ON TUNNEL NUMBER DEGENERATION UNDER THE CONNECTED SUM OF PRIME KNOTS

JOÃO MIGUEL NOGUEIRA

Abstract

We study 2-string free tangle decompositions of knots with tunnel number two. As an application, we construct infinitely many counter-examples to a conjecture in the literature stating that the tunnel number of the connected sum of prime knots doesn't degenerate by more than one: $t\left(K_{1} \# K_{2}\right) \geq t\left(K_{1}\right)+t\left(K_{2}\right)-1$, for K_{1} and K_{2} prime knots.

1. Introduction

Given a knot K in S^{3}, an unknotting tunnel system for K is a collection of arcs $t_{1}, t_{2}, \ldots, t_{n}$, properly embedded in the exterior of K, with the complement of a regular neighborhood of $K \cup t_{1} \cup \cdots \cup t_{n}$ being a handlebody ${ }^{1}$. The minimum cardinality of an unknotting tunnel system for a knot K is a knot invariant, referred to as the tunnel number of K and is denoted by $t(K)$.

A natural question of study on knot invariants is their behavior under the connected sum of knots. In the particular case of the tunnel number, it is known, by Norwood [21], that tunnel number one knots are prime. This result is now consequence of more general work. For instance, Scharlemann and Schultens prove in [26] that the tunnel number of the connected sum of knots is bigger than or equal to the number of summands:

$$
t\left(K_{1} \# \cdots \# K_{n}\right) \geq n
$$

where $K_{1} \# \cdots \# K_{n}$ represents the connected sum of the knots K_{1}, \ldots, K_{n}. Also, in [4] Gordon and Reid prove that tunnel number one knots are, in fact, n-string prim $\underbrace{2}$ for any positive integer n.

On the tunnel number behavior under connected sum, it is a consequence from the definition of connected sum of knots that for two knots K_{1} and K_{2} in S^{3} we have:

$$
t\left(K_{1} \# K_{2}\right) \leq t\left(K_{1}\right)+t\left(K_{2}\right)+1
$$

For some time the only examples known had an additive behavior:

$$
t\left(K_{1} \# K_{2}\right)=t\left(K_{1}\right)+t\left(K_{2}\right)
$$

However, in the early nineties, Morimoto [13] constructed connected sum examples of prime knots K_{1} with 2-bridge knots K_{2} whose tunnel number degenerates by on ${ }^{3}$.

$$
t\left(K_{1} \# K_{2}\right)=t\left(K_{1}\right)+t\left(K_{2}\right)-1
$$

[^0]Shortly afterwards, Moriah and Rubinstein in [12], and also independently Morimoto, Sakuma and Yokota in [17], gave examples of knots with supper-additive behavior:

$$
t\left(K_{1} \# K_{2}\right)=t\left(K_{1}\right)+t\left(K_{2}\right)+1
$$

Furthermore, about the same time, Kobayashi in [7] constructed examples of knots that degenerate arbitrarily under connected sum: for any positive integer n, there are knots K_{1} and K_{2} where

$$
t\left(K_{1} \# K_{2}\right) \leq t\left(K_{1}\right)+t\left(K_{2}\right)-n
$$

However, Kobayashi's examples to show arbitrarily hight degeneration of the tunnel number under connected sum are composite knots.

In this paper we study further the tunnel number degeneration under connected sum of prime knots. For this study we use the work of Morimoto in [16] that relates n-string free tangle decompositions of knots and high tunnel number degeneracy under the connected sum of prime knots. Within this setting, we study 2 -string free tangle decompositions of knots with tunnel number two and we obtain Theorem 1, and its Corollary 1.1. for which statement we need the following definition.

Definition 1. Let s be a properly embedded arc in a ball B. Suppose the knot obtained by capping off s along ∂B has tunnel number one. We say that s is μ-primitive if there is a trivial $\operatorname{arc} t$ properly embedded in B, disjoint from s, such that the tangle $(B, s \cup t)$ is fref ${ }^{4}$.

Remark 1. Note that a string s is a μ-primitive if and only if the knot obtained by capping off s along ∂B is a μ-primitive knot ${ }^{5}$.

Theorem 1. Let K be a tunnel number two knot with a 2-string free tangle decomposition. Then both strings of some of the tangles are μ-primitive $]^{6}$

Corollary 1.1. Let K be a knot with a 2-string free tangle decomposition where no tangle has both strings being μ-primitive. Then $t(K)=3$.

The only examples of prime knots whose tunnel number degenerates under connected sum are the ones given by Morimoto, and in this case the tunnel number only degenerates by one. Also, in [8] Kobayashi and Rieck, and also in [15] Morimoto, proved that the tunnel number of the connected sum of m-smal $]^{7}$ knots doesn't degenerate. With this and other results in perspective, Moriah conjectured in [11] that the tunnel number of the connected sum of prime knots doesn't degenerate by more than one: $t\left(K_{1} \# K_{2}\right) \geq t\left(K_{1}\right)+t\left(K_{2}\right)-1$, for K_{1} and K_{2} prime knots.
In this paper, we construct infinitely many counter-examples to this conjecture as in Theorem 2 and its Corollary 2.1.

Theorem 2. There are infinitely many tunnel number three prime knots K_{1} such that, for any 3 -bridge knot $K_{2}, t\left(K_{1} \# K_{2}\right) \leq 3$.

Corollary 2.1. There are infinitely many prime knots K_{1} and K_{2} where

$$
t\left(K_{1} \# K_{2}\right)=t\left(K_{1}\right)+t\left(K_{2}\right)-2
$$

[^1]In 27], Scharlemann and Schultens introduced the concept of degeneration ratio for the connected sum of two prime knots, K_{1} and K_{2} :

$$
d\left(K_{1}, K_{2}\right)=\frac{t\left(K_{1}\right)+t\left(K_{2}\right)-t\left(K_{1} \# K_{2}\right)}{t\left(K_{1}\right)+t\left(K_{2}\right)}
$$

If the knots K_{1} and K_{2} behave additively we have $d\left(K_{1}, K_{2}\right)=0$.
In case the knots K_{1} and K_{2} have supper-additive behavior then $-\frac{1}{2} \leq d\left(K_{1}, K_{2}\right)<0$. The minimum is achieved by the examples of Morimoto, Sakuma and Yokota in [17. From the examples of Moriah and Rubinstein in [12] we can choose a sequence of pairs of prime knots (K_{1}, K_{2}), with super-additive behavior, where $d\left(K_{1}, K_{2}\right)$ converges to zero.
For the sub-additive behavior of the tunnel number, the degeneration ratio is not so well understood. Naturally $d\left(K_{1}, K_{2}\right)>0$, and from Corollary 9.2 in [27, $d\left(K_{1}, K_{2}\right) \leq \frac{3}{5}$. The examples of Morimoto in [13] have degeneration ratio $\frac{1}{3}$. The examples from Corollary 2.1 have degeneration ratio $\frac{2}{5}$. If K_{1} is a knot as in the statement of the Theorem 2 and K_{2} is any 3-bridge knot with tunnel number one, from the main theorem of Morimoto in [14], $t\left(K_{1} \# K_{2}\right)=3$. Hence, the degeneration ratio for these knots is $\frac{1}{4}$. So, for sub-additive behavior, from the results in this paper we have the lowest known degeneration ratio for the connected sum of prime knots ${ }^{8}, \frac{1}{4}$, and also the highest, $\frac{2}{5}$.

The proof of Theorem 2 is a consequence of Morimoto's work in 16] and Theorem 1, and is explained in Section 8 . For the proof of Theorem 1, we present the setting in Section 2 In Sections 3 and 4 we prove some auxiliary technical lemmas that are used along the paper. In Sections 5 and 6 we present the main lemmas that together give an outline of the proof. And finally in Section 7 we organize all the information to prove Theorem 1. For this proof, new and deeper arguments of innermost-arc type are developed to study the 2 -string free tangle decomposition of K with respect to a minimal unknotting tunnel system of K.

2. Preliminaries

Let K be a tunnel number two knot in S^{3} with a 2 -string essentia ${ }^{9}$ free tangle decomposition defined by the 2 -sphere S. We represent this tangle decomposition by $\left(S^{3}, K\right)=\left(B_{1}, \mathcal{T}_{1}\right) \cup_{S}$ $\left(B_{2}, \mathcal{T}_{2}\right)$. As the tangles are free, their strings have no local knots. This property and the next lemma will be frequently used along this paper.
Lemma 2.1. The two strings of a 2-string essential free tangle are not parallel ${ }^{111}$,
Proof. Let $\left(B, s_{1} \cup s_{2}\right)$ be a 2 -string essential free tangle. Suppose that s_{1} and s_{2} are parallel, and let D be a disk in B with boundary the strings $s_{1} \cup s_{2}$ and two arcs in ∂B connecting the ends of these strings. As s_{1} and s_{2} are parallel, from Theorem 1' of [2], the strings are knotted in B.
Let N be a regular neighborhood of D in B. Hence, N is a regular neighborhood of s_{1} and of

[^2]s_{2}. We have that $B-\operatorname{int} N$ is embedded in $B-s_{1} \cup s_{2}$ and ∂N is a proper essential surface in $B-s_{1} \cup s_{2}$. So, $\pi_{1}(B-\operatorname{intN})$, that is not a free group, injects into $\pi_{1}\left(B-\left(s_{1} \cup s_{2}\right)\right)$, that is free, which is a contradiction. So, the strings $s_{1} \cup s_{2}$ are not parallel.

As in the statement of Theorem 1 we want to prove that the two strings of $\left(B_{1}, \mathcal{T}_{1}\right)$ or $\left(B_{2}, \mathcal{T}_{2}\right)$ are μ-primitive. With this purpose, it is useful to consider the following characterization of μ primitive string.

Lemma 2.2. Let s be a string properly embedded in a ball B. Then s is μ-primitive if and only if s is trivial in a solid torus T in B intersecting ∂B in a single disk and whose complement in B is also a solid torus.

Proof. Assume s is μ-primitive in B. Then there is a trivial string t in B, disjoint from s and where $(B, s \cup t)$ is a free tangle. Let $T^{\prime}=B-\operatorname{int} N(t){ }^{12}$. As t is trivial in B we have that T^{\prime} is a solid torus and, from Theorem 1^{\prime} in [2], s is trivial in T^{\prime}. Consider the annulus $A=\partial B \cap \partial T^{\prime}$. Let D^{\prime} be a disk in A that is a regular neighborhood of an arc in A connecting the two boundary components of A. We have that $A-i n t D^{\prime}$ is also a disk D. Consider a regular neighborhood of D^{\prime} in T^{\prime} and isotope ∂T^{\prime}, along the neighborhood of D^{\prime}, away from D^{\prime}. We are left with a solid torus T in B, intersecting ∂B at the disk D. Furthermore, the complement of T in B is also a solid torus, it is a 1-handle attached to a ball, and s is trivial in T.
Assume now that s is a trivial string in a solid torus T in B intersecting ∂B in a single disk and whose complement in B is also a solid torus. Take a meridian disk L of the complement of T in B not intersecting S. Add the 2-handle with core L to T. We have that $R=N(L) \cup T$ is a ball intersecting ∂B in a single disk. So, the complement of R in B is a ball. We isotope ∂R to ∂B along this ball, and from T we obtain the solid torus T^{\prime}, and from the disk L we obtain the disk L^{\prime}. We have that $\partial T^{\prime} \cap \partial B$ is an annulus and the complement of T^{\prime} in B is the cylinder $N\left(L^{\prime}\right)$, where $N\left(L^{\prime}\right)$ intersects ∂B in two disks. Let t be the co-core arc of $N\left(L^{\prime}\right)$. Hence, as T^{\prime} is a solid torus, t is a trivial string in B. Also, $N(t)=N\left(L^{\prime}\right)$ and s is trivial in the complement of $N(t)$. Therefore, $(B, t \cup s)$ is a free tangle, and s is μ-primitive.

Consider an unknotting tunnel system of $K,\left\{t_{1}, t_{2}\right\}$, and the respective union of regular neighborhoods to be $V=N(K) \cup\left(N\left(t_{1}\right) \cup N\left(t_{2}\right)\right)$. So, $W=S^{3}-i n t V$ is a handlebody and $S^{3}=V \cup W$ is a genus three Heegaard decomposition of S^{3}. Taking $K \cup t_{1} \cup t_{2}$ in general position with respect to S, we can assume that $S \cap V$ is a collection of essential disks: $S \cap V=D_{1}^{*} \cup \cdots \cup D_{n_{1}}^{*} \cup D_{1} \cup \cdots \cup D_{n_{2}}$, where $D_{i}^{*}, i=1, \ldots, n_{1}$, are the disks of $S \cap V$ intersecting K. Let $\mathcal{D}^{*}=D_{1}^{*} \cup \cdots \cup D_{n_{1}}^{*}$ and $\mathcal{D}=D_{1} \cup \cdots \cup D_{n_{2}}$.

Lemma 2.3.

(a) There is no 2-sphere in V defining a tangle decomposition of K isotopic to the one defined by S.
(b) Let C be a component of $V-V \cap S$ that intersects K. Then $C \cap K$ is parallel to the boundary of C.
Proof. As $V=N(K) \cup N\left(t_{1}\right) \cup N\left(t_{2}\right)$ there is an annulus A in V with $\partial A=K \cup b$, where b is a simple closed curve in ∂V in general position with $S \cap V$. As $K \cap \mathcal{D}^{*}$ is non-empty, $A \cap S$ is also non-empty. Assume that $|A \cap S|$ is minimal.
First assume that some arc γ of $A \cap S$ has both ends in a string s from the tangle decomposition, and also that γ co-bounds a disk in A together with the string s, that intersects $S \cap V$ only at γ. As γ is in S, we have that s is trivial in the respective tangle decomposition, which contradicts

[^3]the tangle decomposition being essential.
Suppose $A \cap S$ contains a simple closed curve c essential in A. Then K is isotopic to c. As c is a simple closed curve in S it bounds a disk in S. Therefore, in this case, K would be unknotted, which is a contradiction. Therefore, if c is a simple closed curve of $A \cap S$ then c bounds a disk in A.
(a) Suppose there is a 2 -sphere in V defining a tangle decomposition isotopic to the one defined by S, and, abusing notation, denote it also by S. Hence, $S \subset V$. So, there cannot be arcs of $A \cap S$ between K and b. Let B be the ball bounded by S in V. Suppose $A \cap S$ contains some simple closed curve c. As observed before, c bounds a disk D in A. Suppose that c is an innermost simple closed curve of $A \cap S$ in A. Then, D intersects S only at c. As $S \subset V$, if c bounds a disk S disjoint from K we can reduce $|A \cap S|$, which is a contradiction to the minimality of $|A \cap S|$. Otherwise, both disks bounded by c in S intersect K, which contradicts the surface $S-\operatorname{int} N(K)$ being essential in $S^{3}-N(K)$. Then, $A \cap S$ contains no simple closed curves. Then, from the previous observations, the components of $A \cap B$ are two disks co-bounded by the strings of the tangle in B and two arcs of $A \cap S$. As each disk of $A \cap B$ intersects S only at a single arc in its boundary, we have that both strings of the tangle $(B, B \cap K)$ are trivial, which is a contradiction to the tangle decomposition defined by S being essential.

Figure 1: An annulus A in V with boundary being K and a curve b in the boundary of V. The disk Δ is a disk in the component C of $V-V \cap S$, with boundary being the string s and a curve in the boundary of C.
(b) To prove part (b) of this lemma we just need to prove that $A \cap S$ contains no simple closed curves, and that no arc of $A \cap S$ has both ends in ends of strings from the tangle decomposition. Assume now $A \cap S$ contains a simple closed curve, c. As observed before, c bounds a disk D in A; suppose that it is an innermost curve with this property. Let L be the disk bounded by c in $S \cap V$. If L doesn't intersect K then we can reduce $|A \cap S|$, which contradicts the minimality of $|A \cap S|$. If L intersects K in less than four points then D contradicts the tangle decomposition defined by S being essential. If L intersects K in four points then the tangles decomposition defined by $D \cup L \subset V$ and S are isotopic, which is a contradiction to (a). Then $A \cap(S \cap V)$ contains no simple closed curve.
From the previous arguments all arcs of $A \cap S$ either have both ends in b or one end in b and the other at an end of a string in C. Also, as A is in general position with $S \cap V$, each string end is attached to a single arc of $A \cap S$. Let C be a component of $V-V \cap S$ that intersects K. Then each string s of C belongs to the boundary of a properly embedded disk component of $A-A \cap S$ in C, disjoint from the other string components in C, as in Figure 1. Therefore, all components of $C \cap K$ are independently parallel to the boundary of C, which gives us the statement (b) of the lemma.

Considering the previous lemma and that all 2-spheres in S^{3} intersect K an even number of times, no disk of \mathcal{D} is parallel to a disk of \mathcal{D}^{*} in V.

From the work of Ozawa [23, we know that if a knot has an essential 2-string free tangle decomposition then this decomposition is unique up to isotopy ${ }^{13}$, and, furthermore, K is n-string prime for $n \neq 2$. (In particular, K is prime.) This is a result frequently throghout this paper, and we refer to it as Ozawa's unicity theorem.
We assume the unknotting tunnel system and the tangle decomposition defined by S up to isotopy are such that $S \cap V$ is a collection of disks with minimum cardinality $\mid S \cap V{ }^{14}$. From Lemma 2.3 and the minimality of $|S \cap V|$, we can assume that all disks $S \cap V$ are essential in V. As S decomposes K in two 2 -string tangles we have $n_{1} \leq 4$. If $n_{1} \geq 3$, we denote the string with one end in D_{i}^{*} and the other end in D_{j}^{*} by $s_{i j}$.

Let P denote the planar surface $S \cap W$. By the minimality of $|S \cap V|$ and the incompressibility of $S-\operatorname{int}(N(K))$ in $S^{3}-\operatorname{int}(N(K))$, we have that P is essential in W.
For a complete system of meridian disks ${ }^{15}$ of $W,\left\{E_{1}, E_{2}, E_{3}\right\}$, we write $E=E_{1} \cup E_{2} \cup E_{3}$. Considering E and P in general position, we choose E such that $|P \cap E|$ is minimal between the complete systems of meridian disks of W.
By the incompressibility of P and the minimality of $|P \cap E|$, no component of $P \cap E$ is a simple closed curve. Also, if an arc component of $P \cap E$ is a loop co-bounding a disk in P disjoint from $P \cap E$, using this disk, we can change the complete system of meridian disks of W to E^{\prime} with $|P \cap E|>\left|P \cap E^{\prime}\right|$. This is a contradiction, and therefore $P \cap E$ is a collection of essential arcs ${ }^{16}$ in P.
With the arcs of $P \cap E$ we define a graph in S that we denote by G_{P} : the vertices are the disks from $S \cap V$, each of which corresponds to a boundary component of P, and the edges are the arcs $P \cap E$. The graph G_{P} is connected: in fact, if the graph G_{P} is not connected then by cutting along a complete system of meridian disks of W we can find a compressing disk for P in W, which is a contradiction as P is essential. As G_{P} is a connected graph in a 2 -sphere, from the arcs $P \cap E$ in E we can create a sequence of isotopies of type A^{17} over a sequence of $\operatorname{arcs} \alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ of $P \cap E$ such that the closure of the components of $P-\alpha_{1} \cup \cdots \cup \alpha_{m}$ is a collection of disks.

The vertices of G_{P} associated to \mathcal{D}, resp. \mathcal{D}^{*}, are referred to as d-vertices, resp. d^{*}-vertices, and are illustrated as white disks, resp. dark disks. Between the edges of G_{P} it is useful to define some types of arcs as follows. (See Figure 2,)

Type I : is an edge connected to a single vertex.
Type II: is an edge connected to two distinct vertices.
d-arc: is an edge with at least one end attached to a d-vertex.
d^{*}-arc: is an edge with at least one end attached to a d^{*}-vertex.

