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Abstract. We show the existence of infinitely many prime knots each of
which having in their complements meridional essential surfaces with two

boundary components and arbitrarily high genus.

1. Introduction

Since the work of Haken and Waldhausen, it is common to study 3-manifolds,
as knot complements, by their decomposition along surfaces into submanifolds.
A very important class of surfaces used in these decompositions are the essential
surfaces, which has motivated research on the properties and existence of closed
essential surfaces or meridional essential surfaces in knot complements in S3. A
particularly interesting phenomena is the existence of knots with the property that
their complements have closed essential surfaces of arbitrarily high genus. The first
examples of knots with this property were given by Lyon [13], where he proves the
existence of fibered knots complements with closed essential surfaces. Later Oertel
[16] and recently Li [10] also give examples of knots having closed essential surfaces
of arbitrarily high genus in their complements. Oertel uses the planar surfaces
from the tangles defining the Montesino knots to construct and characterize the
essential surfaces. Lyon and Li use connected sum of knots on their constructions
and afterwards sattelite knots to obtain primeness of the desired examples.
In this paper we consider meridional surfaces instead, and prove that there is also
no general bound for the genus of meridional essential surfaces in the complements
of (prime) knots. In fact, we construct prime knots each of which with meridional
essential surfaces in their complements having only two boundary components and
arbitrarily high genus. Then, in particular, we prove that some prime knots have the
property that they can be decomposed by surfaces of all positive genus as composite
knots are decomposed by spheres. The results of this paper are summarized in the
following theorem and its corollary.

Theorem 1. There are infinitely many prime knots each of which having the prop-
erty that its complement has a meridional essential surface of genus g and two
boundary components for all positive g.
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(CMUC), funded by the European Regional Development Fund through the program COMPETE

and by the Portuguese Government through the FCT - Fundação para a Ciência e a Tecnologia
under the project PEst-C/MAT/UI0324/2011. This work was also partially suported by the

UTAustin|Portugal program CoLab.

1
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Corollary 1.1. There are infinitely many knots each of which having the property
that its complement has a meridional essential surface of genus g and two boundary
components for all g ≥ 0.

From [1], at least one of the swallow-follow surfaces obtained from the meridional
essential surfaces in Theorem 1 is also essential and of higher genus. Hence, the
knots from the theorem are also examples of knots having closed essential surfaces
of arbitrarily high genus in their complements.
Together with the literature already cited, this paper joins several other contribu-
tions to unserstand better knots with respect to the existence of closed or meridional
essential surfaces in their complements: In [14] Menasco studies essential surfaces in
alternating links complements; Finkelstein-Moriah [5] and Lustig-Moriah [12] prove
the existence of meridional essential and closed essential surfaces, respectively, for
a large class of links characterized by a certain 2n-plat projection; There is also the
work of Finkelstein [4] and Lozano-Przytycki [11] describing closed incompressible
surfaces in closed 3-braids; More recently, after Gordon-Reid [8] proved that tunnel
number one knots have no meridional planar essential surface in their complements,
Eudave-Muñoz [2], [3] proved that some of these knots actually have meridional or
closed essential surfaces in their complements.
The proof of Theorem 1 follows a similar philosophy as in Lyon’s paper [13], where
he uses the connected sum of two knots and essential surfaces in their exteriors.
We could follow the same construction if our aim was only to construct a knot
exterior with merdidional essential surfaces of arbitrarily high genus. However, as
we want the surfaces to have two boundary components we cannot use the sattelite
construction to obtain primeness of the knot. As we also want the knots to be
prime we cannot use a connected sum as the base for the construction. So, instead
of using composite knots we consider a decomposition of prime knots along certain
essential tori separating the knot into two arcs. The main techniques for the proof
are classical in 3-manifold topology, as innermost curve arguments and branched
surface theory. The reference used for standard definitions and notation in knot
theory is Rolfsen’s book [18]. Throughout this paper all submanifolds are assumed
to be in general position and we work in the piecewise linear category.

