
ON TUNNEL NUMBER DEGENERATION
UNDER THE CONNECTED SUM OF PRIME KNOTS

JOÃO MIGUEL NOGUEIRA

Abstract. We study 2-string free tangle decompositions of knots with tunnel number two. As

an application, we construct infinitely many counter-examples to a conjecture in the literature

stating that the tunnel number of the connected sum of prime knots doesn’t degenerate by
more than one: t(K1#K2) ≥ t(K1) + t(K2)− 1, for K1 and K2 prime knots.

1. Introduction

Given a knot K in S3, an unknotting tunnel system for K is a collection of arcs t1, t2, . . . , tn,
properly embedded in the exterior of K, with the complement of a regular neighborhood of
K ∪ t1 ∪ · · · ∪ tn being a handlebody1. The minimum cardinality of an unknotting tunnel system
for a knot K is a knot invariant, referred to as the tunnel number of K and is denoted by t(K).

A natural question of study on knot invariants is their behavior under the connected sum of
knots. In the particular case of the tunnel number, it is known, by Norwood [21], that tunnel
number one knots are prime. This result is now consequence of more general work. For instance,
Scharlemann and Schultens prove in [26] that the tunnel number of the connected sum of knots
is bigger than or equal to the number of summands:

t(K1# · · ·#Kn) ≥ n,
where K1# · · ·#Kn represents the connected sum of the knots K1, . . . ,Kn. Also, in [4] Gordon
and Reid prove that tunnel number one knots are, in fact, n-string prime2 for any positive integer
n.

On the tunnel number behavior under connected sum, it is a consequence from the definition
of connected sum of knots that for two knots K1 and K2 in S3 we have:

t(K1#K2) ≤ t(K1) + t(K2) + 1.

For some time the only examples known had an additive behavior:

t(K1#K2) = t(K1) + t(K2).

However, in the early nineties, Morimoto [13] constructed connected sum examples of prime
knots K1 with 2-bridge knots K2 whose tunnel number degenerates by one3:

t(K1#K2) = t(K1) + t(K2)− 1.

1Note that every knot has an unknotting tunnel system obtained from the knot exterior triangulation.
2A knot is n-string prime if it has no n-string essential tangle decomposition. For definitions of n-string tangle

decompositions of a knot we refer to section 4.1.3 of the survey paper [11] by Moriah, or section 3 of the paper
[7] by Kobayashi.

3In [16], without mentioning it, Morimoto gives also the first examples of knots that when connected sum
with themselves the tunnel number degenerates (by one): all tunnel number two 3-bridge knots with a 2-string

free tangle decomposition (as the knot K149 from Rolfsen’s list in [24]).
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Shortly afterwards, Moriah and Rubinstein in [12], and also independently Morimoto, Sakuma
and Yokota in [17], gave examples of knots with supper-additive behavior:

t(K1#K2) = t(K1) + t(K2) + 1.

Furthermore, about the same time, Kobayashi in [7] constructed examples of knots that degen-
erate arbitrarily under connected sum: for any positive integer n, there are knots K1 and K2

where
t(K1#K2) ≤ t(K1) + t(K2)− n.

However, Kobayashi’s examples to show arbitrarily hight degeneration of the tunnel number
under connected sum are composite knots.

In this paper we study further the tunnel number degeneration under connected sum of prime
knots. For this study we use the work of Morimoto in [16] that relates n-string free tangle
decompositions of knots and high tunnel number degeneracy under the connected sum of prime
knots. Within this setting, we study 2-string free tangle decompositions of knots with tunnel
number two and we obtain Theorem 1, and its Corollary 1.1, for which statement we need the
following definition.

Definition 1. Let s be a properly embedded arc in a ball B. Suppose the knot obtained by
capping off s along ∂B has tunnel number one. We say that s is µ-primitive if there is a trivial
arc t properly embedded in B, disjoint from s, such that the tangle (B, s ∪ t) is free4.

Remark 1. Note that a string s is a µ-primitive if and only if the knot obtained by capping off
s along ∂B is a µ-primitive knot5.

Theorem 1. Let K be a tunnel number two knot with a 2-string free tangle decomposition. Then
both strings of some of the tangles are µ-primitive.6

Corollary 1.1. Let K be a knot with a 2-string free tangle decomposition where no tangle has
both strings being µ-primitive. Then t(K) = 3.

The only examples of prime knots whose tunnel number degenerates under connected sum are
the ones given by Morimoto, and in this case the tunnel number only degenerates by one. Also,
in [8] Kobayashi and Rieck, and also in [15] Morimoto, proved that the tunnel number of the
connected sum of m-small7 knots doesn’t degenerate. With this and other results in perspective,
Moriah conjectured in [11] that the tunnel number of the connected sum of prime knots doesn’t
degenerate by more than one: t(K1#K2) ≥ t(K1) + t(K2)− 1, for K1 and K2 prime knots.
In this paper, we construct infinitely many counter-examples to this conjecture as in Theorem 2
and its Corollary 2.1.

Theorem 2. There are infinitely many tunnel number three prime knots K1 such that, for any
3-bridge knot K2, t(K1#K2) ≤ 3.

Corollary 2.1. There are infinitely many prime knots K1 and K2 where

t(K1#K2) = t(K1) + t(K2)− 2.

4A tangle is free if the complement of a regular neighborhood of the strings is a handlebody.
5For a definition of µ-primitive knot see Definition 5.13 of the survey paper [11] by Moriah.
6The correspondent result to Theorem 1 for links is proved by the author in [20].
7A knot is said m-small if there is no incompressible surface with meridional boundary components in its

complement.
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In [27], Scharlemann and Schultens introduced the concept of degeneration ratio for the
connected sum of two prime knots, K1 and K2:

d(K1,K2) =
t(K1) + t(K2)− t(K1#K2)

t(K1) + t(K2)
.

If the knots K1 and K2 behave additively we have d(K1,K2) = 0.
In case the knots K1 and K2 have supper-additive behavior then − 1

2 ≤ d(K1,K2) < 0. The min-
imum is achieved by the examples of Morimoto, Sakuma and Yokota in [17]. From the examples
of Moriah and Rubinstein in [12] we can choose a sequence of pairs of prime knots (K1,K2),
with super-additive behavior, where d(K1,K2) converges to zero.
For the sub-additive behavior of the tunnel number, the degeneration ratio is not so well under-
stood. Naturally d(K1,K2) > 0, and from Corollary 9.2 in [27], d(K1,K2) ≤ 3

5 . The examples of
Morimoto in [13] have degeneration ratio 1

3 . The examples from Corollary 2.1 have degeneration
ratio 2

5 . If K1 is a knot as in the statement of the Theorem 2 and K2 is any 3-bridge knot with
tunnel number one, from the main theorem of Morimoto in [14], t(K1#K2) = 3. Hence, the
degeneration ratio for these knots is 1

4 . So, for sub-additive behavior, from the results in this
paper we have the lowest known degeneration ratio for the connected sum of prime knots8, 1

4 ,
and also the highest, 2

5 .

The proof of Theorem 2 is a consequence of Morimoto’s work in [16] and Theorem 1, and
is explained in Section 8. For the proof of Theorem 1, we present the setting in Section 2. In
Sections 3 and 4 we prove some auxiliary technical lemmas that are used along the paper. In
Sections 5 and 6 we present the main lemmas that together give an outline of the proof. And
finally in Section 7 we organize all the information to prove Theorem 1. For this proof, new
and deeper arguments of innermost-arc type are developed to study the 2-string free tangle
decomposition of K with respect to a minimal unknotting tunnel system of K.

2. Preliminaries

Let K be a tunnel number two knot in S3 with a 2-string essential9 free tangle decomposition
defined by the 2-sphere S. We represent this tangle decomposition by (S3,K) = (B1,T1) ∪S

(B2,T2). As the tangles are free, their strings have no local knots10. This property and the next
lemma will be frequently used along this paper.

Lemma 2.1. The two strings of a 2-string essential free tangle are not parallell11.

Proof. Let (B, s1 ∪ s2) be a 2-string essential free tangle. Suppose that s1 and s2 are parallel,
and let D be a disk in B with boundary the strings s1 ∪ s2 and two arcs in ∂B connecting the
ends of these strings. As s1 and s2 are parallel, from Theorem 1’ of [2], the strings are knotted
in B.
Let N be a regular neighborhood of D in B. Hence, N is a regular neighborhood of s1 and of

8From work of Morimoto in [16], there are pairs of prime knots with tunnel number two that also have

degeneration ratio of 1
4

. In this paper, the same degeneration ratio is obtained with a tunnel number three knot

and a tunnel number one knot.

9Along the following sections we are assuming the tangle decomposition is essential. The inessential case is

observed in the proof of Theorem 1.
10We say that a tangle (B,T) contains a local knot, if there is a ball in B intersecting a single string of T at

a knotted arc.
11We say that the strings of a tangle (B; s1, s2) are parallel if there is an embedded disk D in B with boundary

the strings s1 ∪ s2 and two arcs in ∂B connecting the ends of these strings.
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s2. We have that B − intN is embedded in B − s1 ∪ s2 and ∂N is a proper essential surface in
B − s1 ∪ s2. So, π1(B − intN), that is not a free group, injects into π1(B − (s1 ∪ s2)), that is
free, which is a contradiction. So, the strings s1 ∪ s2 are not parallel. �

As in the statement of Theorem 1, we want to prove that the two strings of (B1,T1) or (B2,T2)
are µ-primitive. With this purpose, it is useful to consider the following characterization of µ-
primitive string.

Lemma 2.2. Let s be a string properly embedded in a ball B. Then s is µ-primitive if and only
if s is trivial in a solid torus T in B intersecting ∂B in a single disk and whose complement in
B is also a solid torus.

Proof. Assume s is µ-primitive in B. Then there is a trivial string t in B, disjoint from s and
where (B, s ∪ t) is a free tangle. Let T ′ = B − intN(t)12. As t is trivial in B we have that T ′ is
a solid torus and, from Theorem 1’ in [2], s is trivial in T ′. Consider the annulus A = ∂B ∩ ∂T ′.
Let D′ be a disk in A that is a regular neighborhood of an arc in A connecting the two boundary
components of A. We have that A− intD′ is also a disk D. Consider a regular neighborhood of
D′ in T ′ and isotope ∂T ′, along the neighborhood of D′, away from D′. We are left with a solid
torus T in B, intersecting ∂B at the disk D. Furthermore, the complement of T in B is also a
solid torus, it is a 1-handle attached to a ball, and s is trivial in T .
Assume now that s is a trivial string in a solid torus T in B intersecting ∂B in a single disk and
whose complement in B is also a solid torus. Take a meridian disk L of the complement of T
in B not intersecting S. Add the 2-handle with core L to T . We have that R = N(L) ∪ T is a
ball intersecting ∂B in a single disk. So, the complement of R in B is a ball. We isotope ∂R to
∂B along this ball, and from T we obtain the solid torus T ′, and from the disk L we obtain the
disk L′. We have that ∂T ′ ∩ ∂B is an annulus and the complement of T ′ in B is the cylinder
N(L′), where N(L′) intersects ∂B in two disks. Let t be the co-core arc of N(L′). Hence, as T ′

is a solid torus, t is a trivial string in B. Also, N(t) = N(L′) and s is trivial in the complement
of N(t). Therefore, (B, t ∪ s) is a free tangle, and s is µ-primitive. �

Consider an unknotting tunnel system of K, {t1, t2}, and the respective union of regular
neighborhoods to be V = N(K) ∪ (N(t1) ∪ N(t2)). So, W = S3 − intV is a handlebody
and S3 = V ∪ W is a genus three Heegaard decomposition of S3. Taking K ∪ t1 ∪ t2 in
general position with respect to S, we can assume that S ∩ V is a collection of essential disks:
S ∩ V = D∗1 ∪ · · · ∪ D∗n1

∪ D1 ∪ · · · ∪ Dn2 , where D∗i , i = 1, . . . , n1, are the disks of S ∩ V
intersecting K. Let D∗ = D∗1 ∪ · · · ∪D∗n1

and D = D1 ∪ · · · ∪Dn2 .

Lemma 2.3.
(a) There is no 2-sphere in V defining a tangle decomposition of K isotopic to the one

defined by S.
(b) Let C be a component of V − V ∩ S that intersects K. Then C ∩ K is parallel to the

boundary of C.

Proof. As V = N(K) ∪N(t1) ∪N(t2) there is an annulus A in V with ∂A = K ∪ b, where b is
a simple closed curve in ∂V in general position with S ∩ V . As K ∩D∗ is non-empty, A ∩ S is
also non-empty. Assume that |A ∩ S| is minimal.
First assume that some arc γ of A∩S has both ends in a string s from the tangle decomposition,
and also that γ co-bounds a disk in A together with the string s, that intersects S∩V only at γ.
As γ is in S, we have that s is trivial in the respective tangle decomposition, which contradicts

12For a manifold X smoothly embedded in the manifold Y , we denote by N(X) the regular neighborhood of
X in Y .
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the tangle decomposition being essential.
Suppose A∩S contains a simple closed curve c essential in A. Then K is isotopic to c. As c is a
simple closed curve in S it bounds a disk in S. Therefore, in this case, K would be unknotted,
which is a contradiction. Therefore, if c is a simple closed curve of A∩S then c bounds a disk in A.

(a) Suppose there is a 2-sphere in V defining a tangle decomposition isotopic to the one
defined by S, and, abusing notation, denote it also by S. Hence, S ⊂ V . So, there cannot be
arcs of A ∩ S between K and b. Let B be the ball bounded by S in V . Suppose A ∩ S contains
some simple closed curve c. As observed before, c bounds a disk D in A. Suppose that c is an
innermost simple closed curve of A ∩ S in A. Then, D intersects S only at c. As S ⊂ V , if c
bounds a disk S disjoint from K we can reduce |A∩S|, which is a contradiction to the minimality
of |A ∩ S|. Otherwise, both disks bounded by c in S intersect K, which contradicts the surface
S− intN(K) being essential in S3−N(K). Then, A∩S contains no simple closed curves. Then,
from the previous observations, the components of A∩B are two disks co-bounded by the strings
of the tangle in B and two arcs of A ∩ S. As each disk of A ∩ B intersects S only at a single
arc in its boundary, we have that both strings of the tangle (B,B ∩K) are trivial, which is a
contradiction to the tangle decomposition defined by S being essential.

Figure 1: An annulus A in V with boundary being K and a curve b in the boundary
of V . The disk ∆ is a disk in the component C of V − V ∩ S, with boundary being
the string s and a curve in the boundary of C.

(b) To prove part (b) of this lemma we just need to prove that A∩S contains no simple closed
curves, and that no arc of A∩S has both ends in ends of strings from the tangle decomposition.
Assume now A ∩ S contains a simple closed curve, c. As observed before, c bounds a disk D in
A; suppose that it is an innermost curve with this property. Let L be the disk bounded by c in
S ∩ V . If L doesn’t intersect K then we can reduce |A∩S|, which contradicts the minimality of
|A ∩ S|. If L intersects K in less than four points then D contradicts the tangle decomposition
defined by S being essential. If L intersects K in four points then the tangles decomposition
defined by D ∪ L ⊂ V and S are isotopic, which is a contradiction to (a). Then A ∩ (S ∩ V )
contains no simple closed curve.
From the previous arguments all arcs of A ∩ S either have both ends in b or one end in b and
the other at an end of a string in C. Also, as A is in general position with S ∩ V , each string
end is attached to a single arc of A ∩ S. Let C be a component of V − V ∩ S that intersects
K. Then each string s of C belongs to the boundary of a properly embedded disk component
of A − A ∩ S in C, disjoint from the other string components in C, as in Figure 1. Therefore,
all components of C ∩ K are independently parallel to the boundary of C, which gives us the
statement (b) of the lemma. �

5



Considering the previous lemma and that all 2-spheres in S3 intersect K an even number of
times, no disk of D is parallel to a disk of D∗ in V .

