)-paths associated with labels zi and z′i into

(1, n)-paths with labels zn and z′n, respectively.

By assumption, zi dominates z′i. Therefore, zsn = zsi + cs(pin) ≤ z′si + cs(pin) = z′sn , for every s ∈ Sk, and

zln < z′ln , for some l ∈ Sk. Consequently, maxs∈Sk
{zsn} ≤ maxs∈Sk

{z′sn }.

6



A similar reasoning can show that two labels with equal components, for the same node and associated

with different partial paths, lead to (1, n)-paths with the same robustness cost when extended with the same

path. Labels under those conditions will be called equivalent labels. As mentioned earlier, it is intended

to restrict the search to loopless (1, n)-paths. These two facts lead to an implementation that discards

equivalent labels of a node and manages the labels following a first in first out (FIFO) policy. This means

that breadth-search is used to build the search tree and that, when equivalent labels occur, only the first is

stored. Proposition 3 shows that there is a robust shortest loopless (1, n)-path under these conditions.

Proposition 3. Assume that the set of node labels is managed as a FIFO list. Then there is a robust

shortest loopless (1, n)-path the sub-paths of which are associated with the first label of each node, when it

has several equivalent labels.

Proof. By contradiction, assume that no optimal loopless path exists with all nodes associated with the

earliest possible label, when there are equivalent labels. Let p∗ be a robust shortest loopless (1, n)-path and

j ∈ V (p∗) be its node closest to n for which there are several equivalent labels. Let z∗j be the label associated

with the (1, j)-path in p∗, p∗1j , and suppose z′j is the first label created for node j that is equivalent to z∗j .

Assume z′j is associated with the (1, j)-path p′1j . Denote by p∗jn the (j, n)-path in p∗. Then p′1j � p∗jn is

a (1, n)-path, with the same robustness cost as p∗. Moreover, it is associated with z′j , the first label of j,

therefore, by assumption it should contain a loop. Let x be the first repeated node in p′1j �p∗jn, and p′1x �p∗xn
be the loopless (1, n)-path obtained from p′1j � p∗jn after removal of that loop. Here p′1x and p∗xn correspond

to p1j ’s sub-path from 1 to x and p∗jn’s sub path from x to n, respectively. Then, p′1x � p∗xn and p′1j � p∗jn
have the same robustness cost. By hypothesis, all nodes in p∗jn are associated with first labels, and so do

the nodes in p∗xn. If the same holds for p′1x the result is proven. Otherwise the reasoning can be repeated.

Because node labels are managed as a FIFO list, p′1x has less nodes than p∗1j , and therefore repeating it a

finite number of times leads to a contradiction, as expected.

From now on it will be assumed that labels are treated in a FIFO manner. Otherwise it should be verified

whether a new one corresponds to a path with a loop.

The above dominance test is a pruning strategy adopted in [18], for the labels associated with any node.

In the method introduced here, these tests are skipped for the labels zn, and such a label is only selected

when (6) holds with a strict inequality, according to Lemma 4.

A second pruning rule for the labels zi, i ∈ V \{n}, is inferred in Proposition 4. This property is based

on a bounding condition satisfied by every sub-path of a robust shortest (1, n)-path.

Proposition 4. Let p be a robust shortest (1, n)-path and p1i be a (1, i)-sub-path of p with label zi, i ∈ V .

Then,

max
s∈Sk

{zsi + LBs
i } ≤ RC(p). (7)

Proof. Let p1i be a (1, i)-path, i ∈ V , contained in a robust shortest (1, n)-path p, and let zi be its label.

Then, cs(p) ≥ cs(p1i � p1,sin ) = cs(p1i) + LBs
i , or, equivalently, RDs(p) ≥ zsi + LBs

i , for every s ∈ Sk, and

condition (7) is satisfied.

The second test for the labels zi, i ∈ V \{n}, allows to eliminate those that would produce (1, n)-paths

with robustness costs which are not better than the least computed value. In fact, denoting by UB an upper

7



bound for the optimum value of the problem, when

max
s∈Sk

{zsi + LBs
i } ≥ UB (8)

holds with a strict inequality, then the (1, i)-path associated with label zi cannot be part of any optimal

solution, and in case of equality, it can be part of an optimal solution with robustness cost UB. Nevertheless,

taking into account that a candidate path with the same robustness cost UB is already known, zi can be

discarded in both cases. If (8) is satisfied with a strict inequality, this pruning rule is equivalent to the first

one proposed in [18].

The value UB is initialized with the best robustness cost of the shortest paths for each scenario, keeping

in mind that calculating their costs is fundamental to start the algorithm. Hence, UB is initialized with

min
s∈Sk

RC(p1,s) = min
s∈Sk

max
r∈Sk

RDr(p1,s) = min
s∈Sk

max
r∈Sk

{cr(p1,s)− LBr
1}. (9)

This value is then updated as new labels zn are computed.

The structure of the labeling algorithm for finding a robust shortest (1, n)-path is described in the

following.

Global algorithmic structure To start with, the computation of the trees T s of shortest (i, n)-paths

and of the associate cost lower bounds LBs
i are necessary, for each s ∈ Sk, i ∈ V . Any shortest path tree

algorithm can be applied [1]. Then, the optimum cost upper bound UB is initialized with (9). In order to do

that, calculating the deviation costs for the shortest paths over all scenarios is required. Since some of them

can be the shortest for more than one scenario, the computation of their robustness costs can be avoided by

using a list Q with only the distinct shortest paths. The first candidate is the path with the least robustness

cost in Q.

A variable RCaux is used to store the robustness cost of a (1, n)-path associated with a label zn being

analyzed and it updates UB in case it improves the least robustness cost found so far. The variable sol

represents the corresponding path, which is an optimal path candidate.

Another list X is used with the purpose of storing all the labels zi to be scanned, i ∈ V \{n}, under a

FIFO policy. The scanned labels of node i which are not eliminated are stored in a list Zi and the associate

predecessor nodes are inserted in a list Pi. This list is used in order to retrieve the optimum solution at the

end of the algorithm, by tracing back the nodes up to node 1.

A label zi, i ∈ V \{n}, is not discarded when it is not dominated by or equivalent to another label in Zi

and it satisfies maxs∈Sk
{zsi + LBs

i } < UB. Then, all labels for node i in lists X and Zi dominated by zi

must be removed, and, moreover, the corresponding predecessor nodes at Pi are deleted as well. Afterward,

label zi is inserted in lists X and Zi for further evaluation, whereas i’s predecessor node is included in list

Pi.

The pseudo-code for the labeling procedure is presented in Algorithm 1.

Computational time complexity order Algorithm 1 is pseudo-polynomial. The number of operations

it performs is O(k2n + k max{m,n2W 2}) for any type of network, with W the maximum number of labels

created for every node (details and calculations can be seen in Appendix).

8



Algorithm 1: Labeling approach for finding a robust shortest (1, n)-path

1 Q← ∅;
2 for s = 1, . . . , k do
3 Compute the tree T s in scenario s;
4 Q← Q ∪ {p1,s};
5 for i = 1, . . . , n do LBs

i ← cs(p1,sin ) ;

6 UB ← min{RC(p1,s) : s ∈ Sk};
7 sol← p1,s such that RC(p1,s) = UB, s ∈ Sk;
8 z1 ← (−LB1

1 , . . . ,−LBk
1 );

9 X ← {z1}; Z1 ← {z1};
10 for i = 2, . . . , n− 1 do Zi ← ∅; Pi ← ∅ ;
11 while X 6= ∅ do
12 zi ← first label in X; X ← X − {zi};
13 for (i, j) ∈ A do
14 zj ← (z1i + c1ij , . . . , z

k
i + ckij);

15 if j = n then
16 RCaux← max{zsj : s ∈ Sk};
17 if RCaux < UB then
18 UB ← RCaux;
19 p1i ← (1, i)-path traced back to node 1 by starting with Pi;
20 sol← p1i � 〈i, n〉;
21 else if zj is not dominated by or equivalent to any label in Zj and maxs∈Sk

{zsj + LBs
j} < UB

then
22 Delete from X and from Zj all the labels of j that are dominated by zj ;
23 Delete from Pj the predecessor nodes associated with the labels deleted from Zj ;
24 X ← X ∪ {zj}; Zj ← Zj ∪ {zj}; Pj ← Pj ∪ {i};

25 return sol

3.2 Ranking algorithms

An alternative strategy for determining a loopless robust shortest path based on ranking loopless paths for

a fixed scenario and combined with the definition of a cost upper bound is introduced in the following. This

technique is inspired on the work of Dias and Clímaco [6], who considered the determination of a set of paths

that are not dominated with respect to any possible scenario. With this goal they adapted the bicriteria

shortest path algorithm by Clímaco and Martins [5]. This strategy was equally useful on continuous models

for the same problem, after discretizing the costs interval data using simply their lower and upper bounds.

For the robust shortest path problem with finite multi-scenarios, some adaptations to the previous method

can be made, taking into account the computation of a loopless optimal solution and the new optimal values

according to the number of scenarios involved. Namely, only loopless paths have to be ranked and the update

of the costs upper bounds according to the least produced optimal values can be done till an optimal path

is found. This defines a first version of the method. The second is enhanced by the application of reduction

techniques similar to those presented for the labeling approach.

3.2.1 First version

As mentioned before, Lemma 3 and Proposition 1 provide the basis for computing a robust shortest path

based on ranking loopless paths by non-decreasing order of their costs under a fixed scenario. Also, a

9



stopping criterion is imposed by means of a particular cost upper bound. Lemma 3 shows that there is a

loopless solution, and therefore ranking loopless paths can be used to find it, even in networks with cycles.