[^4]

Figure 2: An illustration of some arc components of $E \cap P$ in P. The arc α_{1} (resp., α_{2}) is a sk-arc (resp., st-arc). The arc α_{3} is a d^{*}-arc that is also a k-arc, and α_{4} is both a d-arc and a d ${ }^{*}$-arc. Note also that the arc α_{5} is an example of a type I d-arc that is not a st-arc.
t-arc: is an edge of type II, α_{i}, in a sequence of isotopies of type A as above, connected to some d-vertex D and where $\alpha_{j}, j<i$, is disjoint from D. (See Remark 2 and also Lemma 1 of [22] by Ochiai.)
k-arc: is a type II arc connecting two d^{*}-vertices.
st-arc: is a type I d-arc separating P into two planar surfaces, each with some boundary component of \mathcal{D}^{*}.
sk-arc: is a type I d*-arc separating P into two planar surfaces, each with some boundary component of \mathcal{D}^{*}.

Remark 2. Suppose α is a type II d-arc with one end in the d-vertex associated with D. If one of the disks separated by α from E intersects the disk D only at the end of α in D, then all arcs of $E \cap P$ in this disk have no end in D. This implies that α is a t-arc. (See Figure3) In Lemma 2.4 we prove that such arcs cannot exist.

Figure 3: An illustration of arc components of $E \cap P$ in some component of E. If an arc of $E \cap P$ in E has one end in the disk D_{i}, resp. D_{j}^{*}, then we label the end of the arc in E by i, resp. by j^{*}. The ends of the arc α in the figure exemplify this notation. If all arcs in one of the disks separated by α from E have no ends being i, then α is a t-arc.

We say that an arc δ of $P \cap E$ is an outermost arc, if δ separates a disk component Δ of $E-E \cap S$ from E. We have $\Delta \cap P=\delta$ and $\partial \Delta=\delta \cup \beta$ with $\beta \subset \partial E$. The disk Δ is said to be an outermost disk. (See Figure 3.) An outermost disk is said to be over a component of
$V-V \cap S$ if the correspondent $\operatorname{arc} \beta$ is in the (boundary) of the component.
In the next lemma, we study the $\operatorname{arcs} P \cap E$ in P and in E and obtain properties that give the base setting for these arcs along the work in this paper.

Lemma 2.4.

(a) All outermost arcs are of type I.
(b) If n is the number of vertices of G_{P} then either $n=1$ and the graph G_{P} has no edges, or $n \geq 3$ and at least two vertices of G_{P} are not adjacent to edges of type I.
(c) No arc of $E \cap P$ is a t-arc.
(d) The outermost d-arcs of $E \cap P$ in E are of type I.
(e) Each type I arc of $E \cap P$ is a st-arc or sk-arc.
(f) All d-vertices are adjacent to a st-arc.
(g) Each outermost arc of $E \cap P$ in E is a st-arc or a sk-arc.

Proof.

(a) Suppose some outermost arc is of type II. Then, proceeding with an isotopy of type A along the respective outermost disk we can reduce $|S \cap V|$, which is a contradiction to the minimality of $|S \cap V|$.
(b) If $n=1,2$ and there is some loop in G_{P}, the outermost loop co-bounds a disk in P. Furthermore, if G_{P} has no loops and $n=2$ then the outermost arcs of $E \cap P$ in E are of type II, which is a contradiction to (a). If $n \geq 3$ and at most one vertex is not adjacent to a loop, then one outermost loop co-bounds a disk in P. In both cases we contradict the fact that all edges of G_{P} are essential in P.
(c) If there is a t-arc, then by a sequence of isotopies of type A followed by a sequence of inverse isotopies of type A, as in Lemma 1 of 22 by Ochiai, we can ambient isotope S, in the exterior of K, to some 2-sphere S^{\prime} where $|S \cap V|>\left|S^{\prime} \cap V\right|$. This is a contradiction to the minimality of $|S \cap V|$.
(d) If an outermost d-arc of $E \cap P$ in E is of type II then it is a t-arc, which is a contradiction to (c). Therefore, the outermost d-arcs of $E \cap P$ in E are of type I.
(e) Let α be a type I arc of $E \cap P$. As α is essential in P it separates P into two components that are not disks. If one of these components, say F, only contains boundary components corresponding to d-vertices there is some arc of $E \cap P$ in F that is a t-arc, which contradicts (c).
(f) Assume there is a d-vertex D that is only adjacent to edges of type II. Then there is a t-arc with respect to D (choose an outermost arc, in E, between the edges of type II attached to D), which is a contradiction to (c). Hence, there is at least one edge of type I with ends in D, and from (e) it is a st-arc.
(g) From (a) the outermost arcs are of type I, and from (e) the type I arcs are st or sk-arcs.

3. Outermost disks over ball components of $V-V \cap S$

In this section we study the case when there is an outermost disk over some ball component of $V-V \cap S$, as in Lemma 3.2. We also have presented other crucial lemmas relating ball components of $V-V \cap S$ and certain disks of $E-E \cap P$, together with the next lemma where we show several properties of tangles obtained from balls in B_{1} or B_{2}.
Lemma 3.1. Suppose there is a ball Q in one of the tangles defined by S that intersects each string of the tangle in a single arc.
(a) Let Q^{c} denote the complement of Q in S^{3}. The tangle $\left(Q^{c}, Q^{c} \cap K\right)$ is essential.
(b) If one of the strings of $Q \cap K$ is unknotted in Q then either the tangle $(Q, Q \cap K)$ is trivial or some string of some tangle defined by S is unknotted.
(c) Suppose both strings of the tangle are in Q and have ends in one or two disk components of $Q \cap S$. Then the tangle $(Q, Q \cap K)$ is essential.
(d) If a ball component of $V-S \cap V$ contains a string with both ends in the same component of \mathcal{D}^{*}, then some string of some tangle is unknotted.

Proof.

Assume that the tangle containing Q is $\left(B_{1}, \mathcal{T}_{1}\right)$.
(a) Suppose that $\left(Q^{c}, Q^{c} \cap K\right)$ isn't essential. As this tangle contains only two strings, both strings are trivial in it. Let s^{\prime} be an arc component of $Q^{c} \cap K$, and D^{\prime} be a disk in Q^{c} with interior disjoint from K and with boundary being the union of s^{\prime} and an arc in ∂Q^{c}. Let s be the string from the tangle decomposition defined by S that is a subset of s^{\prime}. So, s is a string of the tangle $\left(B_{2}, \mathcal{T}_{2}\right)$. As s^{\prime} contains only the string s of $K-S \cap K$, we have that ∂D^{\prime} intersects S only at two points, which are the end points of s. Considering a minimal collection $D^{\prime} \cap S$ and following an innermost curve or arc type of argument, we can prove that $D^{\prime} \cap S$ is a single arc a with ends being the ends of $s \subset \partial D^{\prime}$. Let D be the disk in D^{\prime} with boundary defined by the $\operatorname{arcs} a \subset S$ and s. Then D is in the tangle $\left(B_{2}, \mathcal{T}_{2}\right)$ and the interior of D doesn't intersect S. Therefore, the string s is trivial in $\left(B_{2}, \mathcal{T}_{2}\right)$, which is a contradiction to the tangle decomposition defined by S being essential.
(b) Assume that one of the strings of $Q \cap K$ is unknotted in B. If the tangle ($Q, Q \cap K$) is essential then, from (a), the 2 -sphere ∂Q defines a 2 -string essential tangle decomposition of K. By Ozawa's unicity theorem, the tangle decompositions given by S and ∂Q are isotopic. Hence, as one string of $(Q, Q \cap K)$ is unknotted, some string of some tangle defined by S is also unknotted. Otherwise, the tangle $(Q, Q \cap K)$ is trivial.
(c) Suppose the tangle $(Q, Q \cap K)$ is trivial. Let Q^{\prime} be obtained from Q after we isotope away from S in B_{1} the components of $Q \cap S$ that don't contain any string ends. If Q^{\prime} intersects S in a disk with all string ends in it, as the strings are trivial in Q^{\prime} they are both unknotted in $\left(B_{1}, \mathcal{T}_{1}\right)$. From Theorem 1' in [2], this is a contradiction to the tangle $\left(B_{1}, \mathcal{T}_{1}\right)$ being essential. Otherwise, if Q^{\prime} intersects S in two disks that also contain the strings ends in them. As the tangle $\left(B_{1}, \mathcal{T}_{1}\right)$ is free, following an argument as in Lemma 2.1, the complement of Q^{\prime} in B_{1} is a solid torus. Then ∂Q^{\prime} is ambient isotopic to S in $S^{3}-K$, which is also a contradiction to the tangle $\left(B_{1}, \mathcal{T}_{1}\right)$ being essential. So, the tangle $(Q, Q \cap K)$ is essential.
(d) Suppose there is a ball component C of $V-V \cap S$ containing a string s with both ends in the same component of \mathcal{D}^{*}. From Lemma 2.3 the tangle $(C, C \cap K)$ is trivial. Consequently, the string s is trivial in C. As the ends of s are in the same disk of $C \cap S$, it is also unknotted in the respective tangle defined by S.

Lemma 3.2. If there is an outermost disk over a ball component of $V-(S \cap V)$ then some string of some tangle is unknotted.

Proof. Suppose there is an outermost disk Δ over a ball component C of $V-(S \cap V)$, and let δ be the respective outermost arc. Without loss of generality assume that $C \subset B_{1}$. Let A be the annulus in the intersection of $C \subset V$ with the 2 -sphere obtained after an isotopy, along a regular neighborhood of Δ, of a regular neighborhood of δ in S into V. The component C is either disjoint from K or contains one or both strings of \mathcal{T}_{1}. Then, a core of A bounds a disk D in ∂C that is either disjoint or intersects K in one or two points. We isotope int D into C, slightly, such that $D \cap S=\partial D$.

Assume D is disjoint from K. The arc δ union an arc component of $\partial P-\partial \delta$ is a simple closed curve parallel, in $S-K$, to a core of A. Also, the $\operatorname{arc} \delta$ separates P into two planar surfaces containing boundary components of \mathcal{D}^{*}. Therefore, D separates the strings of the tangle $\left(B_{1}, \mathcal{T}_{1}\right)$
and intersects S only at ∂D, which is a contradiction to the tangle decomposition defined by S being essential.

Assume that $|D \cap K|=1$. Let D^{\prime} be the disk in S with $\partial D^{\prime}=\partial D$ and $\left|D^{\prime} \cap K\right|=1$, and Q be the ball in B_{1} bounded by $D \cup D^{\prime}$. Then $Q \cap \mathcal{T}_{1}$ is a single trivial arc in Q. So, considering the 2-sphere $S^{\prime}=\left(S-D^{\prime}\right) \cup D$, the tangle decompositions defined by S and S^{\prime} are isotopic with $\left|S^{\prime} \cap V\right|<|S \cap V|$, which is a contradiction to the minimality of $|S \cap V|$.

Assume now that $|D \cap K|=2$. Then D splits the tangle (B_{1}, \mathcal{T}_{1}) in two 2-string tangles: $\left(B_{1}^{\prime}, \mathcal{T}_{1}^{\prime}\right)$ and $\left(B_{1}^{\prime \prime}, \mathcal{T}_{1}^{\prime \prime}\right)$. If D intersects K in the same string of \mathcal{T}_{1} then one string of this tangle, say s_{1}, is either in $\left(B_{1}^{\prime}, \mathcal{T}_{1}^{\prime}\right)$ or in $\left(B_{1}^{\prime \prime}, \mathcal{T}_{1}^{\prime \prime}\right)$. Assume, without loss of generality, that s_{1} is in $\left(B_{1}^{\prime}, \mathcal{T}_{1}^{\prime}\right)$. From Lemma 3.1 (a), if the tangle $\left(B_{1}^{\prime}, \mathcal{T}_{1}^{\prime}\right)$ is essential then ∂B_{1}^{\prime} defines an essential 2-string tangle decomposition of K with $\left|\partial B_{1}^{\prime} \cap V\right|<|S \cap V|$, which contradicts the minimality of $|S \cap V|$. Hence, the tangle $\left(B_{1}^{\prime}, \mathcal{T}_{1}^{\prime}\right)$ is trivial. So, s_{1} is trivial in $\left(B_{1}^{\prime}, \mathcal{T}_{1}^{\prime}\right)$ and therefore unknotted in $\left(B_{1}, \mathcal{T}_{1}\right)$. Otherwise, assume that D intersects K in different strings of \mathcal{T}_{1}. By a similar argument as when D intersects K in the same string we can prove that the tangles $\left(B_{1}^{\prime}, \mathcal{T}_{1}^{\prime}\right)$ and $\left(B_{1}^{\prime \prime}, \mathcal{T}_{1}^{\prime \prime}\right)$ are trivial. Then the string $s_{1} \cap B_{1}^{\prime}$ is trivial in B_{1}^{\prime} and the string $s_{1} \cap B_{1}^{\prime \prime}$ is trivial in $B_{1}^{\prime \prime}$, which implies that s_{1} is unknotted in $\left(B_{1}, \mathcal{T}_{1}\right)$.
Remark 3. From Lemma 3.2, if some outermost disk is over a ball component of $V-S \cap V$ then we have Theorem 1. So, we can assume that all outermost disks are over components of $V-S \cap V$ other than balls.

We say that two arcs of $E \cap P$ are parallel in E if the union of these arcs cuts a disk component of $E-E \cap P$ from E. An arc outermost in E between the arcs of $E \cap P$ not in a sequence of parallel arcs to a outermost arc is said to be a second-outermost arc. A disk of $E-E \cap S$ in the outermost side of a second-outermost arc is called a second-outermost disk. The arcs α and γ in Figure 3 are examples of second-outermost arcs.

Let γ and γ^{\prime} be two type I arcs of $E \cap P$ parallel in E attached to disks D and D^{\prime} of $S \cap V$, resp., parallel in V. Denote by Γ the disk cut by $\gamma \cup \gamma^{\prime}$ from E, and by C the ball component of $S-S \cap V$ cut by $D \cup D^{\prime}$ from V. Suppose that C and Γ are in the same ball component bounded by S, say B_{1}. Then Γ is a proper surface in the complement of the solid torus $B_{2} \cup_{D \cup D^{\prime}} C$ in S^{3}, which is $B_{1}-i n t C$. The curve $\partial \Gamma$ is inessential in the boundary of $B_{2} \cup_{D \cup D^{\prime}} C$, and as we are in S^{3}, it bounds a disk in $\partial\left(B_{2} \cup_{D \cup D^{\prime}} C\right)$. Let L be the disk bounded by $\partial \Gamma$ in $\partial\left(B_{1}-i n t C\right)$. Note that L intersects S in two disks and C in a disk band from D to D^{\prime}. Let R be the ball bounded by $\Gamma \cup L$ in $B_{1}-i n t C$. For the next lemma, denote by q a core arc of C in B_{1}, this is a proper arc in B_{1} with regular neighborhood C. This construction and the following lemma will be frequently used throughout this paper.

(a)

(b)

Figure 4

Lemma 3.3. The ball R contains a single string of \mathcal{T}_{1}, and this string is parallel to q in B_{1}.
Proof. Denote by O and O^{\prime} the disks of $L \cap S$, which are the disks cut by γ and γ^{\prime}, resp., in $S-\operatorname{int}\left(D \cup D^{\prime}\right)$. As γ, and γ^{\prime}, is a st or sk-arc we have that O and O^{\prime} contain some component of \mathcal{D}^{*}. This means that R contains some string(s) of \mathcal{T}_{1}.
Suppose that \mathcal{T}_{1} is in R. From Lemma 3.1(a) and (c), we have that ∂R defines a 2 -string essential tangle decomposition of K. As the 2-string essential tangle decomposition of K is unique, we have that the tangle decompositions defined by S and ∂R are isotopic. But $|\partial R \cap V|<|S \cap V|$, which is a contradiction to the minimality of $|S \cap V|$.
Then R contains a single string, s, of \mathcal{T}_{1}. As there are no local knots, s is trivial in R. The intersection of R with C is the disk $L-O \cup O^{\prime}$, that intersects each D and D^{\prime} at an arc. Let a be an arc in $L-O \cup O^{\prime}$ with one end in $D \cup O$ and other in $D^{\prime} \cup O^{\prime}$. Then, s (resp., q) is parallel to a in R (resp., C) through a disk with boundaries being $s \cup a$ (resp., $a \cup q$) and two arcs in $O \cup O^{\prime}$ (resp., $D \cup D^{\prime}$). As R intersects C in $L-O \cup O^{\prime}$, we have that s and q are parallel through a disk with boundaries being $s \cup q$ and two arcs in S. Consequently, s and q are parallel in B_{1}.

Corollary 2.2. The disks D and D^{\prime} cannot be disks of \mathcal{D}^{*}.
Proof. As no disk of \mathcal{D} is parallel to a disk of \mathcal{D}^{*} in V, suppose both D and D^{\prime} are disks of \mathcal{D}^{*}. Then C contains some string(s) of \mathcal{T}_{1}. As R contains a string of \mathcal{T}_{1} we have that C contains a single string of \mathcal{T}_{1}, and from Lemma $2.3(\mathrm{~b})$ this string is also a core of C. Therefore, from Lemma 3.3 , the strings of \mathcal{T}_{1} in R and in C are parallel in B_{1}, which is a contradiction to Lemma 2.1.

Lemma 3.4. Let D_{k}, D_{i}^{*} and D_{j}^{*} be disks of $S \cap V$ where $D_{k} \cup D_{i}^{*} \cup D_{j}^{*}$ cuts a ball component C of $V-V \cap S$ from V; assume that C intersects K at a single string, with one end at D_{i}^{*} and the other at D_{j}^{*}. Suppose there is a disk component of $E-E \cap P$, in the same tangle component as C, that intersects S in arcs where all but one of these arcs have both ends in D_{k}, and the remaining arc has either at least one end in D_{k}, or one end in D_{i}^{*} and the other in D_{j}^{*}. Then some string of some tangle is unknotted.
Proof. Denote by Γ the disk component of $E-E \cap P$ referred to in the statement, and by γ the arc of $\Gamma \cap S$ that doesn't have by assumption both ends in D_{k}, as in Figure 5 (a). Without loss of generality, suppose C is in B_{1}. Let s and s^{\prime} be the strings in this tangle with s in C, and C_{i} denote the cylinder obtained from C after an isotopy pushing D_{j}^{*} away from S in B_{1}. Consider also the solid torus T_{i} defined by $B_{2} \cup_{D_{i}^{*} \cup D_{k}} C_{i}$.
Assume that γ also has both ends in D_{k}.

Figure 5: (a) Arc γ after the outermost arcs attached to D_{k}. The label k at an end of an arc means the end is at the disk D_{k}. (b) The ball C cut by $D_{i}^{*} \cup D_{j}^{*} \cup D_{k}$ from V, and the string $s_{i j}$ in it.

The curve $\partial \Gamma$ is inessential in T_{i} and it bounds a disk in ∂T_{i} that we denote by L. The disk L
intersects \mathcal{D}^{*}. In fact, suppose L is disjoint from \mathcal{D}^{*}, and consider a disk D of $L \cap C_{i}$ or $L \cap S$ with boundary intersecting ∂L at a single component. Then, if $D \subset C_{i}$ it is also a disk in C and we get a contradiction to the minimality of $|P \cap E|$, and if $D \subset S$ we obtain a contradiction with Lemma 2.4(e).
Consider the ball R in B_{1} bounded by $\Gamma \cup L$. As L contains some component of \mathcal{D}^{*} the ball R intersects \mathcal{T}_{1}; it contains at most two arcs, the string s^{\prime} or a portion of the string s.
Suppose R contains the string s^{\prime} only. As there are no local knots in the tangle, s^{\prime} is parallel to L. By pushing L to S from ∂C_{i} we have that the string s^{\prime} is unknotted in $\left(B_{1}, \mathcal{T}_{1}\right)$.
Suppose R contains also a portion of the string s. From Lemma 3.1(a), we have that the tangle ($R^{c}, R^{c} \cap K$), where R^{c} is the complement of R in S^{3}, is essential. As $|\partial R \cap V|<|S \cap V|$, if the tangle $(R, R \cap K)$ is essential, we have a contradiction to the minimality of $|S \cap V|$. Therefore, $(R, R \cap K)$ is a trivial tangle. Then, the string s^{\prime} is unknotted in R and parallel to the disk L. By an isotopy of L from T_{i} to S we have that the string s^{\prime} is also unknotted in (B_{1}, \mathcal{T}_{1}).
So, we can assume that $R \cap K$ is only a portion of the string s. Consider the solid torus $T_{i}^{\prime}=T_{i} \cup R$, and the complement in B_{1} of the ball obtained by cutting T_{i}^{\prime} along D_{i}^{*} that we denote by Q. Then, Q is a ball in B_{1} containing s^{\prime} and a portion of s. The 2-sphere ∂Q is isotopic to S rel. $Q \cap S$ in B_{1}. Then, if s is unknotted in Q it is also unknotted in B_{1}. As $|\partial Q \cap V|<|S \cap V|$, following a similar reasoning as when R contains two arcs, we also have that some string of some tangle is unknotted.