From the work of Ozawa [23], we know that if a knot has an essential 2-string free tangle de-
composition then this decomposition is unique up to isotopy13, and, furthermore, K is n-string
prime for n 6= 2. (In particular, K is prime.) This is a result frequently throghout this paper,
and we refer to it as Ozawa’s unicity theorem.
We assume the unknotting tunnel system and the tangle decomposition defined by S up to
isotopy are such that S ∩ V is a collection of disks with minimum cardinality |S ∩ V |14. From
Lemma 2.3 and the minimality of |S ∩ V |, we can assume that all disks S ∩ V are essential in
V . As S decomposes K in two 2-string tangles we have n1 ≤ 4. If n1 ≥ 3, we denote the string
with one end in D∗i and the other end in D∗j by sij .

Let P denote the planar surface S∩W . By the minimality of |S∩V | and the incompressibility
of S − int(N(K)) in S3 − int(N(K)), we have that P is essential in W .
For a complete system of meridian disks15 of W , {E1, E2, E3}, we write E = E1 ∪ E2 ∪ E3.
Considering E and P in general position, we choose E such that |P ∩E| is minimal between the
complete systems of meridian disks of W .
By the incompressibility of P and the minimality of |P ∩E|, no component of P ∩E is a simple
closed curve. Also, if an arc component of P ∩E is a loop co-bounding a disk in P disjoint from
P ∩ E, using this disk, we can change the complete system of meridian disks of W to E′ with
|P ∩E| > |P ∩E′|. This is a contradiction, and therefore P ∩E is a collection of essential arcs16

in P .
With the arcs of P ∩ E we define a graph in S that we denote by GP : the vertices are the
disks from S ∩ V , each of which corresponds to a boundary component of P , and the edges are
the arcs P ∩ E. The graph GP is connected: in fact, if the graph GP is not connected then
by cutting along a complete system of meridian disks of W we can find a compressing disk for
P in W , which is a contradiction as P is essential. As GP is a connected graph in a 2-sphere,
from the arcs P ∩ E in E we can create a sequence of isotopies of type A17 over a sequence of
arcs α1, α2, . . . , αm of P ∩ E such that the closure of the components of P − α1 ∪ · · · ∪ αm is a
collection of disks.

The vertices of GP associated to D, resp. D∗, are referred to as d-vertices, resp. d∗-vertices,
and are illustrated as white disks, resp. dark disks. Between the edges of GP it is useful to
define some types of arcs as follows. (See Figure 2.)

Type I : is an edge connected to a single vertex.
Type II : is an edge connected to two distinct vertices.

d-arc: is an edge with at least one end attached to a d-vertex.
d∗-arc: is an edge with at least one end attached to a d∗-vertex.

13We say that two tangle decompositions of a knot K defined by the 2-spheres S and S′ are isotopic, if there

is an ambient isotopy of S ∪K to S′ ∪K.
14For a topological space X, |X| denotes the number of connected components of X.
15A complete system of meridian disks of a handlebody H is a collection of disks in H whose complement is

a ball.
16An arc α in P is essential if the components closure of P − α doesn’t contain any disk component.
17See chapter 2 of [1] by Jaco for a definition of an isotopy of type A, and section 2 of [22] by Ochiai for a

definition of the latter and also of an inverse isotopy of Type A.
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Figure 2: An illustration of some arc components of E ∩ P in P . The arc α1 (resp.,
α2) is a sk-arc (resp., st-arc). The arc α3 is a d∗-arc that is also a k-arc, and α4 is
both a d-arc and a d∗-arc. Note also that the arc α5 is an example of a type I d-arc
that is not a st-arc.

t-arc: is an edge of type II, αi, in a sequence of isotopies of type A as above, connected to some
d-vertex D and where αj , j < i, is disjoint from D. (See Remark 2 and also Lemma 1
of [22] by Ochiai.)

k-arc: is a type II arc connecting two d∗-vertices.
st-arc: is a type I d-arc separating P into two planar surfaces, each with some boundary com-

ponent of D∗.
sk-arc: is a type I d∗-arc separating P into two planar surfaces, each with some boundary

component of D∗.

Remark 2. Suppose α is a type II d-arc with one end in the d-vertex associated with D. If one
of the disks separated by α from E intersects the disk D only at the end of α in D, then all arcs
of E ∩P in this disk have no end in D. This implies that α is a t-arc. (See Figure 3.) In Lemma
2.4 we prove that such arcs cannot exist.

Figure 3: An illustration of arc components of E ∩P in some component of E. If an
arc of E ∩ P in E has one end in the disk Di, resp. D∗j , then we label the end of the
arc in E by i, resp. by j∗. The ends of the arc α in the figure exemplify this notation.
If all arcs in one of the disks separated by α from E have no ends being i, then α is a
t-arc.

We say that an arc δ of P ∩ E is an outermost arc, if δ separates a disk component ∆ of
E − E ∩ S from E. We have ∆ ∩ P = δ and ∂∆ = δ ∪ β with β ⊂ ∂E. The disk ∆ is said
to be an outermost disk. (See Figure 3.) An outermost disk is said to be over a component of
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V − V ∩ S if the correspondent arc β is in the (boundary) of the component.

In the next lemma, we study the arcs P ∩ E in P and in E and obtain properties that give
the base setting for these arcs along the work in this paper.

Lemma 2.4.
(a) All outermost arcs are of type I.
(b) If n is the number of vertices of GP then either n = 1 and the graph GP has no edges,

or n ≥ 3 and at least two vertices of GP are not adjacent to edges of type I.
(c) No arc of E ∩ P is a t-arc.
(d) The outermost d-arcs of E ∩ P in E are of type I.
(e) Each type I arc of E ∩ P is a st-arc or sk-arc.
(f) All d-vertices are adjacent to a st-arc.
(g) Each outermost arc of E ∩ P in E is a st-arc or a sk-arc.

Proof.
(a) Suppose some outermost arc is of type II. Then, proceeding with an isotopy of type A along

the respective outermost disk we can reduce |S ∩ V |, which is a contradiction to the minimality
of |S ∩ V |.

(b) If n = 1, 2 and there is some loop in GP , the outermost loop co-bounds a disk in P .
Furthermore, if GP has no loops and n = 2 then the outermost arcs of E ∩ P in E are of type
II, which is a contradiction to (a). If n ≥ 3 and at most one vertex is not adjacent to a loop,
then one outermost loop co-bounds a disk in P . In both cases we contradict the fact that all
edges of GP are essential in P .

(c) If there is a t-arc, then by a sequence of isotopies of type A followed by a sequence of
inverse isotopies of type A, as in Lemma 1 of [22] by Ochiai, we can ambient isotope S, in the
exterior of K, to some 2-sphere S′ where |S ∩ V | > |S′ ∩ V |. This is a contradiction to the
minimality of |S ∩ V |.

(d) If an outermost d-arc of E∩P in E is of type II then it is a t-arc, which is a contradiction
to (c). Therefore, the outermost d-arcs of E ∩ P in E are of type I.

(e) Let α be a type I arc of E ∩P . As α is essential in P it separates P into two components
that are not disks. If one of these components, say F , only contains boundary components
corresponding to d-vertices there is some arc of E∩P in F that is a t-arc, which contradicts (c).

(f) Assume there is a d-vertex D that is only adjacent to edges of type II. Then there is a
t-arc with respect to D (choose an outermost arc, in E, between the edges of type II attached
to D), which is a contradiction to (c). Hence, there is at least one edge of type I with ends in
D, and from (e) it is a st-arc.

(g) From (a) the outermost arcs are of type I, and from (e) the type I arcs are st or sk-arcs. �

3. Outermost disks over ball components of V − V ∩ S

In this section we study the case when there is an outermost disk over some ball component
of V − V ∩ S, as in Lemma 3.2. We also have presented other crucial lemmas relating ball
components of V − V ∩ S and certain disks of E −E ∩ P , together with the next lemma where
we show several properties of tangles obtained from balls in B1 or B2.

Lemma 3.1. Suppose there is a ball Q in one of the tangles defined by S that intersects each
string of the tangle in a single arc.

(a) Let Qc denote the complement of Q in S3. The tangle (Qc, Qc ∩K) is essential.
(b) If one of the strings of Q ∩ K is unknotted in Q then either the tangle (Q,Q ∩ K) is

trivial or some string of some tangle defined by S is unknotted.
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(c) Suppose both strings of the tangle are in Q and have ends in one or two disk components
of Q ∩ S. Then the tangle (Q,Q ∩K) is essential.

(d) If a ball component of V −S∩V contains a string with both ends in the same component
of D∗, then some string of some tangle is unknotted.

Proof.
Assume that the tangle containing Q is (B1,T1).

(a) Suppose that (Qc, Qc ∩K) isn’t essential. As this tangle contains only two strings, both
strings are trivial in it. Let s′ be an arc component of Qc ∩ K, and D′ be a disk in Qc with
interior disjoint from K and with boundary being the union of s′ and an arc in ∂Qc. Let s be
the string from the tangle decomposition defined by S that is a subset of s′. So, s is a string of
the tangle (B2,T2). As s′ contains only the string s of K − S ∩K, we have that ∂D′ intersects
S only at two points, which are the end points of s. Considering a minimal collection D′ ∩ S
and following an innermost curve or arc type of argument, we can prove that D′ ∩ S is a single
arc a with ends being the ends of s ⊂ ∂D′. Let D be the disk in D′ with boundary defined by
the arcs a ⊂ S and s. Then D is in the tangle (B2,T2) and the interior of D doesn’t intersect S.
Therefore, the string s is trivial in (B2,T2), which is a contradiction to the tangle decomposition
defined by S being essential.

(b) Assume that one of the strings of Q ∩ K is unknotted in B. If the tangle (Q,Q ∩ K)
is essential then, from (a), the 2-sphere ∂Q defines a 2-string essential tangle decomposition of
K. By Ozawa’s unicity theorem, the tangle decompositions given by S and ∂Q are isotopic.
Hence, as one string of (Q,Q∩K) is unknotted, some string of some tangle defined by S is also
unknotted. Otherwise, the tangle (Q,Q ∩K) is trivial.

(c) Suppose the tangle (Q,Q∩K) is trivial. Let Q′ be obtained from Q after we isotope away
from S in B1 the components of Q ∩ S that don’t contain any string ends. If Q′ intersects S
in a disk with all string ends in it, as the strings are trivial in Q′ they are both unknotted in
(B1,T1). From Theorem 1’ in [2], this is a contradiction to the tangle (B1,T1) being essential.
Otherwise, if Q′ intersects S in two disks that also contain the strings ends in them. As the
tangle (B1,T1) is free, following an argument as in Lemma 2.1, the complement of Q′ in B1 is a
solid torus. Then ∂Q′ is ambient isotopic to S in S3 −K, which is also a contradiction to the
tangle (B1,T1) being essential. So, the tangle (Q,Q ∩K) is essential.

(d) Suppose there is a ball component C of V − V ∩ S containing a string s with both ends
in the same component of D∗. From Lemma 2.3, the tangle (C,C ∩K) is trivial. Consequently,
the string s is trivial in C. As the ends of s are in the same disk of C ∩ S, it is also unknotted
in the respective tangle defined by S. �

Lemma 3.2. If there is an outermost disk over a ball component of V − (S ∩ V ) then some
string of some tangle is unknotted.

Proof. Suppose there is an outermost disk ∆ over a ball component C of V − (S ∩ V ), and let
δ be the respective outermost arc. Without loss of generality assume that C ⊂ B1. Let A be
the annulus in the intersection of C ⊂ V with the 2-sphere obtained after an isotopy, along a
regular neighborhood of ∆, of a regular neighborhood of δ in S into V . The component C is
either disjoint from K or contains one or both strings of T1. Then, a core of A bounds a disk
D in ∂C that is either disjoint or intersects K in one or two points. We isotope intD into C,
slightly, such that D ∩ S = ∂D.

Assume D is disjoint from K. The arc δ union an arc component of ∂P −∂δ is a simple closed
curve parallel, in S − K, to a core of A. Also, the arc δ separates P into two planar surfaces
containing boundary components of D∗. Therefore, D separates the strings of the tangle (B1,T1)
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and intersects S only at ∂D, which is a contradiction to the tangle decomposition defined by S
being essential.

Assume that |D ∩K| = 1. Let D′ be the disk in S with ∂D′ = ∂D and |D′ ∩K| = 1, and Q
be the ball in B1 bounded by D ∪D′. Then Q ∩ T1 is a single trivial arc in Q. So, considering
the 2-sphere S′ = (S−D′)∪D, the tangle decompositions defined by S and S′ are isotopic with
|S′ ∩ V | < |S ∩ V |, which is a contradiction to the minimality of |S ∩ V |.

Assume now that |D ∩ K| = 2. Then D splits the tangle (B1,T1) in two 2-string tangles:
(B′1,T

′
1) and (B′′1 ,T

′′
1 ). If D intersects K in the same string of T1 then one string of this tangle,

say s1, is either in (B′1,T
′
1) or in (B′′1 ,T

′′
1 ). Assume, without loss of generality, that s1 is in

(B′1,T
′
1). From Lemma 3.1 (a), if the tangle (B′1,T

′
1) is essential then ∂B′1 defines an essential

2-string tangle decomposition of K with |∂B′1∩V | < |S∩V |, which contradicts the minimality of
|S∩V |. Hence, the tangle (B′1,T

′
1) is trivial. So, s1 is trivial in (B′1,T

′
1) and therefore unknotted

in (B1,T1). Otherwise, assume that D intersects K in different strings of T1. By a similar
argument as when D intersects K in the same string we can prove that the tangles (B′1,T

′
1) and

(B′′1 ,T
′′
1 ) are trivial. Then the string s1 ∩ B′1 is trivial in B′1 and the string s1 ∩ B′′1 is trivial in

B′′1 , which implies that s1 is unknotted in (B1,T1). �

Remark 3. From Lemma 3.2, if some outermost disk is over a ball component of V − S ∩ V
then we have Theorem 1. So, we can assume that all outermost disks are over components of
V − S ∩ V other than balls.

We say that two arcs of E∩P are parallel in E if the union of these arcs cuts a disk component
of E − E ∩ P from E. An arc outermost in E between the arcs of E ∩ P not in a sequence of
parallel arcs to a outermost arc is said to be a second-outermost arc. A disk of E−E ∩S in the
outermost side of a second-outermost arc is called a second-outermost disk. The arcs α and γ in
Figure 3 are examples of second-outermost arcs.

Let γ and γ′ be two type I arcs of E ∩ P parallel in E attached to disks D and D′ of S ∩ V ,
resp., parallel in V . Denote by Γ the disk cut by γ ∪ γ′ from E, and by C the ball component of
S−S∩V cut by D∪D′ from V . Suppose that C and Γ are in the same ball component bounded
by S, say B1. Then Γ is a proper surface in the complement of the solid torus B2 ∪D∪D′ C in
S3, which is B1 − intC. The curve ∂Γ is inessential in the boundary of B2 ∪D∪D′ C, and as we
are in S3, it bounds a disk in ∂(B2∪D∪D′ C). Let L be the disk bounded by ∂Γ in ∂(B1− intC).
Note that L intersects S in two disks and C in a disk band from D to D′. Let R be the ball
bounded by Γ ∪ L in B1 − intC. For the next lemma, denote by q a core arc of C in B1, this
is a proper arc in B1 with regular neighborhood C. This construction and the following lemma
will be frequently used throughout this paper.

Figure 4
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Lemma 3.3. The ball R contains a single string of T1, and this string is parallel to q in B1.