Additionally, Proposition 1 allows to establish an upper bound for the ranking, associated with the computed

candidates to robust shortest path. Specifically, once a candidate loopless path p is returned by the ranking

in scenario s, the search for other candidates consists of ranking loopless paths with a cost smaller than

cs(p). In fact, the paths with exactly that cost will certainly have RC(p) as their minimum robustness

cost, and the goal of the algorithm is to find only one optimal solution. Since s ∈ S(p), RDs(p) = RC(p)

and, consequently, cs(p) = LBs
1 + RC(p). When this cost upper bound is set for any robust shortest path

candidate p, it can be improved whenever a path q satisfying RC(q) < RC(p) is found along the ranking.

The next result shows this and that it is also possible to detect an exact solution when s ∈ S(q).

Proposition 5. Let p ∈ P and s ∈ Sk. Let q ∈ P\{p} verify:

1. cs(q) ≤ LBs
1 + RC(p),

2. RC(q) < RC(p),

3. RC(q̃) ≥ RC(p), ∀q̃ ∈ P\{q} : cs(q̃) < cs(q).

Then, any robust shortest path p̃ satisfies

cs(q) ≤ cs(p̃) ≤ LBs
1 + RC(q) < LBs

1 + RC(p). (10)

Moreover, if condition s ∈ S(q) also holds, then q is a robust shortest path as well.

Proof. Let p ∈ P , s ∈ Sk and q ∈ P\{p}, such that q satisfies conditions 1., 2. and 3.

By conditions 1. and 2., one has LBs
1 + RC(q) < LBs

1 + RC(p). Besides, condition 2. and definition (2)

allow to conclude that the robustness cost of a robust shortest path cannot exceed RC(q). Therefore, the

robust deviation in scenario s of every optimal solution p̃ must satisfy RDs(p̃) ≤ RC(q), which implies

∀p̃ ∈ P : p̃ is a robust shortest path, cs(p̃) ≤ RC(q) + LBs
1 < LBs

1 + RC(p). (11)

Besides, by condition 3., every robust shortest path must have a cost greater than or equal to cs(q), in order

to produce a robustness cost that does not exceed RC(q), which implies

∀p̃ ∈ P : p̃ is a robust shortest path, cs(p̃) ≥ cs(q). (12)

From (11) and (12), one concludes (10).

In addition to 1., 2. and 3., let now be assumed that s ∈ S(q). For this case, s is the scenario for which

the robust deviation of q is maximum, which means that RC(q) = RDs(q). Thus, (10) becomes an equality,

since RC(q) + LBs
1 = RDs(q) + LBs

1 = cs(q), i.e.,

∀p̃ ∈ P : p̃ is a robust shortest path, cs(p̃) = cs(q). (13)

On the other hand,

∀q̃ ∈ P\{q} : cs(q̃) = cs(q), RC(q̃) ≥ RDs(q̃) = RDs(q),

and, recalling that RDs(q) = RC(q), one infers that

∀q̃ ∈ P\{q} : cs(q̃) = cs(q), RC(q̃) ≥ RC(q).

Then, path q has the minimum robustness cost among the paths that satisfy (13), therefore it is a robust

shortest path.

10



This result gives two necessary conditions concerning bounding the minimum robustness cost of a path

when ranking in a scenario s ∈ Sk and detecting a robust shortest path under specific assumptions. When

considering the cost upper bound LBs
1 +RC(p) for a loopless path p, if a loopless path q is found such that

RC(q) < RC(p), then, attending to (10), the upper bound can be improved to LBs
1 +RC(q). Moreover, the

analysis of the scenarios in which RC(q) occurs, i.e. of the scenarios for which the robust deviation of q is

maximum, and their identification with the ranking scenario is crucial to spare computational effort. In fact,

the search can halt when s ∈ S(q), because in this case it can be concluded that q is an optimal solution.

The efficiency of the method depends on the scenario in which the minimum robustness cost occurs

versus the scenario for which the ranking is performed and on how many paths have to be computed after

the shortest path in the ranking.

Analogously to Algorithm 1, the upper bound for the least robustness cost is initialized with the least

robustness cost for the shortest paths over all scenarios, as in (9). Another important initialization issue

concerns the choice of the scenario in which the ranking is performed. Without loss of generality, it will be

chosen the scenario with the smallest index r for which the robustness cost of the first candidate optimal

solution p∗, with p∗ = p1,u, for some u ∈ Sk, occurs, i.e.

r = min
{
s ∈ Sk : RDs(p∗) = RC(p∗)

}
. (14)

Consequently, by Proposition 1, cr(p∗) is the first cost upper bound for the ranking in scenario r.

The structure of the algorithm for the robust shortest path problem based on ranking loopless paths is

given in the following.

Global algorithmic structure The preliminary procedures of this approach are similar to Algorithm 1

and the variables Q, RCaux, UB and sol represent the same. Another variable stores the cost upper bound

for the ranking, Cmax. The ranking scenario r is initially determined according to (14).

Several algorithms can be applied to rank loopless paths in general networks, for instance [13, 14, 19, 21].

For acyclic networks unconstrained ranking algorithms, generally more efficient, can be used, like [7, 14].

The list Q allows to control if some ranked path coincides with some shortest path p1,s, s ∈ Sk, already

analyzed, thus preventing its robustness cost from being recalculated. Whenever a ranked path pl,r, l ≥ 1,

has a robustness cost RCaux that is smaller than UB, the latter must be updated with RCaux and the

candidate optimal solution sol with pl,r. Moreover, in case I(pl,r) = r, the search halts, since pl,r is an

optimal solution; otherwise the upper bound cost Cmax is set to LBr
1 + UB.

The pseudo-code of the method just described is presented in Algorithm 2.

Computational time complexity order Algorithm 2 is of O(k2n + k max{m,Ln} + L logL) time for

acyclic networks and of O(k2n + max{k, Ln}(m + n log n) + kLn) time for general networks, with L the

number of ranked loopless paths (details and calculations can be seen in Appendix).

3.2.2 Hybrid version

The method presented in this section results from the combination between Algorithm 2 and some pruning

techniques used in Algorithm 1. In order to apply these pruning rules in the broadest possible way, a specific

ranking algorithm will be used, based on the deviation algorithm MPS, introduced in [14]. For completeness,

first, the MPS method is very briefly reviewed. After that, the deviation algorithm used here is described

11



Algorithm 2: Ranking approach for finding a robust shortest (1, n)-path

1 Q← ∅;
2 for s = 1, . . . , k do
3 p1,s ← shortest path in scenario s;
4 Q← Q ∪ {p1,s};
5 UB ← min{RC(p1,s) : s ∈ Sk};
6 sol← p1,s such that RC(p1,s) = UB, s ∈ Sk;
7 r ← min

{
s ∈ Sk : RDs(sol) = UB

}
;

8 Cmax← cr(sol);
9 l← 2;

10 while pl,r exists do
11 Compute pl,r;
12 if cr(pl,r) ≥ Cmax then break ;
13 if pl,r /∈ Q then
14 RCaux← RC(pl,r);
15 if RCaux < UB then
16 UB ← RCaux;
17 sol← pl,r;
18 if RDr(pl,r) = UB then break ;
19 Cmax← LBr

1 + UB;

20 j ← j + 1;

21 return sol

and the rules applied to discard useless paths are presented. Unless otherwise stated, it is assumed that the

ranking is done with respect to a given scenario r ∈ Sk.

Let p ∈ P , w ∈ V (p), and p1w denote the (1, w)-sub-path of p. The idea behind deviation algorithms for

ranking paths, or loopless paths, is to generate l-th shortest path candidates, l > 1, as paths that coincide

with p along p1w and that deviate from p exactly at node w. Given that the aim of such methods is to rank

paths by order of cost, one adds (w, x) ∈ A and then the shortest (x, n)-path for scenario r ∈ Sk, according

to Figure 3.(a). Hence, the generated paths have the form

qp,rw,x = p1w � 〈w, x〉 � p1,rxn , x ∈ V +(w), (15)

where V +(w) = {x ∈ V : (w, x) ∈ A} is the set of head nodes of the arcs in G with tail node w. In this case p

is called the father of qp,rw,x. Additionally, w and (w, x) are denominated the deviation node and the deviation

arc of path qp,rw,x, respectively, and this path is said to be a deviation of p. When w = 1, p1w reduces to

the initial node, 1. By convenience, it is considered that the father of the shortest path in scenario r is not

defined and that 1 is its deviation node.

Ranking paths in a certain scenario can be done either using the costs or the reduced costs. Thus, in

order to decrease the number of performed operations in the MPS algorithm, the arc costs are replaced by

reduced costs, as explained next. The reduced cost c̄rij of an arc (i, j) ∈ A in scenario r ∈ Sk is defined by

c̄rij = LBr
j − LBr

i + crij .

The reduced cost of a path p ∈ P in scenario r is then given by

c̄r(p) =
∑

(i,j)∈A(p)

c̄rij . (16)

12



1

w

n

p

x

n

qp,rw,x

(a) Generation of a path

1

w

x

n

p

x1

n

qp,rw,x1

xlw

n

qp,rw,xlw

(b) Ranking deviation paths

Figure 3: Deviation method

Now, because c̄rij = 0 for any (i, j) ∈ T r, then c̄r(p1,rin ) = 0, for any i ∈ V . Hence, c̄r(qp,rw,x) = c̄r(p1w) + c̄rwx,

w ∈ V (p), x ∈ V +(w), and, therefore, the shortest path with form (15) with respect to scenario r contains

the arc with the minimum reduced cost in V +(w).