2. Construction of the knots

In our construction we use 2-string essential free tangles, that we define as fol-
lows: A n-string tangle is a pair (B, σ) where B is a 3-ball and σ is a collection of
n properly embedded disjoint arcs in B. We say that (B, σ) is essential if for every
disk D properly embedded in B−σ then ∂D bounds a disk in ∂B−∂σ. The tangle
is said to be free if the fundamental group of B − σ is free, or, equivalently, if the
closure of B −N(σ) is a handlebody.
Let H be a solid torus and γ an embedded graph in H, as in Figure 1. The graph γ
is topologically a circle connected to two segments, a1 and a2, at a boundary point
of each. The other two boundary points of a1∪a2 are in ∂H. There is a separating
disk DH in H intersecting γ transversely at a point of each segment a1 and a2, and
decomposing H into a solid torus and a 3-ball BH where (BH , BH ∩γ) is a 2-string
essential free tangle1 with BH ∩ γ two knotted arcs in BH . (See Figure 1(b).)

1See the Appendix, section 4, for an example of a 2-string essential free tangle with both strings
knotted.
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Figure 1: The graph γ, in (a), and its embedding into the solid torus
H, in (b).

Denote by T a regular neighborhood of γ in H and suppose there is a properly
embedded arc s in T , as in Figure 2(a), with the boundary of s in T ∩∂H. Assume

(a)

Q

T

DT

RT
BTs

(b)

Li

T

DT

RT
BTsi

Figure 2: The solid torus T with the string s, in (a), and the solid
torus Ti with the string si, in (b).

there is a separating disk DT in T intersecting s at two points and decomposing T
into a 3-ball BT and a solid torus RT . The boundary of s is in ∂BT and (BT , BT ∩s)
is a 2-string essential free tangle with the two arcs BT ∩ s in BT being knotted.
The string RT ∩ s in the solid torus RT is such that when capped off by an arc in
DT we get the (2,−3)-torus knot boundary parallel in RT .
We say that an arc properly embedded in a solid torus is essential if it is not bound-
ary parallel, that is the arc does not co-bound an embedded disk in the solid torus
with a segment in the boundary of the solid torus, and if the boundary of the solid
torus is incompressible in the complement of the arc. In Lemma 1 we prove that s
is essential in T .
Consider a ball Q in T −BT intersecting s at two parallel trivial arcs, as in Figure
2(a), and an infinite collection of knots Li, i ∈ N. We replace the two parallel trivial
arcs by two parallel arcs with the pattern2 of a knot Li, as in Figure 2(b). After
this tangle replacement, we denote by si the string obtained from s, by Ti the solid
torus T containing si, by γi the graph γ whose regular neighborhood is Ti, and by
Hi the solid torus H containing Ti. Let EH(T ) be the exterior of T in H, that is
the closure of H − T , and ET (s) be the exterior of N(s) in T , that is the closure
of T −N(s). The following lemmas are relevant for the next section, and they are
also valid if we replace s by si, T by Ti and H by Hi in their statements.

Lemma 1.
(a) The surfaces ∂H and ∂T are incompressible in EH(T ).

2By a properly embedded arc in a ball B having the pattern of a knot K we mean that when
we cap off the arc with a string in ∂B we get the knot K.
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(b) The arc s is essential in T .

Proof.
(a) First we prove that ∂H is incompressible in EH(T ). As T is a regular neigh-
borhood of γ this is equivalent to prove that ∂H is incompressible in H − γ. The
graph γ in H is defined by a circle c and two segments a1 and a2, each with an end
in the circle and the other end in ∂H, and H is a regular neighborhood of c. Hence,
the boundary of a properly embedded disk D in H disjoint from c bounds a disk O
in ∂H. Furthermore, as D is disjoint from γ and each segment a1 and a2 intersects
∂H at a single point, the disk O is disjoint from γ. Then, the boundary of every
embedded disk in EH(T ) with boundary in ∂H bounds a disk in ∂H − ∂H ∩ ∂T ,
which means ∂H is incompressible in EH(T ).
We prove similarly that ∂T is incompressible in EH(T ). Let D be a properly em-
bedded disk in EH(T ) with boundary in ∂T . We have T = N(c) ∪N(a1) ∪N(a2).
As a1 and a2 have each an end in ∂H and in c, we can isotope the boundary of D
to N(c). As H is a regular neighborhood of c we have that ∂D bounds a disk O in
∂N(c). As a1 and a2 have each only one end in c, we have that O is a disk in ∂T .
Hence, ∂T is incompressible in EH(T ).