Proof. Denote by O and O′ the disks of L ∩ S, which are the disks cut by γ and γ′, resp., in
S − int(D ∪D′). As γ, and γ′, is a st or sk-arc we have that O and O′ contain some component
of D∗. This means that R contains some string(s) of T1.
Suppose that T1 is in R. From Lemma 3.1(a) and (c), we have that ∂R defines a 2-string essential
tangle decomposition of K. As the 2-string essential tangle decomposition of K is unique, we
have that the tangle decompositions defined by S and ∂R are isotopic. But |∂R ∩ V | < |S ∩ V |,
which is a contradiction to the minimality of |S ∩ V |.
Then R contains a single string, s, of T1. As there are no local knots, s is trivial in R. The
intersection of R with C is the disk L − O ∪ O′, that intersects each D and D′ at an arc. Let
a be an arc in L − O ∪ O′ with one end in D ∪ O and other in D′ ∪ O′. Then, s (resp., q) is
parallel to a in R (resp., C) through a disk with boundaries being s ∪ a (resp., a ∪ q) and two
arcs in O∪O′ (resp., D∪D′). As R intersects C in L−O∪O′, we have that s and q are parallel
through a disk with boundaries being s∪ q and two arcs in S. Consequently, s and q are parallel
in B1. �

Corollary 2.2. The disks D and D′ cannot be disks of D∗.

Proof. As no disk of D is parallel to a disk of D∗ in V , suppose both D and D′ are disks of D∗.
Then C contains some string(s) of T1. As R contains a string of T1 we have that C contains
a single string of T1, and from Lemma 2.3(b) this string is also a core of C. Therefore, from
Lemma 3.3, the strings of T1 in R and in C are parallel in B1, which is a contradiction to Lemma
2.1. �

Lemma 3.4. Let Dk, D∗i and D∗j be disks of S ∩ V where Dk ∪D∗i ∪D∗j cuts a ball component
C of V − V ∩ S from V ; assume that C intersects K at a single string, with one end at D∗i and
the other at D∗j . Suppose there is a disk component of E−E ∩P , in the same tangle component
as C, that intersects S in arcs where all but one of these arcs have both ends in Dk, and the
remaining arc has either at least one end in Dk, or one end in D∗i and the other in D∗j . Then
some string of some tangle is unknotted.

Proof. Denote by Γ the disk component of E−E ∩P referred to in the statement, and by γ the
arc of Γ ∩ S that doesn’t have by assumption both ends in Dk, as in Figure 5(a). Without loss
of generality, suppose C is in B1. Let s and s′ be the strings in this tangle with s in C, and Ci

denote the cylinder obtained from C after an isotopy pushing D∗j away from S in B1. Consider
also the solid torus Ti defined by B2 ∪D∗i ∪Dk

Ci.
Assume that γ also has both ends in Dk.

Figure 5: (a) Arc γ after the outermost arcs attached to Dk. The label k at an end
of an arc means the end is at the disk Dk. (b) The ball C cut by D∗i ∪D∗j ∪Dk from
V , and the string sij in it.

The curve ∂Γ is inessential in Ti and it bounds a disk in ∂Ti that we denote by L. The disk L
11



intersects D∗. In fact, suppose L is disjoint from D∗, and consider a disk D of L ∩ Ci or L ∩ S
with boundary intersecting ∂L at a single component. Then, if D ⊂ Ci it is also a disk in C
and we get a contradiction to the minimality of |P ∩E|, and if D ⊂ S we obtain a contradiction
with Lemma 2.4(e).
Consider the ball R in B1 bounded by Γ ∪ L. As L contains some component of D∗ the ball R
intersects T1; it contains at most two arcs, the string s′ or a portion of the string s.
Suppose R contains the string s′ only. As there are no local knots in the tangle, s′ is parallel to
L. By pushing L to S from ∂Ci we have that the string s′ is unknotted in (B1,T1).
Suppose R contains also a portion of the string s. From Lemma 3.1(a), we have that the tangle
(Rc, Rc ∩K), where Rc is the complement of R in S3, is essential. As |∂R∩ V | < |S ∩ V |, if the
tangle (R,R ∩K) is essential, we have a contradiction to the minimality of |S ∩ V |. Therefore,
(R,R ∩K) is a trivial tangle. Then, the string s′ is unknotted in R and parallel to the disk L.
By an isotopy of L from Ti to S we have that the string s′ is also unknotted in (B1,T1).
So, we can assume that R ∩ K is only a portion of the string s. Consider the solid torus
T ′i = Ti ∪ R, and the complement in B1 of the ball obtained by cutting T ′i along D∗i that we
denote by Q. Then, Q is a ball in B1 containing s′ and a portion of s. The 2-sphere ∂Q is
isotopic to S rel. Q ∩ S in B1. Then, if s is unknotted in Q it is also unknotted in B1. As
|∂Q∩V | < |S ∩V |, following a similar reasoning as when R contains two arcs, we also have that
some string of some tangle is unknotted.

Assume now that γ has only one end at Dk.
Suppose, without loss of generality, that the other end of γ is in D∗i . We isotope S along a
regular neighborhood of a disk in C intersecting K once, intersecting the disk Dk along a single
arc, and separating D∗i from D∗j in ∂C. In this way, we split Dk in two disks Dk and Dk′ , and
C in two cylinders from Dk to D∗i , Ck,i∗ , and from Dk′ to D∗j , Ck′,j∗ . The boundary of Γ lies in
S, and in the boundaries of the balls Ck,i∗ and Ck′,j∗ . The arcs of ∂Γ ∩ Ck′,j∗ have both ends
attached to Dk′ . Hence, we can isotope these arcs to S. Also, all but one arc of ∂Γ ∩ Ck,i∗ has
both ends in Dk. The other arc has one end in D∗i and the other in Dk. We isotope all arcs
of ∂Γ ∩ (Ck,i∗ ∪ Ck′,j∗) with both ends in Dk or both ends in Dk′ from ∂Ck,i∗ or ∂Ck′,j∗ to S,
respectively. We are left with the disk Γ with boundary defined by one arc in S and other arc
in the boundary of Ck,i∗ from D∗i to Dk. Using this disk we can isotope Ck,i∗ through S. We
did an isotopy of V where we obtain a new 2-string tangle decomposition of K, that contains
in each tangle a string from the original tangle decomposition defined by S. We also reduced
|S ∩ V |. So, the new tangle decomposition cannot be essential, which implies that some string
of the original tangle decomposition defined by S is unknotted.

Assume at last that γ has one end in D∗i and the other end in D∗j .
Then each arc of Γ∩S co-bounds a disk in S− intDk, with ∂Dk, containing D∗i ∪D∗j , and other
disk containing none of these disks. Hence, we can isotope ∂Γ to lie in ∂C with the exception
of γ. So, after the isotopy ∂Γ is defined by γ and an arc in C from D∗i to D∗j . The string s is
trivial in C and therefore it is parallel to the arc ∂Γ∩C. Therefore, the string s is unknotted in
(B1,T1). �

4. Outermost disks over torus components of V − V ∩ S

In this section, we prove several lemmas related with the existence of outermost disks over
tori components of V − V ∩ S disjoint or intersecting K at a single arc. These lemmas are
fundamental on the proof of Theorem 1.

Lemma 4.1. There is no outermost disk over a solid torus component of V − V ∩S containing
a single disk of V ∩ S and disjoint from K.
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Proof. Denote the disk T ∩ S by D. Let δ be the outermost arc co-bounding an outermost
disk ∆ as in the statement. Consider, also, the corresponding arc β and a disk O cut by δ in
S − intD. Let L = O ∪ ∆. The disk L is a meridian for the complement of T and intersects
a meridian of T once. Consider a regular neighborhood of ∆ in W , N(∆). So, N(∆) ∩ S is a
regular neighborhood of δ in S, N(δ), and N(∆) ∩ ∂T is a regular neighborhood of β in ∂T ,
N(β). We isotope the annulus N(δ)∪D through N(∆) to the annulus N(β)∪D. As β intersects
a meridian of T once, the annulus A = N(β) ∪ D is such that T = A × I. Therefore, we can
isotope A ⊂ S through T to ∂T −A and out of V . Let S′ be the 2-sphere obtained from S after
this isotopy. The tangle decomposition of K obtained from S′ is the same as the one given by
S. However, |S′ ∩ V | < |S ∩ V | and we contradict the minimality of |S ∩ V |. �

Lemma 4.2. Assume V −V ∩S has a solid torus component T intersecting K in a single string
and with T ∩ D∗ being a single disk. If there is an outermost disk over T then some string of
some tangle is unknotted.

Proof. Suppose T is in the tangle (B1,T1). Let s be the string T ∩K, that is a component of
T1, and D∗ be the component of T ∩S that intersects K. Then, both ends of s are in D∗ ⊂ ∂T .
Let ∆ be an outermost disk over T and δ the respective outermost arc in E attached to the
disk D of T ∩ S. Consider also the disk O cut by δ in S − intD and disjoint from D∗. Let
L = O ∩ ∆. Isotope the disks (if any) of T ∩ O away from S in B1, and denote the resulting
solid torus by T ′. By adding the 2-handle with core L to T ′ we define a ball Q that intersects
S at disk components.

Suppose D = D∗. As δ is a sk-arc, and two ends of strings are in D, we have that O intersects
D∗ in a a single disk. In this case, the ball Q contains the string s, and also an unknotted
portion of the other string of T1. From Lemma 3.1, some string of some tangle defined by S is
unknotted or the tangle (Q,Q∩K) is trivial. So, we can assume that s is trivial in Q. As s has
both ends at the same disk component of Q ∩ S, we have that s is unknotted in (B1,T1).

Suppose D doesn’t intersect K. If O intersects K at a single point, then following the
argument used in the previous case we have that some string of some tangle is unknotted. So,
assume that O intersects K at a collection of two points. In this case, the ball Q contains the
string s, and also two portions of the other string, s′ that are unknotted in Q. So, ∂Q defines a
3-string tangle decomposition of K. Let Qc denote the complement of Q in S3. From Ozawa’s
unicity theorem, either the tangle (Q,Q∩K) or the tangle (Qc, Qc∩K) isn’t essential. As there
are no local knots in the tangles defined by S and the tangles (Q,Q ∩K) and (Qc, Qc ∩K) are
3-string tangles, the tangle that isn’t essential has a trivial string. If the tangle (Qc, Qc ∩ K)
isn’t essential then, following an argument as in the proof of Lemma 3.1, either some string of
the tangle (B2,T2) is trivial, which is a contradiction, or the string Qc∩s′ is trivial in Qc. In the
latter case isotope Q from S in such a way that Q ∩ S is only D ∪O, and denote by Q′ the ball
after the isotopy. Then, (Q′, Q′∩s′) is the product tangle and Q′c∩s′ is isotopic to ∂Q′−∂Q′∩S.
Therefore, after the isotopy of Q′c ∩ s′ to Q′ we have that s′ is unknotted in (Q′, Q′ ∩K). As s′

has both ends in the same disk component of Q′ ∩ S we have that s′ is unknotted in the tangle
(B1,T1). Suppose now that the 3-string tangle (Q,Q∩K) isn’t essential. Then one of the strings
Q ∩K is trivial in this tangle. If such a string is s then the string s is unknotted in (B1,T1). If
such a string is one of the arcs obtained from Q ∩ s′, then consider the compressing disk C for
∂Q in the interior of Q and the ball Q′′, containing the string s, obtained after cutting Q along
C. From Lemma 3.1, either some string of (B1,T1) is unknotted or the tangle (Q′′, Q′′ ∩K) is
trivial. Then s is trivial in Q′′ and unknotted in Q (that is obtained from Q′′ after gluing a ball
along a disk). As s has both strings in the disk T ∩D∗ we also have that s is unknotted in the
tangle (B1,T1). �

13



Lemma 4.3. Let T be a torus component of V − V ∩ S with more than one component from
V ∩ S in its boundary. Then there is no ball Q, in the tangles defined by S, with the following
properties,

(1) T ⊂ Q, ∂Q ∩ ∂T is an annulus A that contains at least two components of T ∩ S union
with the disks of T ∩ S not in A;

(2) (∂Q ∩ S) ∪A is an annulus A′, A′ −A is a collection of disks attached to some disks of
T ∩ S and contain the disks of T ∩ S not in A;

(3) the two strings of a tangle are in Q and the tangle in Q with these two strings is essential.

Proof. Suppose there is a ball Q as in the statement. From Lemma 3.1(a) the complement of
Q in S3 contains an essential tangle. As (Q,Q∩K) is an essential tangle, from Ozawa’s unicity
theorem, we have that the tangle decomposition of K defined by S and ∂Q are isotopic. Note
that as A′ − A is a collection of disks in S attached to ∂T ∩ S, A − A ∩ S = A′ − A′ ∩ S.
Consider an arc a in A−A ∩ S connecting the two components of ∂A. Then a is also an arc in
A′−A′ ∩S connecting the two different components of ∂A′. Consider S′ after an isotopy of ∂Q
along a regular neighborhood of the arc a in the complement of Q. Then, all disks of S ∩T that
are in A are now in a single disk component of S′ ∩ T . The sphere S′ defines the same tangle
decomposition to K than S does. And also, as A contains at least two components of T ∩S, we
have |S ∩ V | > |S′ ∩ V |, which contradicts the minimality of |S ∩ V |. �

For the next lemmas assume that n1 ≥ 3 and consider a solid torus component T of V −V ∩S
intersecting K at a single arc component. Suppose there is an outermost disk ∆ over T , and let
δ be the respective outermost arc attached to the disk D of V ∩ S. Assume also without loss of
generality that T is in (B1,T1). Denote by s11 and s12 the strings of T1, and by s21 and s22 the
strings of T2. Suppose that s11 is the string of T1 that T contains.

Lemma 4.4. If one of the disks separated by δ in S − intD contains just one disk of V ∩S and
it intersects K once, some string of some tangle is unknotted.

Proof. Suppose one of the disks cut by δ in S− intD, say O, contains a single disk of V ∩S. As
δ is a st or sk-arc the disk of V ∩S in O is a disk D∗ of D∗, which from the statement intersects
K once.
Consider the disk L = ∆ ∪ O. As we are in S3, by attaching the 2-handle with core L to T we
obtain a ball. Consequently, as D∗ is a disk of V ∩ S (separating or non-separating in V ), by
attaching a regular neighborhood of the annulus A = L− intD∗ to V we have a handlebody V ′

also of genus three. Furthermore, as A is incompressible and non-separating in W , by cutting
W along A we obtain a handlebody W ′ of genus three. Altogether, by cutting W along A and
simultaneously adding a regular neighborhood of A to V , we obtain a Heegaard decomposition
of S3, V ′ ∪W ′, of the same genus as the one defined by ∂V .

Let T ′ be a solid torus obtained from T by an ambient isotopy of B1 ∩ V taking D∗ away
from S in B1. We denote by Q the ball obtained by attaching a regular neighborhood of L to
T ′. As T intersects K at a single arc and as L intersects K at a single point, we have that Q
intersects K at two arcs, with one being unknotted.
Let T ′′ be a solid torus obtained from T by an ambient isotopy of (T ∩ S)−D away from S in
B1. We denote by R the ball obtained by attaching a regular neighborhood of L to T ′′. As T
intersects K at a single arc and as L intersects K at a single point, we have that R intersects K
at two arcs, with one being unknotted.

Suppose n1 = 4.
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(1) Suppose D is in D and D∗ is not in T . Then Q intersects each string of T1 at a single
arc. Then by Lemma 3.1(b) some string of some tangle defined by S is unknotted or the
tangle (Q,Q ∩ K) is trivial. So, we can assume the latter. Each disk of Q ∩ (V ′ − intQ)
intersects K at most at a single point. Therefore, the arcs Q ∩ K can be isotoped to ∂Q
intersecting Q∩ (V ′− intQ) only at the end points. From Lemma 2.3, all the other components
of (V ′ − V ′ ∩ S) − Q intersecting K have the same property. Furthermore, if two consecutive
arcs are in adjoint components of V ′−V ′∩S then, after the isotopy to the boundary of the arcs
in the respective components, we can choose that the common ends are at the same point of
the disk of intersection between the components. (In this case, this is a consequence from each
component of V ′∩S intersecting K at most once and the tangle in each component of V ′−V ′∩S
being trivial.) So, with V ′ being the union of components with these properties, K is parallel to
∂V ′. We also note that there is a meridian disk of V ′ intersecting K once. Altogether, we have
that (V ′ − N(K)) ∪W ′ is a genus three Heegaard decomposition of the knot K exterior. But
|S ∩ V ′| < |S ∩ V |, which is a contradiction to the minimality of |S ∩ V |.