Let V̂ +r(w) = {x1, . . . , xlw} represent the set V +(w) sorted by non-decreasing order of the reduced

costs of the associate arcs with respect to scenario r, that is, such that c̄rwx1
≤ . . . ≤ c̄rwxlw

. Therefore,

c̄r(qp,rw,x1
) ≤ . . . ≤ c̄r(qp,rw,xlw

) and, thus, the costs in scenario r of the paths generated from a (1, n)-path p by

deviation at node w ∈ V (p) are sorted, as Figure 3.(b) shows, in the following way:

cr(qp,rw,x1
) ≤ . . . ≤ cr(qp,rw,xlw

). (17)

Assuming that p1w is a loopless (1, w)-path, the deviation path qp,rw,x results from the concatenation of

three loopless paths and therefore it can still contain repeated nodes. However, the choice of x can be made

in such a way that the least possible number of paths with loops is generated, by comparing the possible

nodes x with the nodes in p1w. Let w ∈ V (p)\{n} and (w, x) ∈ A(p), the head nodes of the deviation arcs

from path p at node w are chosen from the set:

V +r(p1w, x) = {xj ∈ V̂ +r(w) : xj 6= x , c̄rwxj
≥ c̄rwx and p1w � 〈w, xj〉 is loopless }. (18)

The nodes considered for each path p are those from p’s deviation node to the node that precedes n.

Figure 4.(a). shows a scheme of the deviation paths generated by the MPS algorithm with respect to a path

with deviation arc (w, x).

In the MPS algorithm the deviation from path p at a node w is obtained by taking the first head node

in the ordered set V +r(p1w, x). In order to simplify the choice of deviation arcs, the graph is stored in

the sorted forward star form, that is, as mentioned earlier, each subset V̂ +r(w) is sorted according to non-

decreasing order of the reduced costs, for any w ∈ V [14]. For scenario r, the MPS algorithm starts to

generate deviations from the shortest path p1,r at every of its nodes but n. The resulting paths, one per each

scanned node, are stored in a list and are selected, by non-decreasing order of the reduced costs, in future

iterations. Each of these paths is identified as the l-th loopless shortest path with respect to scenario r in

case it is loopless, for some l > 1. This process is repeated under the same conditions. Scanning only the

nodes in loopless sub-paths reduces the calculation of paths containing loops, and selecting deviation arcs

that have not been scanned earlier avoids the determination of repeated paths.

Any ranking strategy can be applied with Algorithm 2 in order to compute a robust shortest path. The

hybrid algorithm here presented uses a specific variant of the MPS algorithm, as explained next. With this

13



1

w

x

n

(a) MPS version

1

w

x

n

(b) Hybrid version

Figure 4: Deviation techniques used in the MPS and the hybrid algorithms

latter method, at most one new deviation path is generated when scanning a path node. The purpose is to

avoid the calculation and the storage of unnecessary paths as much as possible, when ranking paths by order

of cost. When looking for robust shortest paths using a ranking approach, the more solution candidates

are generated, the higher the chances of computing paths with small robustness costs at an early stage.

An expected consequence is to reduce faster the cost upper bound and to find an optimal solution quicker

than when generating fewer candidates at a time. This technique is similar to the generalization of Yen’s

algorithm described in [14]. In the hybrid algorithm, the scanned nodes of a path p are those between its

deviation node and the node that precedes n. Scanning one of those nodes, w, consists of generating all

deviation paths of form (15), with the deviation arc (w, xj), with xj chosen in the set V +r(p1w, x), according

to its underlying order. As shown in the following, this allows to apply and to extend the pruning rules

used in Algorithm 1, and thus to discard some unnecessary deviation paths that do not lead to an optimal

solution. Figure 4.(b) illustrates the deviation technique used in the hybrid algorithm with respect to a path

with deviation arc (w, x).

Corollary 1 presents the results in Propositions 1 and 4, rewritten using the notation introduced in the

current section.

Corollary 1. Let p ∈ P , w ∈ V (p), x ∈ V +(w), and let qp,rw,x = p1w � 〈w, x〉 � p1,rxn be the deviation path of p

with deviation arc (w, x). Let p̃ be any robust shortest (1, n)-path containing the sub-path p1w. Then,

1. maxs∈Sk
{cs(p1w) + LBs

w − LBs
1} ≤ RC(p̃);

2. cs(p̃) ≤ cs(qp,rw,x), for every s ∈ S(qp,rw,x).

The first point of this corollary is a sufficient condition for a deviation path to be a candidate to an

optimal path. The second point states that the cost of a deviation path, in the scenario where its robustness

cost occurs, is an upper bound for the cost of any robust shortest path containing the sub-path p1w. These

cost upper bounds can be combined with the ranking method previously described in order to obtain a

deviation path which is a robust shortest path.

In the following, the bounds given by Corollary 1 are enhanced, taking into account the results used in

Algorithm 2. Let Cmax and UB denote upper bounds for the paths cost in scenario r and for the paths

robustness cost, respectively. Like before, these values are initialized according to the least robustness cost

14



for the shortest paths in all scenarios p1,s, s ∈ Sk. For a (1, n)-path p and a node w ∈ V (p), such that

(w, xu) ∈ A(p) and u < lw, every arc (w, xj), with xj ∈ V +r(p1w, xu) = {xu+1, . . . , xlw}, is considered as a

new deviation arc. Because the set V +r(p1w, xu) is sorted, the deviation paths qp,rw,xu+1
, . . . , qp,rw,xulw

satisfy

condition (17). In this case, the following pruning rules apply:

1. By point 1. of Corollary 1, a sub-path p1w does not produce robust shortest deviation paths if

maxs∈Sk
{cs(p1w)+LBs

w−LBs
1} > UB. In this case, all the deviation paths qp,rw,xj

, with u+1 ≤ j ≤ lw,

can be skipped.

2. The rule above can be refined given that, by the same result, if maxs∈Sk
{cs(p1w)+cswxj

+LBs
xj
−LBs

1} >
UB, the path p1w � 〈w, xj〉 � p1,rxjn, u + 1 ≤ j ≤ lw, and its subsequent deviations will not lead to

optimal paths, and thus can be skipped.

3. Let i be the first element in {u+ 1, . . . , lw} such that cr(qp,rw,xi
) > Cmax. Then, all the deviation paths

qp,rw,xj
, i ≤ j ≤ lw, can be discarded.

4. Let i′ ∈ {u + 1, . . . , lw} be the smallest index such that RC(qp,rw,xi′
) = RDr(qp,rw,xi′

) ≤ UB. By point 2.

of Corollary 1 all paths of form qp,rw,xj
, with i′ < j ≤ lw, and subsequent deviations have a robustness

cost not smaller than the optimum value. Therefore, they can be skipped.

The deviation process for the hybrid algorithm is performed for the first path, p1,r, by scanning all its

nodes but n and for the subsequent deviation paths of the form (15), by scanning all their nodes from the

head node of their deviation arc till the one that precedes either n or the first which is repeated. Every

deviation node is the tail node of an arc in T r. This is valid both for p1,r, which is a path in that tree, as

well as for the paths of the form (15), because they result from the concatenation with a path in that tree.

Consequently, for any node w ∈ V (p) that is scanned and (w, x) ∈ A(p), it holds c̄rwx = 0. Therefore, x is

the first element in V̂ +r(w), i.e. x = x1, and the available head nodes of the deviation arcs with tail node w

belong to V +r(p1w, x1). The obtained candidate paths are stored in a list X and the path with the least cost

in scenario r is chosen to be analyzed in the next iteration. Throughout the algorithm, the upper bounds

Cmax and UB are updated and a loopless robust shortest path is identified when the stopping criterion

used in Algorithm 2 is satisfied.

The steps of this method are described next.

Global algorithmic structure The preliminary procedures for this approach have points in common

with both Algorithms 1 and 2. A list W stores the non discarded deviation paths in each iteration and

another list X stores all such paths for all iterations. The variables RCaux, UB, sol and Cmax have the

same meaning as in Algorithm 2 and the ranking scenario r is determined in the same way. Additionally,

the sorted forward star form of the network with respect to the costs in scenario r is obtained. The path

being scanned is represented by variable p. The deviation nodes of new deviation paths are represented by

w, the variable x1 corresponds to the head node of p’s arc with tail node w, i.e. p = p1w � 〈w, x1〉 � p1,rx1n.

According to the pruning rules described above, one deviates at a given node w in case 1. or 2. are

not satisfied and one may stop deviating at w when a deviation path qp,rw,x satisfies 3. or 4. Whenever the

robustness cost, RCaux, of a deviation path improves UB, the latter as well as the upper bound cost Cmax

are updated. Additionally, one can delete all the paths q in W which exceed the ranking bounds or that

would not produce any optimal solution, i.e. that satisfy rules 2. or 3.

15



An iteration is complete once all the necessary nodes of path p have been scanned. Then, if this is a

loopless path with robustness cost UB, it is identified as an optimal path candidate, and sol is updated.

Additionally, the paths in X that satisfy the pruning rules 2. or 3. are removed from the list. Finally, all the

paths stored in W are inserted in list X and the path to be considered at the next iteration is the shortest

in X with respect to scenario r.

The pseudo-code of the second version of Algorithm 2 described above is presented in Algorithm 3.