Assume now that γ has only one end at D_{k}.
Suppose, without loss of generality, that the other end of γ is in D_{i}^{*}. We isotope S along a regular neighborhood of a disk in C intersecting K once, intersecting the disk D_{k} along a single arc, and separating D_{i}^{*} from D_{j}^{*} in ∂C. In this way, we split D_{k} in two disks D_{k} and $D_{k^{\prime}}$, and C in two cylinders from D_{k} to $D_{i}^{*}, C_{k, i^{*}}$, and from $D_{k^{\prime}}$ to $D_{j}^{*}, C_{k^{\prime}, j^{*}}$. The boundary of Γ lies in S, and in the boundaries of the balls $C_{k, i^{*}}$ and $C_{k^{\prime}, j^{*}}$. The arcs of $\partial \Gamma \cap C_{k^{\prime}, j^{*}}$ have both ends attached to $D_{k^{\prime}}$. Hence, we can isotope these arcs to S. Also, all but one arc of $\partial \Gamma \cap C_{k, i^{*}}$ has both ends in D_{k}. The other arc has one end in D_{i}^{*} and the other in D_{k}. We isotope all arcs of $\partial \Gamma \cap\left(C_{k, i^{*}} \cup C_{k^{\prime}, j^{*}}\right)$ with both ends in D_{k} or both ends in $D_{k^{\prime}}$ from $\partial C_{k, i^{*}}$ or $\partial C_{k^{\prime}, j^{*}}$ to S, respectively. We are left with the disk Γ with boundary defined by one arc in S and other arc in the boundary of $C_{k, i^{*}}$ from D_{i}^{*} to D_{k}. Using this disk we can isotope $C_{k, i^{*}}$ through S. We did an isotopy of V where we obtain a new 2 -string tangle decomposition of K, that contains in each tangle a string from the original tangle decomposition defined by S. We also reduced $|S \cap V|$. So, the new tangle decomposition cannot be essential, which implies that some string of the original tangle decomposition defined by S is unknotted.

Assume at last that γ has one end in D_{i}^{*} and the other end in D_{j}^{*}.
Then each arc of $\Gamma \cap S$ co-bounds a disk in $S-i n t D_{k}$, with ∂D_{k}, containing $D_{i}^{*} \cup D_{j}^{*}$, and other disk containing none of these disks. Hence, we can isotope $\partial \Gamma$ to lie in ∂C with the exception of γ. So, after the isotopy $\partial \Gamma$ is defined by γ and an arc in C from D_{i}^{*} to D_{j}^{*}. The string s is trivial in C and therefore it is parallel to the $\operatorname{arc} \partial \Gamma \cap C$. Therefore, the string s is unknotted in $\left(B_{1}, \mathcal{T}_{1}\right)$.

4. Outermost disks over torus components of $V-V \cap S$

In this section, we prove several lemmas related with the existence of outermost disks over tori components of $V-V \cap S$ disjoint or intersecting K at a single arc. These lemmas are fundamental on the proof of Theorem 1 .

Lemma 4.1. There is no outermost disk over a solid torus component of $V-V \cap S$ containing a single disk of $V \cap S$ and disjoint from K.

Proof. Denote the disk $T \cap S$ by D. Let δ be the outermost arc co-bounding an outermost disk Δ as in the statement. Consider, also, the corresponding arc β and a disk O cut by δ in $S-i n t D$. Let $L=O \cup \Delta$. The disk L is a meridian for the complement of T and intersects a meridian of T once. Consider a regular neighborhood of Δ in $W, N(\Delta)$. So, $N(\Delta) \cap S$ is a regular neighborhood of δ in $S, N(\delta)$, and $N(\Delta) \cap \partial T$ is a regular neighborhood of β in ∂T, $N(\beta)$. We isotope the annulus $N(\delta) \cup D$ through $N(\Delta)$ to the annulus $N(\beta) \cup D$. As β intersects a meridian of T once, the annulus $A=N(\beta) \cup D$ is such that $T=A \times I$. Therefore, we can isotope $A \subset S$ through T to $\partial T-A$ and out of V. Let S^{\prime} be the 2-sphere obtained from S after this isotopy. The tangle decomposition of K obtained from S^{\prime} is the same as the one given by S. However, $\left|S^{\prime} \cap V\right|<|S \cap V|$ and we contradict the minimality of $|S \cap V|$.

Lemma 4.2. Assume $V-V \cap S$ has a solid torus component T intersecting K in a single string and with $T \cap \mathcal{D}^{*}$ being a single disk. If there is an outermost disk over T then some string of some tangle is unknotted.

Proof. Suppose T is in the tangle $\left(B_{1}, \mathcal{T}_{1}\right)$. Let s be the string $T \cap K$, that is a component of \mathcal{T}_{1}, and D^{*} be the component of $T \cap S$ that intersects K. Then, both ends of s are in $D^{*} \subset \partial T$. Let Δ be an outermost disk over T and δ the respective outermost arc in E attached to the disk D of $T \cap S$. Consider also the disk O cut by δ in $S-i n t D$ and disjoint from D^{*}. Let $L=O \cap \Delta$. Isotope the disks (if any) of $T \cap O$ away from S in B_{1}, and denote the resulting solid torus by T^{\prime}. By adding the 2-handle with core L to T^{\prime} we define a ball Q that intersects S at disk components.

Suppose $D=D^{*}$. As δ is a sk-arc, and two ends of strings are in D, we have that O intersects \mathcal{D}^{*} in a a single disk. In this case, the ball Q contains the string s, and also an unknotted portion of the other string of \mathcal{T}_{1}. From Lemma 3.1, some string of some tangle defined by S is unknotted or the tangle $(Q, Q \cap K)$ is trivial. So, we can assume that s is trivial in Q. As s has both ends at the same disk component of $Q \cap S$, we have that s is unknotted in $\left(B_{1}, \mathcal{T}_{1}\right)$.

Suppose D doesn't intersect K. If O intersects K at a single point, then following the argument used in the previous case we have that some string of some tangle is unknotted. So, assume that O intersects K at a collection of two points. In this case, the ball Q contains the string s, and also two portions of the other string, s^{\prime} that are unknotted in Q. So, ∂Q defines a 3 -string tangle decomposition of K. Let Q^{c} denote the complement of Q in S^{3}. From Ozawa's unicity theorem, either the tangle $(Q, Q \cap K)$ or the tangle ($Q^{c}, Q^{c} \cap K$) isn't essential. As there are no local knots in the tangles defined by S and the tangles $(Q, Q \cap K)$ and ($\left.Q^{c}, Q^{c} \cap K\right)$ are 3-string tangles, the tangle that isn't essential has a trivial string. If the tangle ($Q^{c}, Q^{c} \cap K$) isn't essential then, following an argument as in the proof of Lemma 3.1, either some string of the tangle $\left(B_{2}, \mathcal{T}_{2}\right)$ is trivial, which is a contradiction, or the string $Q^{c} \cap s^{\prime}$ is trivial in Q^{c}. In the latter case isotope Q from S in such a way that $Q \cap S$ is only $D \cup O$, and denote by Q^{\prime} the ball after the isotopy. Then, $\left(Q^{\prime}, Q^{\prime} \cap s^{\prime}\right)$ is the product tangle and $Q^{\prime c} \cap s^{\prime}$ is isotopic to $\partial Q^{\prime}-\partial Q^{\prime} \cap S$. Therefore, after the isotopy of $Q^{\prime c} \cap s^{\prime}$ to Q^{\prime} we have that s^{\prime} is unknotted in $\left(Q^{\prime}, Q^{\prime} \cap K\right)$. As s^{\prime} has both ends in the same disk component of $Q^{\prime} \cap S$ we have that s^{\prime} is unknotted in the tangle $\left(B_{1}, \mathcal{T}_{1}\right)$. Suppose now that the 3-string tangle $(Q, Q \cap K)$ isn't essential. Then one of the strings $Q \cap K$ is trivial in this tangle. If such a string is s then the string s is unknotted in $\left(B_{1}, \mathcal{T}_{1}\right)$. If such a string is one of the arcs obtained from $Q \cap s^{\prime}$, then consider the compressing disk C for ∂Q in the interior of Q and the ball $Q^{\prime \prime}$, containing the string s, obtained after cutting Q along C. From Lemma 3.1, either some string of $\left(B_{1}, \mathcal{T}_{1}\right)$ is unknotted or the tangle $\left(Q^{\prime \prime}, Q^{\prime \prime} \cap K\right)$ is trivial. Then s is trivial in $Q^{\prime \prime}$ and unknotted in Q (that is obtained from $Q^{\prime \prime}$ after gluing a ball along a disk). As s has both strings in the disk $T \cap \mathcal{D}^{*}$ we also have that s is unknotted in the tangle $\left(B_{1}, \mathcal{T}_{1}\right)$.

Lemma 4.3. Let T be a torus component of $V-V \cap S$ with more than one component from $V \cap S$ in its boundary. Then there is no ball Q, in the tangles defined by S, with the following properties,
(1) $T \subset Q, \partial Q \cap \partial T$ is an annulus A that contains at least two components of $T \cap S$ union with the disks of $T \cap S$ not in A;
(2) $(\partial Q \cap S) \cup A$ is an annulus $A^{\prime}, A^{\prime}-A$ is a collection of disks attached to some disks of $T \cap S$ and contain the disks of $T \cap S$ not in A;
(3) the two strings of a tangle are in Q and the tangle in Q with these two strings is essential.

Proof. Suppose there is a ball Q as in the statement. From Lemma 3.1(a) the complement of Q in S^{3} contains an essential tangle. As $(Q, Q \cap K)$ is an essential tangle, from Ozawa's unicity theorem, we have that the tangle decomposition of K defined by S and ∂Q are isotopic. Note that as $A^{\prime}-A$ is a collection of disks in S attached to $\partial T \cap S, A-A \cap S=A^{\prime}-A^{\prime} \cap S$. Consider an arc a in $A-A \cap S$ connecting the two components of ∂A. Then a is also an arc in $A^{\prime}-A^{\prime} \cap S$ connecting the two different components of ∂A^{\prime}. Consider S^{\prime} after an isotopy of ∂Q along a regular neighborhood of the arc a in the complement of Q. Then, all disks of $S \cap T$ that are in A are now in a single disk component of $S^{\prime} \cap T$. The sphere S^{\prime} defines the same tangle decomposition to K than S does. And also, as A contains at least two components of $T \cap S$, we have $|S \cap V|>\left|S^{\prime} \cap V\right|$, which contradicts the minimality of $|S \cap V|$.

For the next lemmas assume that $n_{1} \geq 3$ and consider a solid torus component T of $V-V \cap S$ intersecting K at a single arc component. Suppose there is an outermost disk Δ over T, and let δ be the respective outermost arc attached to the disk D of $V \cap S$. Assume also without loss of generality that T is in $\left(B_{1}, \mathcal{T}_{1}\right)$. Denote by s_{11} and s_{12} the strings of \mathcal{T}_{1}, and by s_{21} and s_{22} the strings of \mathcal{T}_{2}. Suppose that s_{11} is the string of \mathcal{T}_{1} that T contains.

Lemma 4.4. If one of the disks separated by δ in $S-i n t D$ contains just one disk of $V \cap S$ and it intersects K once, some string of some tangle is unknotted.

Proof. Suppose one of the disks cut by δ in $S-i n t D$, say O, contains a single disk of $V \cap S$. As δ is a st or sk-arc the disk of $V \cap S$ in O is a disk D^{*} of \mathcal{D}^{*}, which from the statement intersects K once.
Consider the disk $L=\Delta \cup O$. As we are in S^{3}, by attaching the 2-handle with core L to T we obtain a ball. Consequently, as D^{*} is a disk of $V \cap S$ (separating or non-separating in V), by attaching a regular neighborhood of the annulus $A=L-i n t D^{*}$ to V we have a handlebody V^{\prime} also of genus three. Furthermore, as A is incompressible and non-separating in W, by cutting W along A we obtain a handlebody W^{\prime} of genus three. Altogether, by cutting W along A and simultaneously adding a regular neighborhood of A to V, we obtain a Heegaard decomposition of $S^{3}, V^{\prime} \cup W^{\prime}$, of the same genus as the one defined by ∂V.

Let T^{\prime} be a solid torus obtained from T by an ambient isotopy of $B_{1} \cap V$ taking D^{*} away from S in B_{1}. We denote by Q the ball obtained by attaching a regular neighborhood of L to T^{\prime}. As T intersects K at a single arc and as L intersects K at a single point, we have that Q intersects K at two arcs, with one being unknotted.
Let $T^{\prime \prime}$ be a solid torus obtained from T by an ambient isotopy of $(T \cap S)-D$ away from S in B_{1}. We denote by R the ball obtained by attaching a regular neighborhood of L to $T^{\prime \prime}$. As T intersects K at a single arc and as L intersects K at a single point, we have that R intersects K at two arcs, with one being unknotted.

Suppose $n_{1}=4$.
(1) Suppose D is in \mathcal{D} and D^{*} is not in T. Then Q intersects each string of \mathcal{T}_{1} at a single arc. Then by Lemma 3.1(b) some string of some tangle defined by S is unknotted or the tangle $(Q, Q \cap K)$ is trivial. So, we can assume the latter. Each disk of $Q \cap\left(V^{\prime}-i n t Q\right)$ intersects K at most at a single point. Therefore, the $\operatorname{arcs} Q \cap K$ can be isotoped to ∂Q intersecting $Q \cap\left(V^{\prime}-i n t Q\right)$ only at the end points. From Lemma 2.3 , all the other components of $\left(V^{\prime}-V^{\prime} \cap S\right)-Q$ intersecting K have the same property. Furthermore, if two consecutive arcs are in adjoint components of $V^{\prime}-V^{\prime} \cap S$ then, after the isotopy to the boundary of the arcs in the respective components, we can choose that the common ends are at the same point of the disk of intersection between the components. (In this case, this is a consequence from each component of $V^{\prime} \cap S$ intersecting K at most once and the tangle in each component of $V^{\prime}-V^{\prime} \cap S$ being trivial.) So, with V^{\prime} being the union of components with these properties, K is parallel to ∂V^{\prime}. We also note that there is a meridian disk of V^{\prime} intersecting K once. Altogether, we have that $\left(V^{\prime}-N(K)\right) \cup W^{\prime}$ is a genus three Heegaard decomposition of the knot K exterior. But $\left|S \cap V^{\prime}\right|<|S \cap V|$, which is a contradiction to the minimality of $|S \cap V|$.
(2) Suppose D is in \mathcal{D} and D^{*} is in T. Note that Q intersects \mathcal{T}_{1} at s_{11} in two arcs, with one of the arcs being unknotted in Q. If the tangle $(Q, Q \cap K)$ is trivial then following a similar argument as in (1), we obtain contradiction with the minimality of $|S \cap V|$. So, we can assume that $(Q, Q \cap K)$ is essential. Consider the complement of Q in S^{3}, Q^{c}. If the tangle ($Q^{c}, Q^{c} \cap K$) is also essential then the tangle decomposition defined by S is isotopic to the one defined by ∂Q; as $(Q, Q \cap K)$ contains an unknotted string, this means that some string of some tangle defined by S contains an unknotted string. So, we can assume that the tangle ($Q^{c}, Q^{c} \cap K$) is trivial. Let s_{1} be the intersection of Q^{c} with s_{11}, and s_{2} the other string of $Q^{c} \cap K$. As $\left(Q^{c}, Q^{c} \cap K\right)$ is trivial and K is prime, s_{1} or s_{2} are trivial in Q^{c}. Suppose that s_{2} is trivial in Q^{c}. By following a similar argument as in the proof of Lemma 3.1 (a), we have that either s_{21} and s_{22} are trivial in $\left(Q_{2}, \mathcal{T}_{2}\right)$, or s_{12} is trivial in $\left(Q_{1}, \mathcal{T}_{1}\right)$, which is a contradiction to these tangles being essential. Suppose s_{2} is knotted in Q^{c}. As $\left(Q^{c}, Q^{c} \cap K\right)$ is trivial, there is a proper disk in Q^{c} separating s_{1} and s_{2}; let B be the ball separated by this disk containing s_{2}. Then s_{2} is knotted in B. As K is prime, the string in the complement of B in $S_{3}, B^{c} \cap K$, is trivial. We have $B^{c} \cap K$ being s_{1} and $Q \cap K$. Then, following a similar argument as in Lemma 3.1(a), we have that one of the strings of $Q \cap K$ is trivial in Q, which contradicts $(Q, Q \cap K)$ being essential, or the string s_{1} is trivial in Q^{c} and the strings of $Q \cap K$ are parallel in Q. But one of the strings $Q \cap K$ is unknotted in Q, which is a contradiction to the assumption that $(Q, Q \cap K)$ is essential.
(3) Suppose D is in D^{*} and D^{*} is not in T. The ball R intersects each string of \mathcal{T}_{1} at a single arc component, with one of them being unknotted in R. From Lemma3.1(a), some string of some tangle defined by S is unknotted or the tangle $(R, R \cap K)$ is trivial. Let R_{1} be the complement of R in B_{1}, and R_{1}^{c} the complement of R_{1} in S^{3}. Suppose the tangle ($R_{1}, R_{1} \cap K$) is trivial then, as there are no local knots in $\left(B_{1}, \mathcal{T}_{1}\right), R_{1} \cap s_{11}$ is unknotted in R_{1}. As $R \cap s_{11}$ is also unknotted in R we have that s_{11} is unknotted in B_{1}. So, we can assume that $\left(R_{1}, R_{1} \cap K\right)$ is essential. Again from Lemma 3.1(a), we have that the tangle $\left(R_{1}^{c}, R_{1}^{c} \cap K\right)$ is essential. Therefore, the tangle decompositions defined by S and ∂R_{1} are isotopic. This means that the tangle $(R, R \cap K)$ is the following product tangle: it is ambient isotopic to the tangle in the ball $(D \cup O) \times I$, that is R, with strings being $((D \cup O) \cap K) \times I$. Let V^{\prime} be obtained from V by replacing $T^{\prime \prime}$ by R, as in (1), and $W^{\prime}=S^{3}-i n t V^{\prime}$. Then, the $\operatorname{arcs} R \cap K$ can be isotoped to ∂R intersecting $R \cap\left(V^{\prime}-i n t R\right)$ only at the end points. Also, if two arcs are in adjoint components of $V^{\prime}-V^{\prime} \cap S$ then, after the isotopy to the boundary of the respective components, we can assume that the common ends are at the same point of the disk of intersection between the components. (In this case, this a consequence from $(R, R \cap K)$ being the product tangle described, the tangle in each component of $V^{\prime}-V^{\prime} \cap S$ being trivial and each componnet of $V \cap S$ intersecting K at most
once.) So, as in (1), ($\left.V^{\prime}-\operatorname{int} N(K)\right) \cup W^{\prime}$ is a Heegaard decomposition of the knot exterior with $\left|S \cap V^{\prime}\right|<|S \cap V|$, and we have a contradiction to the minimality of $|S \cap V|$.
(4) Suppose D is in D^{*} and D^{*} is in T. So, the ball R intersects s_{11} at two arcs, and R_{1} intersects K at a portion of s_{11} and the string s_{12}. If the tangle $\left(R_{1}, R_{1} \cap K\right)$ is trivial we have that the string s_{12} is trivial in R_{1}, and as it has ends in the same disk component of $R_{1} \cap S$ it is unknotted in $\left(B_{1}, \mathcal{T}_{1}\right)$. So, we can assume that $\left(R_{1}, R_{1} \cap K\right)$ is essential. From Lemma 3.1(a), the tangle $\left(R_{1}^{c}, R_{1}^{c} \cap K\right)$ is essential. Then the tangle decompositions defined by S and ∂R_{1} are isotopic. This means that the tangle $(R, R \cap K)$ is the product tangle as in (3). Following a similar argument as in (3), we obtain a contradiction to the minimality of $|S \cap V|$.