(2) Suppose D is in D and D∗ is in T . Note that Q intersects T1 at s11 in two arcs, with
one of the arcs being unknotted in Q. If the tangle (Q,Q∩K) is trivial then following a similar
argument as in (1), we obtain contradiction with the minimality of |S ∩ V |. So, we can assume
that (Q,Q∩K) is essential. Consider the complement of Q in S3, Qc. If the tangle (Qc, Qc∩K)
is also essential then the tangle decomposition defined by S is isotopic to the one defined by ∂Q;
as (Q,Q∩K) contains an unknotted string, this means that some string of some tangle defined
by S contains an unknotted string. So, we can assume that the tangle (Qc, Qc ∩K) is trivial.
Let s1 be the intersection of Qc with s11, and s2 the other string of Qc ∩K. As (Qc, Qc ∩K) is
trivial and K is prime, s1 or s2 are trivial in Qc. Suppose that s2 is trivial in Qc. By following
a similar argument as in the proof of Lemma 3.1(a), we have that either s21 and s22 are trivial
in (Q2,T2), or s12 is trivial in (Q1,T1), which is a contradiction to these tangles being essential.
Suppose s2 is knotted in Qc. As (Qc, Qc ∩K) is trivial, there is a proper disk in Qc separating
s1 and s2; let B be the ball separated by this disk containing s2. Then s2 is knotted in B. As
K is prime, the string in the complement of B in S3, Bc ∩K, is trivial. We have Bc ∩K being
s1 and Q ∩ K. Then, following a similar argument as in Lemma 3.1(a), we have that one of
the strings of Q ∩K is trivial in Q, which contradicts (Q,Q ∩K) being essential, or the string
s1 is trivial in Qc and the strings of Q ∩K are parallel in Q. But one of the strings Q ∩K is
unknotted in Q, which is a contradiction to the assumption that (Q,Q ∩K) is essential.

(3) Suppose D is in D∗ and D∗ is not in T . The ball R intersects each string of T1 at a single
arc component, with one of them being unknotted in R. From Lemma 3.1(a), some string of some
tangle defined by S is unknotted or the tangle (R,R ∩K) is trivial. Let R1 be the complement
of R in B1, and Rc

1 the complement of R1 in S3. Suppose the tangle (R1, R1∩K) is trivial then,
as there are no local knots in (B1,T1), R1 ∩ s11 is unknotted in R1. As R∩ s11 is also unknotted
in R we have that s11 is unknotted in B1. So, we can assume that (R1, R1 ∩ K) is essential.
Again from Lemma 3.1(a), we have that the tangle (Rc

1, R
c
1 ∩ K) is essential. Therefore, the

tangle decompositions defined by S and ∂R1 are isotopic. This means that the tangle (R,R∩K)
is the following product tangle: it is ambient isotopic to the tangle in the ball (D ∪O)× I, that
is R, with strings being ((D ∪ O) ∩ K) × I. Let V ′ be obtained from V by replacing T ′′ by
R, as in (1), and W ′ = S3 − intV ′. Then, the arcs R ∩K can be isotoped to ∂R intersecting
R∩ (V ′− intR) only at the end points. Also, if two arcs are in adjoint components of V ′−V ′∩S
then, after the isotopy to the boundary of the respective components, we can assume that the
common ends are at the same point of the disk of intersection between the components. (In this
case, this a consequence from (R,R∩K) being the product tangle described, the tangle in each
component of V ′ − V ′ ∩ S being trivial and each componnet of V ∩ S intersecting K at most
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once.) So, as in (1), (V ′− intN(K))∪W ′ is a Heegaard decomposition of the knot exterior with
|S ∩ V ′| < |S ∩ V |, and we have a contradiction to the minimality of |S ∩ V |.

(4) Suppose D is in D∗ and D∗ is in T . So, the ball R intersects s11 at two arcs, and R1

intersects K at a portion of s11 and the string s12. If the tangle (R1, R1 ∩ K) is trivial we
have that the string s12 is trivial in R1, and as it has ends in the same disk component of
R1 ∩ S it is unknotted in (B1,T1). So, we can assume that (R1, R1 ∩ K) is essential. From
Lemma 3.1(a), the tangle (Rc

1, R
c
1 ∩ K) is essential. Then the tangle decompositions defined

by S and ∂R1 are isotopic. This means that the tangle (R,R ∩K) is the product tangle as in
(3). Following a similar argument as in (3), we obtain a contradiction to the minimality of |S∩V |.

Suppose n1 = 3.
Assume that the ends of s11 are at the same disk of T ∩S. Then Q intersects each string of T1

at a single component. Therefore, from Lemma 3.1(b) some string of some tangle is unknotted or
the tangle (Q,Q∩K) is trivial. In the latter case we have that s11 is trivial in Q and unknotted
in B1. In case the ends of s11 are in distinct components of T ∩ S, we can follow a similar
argument as in case (4). (Note that, as n1 = 3 and the genus of V is three the solid torus T
cannot contain two disks of D∗ and components of D; so, in this case we have necessarily D in
D∗ and D∗ in T .) �

Lemma 4.5. Suppose T intersects D∗ at two disks, D and D′, and is disjoint from D. Then
some string of some tangle is unknotted, or there is a ball Q, in B1, where

(1) Q ∩ S is a disk intersecting D∗ in two components;
(2) Q ∩K is a collection of two arcs each with one end in Q ∩ S;
(3) (Q,Q∩K) is a product tangle with respect to the disk Q∩S and its intersection with K;
(4) the complement of Q in B1 intersects T either in a cylinder between D′ and a disk

parallel to it in V , or in a cylinder between two disks parallel to D′ in V .

Proof. As T contains a single component from the intersection with K, we have that D and D′

intersects K once. As D intersects K at one point, one of the disks separated by δ in S − intD
intersects K once; denote by O this disk. Let T ′ be the solid torus obtained by an isotopy of
T taking D′ away from S in B1. Consider the ball Q defined by adding the 2-handle with core
L = O ∪∆ to T ′. Denote by Q1 the complement of Q in B1.

First assume that O∩D∗ is a disk not in T . Then Q1 ∩T is a cylinder between D′ and a disk
parallel to it in V . The arc Q ∩ s12 is unknotted in Q. From Lemma 3.1, either some string in
the tangle (B1,T1) is unknotted or the tangle (Q,Q∩K) is trivial. So, we can assume the latter.
Also, from Lemma 3.1(a), the tangle in the complement of Q1 in S3 is essential. If the tangle
defined in (Q1, Q1 ∩K) is also essential then the tangle decompositions defined by S and ∂Q1

are isotopic. Then the tangle in Q is the product tangle as in the statement. Otherwise, if the
tangle (Q1, Q1 ∩K) is not essential then, as the strings of Q ∩K are trivial in Q, both strings
of the tangle (B1,T1) are unknotted. So, we either have that one string of (B1,T1) is unknotted
or that (Q,Q∩K) is the product tangle described with Q1 intersecting T in a cylinder between
D′ and a disk parallel to it in V .

Assume now that O ∩D∗ is a disk in T . In this case, Q1 ∩ T is a cylinder having intersection
with Q in two disks parallel to D′ in V . From Lemma 3.1(a), the tangle in the complement of Q,
or of Q1, in S3 is essential. If the tangle (Q1, Q1∩K) is essential then the tangle decompositions
defined by ∂Q1 and S are isotopic. This implies that the tangle (Q,Q∩K) is the product tangle
as in the statement. Otherwise, the tangle (Q1, Q1∩K) is trivial. As the string s12 is in Q1 with
ends in the disk Q1 ∩ S, it is also unknotted in (B1,T1). Hence, we either have that one string
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of (B1,T1) is unknotted or that (Q,Q ∩K) is the product tangle descrbed with Q1 intersecting
T in a cylinder between two disks parallel to D′ in V . �

5. Outermost disks over components of V − V ∩ S when n1 = 3

In this section we consider the several cases when n1 = 3 with respect to the existence of a
genus two or a genus one component of V − V ∩ S.

So assume n1 = 3 and let D∗1 , D∗2 and D∗3 be the disk components of S ∩ V that intersect K.
As |S ∩K| = 4, without loss of generality, we assume that |D∗1 ∩K| = 2 and |D∗i ∩K| = 1, for
i = 2, 3. As no 2-sphere is non-separating in S3, we have that D∗1 is not parallel to D∗2 or D∗3 in
V . So, D∗1 isn’t parallel in V to any other disk of S ∩ V .

Lemma 5.1. If V − V ∩ S has a genus two component then some string of some tangle is
unknotted.

Proof. Assume there is a component of V −S ∩ V with genus two that we denote by V2. As the
genus of V is three, S ∩ V2 is a collection of at most two disks.
If S ∩ V2 is a collection of two disks or a single disk disjoint from K, then, as the genus of V is
three, some disk of D is parallel to a disk of D∗, or D∗1 is parallel to D∗2 or D∗3 in V . This is
impossible as observed before. Therefore, S ∩ V2 is a single disk intersecting K.

As S ∩ V2 is also separating, we can only have S ∩ V2 = D∗1 , as in Figure 6. So, the disks D∗2

Figure 6

and D∗3 are necessarily parallel in the solid torus separated by D∗1 in V , and we have n2 = 0.
Also, as V2 is the only non-ball component of V − V ∩ S, from Remark 3, all outermost disks
are over V2 and attached to D∗1 .
Let C be the ball component of V − V ∩ S cut from V by D∗1 ∪D∗2 ∪D∗3 and suppose it lies in
the tangle (B1,T1). The ball C contains both strings of the tangle (B1,T1): the string s12 with
one end in D∗1 and the other in D∗2 , and the string s13 with one end in D∗1 and the other end in
D∗3 , and from Lemma 2.3 both strings are mutually trivial in C.
Between the arcs of E ∩ P with end in D∗2 or D∗3 we choose one that is outermost in E, say γ,
as in Figure 7(a). We note that γ cannot have one end in D∗2 and the other in D∗3 , as, otherwise
δ wouldn’t be essential in P . (See Figure 7(b).) So, without loss of generality, assume that γ
has one end in D∗2 . The disk Γ is in the complement of C in B1 and its boundary intersects D∗2
only once. So, D∗2 is a primitive disk with respect to the complement of C in B1, which is a
handlebody. Then, by an isotopy of C along D∗2 away from S in B1, we are left with with the
ball C1∗,3∗ that intersects S at D∗1 and D∗3 , whose complement in B1 is a solid torus and with
the string s13 as a core. Hence, the string s13 is unknotted in (B1,T1). �

Lemma 5.2. If there is a solid torus component of V − V ∩ S then both strings of some tangle
are µ-primitive.

Proof. As the genus of V is three, and one component of V −V ∩S is a solid torus, the components
of V − V ∩ S are balls or solid tori. From Remark 3, all outermost disks are over solid torus
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Figure 7: In (a) the arc γ represents an arc of E ∩ P outermost in E between the
ones with at least one end in either D∗2 or D∗3 . The label 2∗|3∗ at an end of the arc γ
means that this end is either at the disk D∗2 or at the disk D∗3 .

components of V −V ∩S. Let T be a torus component of V −S ∩V with a outermost disk over
it, and suppose T is in B1. The collection of disks T ∩S cannot be bigger than four as the genus
of V is three. If the number of disks in T ∩ S is four then D∗1 is parallel to some other disk of
V ∩ S, which is impossible as previously observed. So, |T ∩ S| is at most three.

Suppose T ∩ S is a single disk. If T ∩ S is disjoint from K we get a contradiction to Lemma
4.1. If T ∩ S intersects K, from Lemma 4.2 some string of some tangle is unknotted.

In case T ∩S is a collection of two disks then we have several cases two consider. If these two
disks don’t intersect K then D∗1 is necessarily separating. Furthermore, one string from a tangle
lies in a ball of V − V ∩ S cut by T ∩ S and D∗1 with the two ends in D∗1 . Then, from Lemma
2.3 this string is trivial in the respective tangle, which is a contradiction to the tangle being
essential. If only one disk of T ∩ S intersects K then it is necessarily D∗1 , because K intersects
T ∩S an even number of times. In this situation, T intersects K at a single arc and from Lemma
4.2 some string of some tangle is unknotted.
If the two disks of T ∩S intersect K then T ∩S = D∗2 ∪D∗3 . In this case, D∗2 ∪D∗3 separate V in

Figure 8

two solid tori components, T and V1. The disk D∗1 is in V1 and is necessarily separating. (See
Figure 8.) We also have n2 = 0. Then, for the respective outermost arc of an outermost disk
over T we are always under the statement of Lemma 4.4, which means that some string of some
tangle defined by S is unknotted.

Assume now that T ∩S is a collection of three disks. At least some disk of T ∩S intersects K,
as otherwise D∗1 would have to be parallel in V to some other disk of V ∩S, which is impossible
as previously observed.
If only one disk of T ∩ S intersects K then this disk is D∗1 , and from Lemma 4.2 some string of
some tangle is unknotted.
If two disks of T ∩ S intersect K then these disks have to be D∗2 and D∗3 . As the genus of V is
three either T ∩ S or D∗2 ∪D∗3 cuts a ball from V . In either case, D∗1 would have to be parallel
to some other disk, which is impossible as previously observed.
The last case is when T ∩S = D∗1 ∪D∗2 ∪D∗3 . The disk D∗1 can be separating or non-separating.
In the latter case D∗1 ∪ D∗2 ∪ D∗3 separates a ball from V , and in the former case the disks D∗2
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and D∗3 are parallel and the disk D∗1 separates a solid torus V1 in V . (See Figure 9.) So, from
Lemma 2.3 and the fact that no disk of D is parallel to a disk of D∗, we can assume that n2 = 0.
From |S ∩ V | = 3 and Lemma 2.4(b), there is only one disk attached to outermost arcs.
Assume D∗1 is non-separating, then D∗1 ∪ D∗2 ∪ D∗3 separates a ball C from V , which is in the
tangle (B2,T2). If there is a string in C with both ends in D∗1 then, from Lemma 3.1(d), this

Figure 9

string is unknotted in (B2,T2). So, we can assume that each string in C has only one end in
D∗1 . Consider a second outermost disk Γ∗, and the respective outermost disk γ∗. Then Γ∗ is in
the complement of C in B2. If γ∗ has equal ends then, following the proof Lemma 3.4, we have
that some string of some tangle is unknotted. If the ends of γ∗ are distinct, then D∗1 , D∗2 or D∗3
is primitive in the complement of C in B2. Suppose D∗2 (or D∗3) is primitive with respect to the
complement C in B2. After an isotopy of C along D∗2 (resp., D∗3) away from S, we have that
the complement of a regular neighborhood of the string s13 (resp., s23) is a solid torus, which
implies that this string is unknotted in (B2,T2). Suppose D∗1 is primitive with respect to the
complement of C in B2. As the complement of C in B2 is a handlebody, after an isotopy of C
along D∗1 away from S, we obtain a cylinder from D∗2 to D∗3 , with core t, whose complement in
B2 is a solid torus. Then t is unknotted in B2. As s12 and s13 are trivial in C, we have that C
is the union of the regular neighborhoods of t ∪ s12, and also of t ∪ s13. Consequently, both s12
and s13 are µ-primitive.
Assume now that D∗1 is separating. Suppose D∗2 and D∗3 are the only disks attached to outermost
arcs. AsD∗2 is parallel toD∗3 by the finiteness of outermost arcs, if we consider a second-outermost
arc we have that both disks have loops attached in GP , which contradicts Lemma 2.4(b). So,
D∗1 has outermost arcs attached and all second-outermost arcs are after outermost arcs attached
to D∗1 . If there is an outermost disk over V1, from Lemma 4.2 some string of some tangle is
unknotted. So, we can assume that all outermost disks are over T . Let Γ∗ be a second-outermost
disk, then Γ∗ is in the complement of V1 in B2. Suppose ∂Γ∗ is essential in ∂V1 ∪D∗1

S. Then
the complement of V1 in B2 is also a solid torus (intersecting S at a single disk). From Lemma
2.3 the string s11 is trivial in V1. Then, from Lemma 2.2, s11 is µ-primitive. We note also that
B2 ∩ V is V1 together with the cylinder cut by D∗2 ∪ D∗3 in V , C2∗3∗ , where the string s23 is
a core. As the complement of B2 ∩ V in B2 is a handlebody we have that s23 is trivial in the
complement of V1 in B2. Therefore, from Lemma 2.2, s23 is also µ-primitive. Suppose now that
∂Γ∗ is inessential in ∂V1 ∪D∗1

S. Then ∂Γ∗ bounds a disk L in ∂V1 ∪D∗1
S. Let R be the ball in

B2 bounded by Γ∗ ∪L. By similar arguments as in the proof of Lemma 3.4, we have that s23 is
in R and is parallel to L. So, s23 is trivial in the complement of V1 in B2. As the complement
of B2 ∩ V in B2 is a handlebody, this implies that the complement of V1 in B2 is a solid torus.
Then, as when ∂Γ∗ is essential in ∂V1 ∪D∗1

S, we have that both s11 and s23 are µ-primitive. �

6. Outermost disks over components of V − V ∩ S when n1 = 4

Along this section we consider the several cases when n1 = 4 with respect to the components
of V − V ∩ S topology and their intersection with S ∩ V .
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So assume that n1 = 4. As |S ∩ V | = 4 we have |D∗i ∩K| = 1, for i = 1, 2, 3, 4. Therefore, D∗i
is a non-separating disk in V .
Denote by γ∗i the outermost arcs of E ∩ P , in E, between the arcs with at least one end in D∗i ,
for i = 1, 2, 3, 4. Also, let Γ∗i denote the disk of E − E ∩ P co-bounded by γ∗i in the outermost
side of this arc in E, for i = 1, 2, 3, 4.