Algorithm 3: Hybrid approach for finding a robust shortest (1, n)-path

1 Q← ∅;
2 for s = 1, . . . , k do
3 Compute the tree T s in scenario s;
4 Q← Q ∪ {p1,s};
5 for i = 1, . . . , n do LBs

i ← cs(p1,sin ) ;

6 UB ← min{RC(p1,s) : s ∈ Sk};
7 sol← p1,s such that RC(p1,s) = UB, s ∈ Sk;
8 r ← min

{
s ∈ Sk : RDs(sol) = UB

}
;

9 Cmax← cr(sol);
10 X ← ∅; p← p1,r;
11 Store the network in the sorted forward star form with respect to the costs for scenario r;
12 while there exists a path p to be scanned such that RDr(p) 6= UB do
13 W ← ∅;
14 for w ∈ V (p) from the head node of p’s deviation arc to the node that precedes n do
15 p1w ← (1, w)-sub-path of p;
16 if p1w is not loopless then break ;
17 if maxs∈Sk

{cs(p1w) + LBs
w − LBs

1} > UB then break ;
18 x1 ← head node of p’s arc with tail node w;
19 for x ∈ V̂ +r(p1w, x1) do
20 if maxs∈Sk

{cs(p1w) + cswx + LBs
x − LBs

1} ≤ UB then
21 qp,rw,x ← p1w � 〈w, x〉 � p1,rxn ;
22 if cr(qp,rw,x) > Cmax then break ;
23 W ←W ∪ {qp,rw,x};
24 RCaux← max{cs(p1w) + cswx + LBs

x − LBs
1 : s ∈ Sk};

25 if RCaux < UB then
26 UB ← RCaux; Cmax← LBr

1 + UB;
27 Delete from W any path q such that cr(q) > Cmax, or

maxs∈Sk
{cs(q1w) + cswx + LBs

x − LBs
1} > UB, with (w, x) the q’s deviation arc;

28 if RDr(qp,rw,x) = UB then break ;

29 if RC(p) = UB and p is loopless then sol← p ;
30 Delete from X any path q such that cr(q) > Cmax, or

maxs∈Sk
{cs(q1w) + cswx + LBs

x − LBs
1} > UB, with (w, x) the q’s deviation arc;

31 X ← X ∪W ;
32 p← shortest path for scenario r in X; X ← X − {p};
33 return sol

Computational time complexity order Like the previous methods, Algorithm 3 is pseudo-polynomial

in terms of time. Its wort case complexity is of O(k2n + kmH + m log n) for acyclic networks and of

O(k2n + k max{mH,n log n}+ m log n) for general networks, with H the number of ranked deviation paths

16



(details and calculations can be seen in Appendix).

4 Example

Let G(V,A, S2) be the network depicted in Figure 5, and consider the application of Algorithms 1, 2 and 3

for finding a robust shortest (1, 6)-path in G(V,A, S2).

1

10, 15

0, 10

0, 1

2
10, 20

3

20, 0

2, 11

5, 0

52, 30

4
10, 10

5

20, 21 6

20, 20

40, 42

i
c1ij , c

2
ij

j

Figure 5: Network G(V,A, S2)

The plots in Figure 6 show the tree of the shortest paths from every node to node 6 for scenario 1 –

Figure 6.(a) – and the tree of the shortest paths from every node to node 6 for scenario 2 – Figure 6.(b).

The values attached to a tree node i represent the cost of the (i, 6)-path in that tree. For this example, one

has LB1 = (40, 40), LB2 = (30, 40), LB3 = (40, 30), LB4 = (20, 20), LB5 = (40, 41).

1

40

2

30

3

40

4

20

5

40

6

0

i

LB1
i

(a) under scenario 1

1

40

2

40

3

30

4

20

5

41

6

0

i

LB2
i

(b) under scenario 2

Figure 6: Shortest path trees rooted at n = 6 in G(V,A, S2)

Initially, the elements of set Q are the shortest paths in scenarios 1 and 2, i.e. p1,1 = 〈1, 2, 4, 6〉, with
LB1

1 = 40, and p1,2 = 〈1, 3, 6〉, with LB2
1 = 40, respectively. Because c1(p1,2) = 52 < c2(p1,1) = 55, p1,2 is

the path in Q with the minimum robustness cost, 12. This value initializes UB in Algorithms 1, 2 and 3.

Thus, p1,2 is initially set as a potential optimal solution, sol = p1,2. Since S(p1,2) = {1}, the loopless paths

will be ranked in scenario 1 for Algorithms 2 and 3, and Cmax = c1(p1,2) = 52 is considered as the initial

cost upper bound.

Application of Algorithm 1

Figure 7 shows the tree of paths that is obtained when applying Algorithm 1.

The method starts by selecting the label z1 = (−LB1
1 ,−LB2

1) = (−40,−40) and including it in Z1. When

scanning z1, new labels for nodes 2 (z2 = (−30,−25)) and 3 (z3 = (−40,−30)) are generated. However, z2
is discarded, given that maxs∈S2{zs2 + LBs

2} = 15 > 12 and thus it leads to paths with a robustness cost

greater than 12. On the other hand, maxs∈S2{zs3 + LBs
3} = 0 ≤ 12, which means that the extension of the

17



1 (−40,−40)

3 (−40,−30)

2(−20,−30) 5 (−35,−30)

4 4(−10,−10) (−15,−9)

6(10, 10)

Figure 7: Search tree of paths produced by Algorithm 1

(1, 3)-path associated with z3 might be optimal. Then, z3 is selected and inserted in Z3. After that, the

labels z1 = (−40,−29), z2 = (−20,−30), z5 = (−35,−30) and z6 = (12, 0) are created. The first of them is

dominated by label (−40,−40) in Z1, therefore it is eliminated. Nevertheless, labels z2 and z5 are stored in

Z2 and Z5, respectively, because maxs∈S2
{zs2 + LBs

2} = 10 ≤ 12 and maxs∈S2
{zs5 + LBs

5} = 11 ≤ 12. The

label z6 satisfies maxs∈S2
{zs6} = 12, hence it is discarded because it does not improve the best robustness

cost obtained so far.

When selecting the label z2 in Z2, z4 = (−10,−10) is created and, because maxs∈S2{zs4+LBs
4} = 10 ≤ 12,

it is inserted in Z4. From label z5 ∈ Z5, the labels z3 = (−33,−19), z4 = (−15,−9) and z6 = (5, 12) are

generated. The former label z3 is dominated by (−40,−30), so it is deleted; label z6 is not stored either

because it does not improve the robustness cost 12; the extensions of the path associated with z4 can produce

a robustness cost of at least maxs∈S2{zs4 + LBs
4} = 11 ≤ 12, so z4 is inserted in Z4. The two labels in Z4,

(−10,−10) and (−15,−9), lead to (10, 10) and (5, 11) as labels of node 6, respectively. The first of them

corresponds to the path 〈1, 3, 2, 4, 6〉 which has a least robustness cost of 10. This is the robust shortest

path.

Application of Algorithm 2

Table 1 summarizes the steps of Algorithm 2 when applied to the network in Figure 5.

j Path pj,1 c1(pj,1) c2(pj,1) Updates
1 〈1, 2, 4, 6〉 40 55 UB ← 12; sol← p1,2; Cmax← 52
2 〈1, 3, 5, 6〉 45 52 RCaux← 12;
3 〈1, 3, 5, 4, 6〉 45 51 UB = RCaux← 11 < 12; sol← p3,1; RD1(p3,1) 6= 11; Cmax← 51
4 〈1, 3, 2, 4, 6〉 50 50 UB = RCaux← 10 < 11; sol← p4,1; RD1(p4,1) = 10; Stop

Table 1: Simulation of Algorithm 2

The computation of the second shortest path in scenario 1, p2,1 = 〈1, 3, 5, 6〉, does not improve UB,

which demands the calculation of path p3,1 = 〈1, 3, 5, 4, 6〉. This new path has a robustness cost smaller

than the previous, 11, which allows to update UB. The new cost upper bound Cmax = c1(p3,1) = 51 for

the ranking is also set and the potential optimal solution sol is updated with p3,1. Since the maximum

robust deviation of p3,1 does not occur in scenario 1, the next path in the ranking must be obtained. Such

path, p4,1 = 〈1, 3, 2, 4, 6〉, is the robust shortest (1, 6)-path, because its robustness cost, 10, is the least UB

obtained so far in scenario 1. The algorithm halts and p4,1 is retrieved as the optimal solution.

Application of Algorithm 3

18



The tree of the paths obtained with Algorithm 3 is depicted in Figure 8.

1 (0, 0)

2(10, 15) 3 (0, 10)

4(20, 35)

6(40, 55)

1(0, 11)

2(10, 26)

4(20, 46)

6(40, 66)

2(20, 10)

4(30, 30)

6(50, 50)

5 (5, 10)

6 (45, 52)

Figure 8: Tree of the deviation paths produced by Algorithm 3

The method starts by considering the same initial upper bounds as in Algorithm 2, Cmax = 52, UB = 12,

and deviating from p1,1 = 〈1, 2, 4, 6〉 in all its nodes but 6, taking into account that

V +1(〈1〉, 2) = {3} ; V +1(〈1, 2〉, 4) = ∅ and V +1(〈1, 2, 4〉, 6) = ∅.

The only path output on the first iteration of the method is qp
1,1,1

1,2 = 〈1, 3, 1, 2, 4, 6〉, with c1(qp
1,1,1

1,2 ) = 40 <

52, which contains a loop. This is the path p considered in the following iteration, and this time only node

3 is scanned. Besides, maxs∈S2

{
cs(〈1, 3〉) + LBs

3 − LBs
1

}
= 10 ≤ 12, thus potential optimal paths can

deviate from p at node 3. Because V +1(〈1, 3〉, 1) = {5, 2, 6}, the arcs (3, 5), (3, 2) and (3, 6) are considered

as possible deviation arcs. When using deviation arc (3, 5), the loopless path qp,13,5 = 〈1, 3, 5, 6〉 is computed,

with c1(qp,13,5) = 45 < 52 and RC(qp,13,5) = 12, which does not improve the best value obtained so far. Path

〈1, 3, 5, 6〉 is stored in list W and the deviation path qp,13,2 = 〈1, 3, 2, 4, 6〉 is obtained. This path satisfies

c1(qp,13,2) = 50 < 52 and RC(qp,13,2) = 10 < 12, so it is a new candidate for optimality and it is stored in

W as well. Moreover, since RD1(qp,13,2) = 10, future deviations from path p at node 3 do not improve the

best robustness cost obtained so far, and, therefore, the deviation arc (3, 6) is not considered. In spite of

c1(〈1, 3, 5, 6〉) = 45 < 50, path 〈1, 3, 5, 6〉 satisfies maxs∈S2
{cs(〈1, 3〉) + cs35 + LBs

5 − LBs
1} = 11 > 10. Thus,

this path will not produce optimal deviation paths and it is removed from W . Then, the only path left in

W , 〈1, 3, 2, 4, 6〉, is transferred to the empty list X.

