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dissipative matrices with prescribed spectra.
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1 Results

Consider the complex n-dimensional space Cn endowed with the indefinite inner product

[x, y]J = y∗Jx, x, y ∈ Cn,

where J = Ir⊕−In−r, and corresponding J-norm [x, x]J = |x1|2+ . . .+ |xr|2−|xr+1|2− . . .−|xn|2. In
the sequel we shall assume that 0 < r < n, except where otherwise stated. The J-adjoint of A ∈ Cn×n

is defined and denoted as
[A#x, x] = [x,Ax]

or, equivalently, A# := JA∗J. The matrix A is said to be J-Hermitian if A# = A, and is J-positive
definite (semi-definite) if JA is positive definite (semi-definite). This kind of matrices appears on
Quantum Physics and in Symplectic Geometry [10]. An arbitrary matrix A ∈ Cn×n may be uniquely
written in the form

A = ReJA+ iImJA,

where
ReJA = (A+A#)/2, ImJA = (A−A#)/(2i)

are J-Hermitian. This is the so-called J-Cartesian decomposition of A. J-Hermitian matrices share
properties with Hermitian matrices, but they also have important differences. For instance, they
have real and complex eigenvalues, these occurring in conjugate pairs. Nevertheless, the eigenvalues
of a J-positive matrix are all real, being r positive and n − r negative, according to the J-norm of
the associated eigenvectors being positive or negative. A matrix A is said to be J-accretive (resp.
J-dissipative) if JReJA (resp. JImJA) is positive definite. If both matrices JReJA and JImJA
are positive definite the matrix is said to be J-accretive dissipative. We are interested in obtaining
determinantal inequalities for J-accretive dissipative matrices.

Throughout, we shall be concerned with the set

DJ(A,C) = {det(A+ V CV #) : V ∈ U(r, n− r)},

where A,C ∈ Cn×n are J-unitarily diagonalizable with prescribed eigenvalues and U(r, n − r) is the
group of J-unitary transformations in Cn (V is J-unitary if V V # = I). The so-called J-unitary
group is connected, nevertheless it is not compact. As a consequence, DJ(A,C) is connected. This
set is invariant under the transformation C → UCU# for every J-unitary matrix U , and, for short,
DJ(A,C) is said to be J-unitarily invariant.

In the sequel we use the following notation. By Sn we denote the symmetric group of degree n, and
we shall also consider

Sr
n = {σ ∈ Sn : σ(j) = j, j = r + 1, . . . , n}, (1)
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Ŝr
n = {σ ∈ Sn : σ(j) = j, j = 1, . . . , r}. (2)

Let αj , γj ∈ C, j = 1, . . . , n denote the eigenvalues of A and C, respectively. The r!(n− r)! points

zσ = zξτ =

r∏
j=1

(αj + γξ(j))

n∏
j=r+1

(αj + γτ(j)), ξ ∈ Sr
n, τ ∈ Ŝr

n. (3)

belong to DJ(A,C).

The purpose of this note, which is in the continuation of [1], is to establish the following results.

Theorem 1.1 Let J = Ir ⊕ −In−r, and A and C be J- positive matrices with prescribed real eigen-
values

α1 ≥ . . . ≥ αr > 0 > αr+1 ≥ . . . ≥ αn (4)

and
γ1 ≥ . . . ≥ γr > 0 > γr+1 ≥ . . . ≥ γn, (5)

respectively. Then

| det(A+ iC)| ≥
(
(α2

1 + γ21) . . . (α
2
n + γ2n)

)1/2
.

Corollary 1.1 Let J = Ir ⊕ −In−r, and B be a J-accretive dissipative matrix. Assume that the
eigenvalues of ReJB and ImJB satisfy (4) and (5), respectively. Then,

| det(B)| ≥
(
(α2

1 + γ21) . . . (α
2
n + γ2n)

)1/2
.

Example 1.1 In order to illustrate the necessity of A and C to be J-positive matrices in Theorem 1.1,
let A = diag(α1, α2), C = diag(γ1, γ2), with α1 = γ1 = 1, α2 = 3/2, γ2 = −2, and J = diag(1,−1).
We find (α2

1+γ21)(α
2
2+γ22) = 27/2. However, the minimum of |det(A+ iV BV #|2, for V ranging over

the J-unitary group , is 49/4.