Suppose $n_{1}=3$.
Assume that the ends of s_{11} are at the same disk of $T \cap S$. Then Q intersects each string of \mathcal{T}_{1} at a single component. Therefore, from Lemma 3.1(b) some string of some tangle is unknotted or the tangle $(Q, Q \cap K)$ is trivial. In the latter case we have that s_{11} is trivial in Q and unknotted in B_{1}. In case the ends of s_{11} are in distinct components of $T \cap S$, we can follow a similar argument as in case (4). (Note that, as $n_{1}=3$ and the genus of V is three the solid torus T cannot contain two disks of \mathcal{D}^{*} and components of \mathcal{D}; so, in this case we have necessarily D in \mathcal{D}^{*} and D^{*} in T.)

Lemma 4.5. Suppose T intersects \mathcal{D}^{*} at two disks, D and D^{\prime}, and is disjoint from \mathcal{D}. Then some string of some tangle is unknotted, or there is a ball Q, in B_{1}, where
(1) $Q \cap S$ is a disk intersecting \mathcal{D}^{*} in two components;
(2) $Q \cap K$ is a collection of two arcs each with one end in $Q \cap S$;
(3) $(Q, Q \cap K)$ is a product tangle with respect to the disk $Q \cap S$ and its intersection with K;
(4) the complement of Q in B_{1} intersects T either in a cylinder between D^{\prime} and a disk parallel to it in V, or in a cylinder between two disks parallel to D^{\prime} in V.

Proof. As T contains a single component from the intersection with K, we have that D and D^{\prime} intersects K once. As D intersects K at one point, one of the disks separated by δ in $S-i n t D$ intersects K once; denote by O this disk. Let T^{\prime} be the solid torus obtained by an isotopy of T taking D^{\prime} away from S in B_{1}. Consider the ball Q defined by adding the 2-handle with core $L=O \cup \Delta$ to T^{\prime}. Denote by Q_{1} the complement of Q in B_{1}.

First assume that $O \cap \mathcal{D}^{*}$ is a disk not in T. Then $Q_{1} \cap T$ is a cylinder between D^{\prime} and a disk parallel to it in V. The arc $Q \cap s_{12}$ is unknotted in Q. From Lemma 3.1. either some string in the tangle $\left(B_{1}, \mathcal{T}_{1}\right)$ is unknotted or the tangle $(Q, Q \cap K)$ is trivial. So, we can assume the latter. Also, from Lemma 3.1(a), the tangle in the complement of Q_{1} in S^{3} is essential. If the tangle defined in $\left(Q_{1}, Q_{1} \cap K\right)$ is also essential then the tangle decompositions defined by S and ∂Q_{1} are isotopic. Then the tangle in Q is the product tangle as in the statement. Otherwise, if the tangle $\left(Q_{1}, Q_{1} \cap K\right)$ is not essential then, as the strings of $Q \cap K$ are trivial in Q, both strings of the tangle $\left(B_{1}, \mathcal{T}_{1}\right)$ are unknotted. So, we either have that one string of $\left(B_{1}, \mathcal{T}_{1}\right)$ is unknotted or that $(Q, Q \cap K)$ is the product tangle described with Q_{1} intersecting T in a cylinder between D^{\prime} and a disk parallel to it in V.

Assume now that $O \cap \mathcal{D}^{*}$ is a disk in T. In this case, $Q_{1} \cap T$ is a cylinder having intersection with Q in two disks parallel to D^{\prime} in V. From Lemma 3.1(a), the tangle in the complement of Q, or of Q_{1}, in S^{3} is essential. If the tangle $\left(Q_{1}, Q_{1} \cap K\right)$ is essential then the tangle decompositions defined by ∂Q_{1} and S are isotopic. This implies that the tangle $(Q, Q \cap K)$ is the product tangle as in the statement. Otherwise, the tangle $\left(Q_{1}, Q_{1} \cap K\right)$ is trivial. As the string s_{12} is in Q_{1} with ends in the disk $Q_{1} \cap S$, it is also unknotted in $\left(B_{1}, \mathcal{T}_{1}\right)$. Hence, we either have that one string
of $\left(B_{1}, \mathcal{T}_{1}\right)$ is unknotted or that $(Q, Q \cap K)$ is the product tangle descrbed with Q_{1} intersecting T in a cylinder between two disks parallel to D^{\prime} in V.

5. OUtermost disks over components of $V-V \cap S$ when $n_{1}=3$

In this section we consider the several cases when $n_{1}=3$ with respect to the existence of a genus two or a genus one component of $V-V \cap S$.

So assume $n_{1}=3$ and let D_{1}^{*}, D_{2}^{*} and D_{3}^{*} be the disk components of $S \cap V$ that intersect K. As $|S \cap K|=4$, without loss of generality, we assume that $\left|D_{1}^{*} \cap K\right|=2$ and $\left|D_{i}^{*} \cap K\right|=1$, for $i=2,3$. As no 2 -sphere is non-separating in S^{3}, we have that D_{1}^{*} is not parallel to D_{2}^{*} or D_{3}^{*} in V. So, D_{1}^{*} isn't parallel in V to any other disk of $S \cap V$.
Lemma 5.1. If $V-V \cap S$ has a genus two component then some string of some tangle is unknotted.

Proof. Assume there is a component of $V-S \cap V$ with genus two that we denote by V_{2}. As the genus of V is three, $S \cap V_{2}$ is a collection of at most two disks.
If $S \cap V_{2}$ is a collection of two disks or a single disk disjoint from K, then, as the genus of V is three, some disk of \mathcal{D} is parallel to a disk of \mathcal{D}^{*}, or D_{1}^{*} is parallel to D_{2}^{*} or D_{3}^{*} in V. This is impossible as observed before. Therefore, $S \cap V_{2}$ is a single disk intersecting K.

As $S \cap V_{2}$ is also separating, we can only have $S \cap V_{2}=D_{1}^{*}$, as in Figure 6. So, the disks D_{2}^{*}

Figure 6
and D_{3}^{*} are necessarily parallel in the solid torus separated by D_{1}^{*} in V, and we have $n_{2}=0$. Also, as V_{2} is the only non-ball component of $V-V \cap S$, from Remark 3, all outermost disks are over V_{2} and attached to D_{1}^{*}.
Let C be the ball component of $V-V \cap S$ cut from V by $D_{1}^{*} \cup D_{2}^{*} \cup D_{3}^{*}$ and suppose it lies in the tangle $\left(B_{1}, \mathcal{T}_{1}\right)$. The ball C contains both strings of the tangle $\left(B_{1}, \mathcal{T}_{1}\right)$: the string s_{12} with one end in D_{1}^{*} and the other in D_{2}^{*}, and the string s_{13} with one end in D_{1}^{*} and the other end in D_{3}^{*}, and from Lemma 2.3 both strings are mutually trivial in C.
Between the arcs of $E \cap P$ with end in D_{2}^{*} or D_{3}^{*} we choose one that is outermost in E, say γ, as in Figure 7 (a). We note that γ cannot have one end in D_{2}^{*} and the other in D_{3}^{*}, as, otherwise δ wouldn't be essential in P. (See Figure 7 (b).) So, without loss of generality, assume that γ has one end in D_{2}^{*}. The disk Γ is in the complement of C in B_{1} and its boundary intersects D_{2}^{*} only once. So, D_{2}^{*} is a primitive disk with respect to the complement of C in B_{1}, which is a handlebody. Then, by an isotopy of C along D_{2}^{*} away from S in B_{1}, we are left with with the ball $C_{1^{*}, 3^{*}}$ that intersects S at D_{1}^{*} and D_{3}^{*}, whose complement in B_{1} is a solid torus and with the string s_{13} as a core. Hence, the string s_{13} is unknotted in $\left(B_{1}, \mathcal{T}_{1}\right)$.
Lemma 5.2. If there is a solid torus component of $V-V \cap S$ then both strings of some tangle are μ-primitive.
Proof. As the genus of V is three, and one component of $V-V \cap S$ is a solid torus, the components of $V-V \cap S$ are balls or solid tori. From Remark 3, all outermost disks are over solid torus

Figure 7: In (a) the arc γ represents an arc of $E \cap P$ outermost in E between the ones with at least one end in either D_{2}^{*} or D_{3}^{*}. The label $2^{*} \mid 3^{*}$ at an end of the arc γ means that this end is either at the disk D_{2}^{*} or at the disk D_{3}^{*}.
components of $V-V \cap S$. Let T be a torus component of $V-S \cap V$ with a outermost disk over it, and suppose T is in B_{1}. The collection of disks $T \cap S$ cannot be bigger than four as the genus of V is three. If the number of disks in $T \cap S$ is four then D_{1}^{*} is parallel to some other disk of $V \cap S$, which is impossible as previously observed. So, $|T \cap S|$ is at most three.

Suppose $T \cap S$ is a single disk. If $T \cap S$ is disjoint from K we get a contradiction to Lemma 4.1. If $T \cap S$ intersects K, from Lemma 4.2 some string of some tangle is unknotted.

In case $T \cap S$ is a collection of two disks then we have several cases two consider. If these two disks don't intersect K then D_{1}^{*} is necessarily separating. Furthermore, one string from a tangle lies in a ball of $V-V \cap S$ cut by $T \cap S$ and D_{1}^{*} with the two ends in D_{1}^{*}. Then, from Lemma 2.3 this string is trivial in the respective tangle, which is a contradiction to the tangle being essential. If only one disk of $T \cap S$ intersects K then it is necessarily D_{1}^{*}, because K intersects $T \cap S$ an even number of times. In this situation, T intersects K at a single arc and from Lemma 4.2 some string of some tangle is unknotted.

If the two disks of $T \cap S$ intersect K then $T \cap S=D_{2}^{*} \cup D_{3}^{*}$. In this case, $D_{2}^{*} \cup D_{3}^{*}$ separate V in

Figure 8
two solid tori components, T and V_{1}. The disk D_{1}^{*} is in V_{1} and is necessarily separating. (See Figure 8.) We also have $n_{2}=0$. Then, for the respective outermost arc of an outermost disk over T we are always under the statement of Lemma 4.4. which means that some string of some tangle defined by S is unknotted.

Assume now that $T \cap S$ is a collection of three disks. At least some disk of $T \cap S$ intersects K, as otherwise D_{1}^{*} would have to be parallel in V to some other disk of $V \cap S$, which is impossible as previously observed.
If only one disk of $T \cap S$ intersects K then this disk is D_{1}^{*}, and from Lemma 4.2 some string of some tangle is unknotted.
If two disks of $T \cap S$ intersect K then these disks have to be D_{2}^{*} and D_{3}^{*}. As the genus of V is three either $T \cap S$ or $D_{2}^{*} \cup D_{3}^{*}$ cuts a ball from V. In either case, D_{1}^{*} would have to be parallel to some other disk, which is impossible as previously observed.
The last case is when $T \cap S=D_{1}^{*} \cup D_{2}^{*} \cup D_{3}^{*}$. The disk D_{1}^{*} can be separating or non-separating. In the latter case $D_{1}^{*} \cup D_{2}^{*} \cup D_{3}^{*}$ separates a ball from V, and in the former case the disks D_{2}^{*}
and D_{3}^{*} are parallel and the disk D_{1}^{*} separates a solid torus V_{1} in V. (See Figure 9.) So, from Lemma 2.3 and the fact that no disk of \mathcal{D} is parallel to a disk of \mathcal{D}^{*}, we can assume that $n_{2}=0$. From $|S \cap V|=3$ and Lemma 2.4 (b), there is only one disk attached to outermost arcs.
Assume D_{1}^{*} is non-separating, then $D_{1}^{*} \cup D_{2}^{*} \cup D_{3}^{*}$ separates a ball C from V, which is in the tangle $\left(B_{2}, \mathcal{T}_{2}\right)$. If there is a string in C with both ends in D_{1}^{*} then, from Lemma 3.1(d), this

Figure 9
string is unknotted in $\left(B_{2}, \mathcal{T}_{2}\right)$. So, we can assume that each string in C has only one end in D_{1}^{*}. Consider a second outermost disk Γ^{*}, and the respective outermost disk γ^{*}. Then Γ^{*} is in the complement of C in B_{2}. If γ^{*} has equal ends then, following the proof Lemma 3.4, we have that some string of some tangle is unknotted. If the ends of γ^{*} are distinct, then D_{1}^{*}, D_{2}^{*} or D_{3}^{*} is primitive in the complement of C in B_{2}. Suppose D_{2}^{*} (or D_{3}^{*}) is primitive with respect to the complement C in B_{2}. After an isotopy of C along D_{2}^{*} (resp., D_{3}^{*}) away from S, we have that the complement of a regular neighborhood of the string s_{13} (resp., s_{23}) is a solid torus, which implies that this string is unknotted in $\left(B_{2}, \mathcal{T}_{2}\right)$. Suppose D_{1}^{*} is primitive with respect to the complement of C in B_{2}. As the complement of C in B_{2} is a handlebody, after an isotopy of C along D_{1}^{*} away from S, we obtain a cylinder from D_{2}^{*} to D_{3}^{*}, with core t, whose complement in B_{2} is a solid torus. Then t is unknotted in B_{2}. As s_{12} and s_{13} are trivial in C, we have that C is the union of the regular neighborhoods of $t \cup s_{12}$, and also of $t \cup s_{13}$. Consequently, both s_{12} and s_{13} are μ-primitive.
Assume now that D_{1}^{*} is separating. Suppose D_{2}^{*} and D_{3}^{*} are the only disks attached to outermost arcs. As D_{2}^{*} is parallel to D_{3}^{*} by the finiteness of outermost arcs, if we consider a second-outermost arc we have that both disks have loops attached in G_{P}, which contradicts Lemma 2.4(b). So, D_{1}^{*} has outermost arcs attached and all second-outermost arcs are after outermost arcs attached to D_{1}^{*}. If there is an outermost disk over V_{1}, from Lemma 4.2 some string of some tangle is unknotted. So, we can assume that all outermost disks are over T. Let Γ^{*} be a second-outermost disk, then Γ^{*} is in the complement of V_{1} in B_{2}. Suppose $\partial \Gamma^{*}$ is essential in $\partial V_{1} \cup_{D_{1}^{*}} S$. Then the complement of V_{1} in B_{2} is also a solid torus (intersecting S at a single disk). From Lemma 2.3 the string s_{11} is trivial in V_{1}. Then, from Lemma 2.2, s_{11} is μ-primitive. We note also that $B_{2} \cap V$ is V_{1} together with the cylinder cut by $D_{2}^{*} \cup D_{3}^{*}$ in $V, C_{2^{*} 3^{*}}$, where the string s_{23} is a core. As the complement of $B_{2} \cap V$ in B_{2} is a handlebody we have that s_{23} is trivial in the complement of V_{1} in B_{2}. Therefore, from Lemma 2.2, s_{23} is also μ-primitive. Suppose now that $\partial \Gamma^{*}$ is inessential in $\partial V_{1} \cup_{D_{1}^{*}} S$. Then $\partial \Gamma^{*}$ bounds a disk L in $\partial V_{1} \cup_{D_{1}^{*}} S$. Let R be the ball in B_{2} bounded by $\Gamma^{*} \cup L$. By similar arguments as in the proof of Lemma 3.4 we have that s_{23} is in R and is parallel to L. So, s_{23} is trivial in the complement of V_{1} in B_{2}. As the complement of $B_{2} \cap V$ in B_{2} is a handlebody, this implies that the complement of V_{1} in B_{2} is a solid torus. Then, as when $\partial \Gamma^{*}$ is essential in $\partial V_{1} \cup_{D_{1}^{*}} S$, we have that both s_{11} and s_{23} are μ-primitive.

6. Outermost disks over components of $V-V \cap S$ When $n_{1}=4$

Along this section we consider the several cases when $n_{1}=4$ with respect to the components of $V-V \cap S$ topology and their intersection with $S \cap V$.

So assume that $n_{1}=4$. As $|S \cap V|=4$ we have $\left|D_{i}^{*} \cap K\right|=1$, for $i=1,2,3,4$. Therefore, D_{i}^{*} is a non-separating disk in V.
Denote by γ_{i}^{*} the outermost arcs of $E \cap P$, in E, between the arcs with at least one end in D_{i}^{*}, for $i=1,2,3,4$. Also, let Γ_{i}^{*} denote the disk of $E-E \cap P$ co-bounded by γ_{i}^{*} in the outermost side of this arc in E, for $i=1,2,3,4$.

Lemma 6.1. If $V-V \cap S$ contains a genus two component then some string in some tangle is unknotted.

Figure 10

Proof. Assume that $V-V \cap S$ contains a genus two component, V_{2}. As the genus of V is three $S \cap V_{2}$ is a collection of at most two disks. If $S \cap V_{2}$ is a collection of two disks then $S \cap V$ are all parallel disks in V and, from Remark 3, all outermost disks are over V_{2}. Therefore, $n_{2}=0$ and all disks of \mathcal{D}^{*} are parallel, as in Figure 10(a). Consequently, by the finiteness of outermost arcs, we have parallel type I^{*}-arcs in E, as in Figure 11(a1) or (a2), in contradiction to Corollary 2.2. Then, $S \cap V_{2}$ is a single disk. As each disk of \mathcal{D}^{*} intersects K once, $S \cap V_{2}$ is a disk of \mathcal{D}. Then, all disks of \mathcal{D}^{*} are parallel in the solid torus cut from V by $S \cap V_{2}$, and all disks of \mathcal{D} are

(b)

Figure 11
parallel to $S \cap V_{2}$ in V, as in Figure 10 (b). Let $D_{1}, \ldots, D_{n_{2}}$ be the disks of \mathcal{D}, with $S \cap V_{2}$ being D_{1}. The outermost disks are all adjacent to D_{1} and are over V_{2}. Consider a second-outermost arc γ, as in Figure 11(b). If the arc γ has at least one end in $D_{n_{2}}$, or has one end in D_{1}^{*} and the other in D_{4}^{*}, by Lemma 3.4 , some string in the tangle decomposition defined by S is unknotted. Otherwise, if all second-outermost arcs have both ends in D_{1}^{*} or both ends in D_{4}^{*}, as when $S \cap V_{2}$ is two disks, by the finiteness of outermost arcs we have a contradiction to Corollary 2.2,

Assume now that $V-V \cap S$ has a solid torus component T with some outermost disk over it. Hence, as the genus of V is three, the components of $V-V \cap S$ are solid tori or balls, and the solid torus T components intersect S at most in four disks. As each disk of \mathcal{D}^{*} intersects K once, the solid torus T intersects \mathcal{D}^{*} at an even number of disks.

Lemma 6.2. Suppose $V-V \cap S$ contains a solid torus component intersecting \mathcal{D}^{*} at the four disks. Then some string in some tangle is unknotted.