Lemma 6.1. If V − V ∩ S contains a genus two component then some string in some tangle is
unknotted.

...

Figure 10

Proof. Assume that V − V ∩ S contains a genus two component, V2. As the genus of V is three
S ∩V2 is a collection of at most two disks. If S ∩V2 is a collection of two disks then S ∩V are all
parallel disks in V and, from Remark 3, all outermost disks are over V2. Therefore, n2 = 0 and
all disks of D∗ are parallel, as in Figure 10(a). Consequently, by the finiteness of outermost arcs,
we have parallel type I d∗-arcs in E, as in Figure 11(a1) or (a2), in contradiction to Corollary
2.2. Then, S ∩ V2 is a single disk. As each disk of D∗ intersects K once, S ∩ V2 is a disk of D.
Then, all disks of D∗ are parallel in the solid torus cut from V by S ∩ V2, and all disks of D are

Figure 11

parallel to S ∩V2 in V , as in Figure 10(b). Let D1, . . . , Dn2 be the disks of D, with S ∩V2 being
D1. The outermost disks are all adjacent to D1 and are over V2. Consider a second-outermost
arc γ, as in Figure 11(b). If the arc γ has at least one end in Dn2 , or has one end in D∗1 and the
other in D∗4 , by Lemma 3.4, some string in the tangle decomposition defined by S is unknotted.
Otherwise, if all second-outermost arcs have both ends in D∗1 or both ends in D∗4 , as when S∩V2

is two disks, by the finiteness of outermost arcs we have a contradiction to Corollary 2.2. �

Assume now that V − V ∩ S has a solid torus component T with some outermost disk over
it. Hence, as the genus of V is three, the components of V − V ∩ S are solid tori or balls, and
the solid torus T components intersect S at most in four disks. As each disk of D∗ intersects K
once, the solid torus T intersects D∗ at an even number of disks.

Lemma 6.2. Suppose V − V ∩ S contains a solid torus component intersecting D∗ at the four
disks. Then some string in some tangle is unknotted.
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Proof. Let T be the solid torus component of V −V ∩S as in the statement, and suppose it lies
in the tangle (B1,T1). As the genus of V is three and T intersects D∗ at the four disks, we have
that the disks of D∗ are parallel two-by-two in V , say D∗1 parallel to D∗2 and D∗3 parallel to D∗4 .
So, n2 = 0, and V ∩ S is as in Figure 12. Also, from Remark 3, we can assume all outermost
disks are over T . From Lemma 2.4(b), at most two disks are adjacent to outermost arcs.
If the outermost arcs are attached to a single disk or if they are attached to two non-parallel
disks, by the finiteness of outermost arcs of E ∩P in E we have a contradiction to Corollary 2.2.
Then, the outermost arcs are attached to two parallel disks. Without loss of generality, assume

Figure 12

that the only disks adjacent to outermost arcs are D∗1 and D∗2 . Consider the second outermost

Figure 13

arc γ of E ∩ P in E, after the outermost arcs attached to D∗1 and D∗2 , and the disk component
of E − E ∩ P , Γ, co-bounded by γ on the outermost side of γ in E. Let C12 and C34 be the
cylinders cut from V by D∗1 ∪D∗2 and D∗3 ∪D∗4 , resp.. We have that Γ is in B2 − intC12. If Γ is
essential in S ∪∂C12, as in Figure 13(a), then Γ is a meridian disk to B2− intC12, which implies
that the string s12, a core of C12, is unknotted in the tangle B2. Otherwise, if Γ is inessential in
S ∪∂C12, we have that ∂Γ bounds a disk L in the torus S ∪D∗1∪D∗2

∂C12. (See Figure 13(b), (c).)
Let R be the ball in B2 bounded by Γ∪L. The string s34, as a core of C34, is in R and, as there
are no trivial knots, it is trivial in R and parallel to L. Hence, as the complement of C12 ∪ C34

in B2 is a handlebody, we have that the complement of C12 in B2 is a solid torus. Therefore, in
this case, the string s12 is also unknotted. �

Lemma 6.3. Suppose V −V ∩S contains a solid torus that intersects D∗ in a collection of two
disks and D in a single separating disk. Then both strings of some tangle are µ-primitive.
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Proof. Let T be the solid torus component of V −V ∩S as in the statement, and suppose it lies
in the tangle (B1,T1). Assume that T ∩D∗ = D∗1 ∪ D∗4 and that D ∩ T = D1, and denote by
V1 the solid torus separated by D1 in V . As D ∩ T is separating, and K is connected, the four
disks of D∗ have to be parallel in V . If all outermost arcs are attached to D∗1 or to D∗4 then,
by the finiteness of outermost arcs, we have a contradiction to Corollary 2.2. Hence, there is an
outermost arc attached to D1. The set D contains a collection of separating disks, D1, . . . , Dk

in V , and might also contain a collection of non-separating parallel disks Dk+1, . . . , Dn2 in V1,
as in Figure 14(a), (b). From Remark 3, the outermost disks are over T or V1, and from Lemma
4.1 there are no outermost disks over V1. So, all outermost disks are over T , attached to D∗1 , D∗4
or D1, with no sequence of parallel arcs of E ∩P in E after an outermost arc attached to D∗1 or
D∗4 .

...... ...

Figure 14

Case 1. Assume that all disks of D are parallel and separating as in Figure 14(a).

If n2 > 1, by the finiteness of outermost arcs, there is a sequence of parallel arcs of E ∩ P in
E, δ1, . . . , δn2 , as in the Figure 15(a), where δi has both ends in Di and δ1 is an outermost arc
attached to D1. Denote the outermost disk that δ1 co-bounds by ∆, and the disk between δi
and δi+1 by ∆i. Considering the disks ∆i and the cylinder cut from V by Di ∪Di+1 we define
a ball Ri as in Lemma 3.3. The balls Ri intersect S at disks Oi and Oi+1, co-bounded by δi
and δi+1 resp., each containing an end of the string in Ri. Then, in particular, O1 contains a
single disk of D∗. If n2 = 2, as R1 contains a single string, we have that O1 intersects S ∩ V
at a single disk, that is of D∗. Assume n2 ≥ 3. If D∗2 , or D∗3 , is in O1 then R2 contains T and
consequently two strings of the tangle, which is a contradiction as R2 contains a single string.
Therefore, without loss of generality, we can assume that D∗1 is in O1. Suppose that some disk
of D, say Di, is in O1. Then Oi ⊂ O1 and D∗1 ⊂ Oi. Consequently, following the strings in the
sequence of balls Rj , we have T ⊂ Ri−1 and D1 in Oi, which is a contradiction as Di is in O1.
Therefore, D∗1 is the only disk of S ∩ V in O1. Then, by Lemma 4.4, if n2 > 1 some string of
some tangle is unknotted.

Suppose n2 = 1. As before we denote by δ1 an outermost arc attached to D1. If a disk cut
from S − intD1 by δ1 intersects D∗ at a single disk from Lemma 4.4 some string of some tangle
is unknotted. Therefore, we can assume that all outermost arcs δ1 separate S − intD1 in two
disks each intersecting D∗ at two disks. Consequently they are all parallel in P . Let Γ be a
second-outermost disk. From Lemma 2.2, the disk Γ is in the complement of V1 in B2. If ∂Γ is
inessential in the solid torus B1 ∪D1 V1 then Γ bounds a disk L in S ∪D1 ∂V1. Let R be the ball
bounded by Γ ∪ L in B2. By similar arguments as in the proof of Lemma 3.4, we have that the
strings s12 and s34 are in R and are parallel to L. Hence, the complement of V1 in B2 is a solid
torus intersecting S at a single disk. Altogether, from Lemma 2.2 we have that both strings s12
and s34 are µ-primitive. Suppose now that ∂Γ is essential in the solid torus B1 ∪ ∂D1V1. Then
the complement of V1 in B2 is also a solid torus. Consider an outermost arc between the arcs
with one end in D∗2 or D∗3 , and denote these arcs by γ∗. Suppose there are arcs γ∗ with both
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ends in D∗2 and also in D∗3 . Then there are arcs γ∗1 and γ∗4 of Type II outermost between the
d∗-arcs, and the disks Γ∗1 and Γ∗4 are in B1 and intersect D∗1 and D∗4 , resp., exactly once. Then,
D∗1 and D∗4 are primitive with respect to the complement of V ∩ B1 in B1. Let T ′ be the solid
torus obtained by an isotopy of T along D∗1 ∪D∗4 away from S. We also have that an outermost
disk ∆ intersects a meridian of T ′ once. Altogether, the complement of the cylinder from D∗2 to
D∗3 in V is a solid torus; as the core of this cylinder is the string s23, this string is unknotted in
(B1,T1). Otherwise, without loss of generality, suppose there is an arc γ∗ with only one end in
D∗2 . This means γ∗ is an γ∗2 arc, and we can consider the respective disk Γ∗2. Let C12 (resp., C34)
be the cylinder from D∗1 to D∗2 (resp., D∗3 to D∗4) in V . As D∗2 is primitive with respect to the
complement of V ∩B2 in B2, a core of C34, as the string s34, is trivial in the complement of V1

in B2. If the other end of γ∗ is in D∗3 then D∗3 is also primitive with respect to the complement
of V ∩ B2 in B2, and similarly a core of C12, as the string s12, is trivial in the complement of
V1 in B2. Otherwise, if the other end of γ∗ is not in D∗3 , using the disk Γ∗2, we have that a core
of C12, as the string s12, is trivial in the complement of V1 in B2. Then, from Lemma 2.2, both
strings s12 and s34 are µ-primitive.

Case 2. Assume now that D also has a collection of non-separating disks in V , as in Figure
14(b).

Claim 6.3.1. If the outermost arcs attached to D1 are not parallel in P then some string of
some tangle is unknotted.

Proof of Claim 6.3.1. In fact, let δ1 and δ′1 be outermost arcs attached to D1, non-parallel in
P . Consider the disjoint disks O1 and O′1 co-bounded, respectively, by δ1 and δ′1 in S −D1, and
also the respective outermost disk ∆1, ∆′1. Consider the disks L1 = O1 ∪∆1 and L′1 = O′1 ∪∆′1.
Let Q be the ball obtained by attaching a regular neighborhood of L1 and L′1 to T and adding
a ball to the respective boundary component disjoint from S. If D∗ ⊂ O1 ∪O′1 then the arcs δ1
and δ′1 are parallel. If (O1 ∪ O′1) ∩D∗ is only D∗1 and D∗4 , then ∂Q − ∂Q ∩ S is a compressing
disk for P . Otherwise, D∗2 ∪D∗3 is in O1 ∪ O′1 and the string s23 is in Q. From Lemma 4.3 the
tangle (Q,Q ∩K) is trivial. Therefore, the string s23 is trivial in Q. As the ends of s23 are in
the same disk component of Q ∩ S we have that s23 is unknotted in (B1,T1). 4

From the previous claim, we assume that the outermost arcs attached to D1 are parallel in
P .

If k > 1, by the finiteness of outermost arcs we have a sequence of arcs, δi for i = 1, . . . , k,
after an outermost arc, δ1, as in the Figure 15(b). Following the construction at the beginning
of Case 1, from each sequence of parallel arcs after an outermost arc δ1 we have a sequence of
balls Ri, i = 1, . . . , k. Also, as there are no t-arcs, the outermost arc, δk+1, after these arcs is a
st-arc. If some arc δk+1 has both ends in Dk, following an argument as in Lemma 3.4, we have
that some string of some tangle is unknotted. Then, the arcs δk+1 have both ends in Dk+1, as
in Figure 15(c), or in Dn2 .
For any k, suppose we have both situations, that there are arcs δk+1 and δ′k+1 with both ends
in Dk+1 and Dn2 , resp.. Consider the component disks ∆k and ∆′k of E − E ∩ P co-bounded
by δk+1 and δ′k+1, resp., in the outermost side of these arcs in E. As the outermost arcs δ1 are
parallel in P , and the balls Ri, i = 1, . . . , k, contain only one string, the arcs of ∂∆k and ∂∆′k
that have both ends in Dk are parallel in P . Let C be the ball cut from V by Dk ∪Dk+1 ∪Dn2 ,
and Ck,k+1 (resp., Ck,n2) be the ball obtained from C by an isotopy of Dn2 (resp., Dk+1) away
from S. Let Lk and L′k be the disks bounded by ∂∆k and ∂∆′k, resp., in ∂Ck,k+1 ∪Dk∪Dk+1 S
and ∂Ck,n2 ∪Dk∪Dn2

S, resp.. Consider the balls Rk and R′k bounded by Lk ∪∆k and L′k ∪∆′k,
not containing S. Similarly, as observed in Case 1, the balls Rk and R′k contain only one string.
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Figure 15

Suppose none of these balls contains the other, as in Figure 16(a). Hence, each of the disks Lk

and L′k intersection with S contains a disk component, Ok and O′k resp., co-bounded, with ∂Dk,
by a single arc of ∂∆k ∩ S, δk, and ∂∆′k ∩ S, δ′k. Each of the arcs δk and δ′k is in a sequence
of arcs after an outermost arc, as in Figure 15(b). As observed before in this Claim, we are
assuming that these arcs are parallel in P . Then one of the disks Ok or O′k has to be contained
in the other, which is a contradiction with the assumption that Rk and R′k are disjoint. So,
assume that, say, R′k is contained in Rk, as in Figure 16(b). Then Lk contains Dn2 and L′k.
Therefore, from the minimality of |E ∩ P | and from the arcs of ∂∆k ∩ S and ∂∆′k ∩ S that have
both ends in Dk being parallel in P , we have that ∂∆k intersects S in two arcs, one with two
ends in Dk and the other with two ends in Dk+1; similarly, ∂∆′k intersects S in two arcs, one
with two ends in Dk and the other with two ends in Dk+1. Let Ok+1, resp. O′k+1, be the disks
cut from S − intDk+1, resp. S − intDn2 , by δk+1, resp. δ′k+1, disjoint from Dk. As there are
no local knots, the string in R′k ⊂ Rk is trivial. Then, from the minimality of |S ∩ V |, we have
|O′k+1 ∩ V | the same as |O′k ∩ V |. Also, Ok ∩ (V ∩ S) is the same as O′k ∩ (V ∩ S). Therefore,
|Ok+1 ∩ V | is bigger than |Ok ∩ (V ∩ S)|. So, we can isotope Dk+1 ∪ Ok+1 along Rk union the
ball Ck,k+1 to reduce |S ∩ V |, which is a contradiction.
So, assume without loss of generality that all arcs δk+1 have both ends in Dk+1. By the finiteness
of outermost arcs we have a sequence of parallel arcs, δk+2, . . . , δn2 , as in Figure 15(d), and the
respective sequence of balls Rk+2, . . . , Rn2−1. Then, we have a sequence of arcs parallel to an
outermost arc, δ1, . . . , δn2 , and the respective balls R1, . . . , Rn2−1. Following a similar argument
as in Case 1, we have that δ1 is as in Lemma 4.4, which means that some string of some tangle
is unknotted. �

Lemma 6.4. Suppose V − V ∩ S contains a solid torus that intersects D∗ at two disks and D

at a single non-separating disk. Then both strings of some tangle are µ-primitive.