Theorem 1.2 Let J = Ir ⊕−In−r, and A and C be J-unitary matrices with prescribed eigenvalues

α1, . . . , αr, αr+1, . . . , αn

and
γ1 . . . , γr, γr+1, . . . .γn,

respectively. Assume moreover that

ℑα1

2(1 + ℜα1)
≤ . . . ≤ ℑαr

2(1 + ℜαr)
< 0 <

ℑαr+1

2(1 + ℜαr+1)
≤ . . . ≤ ℑαn

2(1 + ℜαn)
(6)

and
ℑγ1

2(1−ℜγ1)
≤ . . . ≤ ℑγr

2(1−ℜγr)
< 0 <

ℑγr+1

2(1−ℜγr+1)
≤ . . . ≤ ℑγn

2(1−ℜγn)
. (7)

Then
DJ(A,C) = (α1 + γ1) . . . (αn + γn)[1,+∞[ .

We shall present the proofs of the above results in the next section.
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2 Proofs

Lemma 2.1 Let g : U(r, n− r) → R be the real valued function defined by

g(U) = det(I +A−1
0 UC0JU

∗JA−1
0 UC0JU

∗J),

where A0 = diag(α1, . . . , αn), C0 = diag(γ1, . . . , γn) and αi, γj satisfy (4) and (5). Then the set

{U ∈ U(r, n− r) : g(U) ≤ a},

where

a >
n∏

j=1

(
1 +

γ2j
α2
j

)
,

is compact.

Proof. Notice that JA0 > 0, JC0 > 0, so we may write

g(U) = det(I +WW ∗WW ∗),

where
W = (JA0)

−1/2U(JC0)
1/2.

The condition g(U) ≤ a implies that W is bounded, and is satisfied if we require that WW ∗ ≤ κI, for
κ > 0 such that (1 + κ2)n ≤ a. Thus, also U is bounded. The result follows by Heine-Borel Theorem.

Proof of Theorem 1.1

Under the hypothesis, A is nonsingular. Since the determinant is J-unitarily invariant and C is
J-unitarily diagonalizable, we may consider C = diag(γ1, . . . , γn). We observe that

| det(A+ iC)|2 = det ((A+ iC)(A− iC)) =

(
n∏

i=1

αi

)2

det
(
(I + iA−1C)(I − iA−1C)

)
Clearly,

det
(
(I + iA−1C)(I − iA−1C)

)
= det(I +A−1CA−1C).

The set of values attained by | det(A+iC)|2 is an unbounded connected subset of the positive real line.
In order to prove the unboundedness, let us consider the J-unitary matrix V obtained from the identity
matrix I through the replacement of the entries (r, r), (r + 1, r + 1) by cosh u, and the replacement
of the entries (r, r + 1), (r + 1, r) by sinh u, u ∈ R. We may assume that A0 = diag(α1, . . . , αn). A
simple computation shows that

| det(A0 + iV CV #)|2 =
n∏

j=1

(α2
j + γ2j )

−2(αr − αr+1)(γr − γr+1)(αr+1γr + αrγr+1)(sinh u)2 + (αr − αr+1)
2(γr − γr+1)

2(sinh u)4.

Thus, the set of values attained by | det(A0 + iV CV #)| is given by

[(α2
1 + γ21)

1/2 . . . (α2
n + γ2n)

1/2,+∞[ .

As a consequence of Lemma 2.1, the set of values attained by | det(A+ iC)|2 is closed and a half-ray
in the positive real line. So, there exist matrices A,C such that the endpoint of the half-ray is given
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by | det(A+ iC)|2. Let us assume that the endpoint of this half-ray is attained at | det(A+ iC)|2. We
prove that A commutes with C. Indeed, for ϵ ∈ R and an arbitrary J-Hermitian X, let us consider
the J-unitary matrix given as

eiX = i+ iϵX − ϵ2

2
X2 + . . . .

We obtain by some computations

f(ϵ) := det(I +A−1e−iϵXCeiϵXA−1e−iϵXCeiϵX)

= det(I +A−1CA−1C − iϵ(A−1[X,C]A−1C +A−1CA−1[X,C]) +O(ϵ2)