Because V +1(〈1, 3, 2〉, 4) = V +1(〈1, 3, 2, 4〉, 6) = ∅, no new deviation arcs exist and, therefore, 〈1, 3, 2, 4, 6〉
is the robust shortest path.

5 Computational experiments

This section is devoted to the empirical evaluation of the presented methods and their comparison with the

exact algorithm by Yu and Yang [22]. This latter approach is based on dynamic programming, it applies

a recursive relation to find the optimum value of the problem, starting with a cost upper bound for each

scenario, given by the sum of the costs of the n − 1 arcs with the largest costs. This makes the method

particularly sensitive to the range of cost values. From now on, Algorithms 1, 2 and 3 will be represented

by LA, RA and HA, respectively, whereas YA will represent Yu and Yang’s algorithm. In order to evaluate

and compare the performances of these algorithms, they were implemented in Matlab 7.12. and ran on

19



a computer equipped with an Intel Pentium Dual CPU T2310 1.46GHz processor and 2GB of RAM. The

implementations of LA, RA and HA use Dijkstra’s algorithm [1] to compute the shortest path tree T s for

every scenario s. In LA, X is managed as a FIFO list. The MPS algorithm [14] is applied to rank the

loopless paths in RA.

5.1 Input data and tests

The benchmarks used in the experiments correspond to randomly generated directed graphs with n nodes,

m arcs and each arc cost assigned with a random real number in U(0, b), b ∈ {20, 100}, for k scenarios. The

computational tests were performed for k ∈ {2, 3, 4, 5, 10, 50, 100, 500, 1000, 5000} scenarios and on

• complete networks, with n ∈ {5, 10, 15},

• random networks, with n ∈ {5, 10}, d ∈ {2, 3} and n ∈ {250, 500, 750}, d ∈ {5, 10, 15}, where d = m/n

represents the density.

For each network dimension of each type, 10 problems were generated and solved by the algorithms above.

5.2 Results

For each algorithm, the average and the standard deviation of the total CPU times (registered in seconds)

are denoted by Avet and Stdt, respectively. The total CPU time is split in the time needed to compute the

trees T s, s ∈ Sk, and the time required for the remaining procedures. The averages of the partial times are

denoted by Aveti , i = 1, 2. In terms of the total CPU time, Avet = Avet1 + Avet2 .

A first set of tests intended to compare the new methods with YA. These tests ran for networks with

n ∈ {5, 10}, d ∈ {2, 3, 9}, k ∈ {2, 3} and costs in U(0, 20); the results are summarized on Table 2. For these

cases, YA has a poor performance when compared with the other three methods, reporting results 104 or

105 times bigger than the corresponding ones for LA, RA and HA, which had all a similar behavior. Such

difference increases with the number of scenarios. For k ≥ 4 the tests for YA ran too slow, therefore the

results are omitted.

LA RA HA YA
n d k Avet Stdt Avet Stdt Avet Stdt Avet Stdt

5

2 2 0.008 0.002 0.008 0.002 0.007 0.002 14.101 2.658
3 0.010 0.001 0.023 0.024 0.009 0.001 954.120 166.942

3 2 0.010 0.004 0.009 0.002 0.009 0.005 19.490 1.526
3 0.020 0.015 0.040 0.035 0.013 0.008 1673.298 230.015

4 2 0.009 0.002 0.010 0.001 0.010 0.006 24.181 2.737
3 0.017 0.022 0.026 0.026 0.017 0.015 2196.441 342.817

10
2 2 0.016 0.006 0.031 0.024 0.018 0.011 363.342 60.763
3 2 0.014 0.001 0.017 0.007 0.013 0.002 513.922 57.470
9 2 0.021 0.007 0.039 0.025 0.019 0.016 1305.751 76.355

Table 2: Averages and standard deviations of the total CPU times (in seconds)

The second set of tests considered bigger instances than the previous, costs generated in U(0, 100), and

the codes LA, RA and HA. The average partial running times are reported in Table 3 for complete networks

and in Tables 6 and 7 for random networks. Analogously, Tables 4, 8 and 9 show the averages and the

standard deviations of the total CPU times for complete and for random networks, respectively. Some of

the values are omitted, when the codes were too slow.

20



LA RA HA
n k Ave

(∗)
t1

Avet2 Avet2 Avet2

5

2 0.007 0.003 0.005 0.002
3 0.010 0.003 0.005 0.002
4 0.018 0.003 0.007 0.002
5 0.019 0.004 0.005 0.004
10 0.028 0.005 0.006 0.004
50 0.136 0.043 0.031 0.046
100 0.229 0.148 0.918 0.158
500 1.043 3.413 2.712 3.508
1000 1.994 13.345 10.844 13.808
5000 8.990 315.105 598.546 325.259

10

2 0.020 0.008 0.027 0.012
3 0.022 0.006 0.072 0.004
4 0.030 0.019 0.124 0.010
5 0.038 0.008 0.718 0.006
10 0.068 0.014 0.272 0.009
50 0.264 0.056 0.696 0.064
100 0.440 0.195 1.213 0.214
500 2.174 4.240 5.456 4.384
1000 4.167 16.965 17.959 17.441
5000 21.399 421.006 909.843 427.992

15

2 0.019 0.030 0.855 0.011
3 0.029 0.024 21.920 0.013
4 0.041 0.021 83.914 0.011
5 0.057 0.014 366.546 0.008
10 0.084 0.014 175.924 0.015
50 0.376 0.070 616.213 0.089
100 0.663 0.234 1141.484 0.270
500 2.981 5.003 1050.504 5.280
1000 7.038 19.713 1136.937 20.486
5000 31.923 524.525 3483.262 541.136

(∗) : Avet1 (LA) = Avet1 (RA) = Avet1 (HA)

Table 3: Average partial CPU times for complete networks (in seconds)

Let Aver and Aveh represent the average number of loopless (1, n)-paths returned by the ranking in

RA and HA, respectively, and Stdr and Stdh be the corresponding standard deviations. Such results are

presented in Table 5, for complete networks, and in Table 10, for random networks. These measures are

sufficient to determine the averages and the standard deviations of the total number of computed loopless

paths, given by Avepr = Aver + k and Aveph
= Aveh + k, respectively, and, analogously, the associate

standard deviations by Stdpr = Stdr and Stdph
= Stdh.

According to Tables 3, 6 and 7, computing the trees T s, s ∈ Sk, was the most demanding step in terms of

time for codes LA and HA in most of the instances, except on some cases with many scenarios, like complete

networks (k ≥ 1000) or random networks with n = 250 and k = 5000. Nevertheless, LA presented other

exceptions for random networks with few scenarios (k ≤ 5).

In general, most of RA’s time was invested on the second step, namely when the number of ranked paths

or the number of deviation costs demanded a major computational effort. The latter cases are reflected in

the results obtained for all types of networks when k ≥ 100 and the former stand for the denser networks, like

complete networks with n ∈ {10, 15} and random networks with d = 15. In fact, the higher the density of a

network, the more arcs emerge from each node, which improves the chances of computing a large number of

loopless paths till a solution is obtained, as Tables 5 and 10 show. Moreover, since Aver was always greater

than Aveh, Avet2(RA) was also always greater than Avet2(HA), even for the cases where the second phase

had a minor role in the performance of RA. This was the case for complete networks with n = 5 and k < 100,

21



2 5 10 50

10
−2

10
−1

k

lo
g

1
0
(A

v
e

t)

n=5

50 1000 5000

10
−1

10
1

10
3

k

n=5

2 5 10 50

10
−1

10
0

k

lo
g

1
0
(A

v
e

t)

n=10

 

 

50 1000 5000
10

−1

10
1

10
3

k

n=10

2 5 10 50
10

−2

10
0

10
2

k

lo
g

1
0
(A

v
e

t)

n=15

50 1000 5000
10

−1

10
1

10
4

k

n=15

LA RA HA

Figure 9: Average total CPU times for complete networks

where in average up to 3 loopless paths were ranked, and for random networks with small densities and few

scenarios, as d = 5 and k ∈ {2, 3, 4} or d = 10 and k = 2.

Code HA outperformed RA for all cases in terms of time, as shown in Tables 4, 8 and 9. Nevertheless,

HA was not always the most efficient method, given that LA had the best performance in problems with

k ≥ 100. The standard deviations of the total CPU times provide information about the variability on the

results towards the averages. In this sense, LA and HA were the most stable codes, with standard deviations

generally smaller than the corresponding averages. Instead, RA had the most irregular performance due to

the high values of Stdt(RA), usually greater than Avet(RA). This is supported by the high variability of

the number of paths ranked by RA on Tables 5 and 10. In contrast, the number of paths ranked by HA did

not vary much and the averages Aveh are quite small, especially when k ≥ 50 for denser networks, where

only one iteration was needed to obtain the optimal solution.

The evolution of the average CPU times can be evaluated by varying a single parameter at a time. When

n and d are fixed, Tables 3, 6 and 7 show that the average time for computing the trees T s, s ∈ Sk, grows

when k increases, which is explained by the increase of the number of shortest paths ending at node n.

In what concerns the second phase of the algorithms, Avet2(LA) and Avet2(HA) showed the smoothest

growths. Instead, Avet2(RA) increased more irregularly with k, due to the unstable variation of Aver in

Tables 5 and 10.