Proof. Let T be the solid torus component of V −V ∩S as in the statement, and suppose it lies
in the tangle (B1,T1). Assume that T ∩ D∗ = D∗1 ∪ D∗4 and that T ∩ D = D1. The disks D∗1
and D∗4 are not parallel, otherwise D1 would be separating. Then, D1 ∪D∗1 ∪D∗4 separate a ball
from V , as in Figure 17, and all outermost disks are over T with corresponding outermost arcs
attached to D∗1 , D∗4 or D1. The disks D1, D2, . . . , Dn2 are all parallel and non-separating in V .

Claim 6.4.1. If the disks of D∗ are parallel two-by-two then some string of some tangle is
unknotted.

Proof of Claim 6.4.1. Assume that D∗2 is parallel to D∗1 and that D∗3 is parallel to D∗4 in
V , as in Figure 17(a). If D∗1 or D∗4 are the only disks with outermost disks attached then by
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Figure 16: The disks L and Lk when R′k is disjoint from Rk and when R′k is contained
in Rk, resp.: the arcs δk won’t be parallel in P as previously observed.

...

Figure 17

the finiteness of outermost arcs we have parallel sk-arcs in E, as in Figures 11(a1), (a2), which
is a contradiction to Corollary 2.2. So, D1 has an outermost arc attached. Furthermore, from
Corollary 2.2, even if D∗1 , or D∗4 , has outermost arcs attached we cannot have a sequence of
parallel sk-arcs in E after such outermost arcs. So, by the finiteness of outermost arcs only some
outermost arc attached to D1 is before a sequence of parallel arcs of E ∩ P in E, as in Figure
15(a). Consider a second-outermost arc γ, and the disk component of E−E ∩P , Γ, co-bounded
by γ in the outermost side of this arc in E, as in Figure 11(b). The boundary of Γ intersects S
in γ and arcs with both ends in Dn2 . If γ has at least one end in Dn2 , or one end in D∗2 and
the other in D∗3 , then from Lemma 3.4 we have that some string in some tangle is unknotted.
Otherwise, the ends of all second outermost arcs are both in D∗2 or both in D∗3 , and by the
finiteness of outermost arcs we have a contradiction to Corollary 2.2. 4

From this claim, we can assume that the disks of D∗ are not parallel two-by-two in V .
Therefore, as no disk of D∗ can be parallel in V to a disk of D, without loss of generality, we
assume that the disks D∗2 and D∗3 are parallel to D∗4 , as in Figure 17(b). Under this setting, we
continue the lemma’s proof in several steps with respect to which disks are attached to outermost
arcs and to the value of n2.
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Claim 6.4.2. The disks D1 or D∗1 have outermost arcs attached; and the disks D∗1 and D∗4
cannot have simultaneously outermost arcs attached.

Proof of Claim 6.4.2. If all outermost arcs are attached to D∗4 then there is a sequence of
parallel sk-arcs, as in Figure 11(a2), which is a contradiction to Corollary 2.2. Then D1 or D∗1
have outermost arcs attached.
Suppose D∗1 and D∗4 have simultaneously outermost arcs attached. Let δ∗i be an outermost arc
attached to D∗i , and ∆∗i the respective outermost disk, for i = 1, 4. Consider also the disjoint
disks O∗1 and O∗4 , in S− int{D∗1∪D∗4}, co-bounded by δ∗1 and δ∗4 , respectively. Let L∗i = ∆∗i ∪O∗i ,
for i = 1, 4. As the arcs δ∗i are st-arcs, D∗2 ∪D∗3 is in O∗1 ∪O∗4 . Taking a regular neighborhood of
the disks L∗i together with T , and by capping off the boundary component of N(T )∪i=1,4N(L∗i )
disjoint from S with the ball it bounds, we get a ball Q in the tangle (B1,T1) containing both
strings s14 and s23. Each string of T1 in Q has ends in two distinct disk components of ∂Q ∩ S,
D∗1 ∪ O∗1 and D∗4 ∪ O∗4 . Then with the tangle (Q,T1) we have a contradiction between Lemma
4.3 and Lemma 3.1(c). 4

Claim 6.4.3. If D1 or D∗1 is not attached to outermost arcs then n2 ≤ 3.

Proof of Claim 6.4.3. If D1 or D∗1 is not attached to outermost arcs then all outermost d-arcs
have either both ends in Dn2 or in D1. Then by the finiteness of outermost arcs there is a
sequence of parallel arcs, δi, as in Figure 15(a). As in Case 1 of Lemma 6.3, using the disks ∆i

between the arcs δi and δi+1 in E, attached to the disks Di and Di+1, resp., and the disk that
∂∆i bounds in the torus Ci,i+1 ∪Di∪Di+1 S, we define a ball Ri. Each of these balls contains a
single string of the tangle decomposition and it is regular neighborhood of it. If n2 ≥ 5 then all
components of V − S ∩ V are contained in some ball Ri ∪ Ci,i+1. We note that these balls are
either disjoint or intersect at a disk, wether the strings they contain are disjoint or intersect at an
end. Then, taking the union of the largest balls Ri ∪Ci,i+1 for each each string, we have a solid
torus with K as its core, V in its interior and boundary essential in W , which is a contradiction
as W is a handlebody. So, given that n2 is odd, n2 ≤ 3.
(If both D1 and D∗1 have outermost arcs attached, in Claim 6.4.5 we also prove that n2 ≤ 3.) 4

Claim 6.4.4. If D∗4 and D1 are the only disks with outermost arcs attached then some string of
some tangle is unknotted.

Proof of Claim 6.4.4. Suppose both disks D1 and D∗4 are attached to outermost arcs, δ1 and
δ4, resp., . If n2 = 1 then either δ1 or δ4 are as in Lemma 4.4, which means that some string of
some tangle is unknotted.
So, from Claim 6.4.3, we can assume that n2 = 3. From Corollary 2.2 there are no parallel
sk-arcs after an outermost arc attached to D∗4 , as in Figure 11(a2). Consequently, from the
finiteness of outermost arcs, we have such a sequence of parallel arcs after an outermost arc
attached to D1, as in Figure 15(a), and consider the respective balls Ri, for i = 1, 2. Let Oi and
Oi+1 be the disk components of Ri ∩ S that are co-bounded by δi and δi+1, resp., for i = 1, 2.
As R1 contains a single string, O1 intersects D∗ at a single disk. Then, as D∗4 has a type I arc
attached, this disk is not in O1. If D∗2 or D∗3 are in O1 then R2 contains T and, consequently,
two strings of the tangle, which we know is impossible. Then D∗1 is in O1, the string s12 is in
R1 and the string s23 is in R2. So, if D2 or D3 is in O1, also O2 or O3 will be, and consequently
the same for D∗2 or D∗3 , which is impossible as observed before. Then, O1 ∩ (S ∩ V ) is only D∗1.
So, δ1 is an outermost arc as in Lemma 4.4. Then, some string of some tangle is unknotted. 4
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Claim 6.4.5. If D∗1 and D1 are both attached to outermost arcs then both strings of some tangle
are µ-primitive.

Proof of Claim 6.4.5. Suppose that both D1 and D∗1 have outermost arcs attached, denoted
by δ1 and δ∗1 resp.. Let O1 and O∗1 be the disjoint disks in S − int(D1 ∪ D∗1) co-bounded by
δ1 and δ∗1 , resp.. Consider also the disks L∗1 = ∆∗1 ∪ O∗1 and L1 = ∆1 ∩ O1. Let Q be the ball
obtained by adding a regular neighborhood of L∗1 and L1 to T , together with the ball that the
boundary component of N(T ) ∪i=1,4 N(L∗i ), disjoint from S, bounds. As δ∗1 and δ1 are sk-arcs,
we have that O∗1 and O1 intersect D∗. As D∗1 is not in O∗1 ∪O1, in this particular case D∗2 ∪D∗3
is necessarily in O∗1 ∪O1, and the string s23 is also in Q. The disk D∗4 may or not be in O∗1 ∪O1.
If D∗4 is in O∗1 ∪O∗1 then Q intersects S in two components: D∗1 ∪O∗1 and D1∪O1. From Lemma
4.3, the tangle (Q,T1) is trivial, which is a contradiction to Lemma 3.1(c).
So, we can assume that D∗4 is not in O∗1 ∪O1 and Q intersects S in three component disks: D∗4 ,
D∗1 ∪ O∗1 and D1 ∪ O1. Also, O1 ∩ D∗, and O∗1 ∩ D∗, is either D∗2 or D∗3 . Furthermore, from
Lemma 4.3, both strings s14 and s23 are trivial in Q.
If n1 = 1 then δ1 is as in Lemma 4.4, which means that some string of some tangle is unknotted.
So we can assume that n2 ≥ 3.
Suppose there is a sequence of parallel arcs in E after an outermost arc δ1, δ2, . . . , δn2 , as in
Figure 15(a), and consider the balls Ri as in Case 1 of Lemma 6.3. Then, as O1 ∩D∗ is either
D∗2 or D∗3 we have that the ball R2 contains two strings, which is a contradiction to the balls Ri

containing a single string. Consequently, there is no sequence of parallel arcs in E, δ2, . . . , δn2 ,
after an outermost arc δ1.
Consider an arc parallel to an outermost arc δ∗1 or otherwise a second-outermost arc, γ, and
denote by Γ the disk of E − E ∩ S, co-bounded by γ, in the outermost side of this arc in E.
(See Figure 18(a).) As there is no sequence δ2, . . . , δn2 after the outermost arcs δ1, as in Figure
18(a), we have that Γ intersects S in γ and outermost arcs δ∗1 . Note that γ cannot have only one
end in Dn2 , otherwise γ would be a t-arc, which is a contradiction to Lemma 2.4(c). If γ has
two ends in D∗1 or one end in D∗1 and the other end in D∗2 , following reasoning as in the proof
of Lemma 3.4, we have that some string in some tangle is unknotted. If the ends of all arcs γ
are both in D∗2 , by the finiteness of outermost arcs, we have a contradiction with Lemma 2.2.
Hence, we can assume that some arc γ has both ends at Dn2 .

Let On2 be the disk in S − intDn2 cut by γ, disjoint from D∗1 . Denote by C the ball cut

Figure 18

from V by D∗1 ∪ D∗2 ∪ Dn2 , and by C1∗,n2 the cylinder obtained from C by an isotopy of C
along D∗2 away from S. Note that C is in B2. Consider the disk L bounded by ∂Γ in the torus
∂C1∗,n2 ∪D∗1∪Dn2

S. Let R be the ball bounded by Γ ∪ L in B2. If R intersects K in two com-
ponents, then we can prove that γ is parallel to δ∗1 in E. By taking R together with C1∗,n2 we
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define a cylinder containing the two strings of T2 with ends in the disks D∗1 ∪O∗1 and Dn2 ∪On2 .
Then from Lemma 3.1(a), (c), and because ∂C1∗,n2 − L ∩ ∂C1∗,n2 is a single disk containing
D∗1 ∪Dn2 , we obtain a contradiction to the minimality of |S ∩ V |. So, we have that R intersects
T2 at a single component. Naturally On2 ⊂ L, and also On2 ∩ D∗ is D∗2 . In fact, if D∗3 is in
On2 then, s34 is in R. As R intersects T2 at a single component, and O∗1 intersects D∗, we have
D∗4 in O∗1 , which contradicts our assumption that O∗1 ∩ D∗ is only D∗2 or D∗3 . If D∗4 is in On2

then, following a similar reasoning, D∗3 is in O∗1 and D∗2 is in O1. As before, with the existence
of parallel arcs to γ or δ1 in E we can define the balls Rn2−1 or R1. But then, in this case, R1 or
Rn2 contain two strings, which is a contradiction. Then, D∗2 is in On2 . As On2 is disjoint from
O∗1 , and O∗1 ∩ D∗ is either D∗2 or D∗3 , we have that D∗3 is in O∗1 . Then, D∗2 is in O1 and if R1

exists it has two strings, which is impossible. So, we can assume that there is a sequence of balls
Rn2−1, . . . , R2 exists, related to a sequence of parallel arcs of E ∩ P to γ in E, δn2−1, . . . , δ2.
As On2 contains D∗2 , if n2 ≥ 5 we have that the ball Rn2−3 contains T and consequently two
strings, which is a contradiction. Therefore n2 = 3, and the ball R2 contains the string s23. But
R2 cannot contain T , otherwise it would contain two strings. Hence, O2 ⊂ O∗1 and O3 ⊂ O1.
(See Figure 18(b).)
Consider an arc α outermost after the outermost arcs δ1 and parallel arcs to γ. Then α has ends
in D1 ∪D2. If the arcs α have one end in D1 and the other in D2 then we get a contradiction to
D2 ⊂ O∗1 and O1 being disjoint from O∗1 . Then α has equal ends. If the ends of α are in D2 then
α is in O∗1 (because D2 is in O∗1). All loops attached to D2, as α, have to be parallel in P to the
arc parallel to γ in P attached to D2. Otherwise, D∗4 is contained in O∗1 , which contradicts the
assumption that it is not. Let A be the disk of E−E∩P co-bounded by α in the outermost side
of the arc in E. Suppose α is attached to D2 or is parallel to δ1 in P . The boundary of A bounds
a disk in S ∪D1∪D2 ∂C1,2 that contains O1, and the union of these two disks bounds a ball, R′1,
in B2. The ball R′1 has similar properties to the balls Ri; including containing a single string of
T2, which is a consequence of Lemma 3.1 (a), (c), the arcs ∂A∩S− γ with both ends in D1 and
D2 being parallel in P resp., and also from the minimality of |S∩V |. But has R′1 contains O1, it
also contains two strings, which a contradiction to the previous observation. Then, α is attached
to D1 and is not parallel to δ1. In this case, R′1 contains the string s34 as a core, that is parallel
to the core of the cylinder C1,2. Consider the outermost arcs γ′ between the arcs of E ∩ P with
distinct ends in D∗1 ∪ D. Given the configuration of GP , as in Figure 18(b), the only possible
ends for γ′ are one end in D∗1 and the other in D1, one end in D∗1 and the other in D2 and one
end in D1 and the other in D3. The only possible case, because the disks involved belong to the
same component of V − V ∩ S, is having γ′ with one end in D∗1 and the other in D1. Let Γ′ be
the disk, of E − E ∩ S, co-bounded by γ′, in the outermost side of γ′ in E. Then Γ′ is over Q
and S, in B1. All the arcs of ∂Γ′∩S that intersect D∗1 are either γ′ or have both ends in D∗1 and
are parallel to δ∗1 in P . By an isotopy of these arcs to Q we get that D∗1 ∪O∗1 is primitive with
respect to the complement of Q in B1, that is a handlebody. Then the core of the cylinder from
from D∗4 to D1 is unknotted. As the string s14 is parallel to the core from D∗1 to D∗4 in Q and the
string s23 is parallel to the core from D∗1 to D1 in Q, we have that both strings are µ-primitive. 4

Claim 6.4.6. If only D∗1 is attached to outermost arcs then some string of some tangle is
unknotted.