Proof. Let T be the solid torus component of $V-V \cap S$ as in the statement, and suppose it lies in the tangle $\left(B_{1}, \mathcal{T}_{1}\right)$. As the genus of V is three and T intersects \mathcal{D}^{*} at the four disks, we have that the disks of \mathcal{D}^{*} are parallel two-by-two in V, say D_{1}^{*} parallel to D_{2}^{*} and D_{3}^{*} parallel to D_{4}^{*}. So, $n_{2}=0$, and $V \cap S$ is as in Figure 12. Also, from Remark 3, we can assume all outermost disks are over T. From Lemma 2.4(b), at most two disks are adjacent to outermost arcs.
If the outermost arcs are attached to a single disk or if they are attached to two non-parallel disks, by the finiteness of outermost arcs of $E \cap P$ in E we have a contradiction to Corollary 2.2. Then, the outermost arcs are attached to two parallel disks. Without loss of generality, assume

Figure 12
that the only disks adjacent to outermost arcs are D_{1}^{*} and D_{2}^{*}. Consider the second outermost

Figure 13
arc γ of $E \cap P$ in E, after the outermost arcs attached to D_{1}^{*} and D_{2}^{*}, and the disk component of $E-E \cap P, \Gamma$, co-bounded by γ on the outermost side of γ in E. Let C_{12} and C_{34} be the cylinders cut from V by $D_{1}^{*} \cup D_{2}^{*}$ and $D_{3}^{*} \cup D_{4}^{*}$, resp.. We have that Γ is in $B_{2}-i n t C_{12}$. If Γ is essential in $S \cup \partial C_{12}$, as in Figure 13 (a), then Γ is a meridian disk to $B_{2}-i n t C_{12}$, which implies that the string s_{12}, a core of C_{12}, is unknotted in the tangle B_{2}. Otherwise, if Γ is inessential in $S \cup \partial C_{12}$, we have that $\partial \Gamma$ bounds a disk L in the torus $S \cup_{D_{1}^{*} \cup D_{2}^{*}} \partial C_{12}$. (See Figure 13 (b), (c).) Let R be the ball in B_{2} bounded by $\Gamma \cup L$. The string s_{34}, as a core of C_{34}, is in R and, as there are no trivial knots, it is trivial in R and parallel to L. Hence, as the complement of $C_{12} \cup C_{34}$ in B_{2} is a handlebody, we have that the complement of C_{12} in B_{2} is a solid torus. Therefore, in this case, the string s_{12} is also unknotted.

Lemma 6.3. Suppose $V-V \cap S$ contains a solid torus that intersects \mathcal{D}^{*} in a collection of two disks and \mathcal{D} in a single separating disk. Then both strings of some tangle are μ-primitive.

Proof. Let T be the solid torus component of $V-V \cap S$ as in the statement, and suppose it lies in the tangle $\left(B_{1}, \mathcal{T}_{1}\right)$. Assume that $T \cap \mathcal{D}^{*}=D_{1}^{*} \cup D_{4}^{*}$ and that $\mathcal{D} \cap T=D_{1}$, and denote by V_{1} the solid torus separated by D_{1} in V. As $\mathcal{D} \cap T$ is separating, and K is connected, the four disks of \mathcal{D}^{*} have to be parallel in V. If all outermost arcs are attached to D_{1}^{*} or to D_{4}^{*} then, by the finiteness of outermost arcs, we have a contradiction to Corollary 2.2. Hence, there is an outermost arc attached to D_{1}. The set \mathcal{D} contains a collection of separating disks, D_{1}, \ldots, D_{k} in V, and might also contain a collection of non-separating parallel disks $D_{k+1}, \ldots, D_{n_{2}}$ in V_{1}, as in Figure 14(a), (b). From Remark 3, the outermost disks are over T or V_{1}, and from Lemma 4.1 there are no outermost disks over V_{1}. So, all outermost disks are over T, attached to D_{1}^{*}, D_{4}^{*} or D_{1}, with no sequence of parallel arcs of $E \cap P$ in E after an outermost arc attached to D_{1}^{*} or D_{4}^{*}.

Figure 14
Case 1. Assume that all disks of \mathcal{D} are parallel and separating as in Figure 14 (a).
If $n_{2}>1$, by the finiteness of outermost arcs, there is a sequence of parallel arcs of $E \cap P$ in $E, \delta_{1}, \ldots, \delta_{n_{2}}$, as in the Figure 15 (a), where δ_{i} has both ends in D_{i} and δ_{1} is an outermost arc attached to D_{1}. Denote the outermost disk that δ_{1} co-bounds by Δ, and the disk between δ_{i} and δ_{i+1} by Δ_{i}. Considering the disks Δ_{i} and the cylinder cut from V by $D_{i} \cup D_{i+1}$ we define a ball R_{i} as in Lemma 3.3 . The balls R_{i} intersect S at disks O_{i} and O_{i+1}, co-bounded by δ_{i} and δ_{i+1} resp., each containing an end of the string in R_{i}. Then, in particular, O_{1} contains a single disk of \mathcal{D}^{*}. If $n_{2}=2$, as R_{1} contains a single string, we have that O_{1} intersects $S \cap V$ at a single disk, that is of \mathcal{D}^{*}. Assume $n_{2} \geq 3$. If D_{2}^{*}, or D_{3}^{*}, is in O_{1} then R_{2} contains T and consequently two strings of the tangle, which is a contradiction as R_{2} contains a single string. Therefore, without loss of generality, we can assume that D_{1}^{*} is in O_{1}. Suppose that some disk of \mathcal{D}, say D_{i}, is in O_{1}. Then $O_{i} \subset O_{1}$ and $D_{1}^{*} \subset O_{i}$. Consequently, following the strings in the sequence of balls R_{j}, we have $T \subset R_{i-1}$ and D_{1} in O_{i}, which is a contradiction as D_{i} is in O_{1}. Therefore, D_{1}^{*} is the only disk of $S \cap V$ in O_{1}. Then, by Lemma 4.4, if $n_{2}>1$ some string of some tangle is unknotted.

Suppose $n_{2}=1$. As before we denote by δ_{1} an outermost arc attached to D_{1}. If a disk cut from $S-\operatorname{int} D_{1}$ by δ_{1} intersects \mathcal{D}^{*} at a single disk from Lemma 4.4 some string of some tangle is unknotted. Therefore, we can assume that all outermost $\operatorname{arcs} \delta_{1}$ separate $S-i n t D_{1}$ in two disks each intersecting \mathcal{D}^{*} at two disks. Consequently they are all parallel in P. Let Γ be a second-outermost disk. From Lemma 2.2 , the disk Γ is in the complement of V_{1} in B_{2}. If $\partial \Gamma$ is inessential in the solid torus $B_{1} \cup_{D_{1}} V_{1}$ then Γ bounds a disk L in $S \cup_{D_{1}} \partial V_{1}$. Let R be the ball bounded by $\Gamma \cup L$ in B_{2}. By similar arguments as in the proof of Lemma 3.4, we have that the strings s_{12} and s_{34} are in R and are parallel to L. Hence, the complement of V_{1} in B_{2} is a solid torus intersecting S at a single disk. Altogether, from Lemma 2.2 we have that both strings s_{12} and s_{34} are μ-primitive. Suppose now that $\partial \Gamma$ is essential in the solid torus $B_{1} \cup \partial_{D_{1}} V_{1}$. Then the complement of V_{1} in B_{2} is also a solid torus. Consider an outermost arc between the arcs with one end in D_{2}^{*} or D_{3}^{*}, and denote these arcs by γ^{*}. Suppose there are arcs γ^{*} with both
ends in D_{2}^{*} and also in D_{3}^{*}. Then there are arcs γ_{1}^{*} and γ_{4}^{*} of Type II outermost between the d^{*}-arcs, and the disks Γ_{1}^{*} and Γ_{4}^{*} are in B_{1} and intersect D_{1}^{*} and D_{4}^{*}, resp., exactly once. Then, D_{1}^{*} and D_{4}^{*} are primitive with respect to the complement of $V \cap B_{1}$ in B_{1}. Let T^{\prime} be the solid torus obtained by an isotopy of T along $D_{1}^{*} \cup D_{4}^{*}$ away from S. We also have that an outermost disk Δ intersects a meridian of T^{\prime} once. Altogether, the complement of the cylinder from D_{2}^{*} to D_{3}^{*} in V is a solid torus; as the core of this cylinder is the string s_{23}, this string is unknotted in $\left(B_{1}, \mathcal{T}_{1}\right)$. Otherwise, without loss of generality, suppose there is an arc γ^{*} with only one end in D_{2}^{*}. This means γ^{*} is an γ_{2}^{*} arc, and we can consider the respective disk Γ_{2}^{*}. Let C_{12} (resp., C_{34}) be the cylinder from D_{1}^{*} to D_{2}^{*} (resp., D_{3}^{*} to D_{4}^{*}) in V. As D_{2}^{*} is primitive with respect to the complement of $V \cap B_{2}$ in B_{2}, a core of C_{34}, as the string s_{34}, is trivial in the complement of V_{1} in B_{2}. If the other end of γ^{*} is in D_{3}^{*} then D_{3}^{*} is also primitive with respect to the complement of $V \cap B_{2}$ in B_{2}, and similarly a core of C_{12}, as the string s_{12}, is trivial in the complement of V_{1} in B_{2}. Otherwise, if the other end of γ^{*} is not in D_{3}^{*}, using the disk Γ_{2}^{*}, we have that a core of C_{12}, as the string s_{12}, is trivial in the complement of V_{1} in B_{2}. Then, from Lemma 2.2, both strings s_{12} and s_{34} are μ-primitive.

Case 2. Assume now that \mathcal{D} also has a collection of non-separating disks in V, as in Figure 14 (b).
Claim 6.3.1. If the outermost arcs attached to D_{1} are not parallel in P then some string of some tangle is unknotted.

Proof of Claim 6.3.1. In fact, let δ_{1} and δ_{1}^{\prime} be outermost arcs attached to D_{1}, non-parallel in P. Consider the disjoint disks O_{1} and O_{1}^{\prime} co-bounded, respectively, by δ_{1} and δ_{1}^{\prime} in $S-D_{1}$, and also the respective outermost disk $\Delta_{1}, \Delta_{1}^{\prime}$. Consider the disks $L_{1}=O_{1} \cup \Delta_{1}$ and $L_{1}^{\prime}=O_{1}^{\prime} \cup \Delta_{1}^{\prime}$. Let Q be the ball obtained by attaching a regular neighborhood of L_{1} and L_{1}^{\prime} to T and adding a ball to the respective boundary component disjoint from S. If $\mathcal{D}^{*} \subset O_{1} \cup O_{1}^{\prime}$ then the arcs δ_{1} and δ_{1}^{\prime} are parallel. If $\left(O_{1} \cup O_{1}^{\prime}\right) \cap \mathcal{D}^{*}$ is only D_{1}^{*} and D_{4}^{*}, then $\partial Q-\partial Q \cap S$ is a compressing disk for P. Otherwise, $D_{2}^{*} \cup D_{3}^{*}$ is in $O_{1} \cup O_{1}^{\prime}$ and the string s_{23} is in Q. From Lemma 4.3 the tangle $(Q, Q \cap K)$ is trivial. Therefore, the string s_{23} is trivial in Q. As the ends of s_{23} are in the same disk component of $Q \cap S$ we have that s_{23} is unknotted in $\left(B_{1}, \mathcal{T}_{1}\right)$.

From the previous claim, we assume that the outermost arcs attached to D_{1} are parallel in P.

If $k>1$, by the finiteness of outermost arcs we have a sequence of arcs, δ_{i} for $i=1, \ldots, k$, after an outermost arc, δ_{1}, as in the Figure 15 (b). Following the construction at the beginning of Case 1, from each sequence of parallel arcs after an outermost arc δ_{1} we have a sequence of balls $R_{i}, i=1, \ldots, k$. Also, as there are no t-arcs, the outermost arc, δ_{k+1}, after these arcs is a st-arc. If some arc δ_{k+1} has both ends in D_{k}, following an argument as in Lemma 3.4 we have that some string of some tangle is unknotted. Then, the arcs δ_{k+1} have both ends in D_{k+1}, as in Figure 15 (c), or in $D_{n_{2}}$.
For any k, suppose we have both situations, that there are arcs δ_{k+1} and δ_{k+1}^{\prime} with both ends in D_{k+1} and $D_{n_{2}}$, resp.. Consider the component disks Δ_{k} and Δ_{k}^{\prime} of $E-E \cap P$ co-bounded by δ_{k+1} and δ_{k+1}^{\prime}, resp., in the outermost side of these arcs in E. As the outermost arcs δ_{1} are parallel in P, and the balls $R_{i}, i=1, \ldots, k$, contain only one string, the arcs of $\partial \Delta_{k}$ and $\partial \Delta_{k}^{\prime}$ that have both ends in D_{k} are parallel in P. Let C be the ball cut from V by $D_{k} \cup D_{k+1} \cup D_{n_{2}}$, and $C_{k, k+1}$ (resp., $C_{k, n_{2}}$) be the ball obtained from C by an isotopy of $D_{n_{2}}$ (resp., D_{k+1}) away from S. Let L_{k} and L_{k}^{\prime} be the disks bounded by $\partial \Delta_{k}$ and $\partial \Delta_{k}^{\prime}$, resp., in $\partial C_{k, k+1} \cup_{D_{k} \cup D_{k+1}} S$ and $\partial C_{k, n_{2}} \cup_{D_{k} \cup D_{n_{2}}} S$, resp.. Consider the balls R_{k} and R_{k}^{\prime} bounded by $L_{k} \cup \Delta_{k}$ and $L_{k}^{\prime} \cup \Delta_{k}^{\prime}$, not containing S. Similarly, as observed in Case 1, the balls R_{k} and R_{k}^{\prime} contain only one string.

Figure 15
Suppose none of these balls contains the other, as in Figure 16(a). Hence, each of the disks L_{k} and L_{k}^{\prime} intersection with S contains a disk component, O_{k} and O_{k}^{\prime} resp., co-bounded, with ∂D_{k}, by a single arc of $\partial \Delta_{k} \cap S, \delta_{k}$, and $\partial \Delta_{k}^{\prime} \cap S$, δ_{k}^{\prime}. Each of the arcs δ_{k} and δ_{k}^{\prime} is in a sequence of arcs after an outermost arc, as in Figure 15 (b). As observed before in this Claim, we are assuming that these arcs are parallel in P. Then one of the disks O_{k} or O_{k}^{\prime} has to be contained in the other, which is a contradiction with the assumption that R_{k} and R_{k}^{\prime} are disjoint. So, assume that, say, R_{k}^{\prime} is contained in R_{k}, as in Figure 16(b). Then L_{k} contains $D_{n_{2}}$ and L_{k}^{\prime}. Therefore, from the minimality of $|E \cap P|$ and from the arcs of $\partial \Delta_{k} \cap S$ and $\partial \Delta_{k}^{\prime} \cap S$ that have both ends in D_{k} being parallel in P, we have that $\partial \Delta_{k}$ intersects S in two arcs, one with two ends in D_{k} and the other with two ends in D_{k+1}; similarly, $\partial \Delta_{k}^{\prime}$ intersects S in two arcs, one with two ends in D_{k} and the other with two ends in D_{k+1}. Let O_{k+1}, resp. O_{k+1}^{\prime}, be the disks cut from $S-\operatorname{int} D_{k+1}$, resp. $S-\operatorname{int} D_{n_{2}}$, by δ_{k+1}, resp. δ_{k+1}^{\prime}, disjoint from D_{k}. As there are no local knots, the string in $R_{k}^{\prime} \subset R_{k}$ is trivial. Then, from the minimality of $|S \cap V|$, we have $\left|O_{k+1}^{\prime} \cap V\right|$ the same as $\left|O_{k}^{\prime} \cap V\right|$. Also, $O_{k} \cap(V \cap S)$ is the same as $O_{k}^{\prime} \cap(V \cap S)$. Therefore, $\left|O_{k+1} \cap V\right|$ is bigger than $\left|O_{k} \cap(V \cap S)\right|$. So, we can isotope $D_{k+1} \cup O_{k+1}$ along R_{k} union the ball $C_{k, k+1}$ to reduce $|S \cap V|$, which is a contradiction.
So, assume without loss of generality that all arcs δ_{k+1} have both ends in D_{k+1}. By the finiteness of outermost arcs we have a sequence of parallel arcs, $\delta_{k+2}, \ldots, \delta_{n_{2}}$, as in Figure 15 (d), and the respective sequence of balls $R_{k+2}, \ldots, R_{n_{2}-1}$. Then, we have a sequence of arcs parallel to an outermost arc, $\delta_{1}, \ldots, \delta_{n_{2}}$, and the respective balls $R_{1}, \ldots, R_{n_{2}-1}$. Following a similar argument as in Case 1, we have that δ_{1} is as in Lemma 4.4. which means that some string of some tangle is unknotted.

Lemma 6.4. Suppose $V-V \cap S$ contains a solid torus that intersects \mathcal{D}^{*} at two disks and \mathcal{D} at a single non-separating disk. Then both strings of some tangle are μ-primitive.
Proof. Let T be the solid torus component of $V-V \cap S$ as in the statement, and suppose it lies in the tangle $\left(B_{1}, \mathcal{J}_{1}\right)$. Assume that $T \cap \mathcal{D}^{*}=D_{1}^{*} \cup D_{4}^{*}$ and that $T \cap \mathcal{D}=D_{1}$. The disks D_{1}^{*} and D_{4}^{*} are not parallel, otherwise D_{1} would be separating. Then, $D_{1} \cup D_{1}^{*} \cup D_{4}^{*}$ separate a ball from V, as in Figure 17, and all outermost disks are over T with corresponding outermost arcs attached to D_{1}^{*}, D_{4}^{*} or D_{1}. The disks $D_{1}, D_{2}, \ldots, D_{n_{2}}$ are all parallel and non-separating in V.
Claim 6.4.1. If the disks of \mathcal{D}^{*} are parallel two-by-two then some string of some tangle is unknotted.

Proof of Claim 6.4.1. Assume that D_{2}^{*} is parallel to D_{1}^{*} and that D_{3}^{*} is parallel to D_{4}^{*} in V, as in Figure 17 (a). If D_{1}^{*} or D_{4}^{*} are the only disks with outermost disks attached then by

Figure 16: The disks L and L_{k} when R_{k}^{\prime} is disjoint from R_{k} and when R_{k}^{\prime} is contained in R_{k}, resp.: the $\operatorname{arcs} \delta_{k}$ won't be parallel in P as previously observed.

Figure 17
the finiteness of outermost arcs we have parallel sk-arcs in E, as in Figures 11(a1), (a2), which is a contradiction to Corollary 2.2 . So, D_{1} has an outermost arc attached. Furthermore, from Corollary 2.2, even if D_{1}^{*}, or D_{4}^{*}, has outermost arcs attached we cannot have a sequence of parallel sk-arcs in E after such outermost arcs. So, by the finiteness of outermost arcs only some outermost arc attached to D_{1} is before a sequence of parallel arcs of $E \cap P$ in E, as in Figure 15 (a). Consider a second-outermost arc γ, and the disk component of $E-E \cap P, \Gamma$, co-bounded by γ in the outermost side of this arc in E, as in Figure 11 (b). The boundary of Γ intersects S in γ and arcs with both ends in $D_{n_{2}}$. If γ has at least one end in $D_{n_{2}}$, or one end in D_{2}^{*} and the other in D_{3}^{*}, then from Lemma 3.4 we have that some string in some tangle is unknotted. Otherwise, the ends of all second outermost arcs are both in D_{2}^{*} or both in D_{3}^{*}, and by the finiteness of outermost arcs we have a contradiction to Corollary 2.2 .

From this claim, we can assume that the disks of \mathcal{D}^{*} are not parallel two-by-two in V. Therefore, as no disk of \mathcal{D}^{*} can be parallel in V to a disk of \mathcal{D}, without loss of generality, we assume that the disks D_{2}^{*} and D_{3}^{*} are parallel to D_{4}^{*}, as in Figure 17 (b). Under this setting, we continue the lemma's proof in several steps with respect to which disks are attached to outermost arcs and to the value of n_{2}.

Claim 6.4.2. The disks D_{1} or D_{1}^{*} have outermost arcs attached; and the disks D_{1}^{*} and D_{4}^{*} cannot have simultaneously outermost arcs attached.

Proof of Claim 6.4.2. If all outermost arcs are attached to D_{4}^{*} then there is a sequence of parallel sk-arcs, as in Figure 11(a2), which is a contradiction to Corollary 2.2. Then D_{1} or D_{1}^{*} have outermost arcs attached.
Suppose D_{1}^{*} and D_{4}^{*} have simultaneously outermost arcs attached. Let δ_{i}^{*} be an outermost arc attached to D_{i}^{*}, and Δ_{i}^{*} the respective outermost disk, for $i=1,4$. Consider also the disjoint disks O_{1}^{*} and O_{4}^{*}, in $S-\operatorname{int}\left\{D_{1}^{*} \cup D_{4}^{*}\right\}$, co-bounded by δ_{1}^{*} and δ_{4}^{*}, respectively. Let $L_{i}^{*}=\Delta_{i}^{*} \cup O_{i}^{*}$, for $i=1,4$. As the $\operatorname{arcs} \delta_{i}^{*}$ are st-arcs, $D_{2}^{*} \cup D_{3}^{*}$ is in $O_{1}^{*} \cup O_{4}^{*}$. Taking a regular neighborhood of the disks L_{i}^{*} together with T, and by capping off the boundary component of $N(T) \cup_{i=1,4} N\left(L_{i}^{*}\right)$ disjoint from S with the ball it bounds, we get a ball Q in the tangle (B_{1}, \mathcal{T}_{1}) containing both strings s_{14} and s_{23}. Each string of \mathcal{T}_{1} in Q has ends in two distinct disk components of $\partial Q \cap S$, $D_{1}^{*} \cup O_{1}^{*}$ and $D_{4}^{*} \cup O_{4}^{*}$. Then with the tangle $\left(Q, \mathcal{T}_{1}\right)$ we have a contradiction between Lemma 4.3 and Lemma 3.1(c).