As computing the trees T s, s ∈ Sk, is the common initial task for all algorithms, their behavior on the

second phase mimics the evolution of their average total CPU times. The plots in Figures 9 and 10 show

these growths in logarithmic scale for the three codes, when k varies on complete networks with n fixed and

22



LA RA HA
n k Avet Stdt Avet Stdt Avet Stdt

5

2 0.010 0.002 0.012 0.003 0.009 0.001
3 0.013 0.001 0.015 0.004 0.012 0.002
4 0.021 0.002 0.025 0.019 0.020 0.002
5 0.023 0.002 0.024 0.009 0.023 0.003
10 0.033 0.005 0.034 0.007 0.032 0.006
50 0.179 0.008 0.167 0.028 0.182 0.011
100 0.377 0.011 1.147 0.018 0.387 0.011
500 4.456 0.038 3.755 0.700 4.551 0.024
1000 15.339 0.105 12.838 0.735 15.802 0.122
5000 324.095 2.694 607.536 10.618 334.249 2.183

10

2 0.028 0.008 0.047 0.047 0.032 0.030
3 0.028 0.009 0.094 0.125 0.026 0.005
4 0.049 0.016 0.154 0.189 0.040 0.018
5 0.046 0.006 0.756 2.861 0.044 0.005
10 0.082 0.022 0.340 0.420 0.077 0.009
50 0.320 0.010 0.960 0.683 0.328 0.009
100 0.635 0.006 1.653 1.508 0.654 0.022
500 6.414 0.118 7.630 2.986 6.558 0.079
1000 21.132 0.767 22.126 2.183 21.608 0.635
5000 442.405 11.154 931.242 52.261 449.391 8.616

15

2 0.049 0.019 0.874 1.459 0.030 0.008
3 0.053 0.018 21.949 75.275 0.042 0.017
4 0.062 0.024 83.955 306.722 0.052 0.010
5 0.071 0.021 366.603 895.563 0.065 0.007
10 0.098 0.010 176.008 621.275 0.099 0.014
50 0.446 0.024 616.589 1127.390 0.465 0.016
100 0.897 0.019 1142.147 2323.143 0.933 0.017
500 7.984 0.106 1053.485 2737.683 8.261 0.092
1000 26.751 0.346 1143.975 2478.878 27.524 0.247
5000 556.448 21.708 3515.185 3472.625 573.059 27.474

Table 4: Averages and standard deviations of the total CPU times for complete networks (in seconds)

on random networks with n and d fixed, respectively. The chosen density is 5 because these problems were

solved till the end for all sizes, except when k = 5000 and n = 750. The averages Avet(LA) and Avet(HA)

grew similarly with the increase of k but slower than Avet(RA). The increase of the latter is steeper than

for LA and HA and it is quite irregular for small values of k, due to the unsteady behavior of the ranking.

Moreover, all averages increase slower when k > 1000, since all the performances become more dependent

on the cost calculations.

n = 5 n = 10 n = 15
RA HA RA HA RA HA

k Aver Stdr Aveh Stdh Aver Stdr Aveh Stdh Aver Stdr Aveh Stdh
2 1 1 1 1 8 9 2 2 63 74 3 3
3 2 2 1 1 17 19 1 1 220 322 3 2
4 3 2 1 0 25 26 2 2 407 566 4 3
5 2 2 1 0 40 62 2 1 786 1209 2 1
10 3 2 1 0 40 33 1 0 757 1072 2 2
50 3 2 1 0 64 35 1 0 1436 1352 1 0
100 4 2 1 0 86 53 1 0 1923 1906 1 0
500 4 2 1 0 67 39 1 0 1400 1112 1 0
1000 4 2 1 0 81 47 1 0 1531 1151 1 0
5000 5 3 1 0 85 72 1 0 2086 1770 1 0

Table 5: Averages and standard deviations of the number of ranked loopless paths for complete networks

The obtained results may also be analyzed from the perspective of fixing the number of scenarios. Based

on Figures 9 and 10, for different values of k, Avet(LA) and Avet(HA) become more distant from Avet(RA)

when n increases. This results from the growth of the number of paths in G with n, which may also affect

23



2 5 10 50

10
0

10
1

10
2

n=250, d=5

k

lo
g

1
0
(A

v
e

t)
 

 

50 1000 5000

10
1

10
2

10
3

n=250, d=5

k

2 5 10 50

10
0

10
1

10
2

n=500, d=5

k

lo
g

1
0
(A

v
e

t)

50 1000 5000
10

1

10
2

10
3

10
4

n=500, d=5

k

2 5 10 50
10

0

10
1

10
2

10
3

n=750, d=5

k

lo
g

1
0
(A

v
e

t)

50 1000 5000

10
2

10
3

10
4

n=750, d=5

k

LA RA HA

Figure 10: Average total CPU times for random networks with d = 5

their number of arcs and, consequently, the variety of paths, making the ranking heavier.

For random networks with fixed n and k, when d increases the number of paths and the average number

of arcs emerging from each node increases too. This leads to a global growth on the total CPU times,

specially for RA, as indicated by Tables 8 and 9, as well as by the plots in Figure 11 for random networks

with n = 250. The graphics for random networks with n ∈ {500, 750} are not included because the relative

behavior of the codes in such cases is similar to those shown for n = 250.

In general, LA and HA were the most effective methods to solve the robust shortest path problem,

showing similar behaviors. The experiments showed that HA was faster when the number of scenarios does

not exceed 100, solving the problem in less than one minute in average, whereas LA was the best alternative

for networks with 1000 or 5000 scenarios, running in less than one hour in average.

6 Conclusions

This work addressed the minmax regret robust shortest path problem with a finite number of scenarios.

Some properties of this problem were derived and supported the development of three algorithms for finding

an optimal loopless solution. The first algorithm is a labeling approach, the second is based on the ranking

of loopless paths and the third is a hybrid version of the previous two that combines pruning techniques from

both while ranking loopless paths in a specific manner. The novelty of the hybrid algorithm when compared

to a simple version of the ranking based method is twofold. On the one hand, its pruning rules allow to skip

uninteresting paths; while, on the other, it promotes the early generation of more candidate paths than with

a standard implementation, seeking to produce good cost upper bounds. This strengthens the elimination

24



of bad solutions.

0 5 10 15

10
0

10
1

10
2

10
3

d

lo
g

1
0
(A

v
e

t)

n=250, LA

 

 

0 5 10 15

10
0

10
1

10
2

10
3

10
4

d

n=250, RA

0 5 10 15

10
0

10
1

10
2

10
3

d

n=250, HA

k=2

k=3

k=4

k=5

k=10

k=50

k=100

k=500

k=1000

k=5000

Figure 11: Average total CPU times for random networks with n = 250

The methods are pseudo-polynomial in terms of time and their worst case complexity orders depend on

the model parameters, as well as on the number of labels for every node for the first method, and the number

of ranked paths for the second and the third. Implementations of the three methods were tested on randomly

generated networks and compared with the algorithm by Yu and Yang [22]. The new approaches were more

efficient than Yu and Yang’s algorithm. Besides, out of the three introduced methods, the ranking approach

was the one with the poorest performance, due to the variable number of loopless paths that had to be

ranked before the robust shortest path could be obtained. The changes introduced in the hybrid version

resulted in an improvement of this step and, thus, of the initial version of the algorithm. The labeling and

the hybrid methods had similar behaviors. Nevertheless, the former stood out only in problems with a large

number of scenarios, while the latter was always the best when that number was small.

Future research on this subject can be directed to explore further techniques for reducing the network

dimension of the model. Besides, because the time for solving the problem can be controlled for a relatively

large number of scenarios, studying the relation with continuous cost models approximation theory is also

suggested.

Acknowledgments This work has been partially supported by the Portuguese Foundation for Science and

Technology under project grant PEst-C/EEI/UI308/2011. The research of Marisa Resende was partially

funded by the Portuguese Foundation for Science and Technology under grant SFRH/BD/51169/2010.

25



Appendix

Computational times complexity

In order to determine the worst case computational complexities for the algorithms introduced earlier, some

auxiliary procedures are analyzed in the following.

1. Determination of a tree T s of shortest (i, n)-paths, i ∈ V , in a scenario s ∈ Sk, and of their

costs for all scenarios: The computational time complexity is O(m) for acyclic networks [1], and

O(m+n log n) for general networks, if using Fibonacci heaps [8]. Computing the costs for all scenarios

has O(kn) in both cases, so this step has O(m + kn) for acyclic networks and O(m + n log n + kn) for

general networks.

2. Calculation of the robustness cost of a shortest path p1,s, s ∈ Sk, given LB1
1 , . . . , LB

k
1 : All

the costs cr(p1,s), r ∈ Sk, were determined in 1. The k robust deviations, RDr(p1,s), r ∈ Sk, are

obtained in O(k) time and their minimum can be found with O(k) comparisons. Consequently, the

required work has time of O(k).

3. Calculation of a label zj from a given label zi, with (i, j) ∈ A: Label zj is determined from zi

by adding the k costs of arc (i, j), hence it is obtained in O(k) time.

4. Dominance test between two labels: Since in a worst case all the components of two labels are

considered on a dominance test, at most k comparisons are involved and consequently this operation

has O(k) time.

Algorithm 1 It is performed in two stages. The first one consists of the initialization steps, done in

O(km + k2n) for acyclic networks and in O(k(m + n log n) + k2n) for general networks, according to 1. In

a worst case, the calculation of the robustness costs of all the k paths in Q is necessary, which takes O(k2)

time, attending to 2. Initializing the upper bound UB requires O(k) time. Hence, the total amount of

operations that precede the generation of the labels is performed in Oa
1 = O(km + k2n) time for acyclic

networks and Oc
1 = O(k(m + n log n) + k2n) for general networks.

The second stage concerns the generation, scanning and pruning of the labels. LetW denote the maximum

number of labels created for every node (a value dependent on the parameters n, m and k). Then, Wn is

the number of iterations of the while loop in line 11 of Algorithm 1, and each of them implies at most

n iterations of the for loop in line 13. In each of these iterations, the calculation of a new label is done

in O(k) time, the dominance tests are performed in O(kW ), and (8) is checked in O(1). Additionally,

updating X, Zi, Pi, i ∈ V , takes one operation, therefore, the second phase of Algorithm 1 has complexity

of O(Wn2kW ) = O(kn2W 2).