Proof of Claim 6.4.6. Denote by δ∗1 the outermost arcs attached to D∗1 . Consider a second
outermost arc, γ, and let Γ be the disk of E − E ∩ V co-bounded by γ in the outermost side of
this arc in E. (See Figure 18(a).) The curve ∂Γ bounds a disk L in the torus S∪D∗1∪Dn2

∂C1∗,n2 .
Following a similar argument as in Claim 6.4.5, we can assume γ has both ends in Dn2 and we
define similarly the ball R in B2 with boundary Γ∪L. So, either the string s34 or a portion the
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string s12 with end in D∗2 is in R, and therefore, this string is parallel to the core of the cylinder
C1∗,n2 . Let O∗1 and O be the disjoint disks in S3 − int{D∗1 ∪ Dn2} co-bounded by δ∗1 and γ,
resp.. Note that O is in L ⊂ ∂R. As R contains a single string, we have that O intersects D∗ at
a single disk. From Claim 6.4.3, we have n2 ≤ 3; also, when n2 = 3 we consider the balls R1, R2

and the respective disks of intersection with S, O, O2 and O1, attached to D3, D2 and D1, resp. .

Assume R contains the string s34. In this case O∗1 is in R, and each O and O∗1 contain a single
disk of D∗, D∗3 or D∗4 . Then, if n2 = 3 one of the balls R1 or R2 contains two strings of a tangle,
which is impossible. Hence, n2 = 1. As O∗1 is disjoint from D1 we have that O∗1 intersects S ∩V
at a single disk of D∗. Therefore, some arc δ∗1 is as in Lemma 4.4, which means that some string
of some tangle is unknotted.

Assume now that R contains a portion of the string s12.
Suppose n2 = 3. We have O∩D∗ = D∗2 and consequently s23 is in R2 and s34 is in R1, which

means that O2 ∩D∗ = D∗3 and O1 ∩D∗ = D∗4 , as in Figure 19(a). Consider an outermost arc, α,
between the arcs with ends in distinct disk components of D∗1 ∪D, and A the disk of E −E ∩P
co-bounded by α in its outermost side in E. Note that α can only have ends in disks in the same
component of V − V ∩ S. So, α can only have ends in D∗1 and D1, D3 and D2, D2 and D1, or
also, D∗1 and D3, as in Figure 19(b).
If the ends of α are in D∗1 and D3, D3 and D2, or D2 and D1, then the strings s12, s23 or s34
are unknotted, respectively.
So, assume that all arcs α have ends in D∗1 and D1. Consider now the outermost arc α′ between

Figure 19

the ones with ends in distinct components of D∗1∪D−D1 or that have ends in distinct components
of D. Let A′ be the disk of E − E ∩ S co-bounded by α′ in the outermost side of the arc in E.
(See Figure 19(c).) The arc α′ can only connect components of V − V ∩ S with the disks D∗1
and D1 in them . Hence, the disk A′ is in the tangle with the strings s12, s34. Using the disk A′

and depending on the ends of α′ we can prove that s12 or s34 is unknotted.
Suppose n2 = 1. Suppose that O∗1 ∩D∗ is either D∗3 or D∗4 . As O∗1 and D1 are disjoint, δ∗1 is

as in Lemma 4.4, which means that some string of some tangle is unknotted.
Suppose, now, that O∗1 intersects D∗ in D∗3 ∪D∗4 , as in Figure 20(c). Consider the arcs γ∗3 and
γ∗4 , and the respective disks Γ∗3 and Γ∗4. From Lemma 2.4(b), the two disks D∗3 or D∗4 cannot
have simultaneously loops attached in GP . Then, all arcs γ∗3 or all arcs γ∗4 have distinct ends.
Assume that all arcs γ∗3 have distinct ends. Suppose also that some Γ∗3 intersects D∗4 as in Figure
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Figure 20

20(a). Then the disks D∗3 and D∗4 are primitive with respect to the complement of V ∩B2 in B2.
Consequently, the complement of C1∗,1 in B2 is a solid torus. As s12 is parallel to the core of
the ball C1∗,1 we have that s12 is unknotted. Otherwise, suppose that all disks Γ∗3 intersect D∗2
as in Figure 20(b). Then, the disks D∗2 and D∗3 are primitive with respect to the complement of
V ∩B1 in B1. Consider an outermost arc α between the arcs with one end in D∗1 and the other
end in D1. Let A be the disk, of E − E ∩ V , co-bounded by α in the outermost side of α in
E, as in Figure 20(d). Suppose that A is in B2. The components of ∂A ∩ S that intersect D1

are α and eventually arcs with both ends in D1 parallel to γ. The disk D∗2 is primitive in the
complement of V ∩B2 in B2. Then after adding the 2-handle with core D∗2 to the complement
of V ∩B2 in B2 we are left with the complement of C1∗,1 ∪C3∗,4∗ . We isotope the arcs of A∩ S
parallel to γ, through O, to the boundary of the cylinder C1∗,1. After this isotopy, A intersects

Figure 21

D1 geometrically once. Then, the complement of C3∗,4∗ in B2 is a solid torus, which means that
the string s34 is unknotted. Otherwise, assume that A is in B1. The components of ∂A ∩ S
that intersect D1 are α and eventually arcs with both ends in D1 parallel to γ, or arcs with one
end in D1 and the other in D∗2 . As Γ∗3 is in B1, we have that A doesn’t intersect any arc γ∗3 .
Then we can proceed as follows. Take T union with a regular neighborhood of O. Isotope to
N(D1 ∪ O) the arcs of A ∩ S parallel to γ. Then, the disk A intersects D1 ∪ O geometrically
once, and Γ∗3 intersects D∗2 geometrically once. As A is disjoint from any γ∗3 , cut T ∪N(O) along
D∗2 and, afterwards, we isotope T ∪ N(O) along D1 ∪ O away from S. Denote the solid torus
after the isotopy as T ′. Then, the complement of T ′ in B1 is a handlebody. Let O∗1

c be the
complement of O∗1 in S− intD∗1 . Denote by Q′ the ball obtained by adding the two handle with
core O∗1

c ∪∆∗1 to T ′. The ball Q′ intersects S in D∗1 ∪O∗1
c and D∗4 , and its complement in B1 is
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a solid torus. The ball Q′ contains s14 and intersects the string s23 at an unknotted component.
Then, by Lemma 3.1(b), either one string of the tangle decomposition given by S is unknotted
or the tangle in (Q′, Q′ ∩ T1) is trivial. Hence, we can assume the latter and that the string s14
is trivial in Q′. As the string s14 has one end in each of the two components of Q′ ∩ S, it is a
core of the cylinder Q′. Consequently, the string s14 is unknotted.
Suppose now that some γ∗3 has identical ends. Then, all arcs γ∗4 have distinct ends, and from
Figure 21(a), the other end of γ∗4 is in D∗3 . As γ∗4 is the outermost d∗-arc with one end in D∗4
and γ∗4 has one end in D∗3 , we have that Γ∗4 intersects D∗2 once. (See Figure 21(b).) This means
that Γ∗4 is in B1 and that D∗2 and D∗3 are primitive with respect to the complement of V ∩B2 in
B2. Then, considering the arc α and disk A and proceeding as before, we have that some string
of some tangle is unknotted. 4

Claim 6.4.7. If only D1 is attached to outermost arcs then some string of some tangle is
unknotted.

Proof of Claim 6.4.7. Let δ1 denote the outermost arcs attached to D1. If n2 = 3 by the
finiteness of outermost arcs there is a sequence of parallel arcs to some δ1, that is δ2 and δ3, as
in Figure 15(a), and with this sequence we can consider the balls Ri as in Case 1 of Lemma 6.3.
Let γ be a second-outermost arc of E ∩ P in E, as in Figure 11(b). From Lemma 3.4, if γ has
one end in Dn2 or one end in D∗1 and the other in D∗2 then some string of some tangle defined
by S is unknotted. If all arcs γ have both ends in D∗2 , then, by the finiteness of outermost arcs,
we have a contradiction to Corollary 2.2. Then some arc γ has both ends in D∗1 . Consider this
arc γ and let Γ be the disk component of E − E ∩ P co-bounded by γ in the outermost side of
this arc in E. The disk Γ bounds a disk L in ∂C1∗,n2 ∪D∗1∪Dn2

S that together with Γ bound
a ball R in B2. As in the previous claim, we have that either a portion of the string s12 with
end in D∗2 is in R, or the string s34 is in R. Let O∗1 be the disk co-bounded by γ in S − intD∗1 ,
disjoint from Dn2 . Then O∗1 ⊂ L.

Assume R contains a portion of the string s12. In this case, D∗2 is the only disk of D∗ in
L and D∗2 ⊂ O∗1 . Consider the ball C1∗ obtained by an isotopy of the ball C, cut from V by
D∗1 ∪D∗2 ∪Dn2 , along D∗2 ∪Dn2 away from S in B2. From Lemma 2.3, the arc C1∗ ∩ s12 is trivial
in C1∗ . We also have that the portion of s12 in the complement of C1∗ in B2 is unknotted. In
fact, we can assume that this arc is R ∩ s12. As there are no local knots, R ∩ s12 is trivial in
R, and therefore, it is parallel to L. We can isotope the components of L ∩ S − O∗1 from S to
∂C1∗,n2 . With the isotopy we verify that the arc R ∩ s12 is parallel to the boundary of C1∗ .
Altogether, we have that s12 is unknotted in (B2,T2).

Assume now that R contains the string s34. Following along an argument of the similar
situation in Claim 6.4.6, we have some string of some tangle is unknotted. 4

�

Lemma 6.5. Suppose V − V ∩ S contains a solid torus that intersects D∗ and D at two disks.
Then some string of some tangle is unknotted.

Proof. Let T be the solid torus component of V − V ∩ S as in the statement, and suppose it
lies in the tangle (B1,T1). As the genus of V is three, all disks of D∗ are parallel in V , and the
same is true for the disks of D. Assume that ∂T ∩D∗ = D∗1 ∪D∗4 and ∂T ∩D = D1 ∪Dn2 , as in
Figure 22). From Remark 3, we can assume that all outermost disks are over T with respective
outermost arcs attached to D∗1 , D∗4 , D1 or Dn2 . If all outermost arcs are attached to D∗1 or D∗4 ,
then by the finiteness of outermost arcs there are parallel sk-arcs in contradiction to Corollary
2.2. Then, some outermost arc is attached to D1 or Dn2 . Furthermore, even if D∗1 or D∗4 is
attached to outermost arcs the only sequences of arcs parallel to outermost arcs in E are with
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respect to outermost arcs attached to D1 or Dn2 . Without loss of generality, we assume that D1

is always attached to some outermost arc, and denote by δ1 an outermost arc attached to D1.

...

Figure 22

Claim 6.5.1. If Dn2 is not attached to outermost arcs then some string of some tangle is
unknotted.

Proof of Claim 6.5.1. Assume that Dn2 is not attached to outermost arcs. By the finiteness of
outermost arcs and Lemma 2.2, there is a sequence of arcs of E∩P in E parallel to an outermost
arc δ1, that is δ2, . . . , δn2 , as in Figure 15(a). As in Case 1 of Lemma 6.3 we define the balls Ri;
consider also the respective disks Oi and Oi+1. As R1 contains a single string we have that O1

intersects D∗ at a single disk. If n2 = 2 then as O1 and O2 are disjoint, we have that O1 intersects
S∩V at a single disk. Hence, δ1 is as in Lemma 4.4, which means that some string of some tangle
is unknotted. Suppose n2 ≥ 4. (Note that n2 is necessarily even.) If D∗2 or D∗3 are in O1 then R2

contains two strings, which is impossible. Then, without loss of generality, we can assume that
D∗1 is in O1. Suppose some disk of D is in O1, say Di. Then D∗1 is also in Oi. This means that T
is in Ri−1, and consequently, D1 is in Oi, which is a contradiction as Di is in O1. Therefore, δ1 is
under the conditions of Lemma 4.4, which means that some string of some tangle is unknotted. 4

Claim 6.5.2. If Dn2 is attached to outermost arcs then some string of some tangle is unknotted.

Proof of Claim 6.5.2. Assume that both D1 and Dn2 have outermost arcs attached, denoted
by δ1 and δn2 resp.. Let the outermost disk co-bounded by δ1 (resp., δn2) be denoted by ∆1

(resp., ∆n2) and let O1 (resp., On2) be the disk in S− int(D1∪Dn2) separated by δ1 (resp., δn2).
By adding a regular neighborhood of On2 ∪∆n2 and O1 ∪∆1 to T , and the ball bounded by the
boundary component that is disjoint from S, we define a ball Q. If Q contains both strings of
T1, from Lemma 4.3, we have that the tangle (Q,Q∩K) is trivial. If D∗ is in O1 ∪On2 then we
get a contradiction between Lemma 3.1(c) and Lemma 4.3. Then, O1 or On2 intersects D∗ at a
single disk.
If n2 = 2, O1 and O2 are disjoint, and δ1 or δn2 are as in Lemma 4.4, which means that some
string of some tangle is unknotted.
Assume n2 ≥ 4.
Suppose that O1 ∪ On2 intersect D∗ in three disks and, without loss of generality, that O1

intersects D∗ at a single disk. If there is any arc of E ∩ P parallel to δn2 in E, the respective
ball Rn2−1 contains two strings, which is impossible as observed in Lemma 3.3. Then, there is
a sequence of parallel arcs of E ∩ P in E, δ1, . . . , δn2−1 and we can consider the respective balls
R1, . . . , Rn2−2. If O1∩D∗ is D∗2 or D∗3 , then R2 contains two strings, which is impossible. Then,
On2 ∩D∗ is D∗2 ∪D∗3 . The string s23 is trivial in Q and has ends in the same disk component of
Q ∩ S, then s23 is unknotted in (B1,T1).
Suppose that O1 ∪ On2 intersect D∗ in two disks. Assume D∗2 ∪ D∗3 is in O1 ∪ On2 . If there
are two consecutive balls Ri after O1 or On2 , then some ball Ri contains two strings, which is
impossible. Then, n2 = 4 and both δ1 and δ4 have a parallel arc of E ∩P in E, δ2 and δ3, resp.,
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from where we define the balls R1 and R3. As R1 and R3 have a single string, we have that O1

is disjoint from D2, D3 and D4. Hence, δ1 is as in Lemma 4.4 and some string of some tangle is
unknotted. Assume now that D∗1 ∪D∗4 is in O1∪On2 . If there is a sequence of parallel arcs to δ1
(or to δn2) attached to all disks D1, . . . , Dn2 , as in Figure 15(a), following the same argument as
in Claim 6.5.1, we prove that some string of some tangle is unknotted. Otherwise, the sequences
of parallel arcs from δ1 go up to some arc δi and from δn2 go up to some arc δi+1. If n2 = 4,
then as before δ1 or δn2 are as in Lemma 4.4, which means that some string of some tangle is
unknotted. Suppose n2 ≥ 6. Then, again using arguments as in Claim 6.5.1, if O1 intersects
D, it is in Di or Di+1. From the sequences of parallel arcs we can consider the respective balls
R1, . . . , Ri−1 and Ri+1, . . . , Rn2−1. Denote by Ck,k+1 the cylinder in V between Dk and Dk+1.
If Di and Di+1 are not in O1 then δ1 resp., is as in Lemma 4.4, which means that some string
of some tangle is unknotted. Otherwise, without loss of generality, suppose that Di is in O1.
Then, then as Ri−1 cannot be in Q, we have that Ci,i+1 is in Q. Each string of the tangles
defined by S is in Q or is some ball Rk. Following as in the previous claim, consider Q union
with Rk∪Ck,k+1, for k = 1, . . . , i−1, i+1, . . . , n2, we define a solid torus that is a neighborhood
of K, containing V , and with boundary essential in W , which is a contradiction to W being a
handlebody. 4

�

Lemma 6.6. Suppose V − V ∩ S contains a solid torus component disjoint from D and inter-
secting D∗ at two disks. Then both strings of some tangle are µ-primitive.