= det(I +A−1CA−1C)

×det
(
I − iϵ(I +A−1CA−1C)−1(A−1[X,C]A−1C +A−1CA−1[X,C])

)
+O(ϵ2)

= det(I +A−1CA−1C)

× exp
(
−iϵtr((I +A−1CA−1C)−1(A−1[X,C]A−1C +A−1CA−1[X,C]))

)
+O(ϵ2),

where [X,Y ] = XY − Y X denotes the commutator of the matrices X and Y . The function f(ϵ)
attains its minimum at det(I +A−1CA−1C), if

df

dϵ

∣∣∣∣
ϵ=0

= 0.

Then we must have

tr
(
(I +A−1CA−1C)−1(A−1[X,C]A−1C +A−1CA−1[X,C])

)
= 0,

for every J-Hermitian X. That is

[C, (A−1C(I +A−1CA−1C)−1A−1 + (I +A−1CA−1C)−1A−1CA−1)] = 0,

and so, performing some computations, we find

[C, (A−1C(I +A−1CA−1C)−1A−1C + (I +A−1CA−1C)−1A−1CA−1C)]

= 2

[
C,

A−1CA−1C

I +A−1CA−1C

]
= 2

[
C, I − I

I +A−1CA−1C

]
= −2

[
C,

I

I +A−1CA−1C

]
=

2I

I + (A−1C)2
[
C, (A−1C)2

] I

I + (A−1C)2
= 0.

Thus
[C, (A−1C)2] = 0.

Assume that C, which is in diagonal form, has distinct eigenvalues. Then (A−1C)2 is a diag-
onal matrix as well as ((JA)−1JC)2. Furthermore, ((JC)1/2(JA)−1(JC)1/2)2 is diagonal. Since
(JC)1/2(JA)−1(JC)1/2 is positive definite, it is also diagonal, and so are (JA)−1JC and A−1C .
Henceforth, A is also a diagonal matrix and commutes with C. (If C has multiple eigenvalues we can
apply a perturbative technique and use a continuity argument).

For σ ∈ Sn, such that σ(1), . . . , σ(r) ≤ r, we have

(α2
1 + γ2σ(1)) . . . (α

2
n + γ2σ(n)) ≥ (α2

1 + γ21) . . . (α
2
n + γ2n).

Thus, the result follows. �
In the proof of Theorem 1.2, the following lemma is used (cf. [1, Theorem 1.1]).
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Lemma 2.2 Let B,D be J-positive matrices with eigenvalues satisfying

β1 ≥ . . . ≥ βr > 0 > βr+1 ≥ . . . > βn,

and
δ1 ≥ . . . ≥ δr > 0 > δr+1 ≥ . . . > δn.

Then
DJ(B,D) = {(β1 + δ1) . . . (βn + δn) t : t ≥ 1} .

Proof of Theorem 1.2

Since, by hypothesis, A,C, are J-unitary matrices, considering convenient Möbius transformations, it
follows that

B =
i

2

A− I

A+ I
, D = − i

2

C + I

C − I
(8)

are J-Hermitian matrices. Since

B +D = −i(A+ I)−1(C +A)(C − I)−1,

we obtain

det(B +D) = in
det(A+ C)∏n

j=1(1 + αj)(1− γj)
.

Assume that the eigenvalues of B and D are

σ(B) = {β1, . . . , βn}, σ(D) = {δ1, . . . , δn},

respectively. From (8) we get,

βj = − ℑαj

2(1 + ℜαj)
, δj = − ℑγj

2(1−ℜγj)
.

From (6) and (7) we conclude that

β1 ≥ . . . ≥ βr > 0 > βr+1 ≥ . . . > βn,

and
δ1 ≥ . . . ≥ δr > 0 > δr+1 ≥ . . . > δn,

so that the matrices B and D are J-positive. From Lemma 2.2 it follows that

DJ(B,D) = (β1 + δ1) . . . (βn + δn)[1,+∞[ .

Thus, DJ(A,C) is a half-line with endpoint at

(α1 + γ1) . . . (αn + γn),

or, more precisely,
DJ(A,C) = {(α1 + γ1) . . . (αn + γn) t : t ≥ 1}.

�
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