(b) To prove that s is essential in T we have to prove that ∂T is incompressible
in ET (s) and that s is not boundary parallel. We start by showing that ∂T is
incompressible in ET (s). As the tangle (BT , BT ∩ s) is essential, the boundary of a
properly embedded disk in BT − (s∩BT ) bounds a disk in ∂BT − (s∩ ∂BT ). Also,
the string RT ∩ s in the solid torus RT when capped off by an arc in DT is the
(2,−3)-torus knot boundary parallel in RT . Hence, every disk in RT −RT ∩ s with
boundary in ∂T has boundary bounding a disk in ∂T . Also, if a disk in RT −RT ∩s
has boundary in DT then its boundary bounds a disk in DT disjoint from s ∩DT .
Suppose D is a disk properly embedded in ET (s) with boundary in ∂T . If D is
disjoint from DT then ∂D bounds a disk in ∂T − s∩ ∂T . So, if D is a compressing
disk for ∂T in ET (s) it intersects DT . Hence, we assume that D intersects DT

transversely in a collection of arcs and simple closed curves, with |D∩DT | minimal.
If D intersects DT in simple closed curves then consider an innermost one in D and
the respective innermost disk O. From the previous observations, we have that ∂O
bounds a disk in DT . Therefore, by an isotopy of D along the ball bounded by
D ∪DT we can reduce |D ∩DT |, which contradicts its minimality. Hence, D ∩DT

is a collection of arcs. Consider an outermost arc α between the arcs D ∩DT in D
and the respective outermost disk, that we also denote by O. If O is in BT then ∂O
bounds a disk O′ in ∂BT intersecting DT − s at a disk. Suppose now that O is in
RT . If O is essential in RT then O intersects at least twice the (2,−3)-torus knot
obtained from RT ∩ s by capping off the ends of this string in DT . However, ∂O
intersects at most once this knot, whether α separates the components of DT ∩ s
in DT or not. This implies that O intersects RT ∩ s, which is contradiction with
O being disjoint from s. Therefore, O is inessential in RT and ∂O bounds a disk
O′ in ∂RT intersecting DT − s at a disk. In both cases, O in BT or in RT , ∂O
bounds a disk O′ intersecting DT − s at a disk. If we isotope D along the ball
bounded by O ∪O′ we reduce |D ∩DT |, contradicting its minimality. Hence, ∂T is
incompressible in ET (s).
Now we prove that s is not boundary parallel in T . Suppose that D is now a disk
embedded in T co-bounded by s and an arc b in ∂T . Following a similar argument
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as before we can prove that D does not intersect DT at simple closed curves and
arcs with both ends in b. Hence, D∩DT is a collection of two arcs, each with an end
in s and the other end in b. However, the disk components these arcs separate from
D imply that the strings of the tangle (BT , BT ∩ s) are trivial, which contradicts
this tangle being essential. Hence, s is not boundary parallel in T and, together
with ∂T being incompressible in the exterior of s in T , we have that s is essential
in T . �

Lemma 2. There is no properly embedded disk in EH(T )

(a) intersecting one of the disks of T ∩ ∂H at a single point; or
(b) with boundary the union of an arc in ∂T and an arc in ∂H, and not bound-

ing a disk in ∂EH(T ).

Proof. Let D be a properly embedded disk in EH(T ). Following an argument as in
Lemma 1 we can assume that |D∩DH | is minimal and that D∩DH is a collection of
essential arcs in DH−DH∩T with ends in DH∩T and ∂DH . Consider also BH∩T ,
which is a collection of two cylinders C1 and C2, and assume that |D ∩ (BH ∩ T )|
is minimal. If some arcs of ∂D ∩Ci have ends in the same boundary component of
the annlus ∂Ci − Ci ∩ ∂BH , i = 1, 2, then by using an innermost curve argument
we can reduce |D ∩ (BH ∩ T )| and contradict its minimality. Therefore, D ∩ Ci is
a collection of essential arcs in the annulus ∂Ci − Ci ∩ ∂BH , i = 1, 2.