Proof. Let T be a solid torus component as in the statement and suppose D∗ ∩ T = D∗1 ∪D∗4 .
Assume that T is in the tangle (B1,T1). From Remark 3, all outermost disks are over solid torus
components of V − V ∩ S. Suppose some outermost disk is attached to some disk of D. As the
genus of V is three, this outermost disk is over a solid torus disjoint from K intersecting S ∩ V
at a single disk, which is a contradiction to Lemma 4.1. Then all outermost disks are attached
to disks of D∗.

Claim 6.6.1. If the disks of D∗ are parallel two-by-two then some string in some tangle is
unknotted.

Proof of Claim 6.6.1. Suppose only one disk or two non-parallel disks are adjacent to out-
ermost arcs. By the finiteness of outermost arcs we have parallel sk-arcs, as in Figure 11(a1),
(a2), and we get a contradiction to Corollary 2.2.
Otherwise, we are left with the case when the outermost arcs are only adjacent to two parallel
disks of D∗. Following an argument of a similar situation in Lemma 6.2, we have that some
string in some tangle is unknotted. 4

Claim 6.6.2. If the disks of D∗ are not parallel two-by-two then both strings of some tangle are
µ-primitive.

Proof of Claim 6.6.2. Assume, without loss of generality, that no other disk of S∩V is parallel
to D∗1 . If there are disks (of D∗) parallel to D∗4 , and D∗4 or one disk parallel to it are the only
disks with outermost arcs attached, then we get a contradiction to Corollary 2.2. So, without
loss of generality, assume there is some outermost arc attached to D∗1 , and that it is over T .
Under these conditions, we define a ball Q as in Lemma 4.5, using the outermost disk attached
to D∗1 over T . From Lemma 4.5, the tangle (Q,Q∩K) is the product tangle. So, we can isotope
S through Q, and we replace D∗1 with a disk parallel to D∗4 . So, if n2 = 0 we reduce this case
to either the case when there is a genus two component, as in Lemma 6.1 or to the case when
V −V ∩S contains a solid torus component intersecting D∗ at the four disks as in Lemma 6.2. If
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n2 > 0 we also reduce to the cases when V −V ∩S contains a solid torus component intersecting
D∗ in a collection of two disks and D in one or two disks, as in Lemmas 6.3, 6.4 and 6.5. From
these lemmas we get that both strings in some tangle are µ-primitive. 4

�

Lemma 6.7. Suppose V − V ∩ S contains a solid torus component disjoint from K. Then both
strings of some tangle are µ-primitive.

Proof. As the genus of V is three and no disk of D∗ is parallel to a disk of D, D∩T is a collection
of at most three disks. If there is some solid torus component of V − V ∩ S intersecting D∗

we follow as in the previous lemmas to get the conclusion that two strings of some tangle are
µ-primitive. Otherwise, the solid torus components of V − V ∩ S are disjoint from K. From
Remark 3, without loss of generality, we can assume that some outermost disk is over T .
If D ∩ T is a single disk we get a contradiction to Lemma 4.1. Then, we have that T intersects
D at more than one disk, in which case T is the only solid torus component of V − V ∩ S and
all outermost disks are over T .
Assume that D ∩ T is a collection of two disks, D1 and D′1. The outermost arcs are attached

...

...

...

...

V1
...

Figure 23

to D1 or to D′1, with outermost disks over T . Let D2, D3, . . . , Dk be the disks of D parallel to
D1 in V , in case there exists such a sequence. Without loss of generality, assume there is an
outermost arc δ1 attached to D1, and that there is a sequence of arcs, δi, after an outermost
arc, δ1, as in Figure 15(a). Let ∆ be the outermost disk bounded by δ1, in E, and also, ∆i be
the disk of E − E ∩ S between δi and δi+1. As S3 has no lens space summand, we have that
∂∆ intersects a meridian of T geometrically once. So, we can perform an isotopy of the annulus
in S, A = D1 ∪ (S ∩ N(∆)) through N(∆) to the annulus A′ = D1 ∪ (∂T ∩ N(∆)). As ∂∆1

intersects a meridian of T geometrically once, we isotope A′ through T to a disk in T parallel
to D′1, that we also denote by D1. Using the disk ∆1 ∪∆ we can perform a similar isotopy, and
from the disk D2 of E ∩ S we get a disk in T parallel to the new disk D1. In this way we can
perform a sequence of isotopies of S to get from the disks D1, D2, . . . , Dk new disks in T parallel
to D′1. With this isotopy we reduce this case to other cases: If the disks of D∗ are not parallel
in V we can reduce this case to the case when T ∩ D∗ is a collection of two disks and T ∩ D

is one non-separating disk, as in Lemma 6.4. So, we are left with the situation when the disk
components of D∗ are parallel. The disk components of D in V can be parallel to D1 or to D′1,
or can be separating. Assume there is a disk of D that is separating in V , as in Figure 23(a).
By the previous isotopy we reduce this case to the case, considered next, when D∗ ∩ T is empty
and D ∩ T is a collection of three disks. Otherwise, suppose that no disk of D is separating, as
in Figure 23(b). Similarly, we reduce this case to the case when D∗ ∩T and D∩S is a collection
of two disks, as in Lemma 6.5.
At last, suppose that D ∩ T is a collection of three disks. We have a collection of parallel non-
separating disks of D, and a collection of separating disks of D in V , as in Figure 24. As in
Lemma 3.4, let C be the ball component of V − V ∩ S cut from V by D∗1 ∪ D∗4 ∪ Dn2 . Every
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outermost arc of E∩S in E attached to Dn2 has both ends attached to it (otherwise, it would be
a t-arc, which don’t exist from Lemma 2.4(c)). By the finiteness of outermost arcs, we consider
an outermost arc γ after outermost arcs with both ends in Dn2 . From Lemma 3.4, if γ has
at least one end in Dn2 or one end in D∗1 and the other in D∗4 , some string of some tangle is
unknotted. In case, all arcs γ have both ends in D∗1 or in D∗4 , by the finiteness of outermost
arcs, we have a contradiction to Corollary 2.2. �

7. Proof of Theorem 1

For the proof of Theorem 1, we study all cases of S ∩ V with respect to the value n1.

Proposition 1. If n1 = 1 then both strings of some tangle are µ-primitive.

Proof. Suppose n1 = 1. If n2 > 0 we have a contradiction between Lemma 2.4(b) and (f). So,
n2 = 0, P is a disk and |P ∩ E| = 0.
Let D∗1 = S ∩ V . The 2-sphere S = D∗1 ∪ P is separating, then D∗1 is a separating disk in V .

Figure 25

As the handlebody V has genus three, the disk D∗1 separates V in a solid torus V1 and a genus
two handlebody V2, as in Figure 25. Let (B1, T1) denote the tangle containing V1. The strings
of this tangle lie in V1, have end points in D∗1 and, by Lemma 2.3, are simultaneously parallel
to ∂V1. Also, the complement of V1 in B1 is a torus. Hence, from Lemma 2.2, both strings of
the tangle (B1, T1) are µ-primitive. �

Proposition 2. n1 6= 2.

Proof. Suppose n1 = 2. We denote by D∗1 and D∗2 the components of D∗. From Lemma 2.4(b),
(g) n2 > 0 and every outermost arc is a st-arc.

Claim. If n1 = 2 there is no ball C of V − V ∩ S containing strings of a tangle.
Proof of Claim. Suppose that there is a ball component of V − V ∩ S, C, containing strings of
a tangle.
Suppose, the ball C contains two strings. From Lemma 2.3, the strings are parallel to ∂C.
Therefore, the tangle (C,C ∩K) is trivial, which is a contradiction to Lemma 3.1(c).
Otherwise, suppose that C contains a single string. As D∗1 ∪D∗2 intersects K in four points only
one of these disks can be in ∂C, and both ends of the string in C are in this disk. Then, this
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Figure 26

string is trivial in ∂C. Furthermore, as this is the only string in C it is also trivial in the respec-
tive tangle, which is a contradiction to the tangle decomposition defined by S being essential.

4

If D∗1 and D∗2 are parallel in V then the ball component of V − S ∩ V cut by D∗1 ∪D∗2 is in
contradiction to Claim.
Suppose now that D∗1 and D∗2 are not parallel, as in the examples of Figure 26. Then, the
components of V −D∗1 ∪D∗2 are solid tori. As n2 > 0, the disks of D are in some of these solid
tori. Then, some ball component of V −V ∩S contains D∗1 , D∗2 , or both, which is a contradiction
to Claim. �

Proposition 3. If n1 = 3 then both strings of some tangle are µ-primitive.

Proof. Consider the components of V − V ∩ S. From Remark 3 we can assume that some
component of V − S ∩ V is not a ball.
If there is a genus two component of V −V ∩S then, by Lemma 5.1 , some string of some tangle
is unknotted. Otherwise, there is some solid torus component of V − V ∩ S, and from Lemma
5.2 two strings of some tangle are µ-primitive. �

Proposition 4. If n1 = 4 then both strings of some tangle are µ-primitive.

Proof. As in Proposition 3, we consider the components of V − V ∩S and we assume that some
component of V − S ∩ V is not a ball.
If V − V ∩ S has a genus two component then, by Lemma 6.1, some string of some tangle is
unknotted.
Now, assume that V − V ∩ S has no genus two component. This means at least one of its
components is a solid torus, T . The collection of disks D∗ ∩ T is always even, because ∂T is a
separating torus in S3. We consider several cases with respect to D∗ ∩ T .
If D∗ ⊂ T , from Lemma 6.2, some string of some tangle is unknotted.
Suppose D∗ ∩ T is a collection of two disks. As the genus of V is three, there are at most two
disks of D in ∂T . Then we are under Lemmas 6.3, 6.4, 6.5 and 6.6, and we have that both
strings of some tangle are µ-primitive.
At last, suppose D∗ ∩ T = ∅. From Lemma 6.7, we also have that both strings of some tangle
are µ-primitive. �

We can now prove Theorem 1 and its Corollary 1.1.
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Proof of Theorem 1. If K has an inessential 2-string free tangle decomposition then the tunnel
number of K is one. This is a contradiction with the assumption that the tunnel number of K
is two. Hence, the 2-string free tangle decomposition of K is essential.
We have that 0 ≤ n1 ≤ 4. If n1 = 0 then, as S ∩K ⊂ S ∩ V we have n2 = 0. Hence, S ⊂ V
which is a contradiction to Lemma 2.3(a). In case n1 6= 0, from Propositions 1, 2, 3 and 4, we
have that two strings of some tangle are µ-primitive. �

Proof of Corollary 1.1. Let K be a knot with a 2-string free tangle decomposition where at least
a string of each tangle is not µ-primitive.
From Corollary 2.4 in [16] by Morimoto, if a knot K has a n-string free tangle decomposition,
then t(K) ≤ 2n− 1. Hence, in this case t(K) ≤ 3.
On the other hand, as no tangle in the decomposition of K has both strings being µ-primitive,
from Theorem 1 we have t(K) ≥ 3.
Altogether, from the two inequalities, t(K) = 3.

�

8. On the tunnel number degeneration under the connected sum of prime knots

In this section, we construct an infinite class of knots with a 2-string free tangle decomposition
where no tangle has both strings being µ-primitive. With these collection of knots, Theorem 1
and the work of Morimoto [16] we prove Theorem 2.
A particular, simplified, version of Theorem 3.4 in [16] by Morimoto gives us the following
proposition, which is relevant to the proof of Theorem 2.

Proposition 5 ([16], Morimoto). Let K1 be a knot which has a 2-string free tangle decomposition
and K2 be a knot with a 3-bridge decomposition. Then t(K1#K2) ≤ 3.

Figure 27: The knot K(m) and one unknotting tunnel, with m a natural number.

For the construction of knots, K1, as in Theorem 2 we consider 2-string free tangle decom-
positions. Suppose there are two 2-string free tangles (B1,T1) and (B2,T2) where one of the
strings in each tangle is not µ-primitive. Identify (∂B1, ∂T1) to (∂B2, ∂T2), such that no string
of T1 has its end identified to the ends of the same string of T2. Then (B1∪B2,T1∪T2) is a knot
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(S3,K1) under the conditions of Proposition 5. Furthermore, from Corollary 1.1, t(K1) = 3.
Hence, this procedure gives us a knot as in the statement of Theorem 2.
So, we need 2-string free tangles with one of the strings not µ-primitive. As observed in Remark
1, if a string s properly embedded in a ball B is µ-primitive, then by capping s along ∂B we
get a µ-primitive knot. Then, for the construction of a 2-string free tangle where at least one of
the strings is not µ-primitive we consider a tunnel number one knot K that is not µ-primitive,
and one of its unknotting tunnels. For such a knot K, let s be a string in a ball B, that when
capped off along ∂B we obtain K, together with one unknotting tunnel for K. If we slide the
ends of the unknotting tunnel from s to ∂B we get an essential 2-string free tangle where one of
the strings is not µ-primitive.
Then, we want tunnel number one knots that are not µ-primitive. Existence results of such
knots are known by work Johnson and Thompson in [6] and also Moriah and Rubinstein in [12].
On the other hand, explicit or constructive examples of knots with tunnel number one that are
not µ-primitive is given by work Eudave-Muñoz in [18] and [19], Ramı́rez-Losada and Valdez-
Sánchez in [9], Minsky, Moriah and Schleimer in [10] and also Morimoto, Sakuma and Yokota in
[17]. With any of these examples it is possible to construct knots as in the statement of Theorem
2. As an example of such construction we consider the class of knots K(7, 17; 10m−4) from [17],
where m is an integer, together with an unknotting tunnel. We denote these knots by K(m), as
in Figure 27.
As previously described, from the knots K(m) and an unknotting tunnel we construct tangles
T (m) where at least one of the strings is not µ-primitive, as in Figure 28. From the construction

Figure 28: A possible construction of a tangle T (m) from the knot K(m) and one of
its unknotting tunnels.

we have that the tangles T (m)) are free. With the tangles T (m) and T (m′) we construct a knot
K1(m,m′), as explained before, that has a 2-string free tangle decomposition where no tangle
has both strings being µ-primitive. With this construction we can now prove Theorem 2 and its
Corollary 2.1.

Proof of Theorem 2. Consider the collection of knots {K1(m,m′) : m,m′ ∈ N,m ≤ m′}. From
Corollary 1.1, we have that t(K1(m,m′)) = 3. From Ozawa’s unicity theorem, the knot
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K1(m,m′) is prime. And, from Proposition 5, for any 3-bridge knot K2, t(K1(m,m′)#K2) ≤
3. �

Proof of Corollary 2.1. Consider the collection of knots {K1(m,m′) : m,m′ ∈ N,m ≤ m′}. Let
K2 be any 3-bridge prime knot with tunnel number two. From Proposition 5, t(K1(m,m′)#K2) ≤
3. From tunnel number one knots being prime and the main theorem in [14], we also have that
t(K1(m,m′)#K2) ≥ 3. Then, t(K1(m,m′)#K2) = 3 = t(K1(m,m′)) + t(K2)− 2. �
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