Claim 6.4.3. If D_{1} or D_{1}^{*} is not attached to outermost arcs then $n_{2} \leq 3$.
Proof of Claim 6.4.3. If D_{1} or D_{1}^{*} is not attached to outermost arcs then all outermost d-arcs have either both ends in $D_{n_{2}}$ or in D_{1}. Then by the finiteness of outermost arcs there is a sequence of parallel arcs, δ_{i}, as in Figure 15 (a). As in Case 1 of Lemma 6.3 , using the disks Δ_{i} between the arcs δ_{i} and δ_{i+1} in E, attached to the disks D_{i} and D_{i+1}, resp., and the disk that $\partial \Delta_{i}$ bounds in the torus $C_{i, i+1} \cup_{D_{i} \cup D_{i+1}} S$, we define a ball R_{i}. Each of these balls contains a single string of the tangle decomposition and it is regular neighborhood of it. If $n_{2} \geq 5$ then all components of $V-S \cap V$ are contained in some ball $R_{i} \cup C_{i, i+1}$. We note that these balls are either disjoint or intersect at a disk, wether the strings they contain are disjoint or intersect at an end. Then, taking the union of the largest balls $R_{i} \cup C_{i, i+1}$ for each each string, we have a solid torus with K as its core, V in its interior and boundary essential in W, which is a contradiction as W is a handlebody. So, given that n_{2} is odd, $n_{2} \leq 3$.
(If both D_{1} and D_{1}^{*} have outermost arcs attached, in Claim 6.4.5 we also prove that $n_{2} \leq 3$.) \triangle

Claim 6.4.4. If D_{4}^{*} and D_{1} are the only disks with outermost arcs attached then some string of some tangle is unknotted.

Proof of Claim 6.4.4. Suppose both disks D_{1} and D_{4}^{*} are attached to outermost arcs, δ_{1} and δ_{4}, resp., . If $n_{2}=1$ then either δ_{1} or δ_{4} are as in Lemma 4.4 which means that some string of some tangle is unknotted.
So, from Claim 6.4.3, we can assume that $n_{2}=3$. From Corollary 2.2 there are no parallel sk-arcs after an outermost arc attached to D_{4}^{*}, as in Figure 11(a2). Consequently, from the finiteness of outermost arcs, we have such a sequence of parallel arcs after an outermost arc attached to D_{1}, as in Figure 15 (a), and consider the respective balls R_{i}, for $i=1,2$. Let O_{i} and O_{i+1} be the disk components of $R_{i} \cap S$ that are co-bounded by δ_{i} and δ_{i+1}, resp., for $i=1,2$. As R_{1} contains a single string, O_{1} intersects \mathcal{D}^{*} at a single disk. Then, as D_{4}^{*} has a type I arc attached, this disk is not in O_{1}. If D_{2}^{*} or D_{3}^{*} are in O_{1} then R_{2} contains T and, consequently, two strings of the tangle, which we know is impossible. Then D_{1}^{*} is in O_{1}, the string s_{12} is in R_{1} and the string s_{23} is in R_{2}. So, if D_{2} or D_{3} is in O_{1}, also O_{2} or O_{3} will be, and consequently the same for D_{2}^{*} or D_{3}^{*}, which is impossible as observed before. Then, $O_{1} \cap(S \cap V)$ is only \mathcal{D}_{1}^{*}. So, δ_{1} is an outermost arc as in Lemma 4.4. Then, some string of some tangle is unknotted. \triangle

Claim 6.4.5. If D_{1}^{*} and D_{1} are both attached to outermost arcs then both strings of some tangle are μ-primitive.

Proof of Claim 6.4.5. Suppose that both D_{1} and D_{1}^{*} have outermost arcs attached, denoted by δ_{1} and δ_{1}^{*} resp.. Let O_{1} and O_{1}^{*} be the disjoint disks in $S-\operatorname{int}\left(D_{1} \cup D_{1}^{*}\right)$ co-bounded by δ_{1} and δ_{1}^{*}, resp.. Consider also the disks $L_{1}^{*}=\Delta_{1}^{*} \cup O_{1}^{*}$ and $L_{1}=\Delta_{1} \cap O_{1}$. Let Q be the ball obtained by adding a regular neighborhood of L_{1}^{*} and L_{1} to T, together with the ball that the boundary component of $N(T) \cup_{i=1,4} N\left(L_{i}^{*}\right)$, disjoint from S, bounds. As δ_{1}^{*} and δ_{1} are sk-arcs, we have that O_{1}^{*} and O_{1} intersect \mathcal{D}^{*}. As D_{1}^{*} is not in $O_{1}^{*} \cup O_{1}$, in this particular case $D_{2}^{*} \cup D_{3}^{*}$ is necessarily in $O_{1}^{*} \cup O_{1}$, and the string s_{23} is also in Q. The disk D_{4}^{*} may or not be in $O_{1}^{*} \cup O_{1}$. If D_{4}^{*} is in $O_{1}^{*} \cup O_{1}^{*}$ then Q intersects S in two components: $D_{1}^{*} \cup O_{1}^{*}$ and $D_{1} \cup O_{1}$. From Lemma 4.3. the tangle $\left(Q, \mathcal{T}_{1}\right)$ is trivial, which is a contradiction to Lemma 3.1(c).

So, we can assume that D_{4}^{*} is not in $O_{1}^{*} \cup O_{1}$ and Q intersects S in three component disks: D_{4}^{*}, $D_{1}^{*} \cup O_{1}^{*}$ and $D_{1} \cup O_{1}$. Also, $O_{1} \cap \mathcal{D}^{*}$, and $O_{1}^{*} \cap \mathcal{D}^{*}$, is either D_{2}^{*} or D_{3}^{*}. Furthermore, from Lemma 4.3, both strings s_{14} and s_{23} are trivial in Q.
If $n_{1}=1$ then δ_{1} is as in Lemma 4.4 which means that some string of some tangle is unknotted. So we can assume that $n_{2} \geq 3$.
Suppose there is a sequence of parallel arcs in E after an outermost arc $\delta_{1}, \delta_{2}, \ldots, \delta_{n_{2}}$, as in Figure 15(a), and consider the balls R_{i} as in Case 1 of Lemma 6.3. Then, as $O_{1} \cap \mathcal{D}^{*}$ is either D_{2}^{*} or D_{3}^{*} we have that the ball R_{2} contains two strings, which is a contradiction to the balls R_{i} containing a single string. Consequently, there is no sequence of parallel arcs in $E, \delta_{2}, \ldots, \delta_{n_{2}}$, after an outermost $\operatorname{arc} \delta_{1}$.
Consider an arc parallel to an outermost arc δ_{1}^{*} or otherwise a second-outermost arc, γ, and denote by Γ the disk of $E-E \cap S$, co-bounded by γ, in the outermost side of this arc in E. (See Figure 18(a).) As there is no sequence $\delta_{2}, \ldots, \delta_{n_{2}}$ after the outermost arcs δ_{1}, as in Figure 18(a), we have that Γ intersects S in γ and outermost $\operatorname{arcs} \delta_{1}^{*}$. Note that γ cannot have only one end in $D_{n_{2}}$, otherwise γ would be a t-arc, which is a contradiction to Lemma 2.4(c). If γ has two ends in D_{1}^{*} or one end in D_{1}^{*} and the other end in D_{2}^{*}, following reasoning as in the proof of Lemma 3.4, we have that some string in some tangle is unknotted. If the ends of all arcs γ are both in D_{2}^{*}, by the finiteness of outermost arcs, we have a contradiction with Lemma 2.2 , Hence, we can assume that some arc γ has both ends at $D_{n_{2}}$.

Let $O_{n_{2}}$ be the disk in $S-\operatorname{int} D_{n_{2}}$ cut by γ, disjoint from D_{1}^{*}. Denote by C the ball cut

Figure 18
from V by $D_{1}^{*} \cup D_{2}^{*} \cup D_{n_{2}}$, and by $C_{1^{*}, n_{2}}$ the cylinder obtained from C by an isotopy of C along D_{2}^{*} away from S. Note that C is in B_{2}. Consider the disk L bounded by $\partial \Gamma$ in the torus $\partial C_{1^{*}, n_{2}} \cup_{D_{1}^{*} \cup D_{n_{2}}} S$. Let R be the ball bounded by $\Gamma \cup L$ in B_{2}. If R intersects K in two components, then we can prove that γ is parallel to δ_{1}^{*} in E. By taking R together with $C_{1^{*}, n_{2}}$ we
define a cylinder containing the two strings of \mathcal{T}_{2} with ends in the disks $D_{1}^{*} \cup O_{1}^{*}$ and $D_{n_{2}} \cup O_{n_{2}}$. Then from Lemma 3.1(a), (c), and because $\partial C_{1^{*}, n_{2}}-L \cap \partial C_{1^{*}, n_{2}}$ is a single disk containing $D_{1}^{*} \cup D_{n_{2}}$, we obtain a contradiction to the minimality of $|S \cap V|$. So, we have that R intersects \mathcal{T}_{2} at a single component. Naturally $O_{n_{2}} \subset L$, and also $O_{n_{2}} \cap \mathcal{D}^{*}$ is D_{2}^{*}. In fact, if D_{3}^{*} is in $O_{n_{2}}$ then, s_{34} is in R. As R intersects \mathcal{T}_{2} at a single component, and O_{1}^{*} intersects \mathcal{D}^{*}, we have D_{4}^{*} in O_{1}^{*}, which contradicts our assumption that $O_{1}^{*} \cap \mathcal{D}^{*}$ is only D_{2}^{*} or D_{3}^{*}. If D_{4}^{*} is in $O_{n_{2}}$ then, following a similar reasoning, D_{3}^{*} is in O_{1}^{*} and D_{2}^{*} is in O_{1}. As before, with the existence of parallel arcs to γ or δ_{1} in E we can define the balls $R_{n_{2}-1}$ or R_{1}. But then, in this case, R_{1} or $R_{n_{2}}$ contain two strings, which is a contradiction. Then, D_{2}^{*} is in $O_{n_{2}}$. As $O_{n_{2}}$ is disjoint from O_{1}^{*}, and $O_{1}^{*} \cap \mathcal{D}^{*}$ is either D_{2}^{*} or D_{3}^{*}, we have that D_{3}^{*} is in O_{1}^{*}. Then, D_{2}^{*} is in O_{1} and if R_{1} exists it has two strings, which is impossible. So, we can assume that there is a sequence of balls $R_{n_{2}-1}, \ldots, R_{2}$ exists, related to a sequence of parallel arcs of $E \cap P$ to γ in $E, \delta_{n_{2}-1}, \ldots, \delta_{2}$. As $O_{n_{2}}$ contains D_{2}^{*}, if $n_{2} \geq 5$ we have that the ball $R_{n_{2}-3}$ contains T and consequently two strings, which is a contradiction. Therefore $n_{2}=3$, and the ball R_{2} contains the string s_{23}. But R_{2} cannot contain T, otherwise it would contain two strings. Hence, $O_{2} \subset O_{1}^{*}$ and $O_{3} \subset O_{1}$. (See Figure 18(b).)
Consider an arc α outermost after the outermost arcs δ_{1} and parallel arcs to γ. Then α has ends in $D_{1} \cup D_{2}$. If the arcs α have one end in D_{1} and the other in D_{2} then we get a contradiction to $D_{2} \subset O_{1}^{*}$ and O_{1} being disjoint from O_{1}^{*}. Then α has equal ends. If the ends of α are in D_{2} then α is in O_{1}^{*} (because D_{2} is in O_{1}^{*}). All loops attached to D_{2}, as α, have to be parallel in P to the arc parallel to γ in P attached to D_{2}. Otherwise, D_{4}^{*} is contained in O_{1}^{*}, which contradicts the assumption that it is not. Let A be the disk of $E-E \cap P$ co-bounded by α in the outermost side of the arc in E. Suppose α is attached to D_{2} or is parallel to δ_{1} in P. The boundary of A bounds a disk in $S \cup_{D_{1} \cup D_{2}} \partial C_{1,2}$ that contains O_{1}, and the union of these two disks bounds a ball, R_{1}^{\prime}, in B_{2}. The ball R_{1}^{\prime} has similar properties to the balls R_{i}; including containing a single string of \mathcal{T}_{2}, which is a consequence of Lemma 3.1 (a), (c), the arcs $\partial A \cap S-\gamma$ with both ends in D_{1} and D_{2} being parallel in P resp., and also from the minimality of $|S \cap V|$. But has R_{1}^{\prime} contains O_{1}, it also contains two strings, which a contradiction to the previous observation. Then, α is attached to D_{1} and is not parallel to δ_{1}. In this case, R_{1}^{\prime} contains the string s_{34} as a core, that is parallel to the core of the cylinder $C_{1,2}$. Consider the outermost arcs γ^{\prime} between the arcs of $E \cap P$ with distinct ends in $D_{1}^{*} \cup \mathcal{D}$. Given the configuration of G_{P}, as in Figure 18(b), the only possible ends for γ^{\prime} are one end in D_{1}^{*} and the other in D_{1}, one end in D_{1}^{*} and the other in D_{2} and one end in D_{1} and the other in D_{3}. The only possible case, because the disks involved belong to the same component of $V-V \cap S$, is having γ^{\prime} with one end in D_{1}^{*} and the other in D_{1}. Let Γ^{\prime} be the disk, of $E-E \cap S$, co-bounded by γ^{\prime}, in the outermost side of γ^{\prime} in E. Then Γ^{\prime} is over Q and S, in B_{1}. All the arcs of $\partial \Gamma^{\prime} \cap S$ that intersect D_{1}^{*} are either γ^{\prime} or have both ends in D_{1}^{*} and are parallel to δ_{1}^{*} in P. By an isotopy of these arcs to Q we get that $D_{1}^{*} \cup O_{1}^{*}$ is primitive with respect to the complement of Q in B_{1}, that is a handlebody. Then the core of the cylinder from from D_{4}^{*} to D_{1} is unknotted. As the string s_{14} is parallel to the core from D_{1}^{*} to D_{4}^{*} in Q and the string s_{23} is parallel to the core from D_{1}^{*} to D_{1} in Q, we have that both strings are μ-primitive. \triangle

Claim 6.4.6. If only D_{1}^{*} is attached to outermost arcs then some string of some tangle is unknotted.

Proof of Claim 6.4.6. Denote by δ_{1}^{*} the outermost arcs attached to D_{1}^{*}. Consider a second outermost arc, γ, and let Γ be the disk of $E-E \cap V$ co-bounded by γ in the outermost side of this arc in E. (See Figure 18 (a).) The curve $\partial \Gamma$ bounds a disk L in the torus $S \cup_{D_{1}^{*} \cup D_{n_{2}}} \partial C_{1^{*}, n_{2}}$. Following a similar argument as in Claim 6.4.5, we can assume γ has both ends in $D_{n_{2}}$ and we define similarly the ball R in B_{2} with boundary $\Gamma \cup L$. So, either the string s_{34} or a portion the
string s_{12} with end in D_{2}^{*} is in R, and therefore, this string is parallel to the core of the cylinder $C_{1^{*}, n_{2}}$. Let O_{1}^{*} and O be the disjoint disks in $S^{3}-i n t\left\{D_{1}^{*} \cup D_{n_{2}}\right\}$ co-bounded by δ_{1}^{*} and γ, resp.. Note that O is in $L \subset \partial R$. As R contains a single string, we have that O intersects \mathcal{D}^{*} at a single disk. From Claim6.4.3 we have $n_{2} \leq 3$; also, when $n_{2}=3$ we consider the balls R_{1}, R_{2} and the respective disks of intersection with S, O, O_{2} and O_{1}, attached to D_{3}, D_{2} and D_{1}, resp. .

Assume R contains the string s_{34}. In this case O_{1}^{*} is in R, and each O and O_{1}^{*} contain a single disk of $\mathcal{D}^{*}, D_{3}^{*}$ or D_{4}^{*}. Then, if $n_{2}=3$ one of the balls R_{1} or R_{2} contains two strings of a tangle, which is impossible. Hence, $n_{2}=1$. As O_{1}^{*} is disjoint from D_{1} we have that O_{1}^{*} intersects $S \cap V$ at a single disk of \mathcal{D}^{*}. Therefore, some $\operatorname{arc} \delta_{1}^{*}$ is as in Lemma 4.4, which means that some string of some tangle is unknotted.

Assume now that R contains a portion of the string s_{12}.
Suppose $n_{2}=3$. We have $O \cap \mathcal{D}^{*}=D_{2}^{*}$ and consequently s_{23} is in R_{2} and s_{34} is in R_{1}, which means that $O_{2} \cap \mathcal{D}^{*}=D_{3}^{*}$ and $O_{1} \cap \mathcal{D}^{*}=D_{4}^{*}$, as in Figure 19 (a). Consider an outermost arc, α, between the arcs with ends in distinct disk components of $\bar{D}_{1}^{*} \cup \mathcal{D}$, and A the disk of $E-E \cap P$ co-bounded by α in its outermost side in E. Note that α can only have ends in disks in the same component of $V-V \cap S$. So, α can only have ends in D_{1}^{*} and D_{1}, D_{3} and D_{2}, D_{2} and D_{1}, or also, D_{1}^{*} and D_{3}, as in Figure 19 (b).
If the ends of α are in D_{1}^{*} and D_{3}, D_{3} and D_{2}, or D_{2} and D_{1}, then the strings s_{12}, s_{23} or s_{34} are unknotted, respectively.
So, assume that all arcs α have ends in D_{1}^{*} and D_{1}. Consider now the outermost arc α^{\prime} between

Figure 19
the ones with ends in distinct components of $D_{1}^{*} \cup \mathcal{D}-D_{1}$ or that have ends in distinct components of \mathcal{D}. Let A^{\prime} be the disk of $E-E \cap S$ co-bounded by α^{\prime} in the outermost side of the arc in E. (See Figure 19(c).) The arc α^{\prime} can only connect components of $V-V \cap S$ with the disks D_{1}^{*} and D_{1} in them. Hence, the disk A^{\prime} is in the tangle with the strings s_{12}, s_{34}. Using the disk A^{\prime} and depending on the ends of α^{\prime} we can prove that s_{12} or s_{34} is unknotted.