Consequently, Algorithm 1 has a pseudo-polynomial time complexity of O(k2n + k max{m,n2W 2}) for

any type of network, since log n� n.

Algorithm 2 It has two major steps, the first concerned with preliminary procedures for the ranking and

the second involving the ranking itself. Points 1. and 2. presented for the complexity analysis of Algorithm 1

are still valid regarding the complexity of the first phase of Algorithm 2. Thus, such procedures are performed

in Oa
1 = O(km + k2n) time for acyclic networks and in Oc

1 = O(k(m + n log n) + k2n) time for the general

26



case. According to (14), the choice of the scenario that defines the ranking is done in at most O(k) time,

which does not affect the previous complexity bounds.

Regarding the second phase, if L loopless paths are ranked in scenario r, the time is of O(L logL) for

acyclic networks (after a initialization of O(m + n log n)), using Eppstein’s algorithm [7], and of O(Ln(m +

n log n)) in the general case, applying Yen’s algorithm or one of its variants [13, 21]. Parameter L depends

on n, m and k, and cannot be known in advance. In the worst case, the robustness costs of all the ranked

paths, besides p1,r, have to be determined. The cost of each of those paths in a given scenario can be

computed in at most O(n) time, that is in O(kn) for all scenarios, resulting in O(Lkn) time complexity

for all ranked paths. Therefore, the work required for the ranking and the related procedures can be done

in Oa
2 = O(L(logL + kn)) time for acyclic networks and in Oc

2 = O(Ln(k + m + n log n)) time for general

networks.

In conclusion, the time complexity of the algorithm is Oa
1 + Oa

2 = O(k2n + k max{m,Ln}+ L logL) for

acyclic networks and Oc
1 +Oc

2 = O(k2n+max{k, Ln}(m+n log n)+kLn) for general networks. Both bounds

are pseudo-polynomial.

Algorithm 3 It has two phases. Like for the previous approaches the first phase, related with the pre-

liminary procedures, can be performed in Oa
1 = O(km + k2n) for acyclic networks and Oc

1 = O(k(m +

n log n) + k2n) for general networks. Before the ranking starts, the arc costs are replaced by their reduced

costs, O(m), and the network is represented in the sorted forward star form, O(m log n) [14]. The sec-

ond phase concerns the deviation process. Assume that H paths are ranked, that is, the while loop in

line 12 is performed H times. In the worst case, scanning one path demands scanning all the network

arcs, trying to generate new deviations and, for each, the costs of the father sub-path for all scenarios

are obtained in O(kn) time. For a node w, the first test can be done in O(k) time. The second in-

volves the analysis of the extension of each path p1w � (w, x), with (w, x) the deviation arc, by checking

the condition maxs∈Sk
{cs(p1w) + cswx + LBs

x − LBs
1} ≤ UB, which can be done in O(k) time. The third

test involves the calculation of the cost of the deviation path qp,rw,x under scenario r, in O(1). The fourth

test implies the calculation of RC(qp,rw,x), of O(k), and its comparison with UB, of O(1). Hence, the to-

tal amount of work for each path is O(km), and the second phase has a complexity of O(Hkm). In

these circumstances, the total complexity is Oa
1 + Oa

2 = O(k2n + kmH + m log n) for acyclic networks,

and Oc
1 + Oc

2 = O(k2n + k max{mH,n log n} + m log n) for general networks. Like parameter L used in

Algorithm 2, H depends on n, m and k and is unknown.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows : Theory, Algorithms and Applications.

Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] M.E. Bruni and F. Guerriero. An enhanced exact procedure for the absolute robust shortest path

problem. International Transactions in Operational Research, 17:207–220, 2010.

[3] A. Candia-Véjar, E. Álvarez Miranda, and N. Maculan. Minmax regret combinatorial optimization

problems: An algorithmic perspective. RAIRO Operations Research, 45:101–129, 2011.

27



[4] D. Catanzaro, M. Labbé, and M. Salazar-Neumann. Reduction approaches for robust shortest path

problems. Computers & Operations Research, 38:1610–1619, 2011.

[5] J. Clímaco and E. Martins. A bicriterion shortest path algorithm. European Journal of Operational

Research, 11:399–404, 1982.

[6] L. Dias and J. Clímaco. Shortest path problems with partial information: Models and algorithms for

detecting dominance. European Journal of Operational Research, 121:16–31, 2000.

[7] D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing, 28:652–673, 1998.

[8] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization

algorithms. Journal of the Association for Computing Machinery, 34:596–615, 1987.

[9] V. Gabrel and C. Murat. Robust shortest path problems. Technical Report 7, Annales du LAMSADE,

Paris, May 2007.

[10] V. Gabrel, C. Murat, and A. Thiele. Recent advances in robust optimization and robustness: An

overview, July 2012. Working paper. (www.optimization-online.org/DB_FILE/2012/07/3537.pdf).

[11] O. E. Karasan, M. C. Pinar, and H. Yaman. The robust shortest path problem with interval data.

Technical report, Bilkent University, Ankara, Turkey, 2001.

[12] P. Kouvelis and G. Yu. Robust discrete optimization and its applications. Kluwer Academic Publishers,

Boston, 1997.

[13] E. Martins and M. Pascoal. A new implementation of yen’s ranking loopless paths algorithm. 4OR –

Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 1:121–134, 2003.

[14] E. Martins, M. Pascoal, and J. Santos. Deviation algorithms for ranking shortest paths. The Interna-

tional Journal of Foundations of Computer Science, 10:247–263, 1999.

[15] R. Montemanni and L. Gambardella. An exact algorithm for the robust shortest path problem with

interval data. Computers & Operations Research, 31:1667–1680, 2004.

[16] R. Montemanni and L. Gambardella. The robust shortest path problem with interval data via Ben-

ders decomposition. 4OR – Quarterly Journal of the Belgian, French and Italian Operations Research

Societies, 3:315–328, 2005.

[17] R. Montemanni, L. Gambardella, and V. Donati. A branch and bound algorithm for the robust shortest

path problem with interval data. Operations Research Letters, 32:225–232, 2004.

[18] I. Murthy and S.-S. Her. Solving min-max shortest-path problems on a network. Naval Research

Logistics, 39:669–683, 1992.

[19] M. Pascoal. Implementations and empirical comparison for K shortest loopless path algorithms. In

Online Proc. of The Ninth DIMACS Implementation Challenge: The Shortest Path Problem. DIMACS,

USA, November 2006.

28



[20] P. Perny and O. Spanjaard. An axiomatic approach to robustness in search problems with multiple

scenarios. In Proceedings of the 19th conference on Uncertainty in Artificial Intelligence, pages 469–476.

Acapulco, Mexico, 2003.

[21] J. Yen. Finding the K shortest loopless paths in a network. Management Science, 17:712–716, 1971.

[22] G. Yu and J. Yang. On the robust shortest path problem. Computers Operations Research, 25:457–468,

1998.

29



LA RA HA
n d k Ave

(∗)
t1

Avet2 Avet2 Avet2

250

5

2 0.243 0.172 0.061 0.055
3 0.374 0.274 0.117 0.057
4 0.487 0.253 0.407 0.069
5 0.580 0.205 1.085 0.077
10 1.152 0.290 5.024 0.117
50 6.239 0.473 166.560 0.528
100 11.052 0.899 243.745 1.074
500 51.618 7.662 1332.511 9.734
1000 102.774 24.211 1078.863 28.347
5000 514.241 522.163 3480.725 568.822

10

2 0.268 0.479 0.259 0.057
3 0.371 0.350 17.300 0.074
4 0.489 0.376 204.664 0.084
5 0.587 0.408 531.604 0.089
10 1.242 0.147 7694.775 0.146
50 5.883 0.554 − 0.712
100 11.238 1.060 − 1.633
500 56.614 8.883 − 11.199
1000 120.067 28.493 − 33.852
5000 577.927 655.516 − 795.650

15

2 0.328 0.453 3.284 0.074
3 0.407 0.591 598.616 0.090
4 0.547 0.639 11256.692 0.112
5 0.668 0.420 − 0.111
10 1.273 0.548 − 0.190
50 6.066 0.710 − 0.673
100 13.021 1.000 − 1.381
500 69.681 10.187 − 12.077
1000 135.152 29.934 − 35.643
5000 599.005 698.254 − 727.915

500

5

2 0.486 0.368 0.152 0.148
3 0.718 0.322 0.401 0.166
4 1.022 0.506 0.767 0.180
5 1.316 0.433 1.179 0.208
10 2.276 0.340 14.091 0.268
50 11.990 0.876 393.408 1.013
100 23.050 1.607 508.091 2.228
500 108.264 10.247 5177.183 13.169
1000 301.306 33.695 3999.946 39.847
5000 1190.716 631.577 10060.447 719.241

10

2 0.599 0.764 0.428 0.170
3 0.855 0.720 31.129 0.198
4 1.084 0.673 491.860 0.236
5 1.449 1.063 3625.298 0.282
10 2.898 0.639 − 0.381
50 13.586 1.288 − 1.523
100 28.917 2.718 − 3.778
500 130.719 13.519 − 18.441
1000 316.801 38.556 − 49.188
5000 1346.546 707.249 − 743.674

15

2 0.586 1.461 2.769 0.175
3 0.909 2.028 2209.236 0.245
4 1.151 1.842 − 0.343
5 1.447 1.223 − 0.337
10 2.839 1.572 − 0.581
50 15.486 1.073 − 1.458
100 36.128 2.308 − 2.981
500 165.870 14.892 − 20.634
1000 332.505 42.902 − 53.244
5000 1325.300 746.045 − 783.147

(∗) : Avet1 (LA) = Avet1 (RA) = Avet1 (HA)