Suppose $n_{2}=1$. Suppose that $O_{1}^{*} \cap \mathcal{D}^{*}$ is either D_{3}^{*} or D_{4}^{*}. As O_{1}^{*} and D_{1} are disjoint, δ_{1}^{*} is as in Lemma 4.4, which means that some string of some tangle is unknotted.
Suppose, now, that O_{1}^{*} intersects \mathcal{D}^{*} in $D_{3}^{*} \cup D_{4}^{*}$, as in Figure 20(c). Consider the arcs γ_{3}^{*} and γ_{4}^{*}, and the respective disks Γ_{3}^{*} and Γ_{4}^{*}. From Lemma $2.4(\mathrm{~b})$, the two disks D_{3}^{*} or D_{4}^{*} cannot have simultaneously loops attached in G_{P}. Then, all arcs γ_{3}^{*} or all arcs γ_{4}^{*} have distinct ends. Assume that all arcs γ_{3}^{*} have distinct ends. Suppose also that some Γ_{3}^{*} intersects D_{4}^{*} as in Figure

Figure 20

20(a). Then the disks D_{3}^{*} and D_{4}^{*} are primitive with respect to the complement of $V \cap B_{2}$ in B_{2}. Consequently, the complement of $C_{1^{*}, 1}$ in B_{2} is a solid torus. As s_{12} is parallel to the core of the ball $C_{1^{*}, 1}$ we have that s_{12} is unknotted. Otherwise, suppose that all disks Γ_{3}^{*} intersect D_{2}^{*} as in Figure 20 (b). Then, the disks D_{2}^{*} and D_{3}^{*} are primitive with respect to the complement of $V \cap B_{1}$ in B_{1}. Consider an outermost arc α between the arcs with one end in D_{1}^{*} and the other end in D_{1}. Let A be the disk, of $E-E \cap V$, co-bounded by α in the outermost side of α in E, as in Figure 20(d). Suppose that A is in B_{2}. The components of $\partial A \cap S$ that intersect D_{1} are α and eventually arcs with both ends in D_{1} parallel to γ. The disk D_{2}^{*} is primitive in the complement of $V \cap B_{2}$ in B_{2}. Then after adding the 2-handle with core D_{2}^{*} to the complement of $V \cap B_{2}$ in B_{2} we are left with the complement of $C_{1^{*}, 1} \cup C_{3^{*}, 4^{*}}$. We isotope the arcs of $A \cap S$ parallel to γ, through O, to the boundary of the cylinder $C_{1^{*}, 1}$. After this isotopy, A intersects

Figure 21
D_{1} geometrically once. Then, the complement of $C_{3^{*}, 4^{*}}$ in B_{2} is a solid torus, which means that the string s_{34} is unknotted. Otherwise, assume that A is in B_{1}. The components of $\partial A \cap S$ that intersect D_{1} are α and eventually arcs with both ends in D_{1} parallel to γ, or arcs with one end in D_{1} and the other in D_{2}^{*}. As Γ_{3}^{*} is in B_{1}, we have that A doesn't intersect any arc γ_{3}^{*}. Then we can proceed as follows. Take T union with a regular neighborhood of O. Isotope to $N\left(D_{1} \cup O\right)$ the arcs of $A \cap S$ parallel to γ. Then, the disk A intersects $D_{1} \cup O$ geometrically once, and Γ_{3}^{*} intersects D_{2}^{*} geometrically once. As A is disjoint from any γ_{3}^{*}, cut $T \cup N(O)$ along D_{2}^{*} and, afterwards, we isotope $T \cup N(O)$ along $D_{1} \cup O$ away from S. Denote the solid torus after the isotopy as T^{\prime}. Then, the complement of T^{\prime} in B_{1} is a handlebody. Let $O_{1}^{* c}$ be the complement of O_{1}^{*} in $S-\operatorname{int} D_{1}^{*}$. Denote by Q^{\prime} the ball obtained by adding the two handle with core $O_{1}^{* c} \cup \Delta_{1}^{*}$ to T^{\prime}. The ball Q^{\prime} intersects S in $D_{1}^{*} \cup O_{1}^{* c}$ and D_{4}^{*}, and its complement in B_{1} is
a solid torus. The ball Q^{\prime} contains s_{14} and intersects the string s_{23} at an unknotted component. Then, by Lemma 3.1(b), either one string of the tangle decomposition given by S is unknotted or the tangle in $\left(Q^{\prime}, Q^{\prime} \cap \mathcal{T}_{1}\right)$ is trivial. Hence, we can assume the latter and that the string s_{14} is trivial in Q^{\prime}. As the string s_{14} has one end in each of the two components of $Q^{\prime} \cap S$, it is a core of the cylinder Q^{\prime}. Consequently, the string s_{14} is unknotted.
Suppose now that some γ_{3}^{*} has identical ends. Then, all arcs γ_{4}^{*} have distinct ends, and from Figure 21(a), the other end of γ_{4}^{*} is in D_{3}^{*}. As γ_{4}^{*} is the outermost d*-arc with one end in D_{4}^{*} and γ_{4}^{*} has one end in D_{3}^{*}, we have that Γ_{4}^{*} intersects D_{2}^{*} once. (See Figure 21(b).) This means that Γ_{4}^{*} is in B_{1} and that D_{2}^{*} and D_{3}^{*} are primitive with respect to the complement of $V \cap B_{2}$ in B_{2}. Then, considering the arc α and disk A and proceeding as before, we have that some string of some tangle is unknotted.

Claim 6.4.7. If only D_{1} is attached to outermost arcs then some string of some tangle is unknotted.

Proof of Claim 6.4.7. Let δ_{1} denote the outermost arcs attached to D_{1}. If $n_{2}=3$ by the finiteness of outermost arcs there is a sequence of parallel arcs to some δ_{1}, that is δ_{2} and δ_{3}, as in Figure 15 (a), and with this sequence we can consider the balls R_{i} as in Case 1 of Lemma 6.3 , Let γ be a second-outermost arc of $E \cap P$ in E, as in Figure 11(b). From Lemma 3.4, if γ has one end in $D_{n_{2}}$ or one end in D_{1}^{*} and the other in D_{2}^{*} then some string of some tangle defined by S is unknotted. If all arcs γ have both ends in D_{2}^{*}, then, by the finiteness of outermost arcs, we have a contradiction to Corollary 2.2. Then some arc γ has both ends in D_{1}^{*}. Consider this arc γ and let Γ be the disk component of $E-E \cap P$ co-bounded by γ in the outermost side of this arc in E. The disk Γ bounds a disk L in $\partial C_{1^{*}, n_{2}} \cup_{D_{1}^{*} \cup D_{n_{2}}} S$ that together with Γ bound a ball R in B_{2}. As in the previous claim, we have that either a portion of the string s_{12} with end in D_{2}^{*} is in R, or the string s_{34} is in R. Let O_{1}^{*} be the disk co-bounded by γ in $S-i n t D_{1}^{*}$, disjoint from $D_{n_{2}}$. Then $O_{1}^{*} \subset L$.

Assume R contains a portion of the string s_{12}. In this case, D_{2}^{*} is the only disk of \mathcal{D}^{*} in L and $D_{2}^{*} \subset O_{1}^{*}$. Consider the ball $C_{1^{*}}$ obtained by an isotopy of the ball C, cut from V by $D_{1}^{*} \cup D_{2}^{*} \cup D_{n_{2}}$, along $D_{2}^{*} \cup D_{n_{2}}$ away from S in B_{2}. From Lemma 2.3, the arc $C_{1^{*}} \cap s_{12}$ is trivial in $C_{1^{*}}$. We also have that the portion of s_{12} in the complement of $C_{1^{*}}$ in B_{2} is unknotted. In fact, we can assume that this arc is $R \cap s_{12}$. As there are no local knots, $R \cap s_{12}$ is trivial in R, and therefore, it is parallel to L. We can isotope the components of $L \cap S-O_{1}^{*}$ from S to $\partial C_{1^{*}, n_{2}}$. With the isotopy we verify that the arc $R \cap s_{12}$ is parallel to the boundary of $C_{1^{*}}$. Altogether, we have that s_{12} is unknotted in $\left(B_{2}, \mathcal{T}_{2}\right)$.

Assume now that R contains the string s_{34}. Following along an argument of the similar situation in Claim 6.4.6, we have some string of some tangle is unknotted.

Lemma 6.5. Suppose $V-V \cap S$ contains a solid torus that intersects \mathcal{D}^{*} and \mathcal{D} at two disks. Then some string of some tangle is unknotted.

Proof. Let T be the solid torus component of $V-V \cap S$ as in the statement, and suppose it lies in the tangle $\left(B_{1}, \mathcal{T}_{1}\right)$. As the genus of V is three, all disks of \mathcal{D}^{*} are parallel in V, and the same is true for the disks of \mathcal{D}. Assume that $\partial T \cap \mathcal{D}^{*}=D_{1}^{*} \cup D_{4}^{*}$ and $\partial T \cap \mathcal{D}=D_{1} \cup D_{n_{2}}$, as in Figure 22). From Remark 3, we can assume that all outermost disks are over T with respective outermost arcs attached to $D_{1}^{*}, D_{4}^{*}, D_{1}$ or $D_{n_{2}}$. If all outermost arcs are attached to D_{1}^{*} or D_{4}^{*}, then by the finiteness of outermost arcs there are parallel sk-arcs in contradiction to Corollary 2.2. Then, some outermost arc is attached to D_{1} or $D_{n_{2}}$. Furthermore, even if D_{1}^{*} or D_{4}^{*} is attached to outermost arcs the only sequences of arcs parallel to outermost arcs in E are with
respect to outermost arcs attached to D_{1} or $D_{n_{2}}$. Without loss of generality, we assume that D_{1} is always attached to some outermost arc, and denote by δ_{1} an outermost arc attached to D_{1}.

Figure 22

Claim 6.5.1. If $D_{n_{2}}$ is not attached to outermost arcs then some string of some tangle is unknotted.

Proof of Claim 6.5.1. Assume that $D_{n_{2}}$ is not attached to outermost arcs. By the finiteness of outermost arcs and Lemma 2.2, there is a sequence of arcs of $E \cap P$ in E parallel to an outermost $\operatorname{arc} \delta_{1}$, that is $\delta_{2}, \ldots, \delta_{n_{2}}$, as in Figure 15 (a). As in Case 1 of Lemma 6.3 we define the balls R_{i}; consider also the respective disks O_{i} and O_{i+1}. As R_{1} contains a single string we have that O_{1} intersects \mathcal{D}^{*} at a single disk. If $n_{2}=2$ then as O_{1} and O_{2} are disjoint, we have that O_{1} intersects $S \cap V$ at a single disk. Hence, δ_{1} is as in Lemma 4.4, which means that some string of some tangle is unknotted. Suppose $n_{2} \geq 4$. (Note that n_{2} is necessarily even.) If D_{2}^{*} or D_{3}^{*} are in O_{1} then R_{2} contains two strings, which is impossible. Then, without loss of generality, we can assume that D_{1}^{*} is in O_{1}. Suppose some disk of \mathcal{D} is in O_{1}, say D_{i}. Then D_{1}^{*} is also in O_{i}. This means that T is in R_{i-1}, and consequently, D_{1} is in O_{i}, which is a contradiction as D_{i} is in O_{1}. Therefore, δ_{1} is under the conditions of Lemma 4.4 which means that some string of some tangle is unknotted. \triangle

Claim 6.5.2. If $D_{n_{2}}$ is attached to outermost arcs then some string of some tangle is unknotted.
Proof of Claim 6.5.2. Assume that both D_{1} and $D_{n_{2}}$ have outermost arcs attached, denoted by δ_{1} and $\delta_{n_{2}}$ resp.. Let the outermost disk co-bounded by δ_{1} (resp., $\delta_{n_{2}}$) be denoted by Δ_{1} (resp., $\Delta_{n_{2}}$) and let O_{1} (resp., $O_{n_{2}}$) be the disk in $S-\operatorname{int}\left(D_{1} \cup D_{n_{2}}\right)$ separated by δ_{1} (resp., $\delta_{n_{2}}$). By adding a regular neighborhood of $O_{n_{2}} \cup \Delta_{n_{2}}$ and $O_{1} \cup \Delta_{1}$ to T, and the ball bounded by the boundary component that is disjoint from S, we define a ball Q. If Q contains both strings of \mathcal{T}_{1}, from Lemma 4.3, we have that the tangle $(Q, Q \cap K)$ is trivial. If \mathcal{D}^{*} is in $O_{1} \cup O_{n_{2}}$ then we get a contradiction between Lemma 3.1(c) and Lemma 4.3. Then, O_{1} or $O_{n_{2}}$ intersects \mathcal{D}^{*} at a single disk.
If $n_{2}=2, O_{1}$ and O_{2} are disjoint, and δ_{1} or $\delta_{n_{2}}$ are as in Lemma 4.4 which means that some string of some tangle is unknotted.
Assume $n_{2} \geq 4$.
Suppose that $O_{1} \cup O_{n_{2}}$ intersect \mathcal{D}^{*} in three disks and, without loss of generality, that O_{1} intersects \mathcal{D}^{*} at a single disk. If there is any arc of $E \cap P$ parallel to $\delta_{n_{2}}$ in E, the respective ball $R_{n_{2}-1}$ contains two strings, which is impossible as observed in Lemma 3.3 Then, there is a sequence of parallel arcs of $E \cap P$ in $E, \delta_{1}, \ldots, \delta_{n_{2}-1}$ and we can consider the respective balls $R_{1}, \ldots, R_{n_{2}-2}$. If $O_{1} \cap \mathcal{D}^{*}$ is D_{2}^{*} or D_{3}^{*}, then R_{2} contains two strings, which is impossible. Then, $O_{n_{2}} \cap \mathcal{D}^{*}$ is $D_{2}^{*} \cup D_{3}^{*}$. The string s_{23} is trivial in Q and has ends in the same disk component of $Q \cap S$, then s_{23} is unknotted in $\left(B_{1}, \mathcal{T}_{1}\right)$.
Suppose that $O_{1} \cup O_{n_{2}}$ intersect \mathcal{D}^{*} in two disks. Assume $D_{2}^{*} \cup D_{3}^{*}$ is in $O_{1} \cup O_{n_{2}}$. If there are two consecutive balls R_{i} after O_{1} or $O_{n_{2}}$, then some ball R_{i} contains two strings, which is impossible. Then, $n_{2}=4$ and both δ_{1} and δ_{4} have a parallel arc of $E \cap P$ in E, δ_{2} and δ_{3}, resp.,
from where we define the balls R_{1} and R_{3}. As R_{1} and R_{3} have a single string, we have that O_{1} is disjoint from D_{2}, D_{3} and D_{4}. Hence, δ_{1} is as in Lemma 4.4 and some string of some tangle is unknotted. Assume now that $D_{1}^{*} \cup D_{4}^{*}$ is in $O_{1} \cup O_{n_{2}}$. If there is a sequence of parallel arcs to δ_{1} (or to $\delta_{n_{2}}$) attached to all disks $D_{1}, \ldots, D_{n_{2}}$, as in Figure 15 (a), following the same argument as in Claim6.5.1, we prove that some string of some tangle is unknotted. Otherwise, the sequences of parallel arcs from δ_{1} go up to some arc δ_{i} and from $\delta_{n_{2}}$ go up to some arc δ_{i+1}. If $n_{2}=4$, then as before δ_{1} or $\delta_{n_{2}}$ are as in Lemma 4.4, which means that some string of some tangle is unknotted. Suppose $n_{2} \geq 6$. Then, again using arguments as in Claim 6.5.1, if O_{1} intersects \mathcal{D}, it is in D_{i} or D_{i+1}. From the sequences of parallel arcs we can consider the respective balls R_{1}, \ldots, R_{i-1} and $R_{i+1}, \ldots, R_{n_{2}-1}$. Denote by $C_{k, k+1}$ the cylinder in V between D_{k} and D_{k+1}. If D_{i} and D_{i+1} are not in O_{1} then δ_{1} resp., is as in Lemma 4.4, which means that some string of some tangle is unknotted. Otherwise, without loss of generality, suppose that D_{i} is in O_{1}. Then, then as R_{i-1} cannot be in Q , we have that $C_{i, i+1}$ is in Q. Each string of the tangles defined by S is in Q or is some ball R_{k}. Following as in the previous claim, consider Q union with $R_{k} \cup C_{k, k+1}$, for $k=1, \ldots, i-1, i+1, \ldots, n_{2}$, we define a solid torus that is a neighborhood of K, containing V, and with boundary essential in W, which is a contradiction to W being a handlebody.

Lemma 6.6. Suppose $V-V \cap S$ contains a solid torus component disjoint from \mathcal{D} and intersecting \mathcal{D}^{*} at two disks. Then both strings of some tangle are μ-primitive.

Proof. Let T be a solid torus component as in the statement and suppose $\mathcal{D}^{*} \cap T=D_{1}^{*} \cup D_{4}^{*}$. Assume that T is in the tangle $\left(B_{1}, \mathcal{T}_{1}\right)$. From Remark 3, all outermost disks are over solid torus components of $V-V \cap S$. Suppose some outermost disk is attached to some disk of \mathcal{D}. As the genus of V is three, this outermost disk is over a solid torus disjoint from K intersecting $S \cap V$ at a single disk, which is a contradiction to Lemma 4.1. Then all outermost disks are attached to disks of \mathcal{D}^{*}.

Claim 6.6.1. If the disks of \mathcal{D}^{*} are parallel two-by-two then some string in some tangle is unknotted.

Proof of Claim 6.6.1. Suppose only one disk or two non-parallel disks are adjacent to outermost arcs. By the finiteness of outermost arcs we have parallel sk-arcs, as in Figure 11(a1), (a2), and we get a contradiction to Corollary 2.2 .
Otherwise, we are left with the case when the outermost arcs are only adjacent to two parallel disks of \mathcal{D}^{*}. Following an argument of a similar situation in Lemma 6.2, we have that some string in some tangle is unknotted.

Claim 6.6.2. If the disks of \mathcal{D}^{*} are not parallel two-by-two then both strings of some tangle are μ-primitive.

Proof of Claim 6.6.2. Assume, without loss of generality, that no other disk of $S \cap V$ is parallel to D_{1}^{*}. If there are disks (of \mathcal{D}^{*}) parallel to D_{4}^{*}, and D_{4}^{*} or one disk parallel to it are the only disks with outermost arcs attached, then we get a contradiction to Corollary 2.2, So, without loss of generality, assume there is some outermost arc attached to D_{1}^{*}, and that it is over T. Under these conditions, we define a ball Q as in Lemma 4.5, using the outermost disk attached to D_{1}^{*} over T. From Lemma 4.5, the tangle $(Q, Q \cap K)$ is the product tangle. So, we can isotope S through Q, and we replace D_{1}^{*} with a disk parallel to D_{4}^{*}. So, if $n_{2}=0$ we reduce this case to either the case when there is a genus two component, as in Lemma 6.1 or to the case when $V-V \cap S$ contains a solid torus component intersecting \mathcal{D}^{*} at the four disks as in Lemma6.2. If
$n_{2}>0$ we also reduce to the cases when $V-V \cap S$ contains a solid torus component intersecting \mathcal{D}^{*} in a collection of two disks and \mathcal{D} in one or two disks, as in Lemmas 6.3, 6.4 and 6.5. From these lemmas we get that both strings in some tangle are μ-primitive.

Lemma 6.7. Suppose $V-V \cap S$ contains a solid torus component disjoint from K. Then both strings of some tangle are μ-primitive.