Table 6: Average partial CPU times for random networks with n ∈ {250, 500} (in seconds)

30



LA RA HA
n d k Ave

(∗)
t1

Avet2 Avet2 Avet2

750

5

2 0.967 1.582 0.380 0.329
3 1.393 1.051 0.537 0.348
4 2.352 1.117 1.014 0.430
5 2.492 1.346 2.015 0.443
10 4.914 1.402 32.518 0.634
50 23.491 1.562 588.175 1.629
100 50.008 2.768 1695.842 3.727
500 233.830 14.968 6256.625 19.879
1000 397.955 40.415 7532.278 51.006
5000 1873.489 627.860 − 712.522

10

2 0.822 1.740 0.597 0.321
3 1.491 2.357 46.015 0.390
4 1.978 2.496 312.169 0.433
5 2.434 3.189 3087.081 0.526
10 4.239 2.195 − 0.659
50 21.585 3.553 − 3.617
100 41.405 4.681 − 6.179
500 215.853 17.708 − 26.255
1000 462.043 52.427 − 73.979
5000 2041.511 824.071 − 977.557

15

2 0.900 2.665 12.107 0.351
3 1.422 3.477 2195.500 0.385
4 1.740 3.385 − 0.461
5 2.140 3.990 − 0.502
10 4.447 3.356 − 0.752
50 26.819 1.838 − 2.150
100 45.036 2.670 − 4.088
500 264.081 16.705 − 23.343
1000 497.384 44.877 − 65.762
5000 2226.412 1093.321 − 1343.007

(∗) : Avet1 (LA) = Avet1 (RA) = Avet1 (HA)

Table 7: Average partial CPU times for random networks with n = 750 (in seconds)

31



LA RA HA
n d k Avet Stdt Avet Stdt Avet Stdt

250

5

2 0.415 0.051 0.304 0.041 0.298 0.031
3 0.648 0.208 0.491 0.061 0.431 0.106
4 0.740 0.083 0.894 0.669 0.556 0.023
5 0.785 0.078 1.665 1.345 0.657 0.018
10 1.442 0.179 6.176 6.459 1.269 0.082
50 6.712 0.558 172.799 305.654 6.767 0.974
100 11.951 0.572 254.797 325.766 12.126 0.703
500 59.280 2.572 1384.129 2837.640 61.352 2.140
1000 126.985 4.327 1181.637 1818.132 131.121 6.917
5000 1036.404 54.742 3994.966 3619.199 1083.063 59.052

10

2 0.747 0.335 0.527 0.606 0.325 0.036
3 0.721 0.212 17.671 60.649 0.445 0.030
4 0.865 0.292 205.153 407.848 0.573 0.016
5 0.995 0.317 532.191 1902.340 0.676 0.023
10 1.389 0.061 7696.017 15783.047 1.388 0.023
50 6.437 0.380 − − 6.595 0.271
100 12.298 0.579 − − 12.871 1.190
500 65.497 3.159 − − 67.813 3.877
1000 148.560 11.672 − − 153.919 9.636
5000 1233.443 114.045 − − 1373.577 318.609

15

2 0.781 0.416 3.612 5.398 0.402 0.020
3 0.998 0.375 599.023 1526.844 0.497 0.036
4 1.186 0.491 11257.239 18661.837 0.659 0.061
5 1.088 0.387 − − 0.779 0.037
10 1.821 0.553 − − 1.463 0.046
50 6.776 0.828 − − 6.739 0.310
100 14.021 1.224 − − 14.402 2.065
500 79.868 7.349 − − 81.758 5.028
1000 165.086 11.056 − − 170.795 10.231
5000 1297.259 71.989 − − 1326.920 78.640

500

5

2 0.854 0.209 0.638 0.073 0.634 0.010
3 1.040 0.085 1.119 0.616 0.884 0.177
4 1.528 0.439 1.789 0.592 1.202 0.093
5 1.749 0.318 2.495 0.923 1.524 0.195
10 2.616 0.144 16.367 26.046 2.544 0.104
50 12.866 1.275 405.398 494.703 13.003 0.470
100 24.657 1.313 531.141 689.872 25.278 2.107
500 118.511 3.921 5285.447 7634.751 121.433 6.216
1000 335.001 48.053 4301.252 5678.683 341.153 30.030
5000 1822.293 77.472 11251.163 13902.215 1909.957 141.642

10

2 1.363 0.566 1.027 0.729 0.769 0.061
3 1.575 0.675 31.984 124.389 1.053 0.045
4 1.757 0.696 492.944 996.288 1.320 0.065
5 2.512 1.149 3626.747 14133.284 1.731 0.099
10 3.537 0.750 − − 3.279 0.167
50 14.874 1.741 − − 15.109 1.682
100 31.635 4.991 − − 32.695 4.511
500 144.238 19.587 − − 149.160 15.950
1000 355.357 19.211 − − 365.989 28.429
5000 2053.795 208.749 − − 2090.220 166.270

15

2 2.047 0.916 3.355 7.932 0.761 0.064
3 2.937 1.057 2210.145 8355.208 1.154 0.210
4 2.993 1.492 − − 1.494 0.179
5 2.670 0.713 − − 1.784 0.075
10 4.411 2.060 − − 3.420 0.745
50 16.559 1.803 − − 16.944 1.632
100 38.436 6.725 − − 39.109 4.862
500 180.762 17.927 − − 186.504 13.274
1000 375.407 32.030 − − 385.749 33.258
5000 2071.345 105.449 − − 2108.447 88.095

Table 8: Averages and standard deviations of the total CPU times for random networks with n ∈ {250, 500}
(in seconds)

32



LA RA HA
n d k Avet Stdt Avet Stdt Avet Stdt

750

5

2 2.549 0.760 1.347 0.099 1.296 0.041
3 2.444 0.343 1.930 0.231 1.741 0.034
4 3.469 1.897 3.366 0.774 2.782 0.239
5 3.838 0.829 4.507 1.615 2.935 0.212
10 6.316 0.934 37.432 69.502 5.548 0.709
50 25.053 2.515 611.666 655.160 25.120 2.481
100 52.776 6.762 1745.850 3676.003 53.735 4.564
500 248.798 15.556 6490.455 10420.115 253.709 20.977
1000 438.370 42.543 7930.233 10162.621 448.961 31.549
5000 2501.349 144.605 − − 2586.011 220.335

10

2 2.562 1.261 1.419 0.546 1.143 0.061
3 3.848 1.298 47.506 174.138 1.881 0.356
4 4.474 1.578 314.147 389.063 2.411 0.240
5 5.623 2.014 3089.515 4193.368 2.960 0.410
10 6.434 1.929 − − 4.898 0.310
50 25.138 3.724 − − 25.202 3.183
100 46.086 4.178 − − 47.584 5.489
500 233.561 26.755 − − 242.108 21.534
1000 514.470 40.275 − − 536.022 56.891
5000 2865.582 240.516 − − 3019.068 430.135

15

2 3.565 2.051 15.672 41.596 1.251 0.062
3 4.899 2.633 2196.922 5206.206 1.807 0.070
4 5.125 2.690 − − 2.201 0.198
5 6.130 2.631 − − 2.642 0.266
10 7.803 3.498 − − 5.199 0.325
50 28.657 3.286 − − 28.969 4.180
100 47.706 3.610 − − 49.124 3.000
500 280.786 7.637 − − 287.424 21.962
1000 542.261 42.913 − − 563.146 72.547
5000 3319.733 623.843 − − 3569.419 797.726

Table 9: Averages and standard deviations of the total CPU times for random networks with n = 750 (in
seconds)

33



n = 250 n = 500 n = 750
RA HA RA HA RA HA

d k Aver Stdr Aveh Stdh Aver Stdr Aveh Stdh Aver Stdr Aveh Stdh

5

2 18 15 2 2 23 17 1 0 26 22 2 1
3 42 23 2 1 75 63 3 3 108 58 4 3
4 88 54 3 3 144 82 2 2 178 105 3 1
5 162 81 1 1 192 116 3 3 265 151 3 2
10 330 193 3 2 565 379 4 2 724 534 4 4
50 1193 1105 6 10 2296 1805 16 28 3050 2329 11 27
100 1449 1526 8 14 2581 2363 25 32 3843 4212 31 38
500 2517 2786 22 38 6483 6334 36 62 7580 8616 34 47
1000 2710 2914 34 49 5629 5706 11 29 7745 7919 107 123
5000 2379 2799 54 59 6822 7334 63 90 − − 34 53

10

2 41 39 4 2 46 56 4 4 48 40 7 10
3 282 246 7 10 307 336 10 7 375 439 10 8
4 859 890 6 4 1354 989 10 11 1532 728 13 19
5 1227 1376 5 5 2431 2842 15 13 4149 2587 18 19
10 5263 5230 6 6 − − 9 10 − − 35 43
50 − − 14 40 − − 35 108 − − 134 221
100 − − 23 70 − − 74 154 − − 154 249
500 − − 24 74 − − 44 136 − − 39 120
1000 − − 23 71 − − 28 86 − − 120 253
5000 − − 41 84 − − 1 0 − − 106 236

15

2 143 139 4 5 106 144 6 3 180 224 10 12
3 1254 1125 9 7 1725 2288 15 12 2085 2669 16 9
4 5478 5008 13 10 − − 36 26 − − 23 23
5 − − 11 11 − − 26 19 − − 28 17
10 − − 12 13 − − 47 76 − − 41 22
50 − − 1 0 − − 1 0 − − 1 0
100 − − 1 0 − − 1 0 − − 1 0
500 − − 1 0 − − 1 0 − − 1 0
1000 − − 1 0 − − 1 0 − − 1 0
5000 − − 1 0 − − 1 0 − − 1 0

Table 10: Averages and standard deviations of the number of ranked loopless paths for random networks

34