Proof. As the genus of V is three and no disk of \mathcal{D}^{*} is parallel to a disk of $\mathcal{D}, \mathcal{D} \cap T$ is a collection of at most three disks. If there is some solid torus component of $V-V \cap S$ intersecting \mathcal{D}^{*} we follow as in the previous lemmas to get the conclusion that two strings of some tangle are μ-primitive. Otherwise, the solid torus components of $V-V \cap S$ are disjoint from K. From Remark 3, without loss of generality, we can assume that some outermost disk is over T.
If $\mathcal{D} \cap T$ is a single disk we get a contradiction to Lemma 4.1. Then, we have that T intersects \mathcal{D} at more than one disk, in which case T is the only solid torus component of $V-V \cap S$ and all outermost disks are over T.
Assume that $\mathcal{D} \cap T$ is a collection of two disks, D_{1} and D_{1}^{\prime}. The outermost arcs are attached

Figure 23
to D_{1} or to D_{1}^{\prime}, with outermost disks over T. Let $D_{2}, D_{3}, \ldots, D_{k}$ be the disks of \mathcal{D} parallel to D_{1} in V, in case there exists such a sequence. Without loss of generality, assume there is an outermost arc δ_{1} attached to D_{1}, and that there is a sequence of arcs, δ_{i}, after an outermost arc, δ_{1}, as in Figure 15 (a). Let Δ be the outermost disk bounded by δ_{1}, in E, and also, Δ_{i} be the disk of $E-E \cap S$ between δ_{i} and δ_{i+1}. As S^{3} has no lens space summand, we have that $\partial \Delta$ intersects a meridian of T geometrically once. So, we can perform an isotopy of the annulus in $S, A=D_{1} \cup(S \cap N(\Delta))$ through $N(\Delta)$ to the annulus $A^{\prime}=D_{1} \cup(\partial T \cap N(\Delta))$. As $\partial \Delta_{1}$ intersects a meridian of T geometrically once, we isotope A^{\prime} through T to a disk in T parallel to D_{1}^{\prime}, that we also denote by D_{1}. Using the disk $\Delta_{1} \cup \Delta$ we can perform a similar isotopy, and from the disk D_{2} of $E \cap S$ we get a disk in T parallel to the new disk D_{1}. In this way we can perform a sequence of isotopies of S to get from the disks $D_{1}, D_{2}, \ldots, D_{k}$ new disks in T parallel to D_{1}^{\prime}. With this isotopy we reduce this case to other cases: If the disks of \mathcal{D}^{*} are not parallel in V we can reduce this case to the case when $T \cap \mathcal{D}^{*}$ is a collection of two disks and $T \cap \mathcal{D}$ is one non-separating disk, as in Lemma 6.4. So, we are left with the situation when the disk components of \mathcal{D}^{*} are parallel. The disk components of \mathcal{D} in V can be parallel to D_{1} or to D_{1}^{\prime}, or can be separating. Assume there is a disk of \mathcal{D} that is separating in V, as in Figure 23 (a). By the previous isotopy we reduce this case to the case, considered next, when $\mathcal{D}^{*} \cap T$ is empty and $\mathcal{D} \cap T$ is a collection of three disks. Otherwise, suppose that no disk of \mathcal{D} is separating, as in Figure 23(b). Similarly, we reduce this case to the case when $\mathcal{D}^{*} \cap T$ and $\mathcal{D} \cap S$ is a collection of two disks, as in Lemma 6.5.
At last, suppose that $\mathcal{D} \cap T$ is a collection of three disks. We have a collection of parallel nonseparating disks of \mathcal{D}, and a collection of separating disks of \mathcal{D} in V, as in Figure 24. As in Lemma 3.4. let C be the ball component of $V-V \cap S$ cut from V by $D_{1}^{*} \cup D_{4}^{*} \cup D_{n_{2}}$. Every

Figure 24
outermost arc of $E \cap S$ in E attached to $D_{n_{2}}$ has both ends attached to it (otherwise, it would be a t-arc, which don't exist from Lemma 2.4 (c)). By the finiteness of outermost arcs, we consider an outermost arc γ after outermost arcs with both ends in $D_{n_{2}}$. From Lemma 3.4, if γ has at least one end in $D_{n_{2}}$ or one end in D_{1}^{*} and the other in D_{4}^{*}, some string of some tangle is unknotted. In case, all arcs γ have both ends in D_{1}^{*} or in D_{4}^{*}, by the finiteness of outermost arcs, we have a contradiction to Corollary 2.2 .

7. Proof of Theorem 1

For the proof of Theorem 1, we study all cases of $S \cap V$ with respect to the value n_{1}.
Proposition 1. If $n_{1}=1$ then both strings of some tangle are μ-primitive.
Proof. Suppose $n_{1}=1$. If $n_{2}>0$ we have a contradiction between Lemma 2.4(b) and (f). So, $n_{2}=0, P$ is a disk and $|P \cap E|=0$.
Let $D_{1}^{*}=S \cap V$. The 2-sphere $S=D_{1}^{*} \cup P$ is separating, then D_{1}^{*} is a separating disk in V.

Figure 25
As the handlebody V has genus three, the disk D_{1}^{*} separates V in a solid torus V_{1} and a genus two handlebody V_{2}, as in Figure 25 Let $\left(B_{1}, T_{1}\right)$ denote the tangle containing V_{1}. The strings of this tangle lie in V_{1}, have end points in D_{1}^{*} and, by Lemma 2.3 , are simultaneously parallel to ∂V_{1}. Also, the complement of V_{1} in B_{1} is a torus. Hence, from Lemma 2.2, both strings of the tangle $\left(B_{1}, T_{1}\right)$ are μ-primitive.
Proposition 2. $n_{1} \neq 2$.
Proof. Suppose $n_{1}=2$. We denote by D_{1}^{*} and D_{2}^{*} the components of \mathcal{D}^{*}. From Lemma 2.4 (b), (g) $n_{2}>0$ and every outermost arc is a st-arc.

Claim. If $n_{1}=2$ there is no ball C of $V-V \cap S$ containing strings of a tangle.
Proof of Claim. Suppose that there is a ball component of $V-V \cap S, C$, containing strings of a tangle.
Suppose, the ball C contains two strings. From Lemma 2.3 the strings are parallel to ∂C. Therefore, the tangle $(C, C \cap K)$ is trivial, which is a contradiction to Lemma 3.1(c).
Otherwise, suppose that C contains a single string. As $D_{1}^{*} \cup D_{2}^{*}$ intersects K in four points only one of these disks can be in ∂C, and both ends of the string in C are in this disk. Then, this

Figure 26
string is trivial in ∂C. Furthermore, as this is the only string in C it is also trivial in the respective tangle, which is a contradiction to the tangle decomposition defined by S being essential.

If D_{1}^{*} and D_{2}^{*} are parallel in V then the ball component of $V-S \cap V$ cut by $D_{1}^{*} \cup D_{2}^{*}$ is in contradiction to Claim.
Suppose now that D_{1}^{*} and D_{2}^{*} are not parallel, as in the examples of Figure 26 . Then, the components of $V-D_{1}^{*} \cup D_{2}^{*}$ are solid tori. As $n_{2}>0$, the disks of \mathcal{D} are in some of these solid tori. Then, some ball component of $V-V \cap S$ contains D_{1}^{*}, D_{2}^{*}, or both, which is a contradiction to Claim.

Proposition 3. If $n_{1}=3$ then both strings of some tangle are μ-primitive.
Proof. Consider the components of $V-V \cap S$. From Remark 3 we can assume that some component of $V-S \cap V$ is not a ball.
If there is a genus two component of $V-V \cap S$ then, by Lemma 5.1, some string of some tangle is unknotted. Otherwise, there is some solid torus component of $V-V \cap S$, and from Lemma 5.2 two strings of some tangle are μ-primitive.

Proposition 4. If $n_{1}=4$ then both strings of some tangle are μ-primitive.
Proof. As in Proposition 3, we consider the components of $V-V \cap S$ and we assume that some component of $V-S \cap V$ is not a ball.
If $V-V \cap S$ has a genus two component then, by Lemma 6.1, some string of some tangle is unknotted.
Now, assume that $V-V \cap S$ has no genus two component. This means at least one of its components is a solid torus, T. The collection of disks $\mathcal{D}^{*} \cap T$ is always even, because ∂T is a separating torus in S^{3}. We consider several cases with respect to $\mathcal{D}^{*} \cap T$.
If $\mathcal{D}^{*} \subset T$, from Lemma 6.2, some string of some tangle is unknotted.
Suppose $\mathcal{D}^{*} \cap T$ is a collection of two disks. As the genus of V is three, there are at most two disks of \mathcal{D} in ∂T. Then we are under Lemmas 6.3, 6.4, 6.5 and 6.6 , and we have that both strings of some tangle are μ-primitive.
At last, suppose $\mathcal{D}^{*} \cap T=\emptyset$. From Lemma 6.7. we also have that both strings of some tangle are μ-primitive.

We can now prove Theorem 1 and its Corollary 1.1 .

Proof of Theorem 1. If K has an inessential 2-string free tangle decomposition then the tunnel number of K is one. This is a contradiction with the assumption that the tunnel number of K is two. Hence, the 2 -string free tangle decomposition of K is essential.
We have that $0 \leq n_{1} \leq 4$. If $n_{1}=0$ then, as $S \cap K \subset S \cap V$ we have $n_{2}=0$. Hence, $S \subset V$ which is a contradiction to Lemma 2.3, a). In case $n_{1} \neq 0$, from Propositions 1, 2,3 and 4 , we have that two strings of some tangle are μ-primitive.

Proof of Corollary 1.1. Let K be a knot with a 2 -string free tangle decomposition where at least a string of each tangle is not μ-primitive.
From Corollary 2.4 in [16] by Morimoto, if a knot K has a n-string free tangle decomposition, then $t(K) \leq 2 n-1$. Hence, in this case $t(K) \leq 3$.
On the other hand, as no tangle in the decomposition of K has both strings being μ-primitive, from Theorem 1 we have $t(K) \geq 3$.
Altogether, from the two inequalities, $t(K)=3$.

8. On The tunnel number Degeneration under the connected sum of prime knots

In this section, we construct an infinite class of knots with a 2-string free tangle decomposition where no tangle has both strings being μ-primitive. With these collection of knots, Theorem 1 and the work of Morimoto [16] we prove Theorem 2 .
A particular, simplified, version of Theorem 3.4 in 16 by Morimoto gives us the following proposition, which is relevant to the proof of Theorem 2.
Proposition 5 ([16], Morimoto). Let K_{1} be a knot which has a 2-string free tangle decomposition and K_{2} be a knot with a 3-bridge decomposition. Then $t\left(K_{1} \# K_{2}\right) \leq 3$.

Figure 27: The knot $K(m)$ and one unknotting tunnel, with m a natural number.
For the construction of knots, K_{1}, as in Theorem 2 we consider 2-string free tangle decompositions. Suppose there are two 2 -string free tangles $\left(B_{1}, \mathcal{T}_{1}\right)$ and $\left(B_{2}, \mathcal{T}_{2}\right)$ where one of the strings in each tangle is not μ-primitive. Identify $\left(\partial B_{1}, \partial \mathcal{T}_{1}\right)$ to $\left(\partial B_{2}, \partial \mathcal{T}_{2}\right)$, such that no string of \mathcal{T}_{1} has its end identified to the ends of the same string of \mathcal{T}_{2}. Then $\left(B_{1} \cup B_{2}, \mathcal{T}_{1} \cup \mathcal{T}_{2}\right)$ is a knot
$\left(S^{3}, K_{1}\right)$ under the conditions of Proposition 5 Furthermore, from Corollary 1.1, $t\left(K_{1}\right)=3$. Hence, this procedure gives us a knot as in the statement of Theorem 2,
So, we need 2-string free tangles with one of the strings not μ-primitive. As observed in Remark 11 if a string s properly embedded in a ball B is μ-primitive, then by capping s along ∂B we get a μ-primitive knot. Then, for the construction of a 2 -string free tangle where at least one of the strings is not μ-primitive we consider a tunnel number one knot K that is not μ-primitive, and one of its unknotting tunnels. For such a knot K, let s be a string in a ball B, that when capped off along ∂B we obtain K, together with one unknotting tunnel for K. If we slide the ends of the unknotting tunnel from s to ∂B we get an essential 2-string free tangle where one of the strings is not μ-primitive.
Then, we want tunnel number one knots that are not μ-primitive. Existence results of such knots are known by work Johnson and Thompson in [6] and also Moriah and Rubinstein in [12]. On the other hand, explicit or constructive examples of knots with tunnel number one that are not μ-primitive is given by work Eudave-Muñoz in [18] and [19], Ramírez-Losada and ValdezSánchez in [9, Minsky, Moriah and Schleimer in [10] and also Morimoto, Sakuma and Yokota in [17. With any of these examples it is possible to construct knots as in the statement of Theorem 2. As an example of such construction we consider the class of knots $K(7,17 ; 10 m-4)$ from [17], where m is an integer, together with an unknotting tunnel. We denote these knots by $K(m)$, as in Figure 27.
As previously described, from the knots $K(m)$ and an unknotting tunnel we construct tangles $T(m)$ where at least one of the strings is not μ-primitive, as in Figure 28 . From the construction

Figure 28: A possible construction of a tangle $T(m)$ from the knot $K(m)$ and one of its unknotting tunnels.
we have that the tangles $T(m)$) are free. With the tangles $T(m)$ and $T\left(m^{\prime}\right)$ we construct a knot $K_{1}\left(m, m^{\prime}\right)$, as explained before, that has a 2-string free tangle decomposition where no tangle has both strings being μ-primitive. With this construction we can now prove Theorem 2 and its Corollary 2.1 .
Proof of Theorem 2. Consider the collection of knots $\left\{K_{1}\left(m, m^{\prime}\right): m, m^{\prime} \in \mathbb{N}, m \leq m^{\prime}\right\}$. From Corollary 1.1. we have that $t\left(K_{1}\left(m, m^{\prime}\right)\right)=3$. From Ozawa's unicity theorem, the knot
$K_{1}\left(m, m^{\prime}\right)$ is prime. And, from Proposition 5, for any 3-bridge knot $K_{2}, t\left(K_{1}\left(m, m^{\prime}\right) \# K_{2}\right) \leq$ 3.

Proof of Corollary 2.1. Consider the collection of knots $\left\{K_{1}\left(m, m^{\prime}\right): m, m^{\prime} \in \mathbb{N}, m \leq m^{\prime}\right\}$. Let K_{2} be any 3-bridge prime knot with tunnel number two. From Proposition 5 , $t\left(K_{1}\left(m, m^{\prime}\right) \# K_{2}\right) \leq$ 3. From tunnel number one knots being prime and the main theorem in 14, we also have that $t\left(K_{1}\left(m, m^{\prime}\right) \# K_{2}\right) \geq 3$. Then, $t\left(K_{1}\left(m, m^{\prime}\right) \# K_{2}\right)=3=t\left(K_{1}\left(m, m^{\prime}\right)\right)+t\left(K_{2}\right)-2$.

References

[1] W. Jaco, Lectures on three-manifold topology, CMBS 43 by Amer. Math. Soc., Providence, Rhode Island, 1997 reprint.
[2] C. McA. Gordon, On the primitive sets of loops in the boundary of a handlebody, Topology and it Applications 27 (1987), 285-299.
[3] C. McA. Gordon, Combinatorial methods in Dehn surgery, Lectures at knots '96 (Tokyo), World Sci. Publishing (1997), 263-290.
[4] C. MCA. Gordon and A. W. Reid, Tangle decompositions of tunnel number one knots and links, J. Knot Theory and its Ramifications Vol. 4 No. 3 (1995), 389-409.
[5] J. Hempel, 3-manifolds, AMS Chelsea Publishing vol. 349, reprint 2004.
[6] J. Johnson and A. Thompson, On tunnel number one knots which are not ($1, n$), J. Knot Theory and its Ramifications 20 No. 4 (2011), 609-615.
[7] T. Kobayashi, A construction of arbitrarily high degeneration of tunnel numbers of knots under connected sum, J. Knot Theory and its Ramifications 3 No. 2 (1994), 179-186.
[8] T. Kobayashi and Y. Rieck, Heegaard genus of the connected sum of m-small knots, Comm. Anal. Geom. 14 No. 5 (2006), 1037-1077.
[9] E. Ramirez-Losada and L. Valdez-Snchez, Hyperbolic (1, 2)-knots in S^{3} with crosscap number two tunnel number one, Topology and its Applications 156 (2009), 1463-1481.
[10] Y. Minsky, Y. Moriah and S. Schleimer, High distance knots, Algebraic and Geometric Topology 7 (2007), 1471-1483.
[11] Y. Moriah, Heegaard splittings of knot exteriors, Geometry and Topology Monographs 12 (2007), 191-232.
[12] Y. Moriah and H. Rubinstein, Heegaard structures of negatively curved 3-manifolds, Comm. Anal. Geom. 5 (1997), 375-412.
[13] K. Morimoto, There are knots whose tunnel numbers go down under connected sum, Proc. Amer. Math. Soc. Vol. 123 No. 11 (1995), 3527-3532.
[14] K. Morimoto, On the additivity of tunnel number of knots, Topology and its Applications 53 (1993), 37-66.
[15] Tunnel number, connected sum and meridional essential surfaces, Topology 39 (2000), 469-485.
[16] K. Morimoto, On the degeneration ratio of tunnel numbers and free tangle decompositions of knots, Geometry and Topology Monographs 12 (2007), 265-275.
[17] K. Morimoto, M. Sakuma and Y. Yokota, Examples of tunnel number one knots which have the property ' $1+1=3$ ', Math. Proc. Camb. Phil. Soc. 119 (1996), 113-118.
[18] M. Eudave-Muñoz, Incompressible surfaces and (1, 1)-knots, J. Knot Theory and its Ramifications 15 (2006), 935-948.
[19] M. Eudave-Muñoz, Incompressible surfaces and (1, 2)-knots, Geometry and Topology Monographs 12 (2007), 35-87.
[20] J. M. Nogueira, On tunnel number degeneration and 2-string free tangle decompositions, Ph.D. Dissertation, The University of Texas at Austin, 2011.
[21] F. H. Norwood, Every two-generator knot is prime, Proc. Amer. Math. Soc. 86 (1982), no. 1, 143-147.
[22] M. Ochiai, On Haken's theorem and its extension, Osaka J. Math. 20 (1983), 461-480.
[23] M. Ozawa, On uniqueness of essential tangle decompositions of knots with free tangle decompositions, Proc. Appl. Math. Workshop 8, ed. G. T. Jin and K. H. Ko, KAIST, Taejon (1998) 227-232.
[24] D. Rolfsen, Knots and Links, AMS Chelsea Publishing vol. 346, reprint 2003.
[25] M. Scharlemann, Heegaard splittings of compact 3-manifolds, Handbook of geometric topology, NorthHolland Amsterdam (2002), 921-953.
[26] M. Scharlemann and J. Schultens, The tunnel number of the connect sum of n knots is at least n, Topology 38 (1999), 265-270.
[27] M. Scharlemann and J. Schultens, Annuli in generalized Heegaard splittings and degeneration of tunnel number, Math. Ann. 317 (2000), 783-820.

[^0]: ${ }^{1}$ Note that every knot has an unknotting tunnel system obtained from the knot exterior triangulation.
 ${ }^{2}$ A knot is n-string prime if it has no n-string essential tangle decomposition. For definitions of n-string tangle decompositions of a knot we refer to section 4.1 .3 of the survey paper [11] by Moriah, or section 3 of the paper [7] by Kobayashi.
 ${ }^{3}$ In [16], without mentioning it, Morimoto gives also the first examples of knots that when connected sum with themselves the tunnel number degenerates (by one): all tunnel number two 3-bridge knots with a 2 -string free tangle decomposition (as the knot K_{149} from Rolfsen's list in [24]).

[^1]: ${ }^{4}$ A tangle is free if the complement of a regular neighborhood of the strings is a handlebody.
 ${ }^{5}$ For a definition of μ-primitive knot see Definition 5.13 of the survey paper 11 by Moriah.
 ${ }^{6}$ The correspondent result to Theorem 1 for links is proved by the author in 20 .
 ${ }^{7}$ A knot is said m-small if there is no incompressible surface with meridional boundary components in its complement.

[^2]: ${ }^{8}$ From work of Morimoto in [16], there are pairs of prime knots with tunnel number two that also have degeneration ratio of $\frac{1}{4}$. In this paper, the same degeneration ratio is obtained with a tunnel number three knot and a tunnel number one knot.
 ${ }^{9}$ Along the following sections we are assuming the tangle decomposition is essential. The inessential case is observed in the proof of Theorem 1]
 ${ }^{10}$ We say that a tangle (B, \mathcal{T}) contains a local knot, if there is a ball in B intersecting a single string of \mathcal{T} at a knotted arc.
 ${ }^{11}$ We say that the strings of a tangle $\left(B ; s_{1}, s_{2}\right)$ are parallel if there is an embedded disk D in B with boundary the strings $s_{1} \cup s_{2}$ and two arcs in ∂B connecting the ends of these strings.

[^3]: ${ }^{12}$ For a manifold X smoothly embedded in the manifold Y, we denote by $N(X)$ the regular neighborhood of X in Y.

[^4]: ${ }^{13}$ We say that two tangle decompositions of a knot K defined by the 2 -spheres S and S^{\prime} are isotopic, if there is an ambient isotopy of $S \cup K$ to $S^{\prime} \cup K$.
 ${ }^{14}$ For a topological space $X,|X|$ denotes the number of connected components of X.
 ${ }^{15} \mathrm{~A}$ complete system of meridian disks of a handlebody H is a collection of disks in H whose complement is a ball.
 ${ }^{16} \mathrm{An}$ arc α in P is essential if the components closure of $P-\alpha$ doesn't contain any disk component.
 ${ }^{17}$ See chapter 2 of [1] by Jaco for a definition of an isotopy of type A, and section 2 of [22] by Ochiai for a definition of the latter and also of an inverse isotopy of Type A.