(a) Assume that D intersects T ∩ ∂H exactly once at C1 ∩ ∂H. As D ∩ DH is a
collection of arcs, the components of D∩BH are a collection of disks. Consequently,
one component of D∩BH is a disk in BH−BH ∩T intersecting C1∩∂H once. This
means that C1 ∩ ∂H is primitive with respect to the complement of BH ∩T in BH .
Hence, as the complement of C1∪C2 is a handlebody (because (BH , BH∩γ) is a free
tangle), the complement of C2 in BH is a solid torus. Then the core of C2 is unknot-
ted, which is a contradiction to BH∩γ being a collection of two knotted arcs in BH .

(b) Suppose the disk D is as in the statement with ∂D = a ∪ b, where a is an arc
in ∂T and b an arc in ∂H. The intersection of D with T ∩ ∂H is the boundary of a
(and b), and notice that C1 ∪C2 intersects ∂H at T ∩ ∂H. From the statement (a)
of this lemma the boundary of a (and b) is in one disk component of T ∩ ∂H, that
without loss of generality we assume to be C1 ∩ ∂H. As D ∩ Ci is a collection of
essential arcs in ∂Ci−Ci ∩ ∂BH and ∂D intersects ∂T ∩ ∂H in two points, the arc
a intersects DH at two points. Furthermore, by an innermost arc argument and
the minimality of |D ∩DH |, there are no arcs of D ∩DH with both end points in
b ∩DH .

(a)
a

α
D

b

(b)
a

D

b

Figure 3: The arcs D ∩DH in D when a single arc intersects a, in (a),
and when two arcs intersect a, in (b).
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The points of a ∩DH cobound one or two arcs of D ∩DH . Suppose a ∩DH is the
boundary of a single arc, α, component of D ∩DH , as in Figure 3(a). Hence, the
arc α separates a disk from D in BH that cuts a ball from BH −C1 contaning C2,
otherwise ∂D bounds a disk in ∂EH(T ). As there are no local knots in the free
tangle (BH , BH ∩ s), this case implies that either the core of C2 corresponds to a
trivial string or a string parallel to the core of C1, which contradicts this tangle
being a 2-string essential free tangle (see Lemma 2.1 in [15]). If each point of a∩DH

cobounds an arc of D∩DH with the other end in b, as in Figure 3(b), then the core
C1 corresponds to a string of (BH , BH ∩ γ) that is trivial, which also contradicts
this tangle being essential. �

To construct the knots to prove the main theorem of this paper we identify the solid
tori H and Hi along their boundaries, by identifying a meridian of one boundary
to a longitude of the other and defining a Heegaard decomposition H ∪Hi of S3,
such that ∂s is identified with ∂si. From construction, Ki = s ∪ si is a knot in S3,
for i ∈ N, and in the next proposition we prove these knots are prime.

Proposition 1. The knots Ki, i ∈ N, are an infinite collection of distinct prime
knots.

To prove that the knots Ki are prime we use the following technical result. Let
K and L be non-trivial knots. Take a ball B intersecting K in two parallel trivial
arcs with the tangle (Bc, Bc ∩K) being locally unknotted. We replace the arcs of
B ∩K in B by two parallel arcs with the pattern of L, where each new arc has the
same boundary component as one of the replaced arcs. We denote the resulting
knot from this construction by KL.

Lemma 3. The knot KL is prime.

Proof. If the knot KL is trivial then it bounds a disk D in S3. Then, ∂D intersects
∂B at four points. Suppose that |D ∩ ∂B| is minimal. By an innermost curve
argument, as used before, we can show that D ∩ ∂B is a collection of two arcs.
The strings of B ∩KL are knotted and each can’t co-bound an outermost disk of
D − D ∩ ∂B with an arc in ∂B. Hence, the arcs of D ∩ ∂B have an end on each
string of B ∩KL and co-bound together with the strings a disk in B. Each arc of
D ∩ ∂B also co-bounds a disk with a string of KL ∩ Bc. Therefore, if we replace
the tangle (B,B ∩KL) with the tangle (B,B ∩K) we obtain a disk in S3 bounded
by K, which is a contradiction because K is knotted. Hence, the knot KL is also
non-trivial.
Now we prove that KL is prime. Suppose there is a decomposing sphere S for KL.
As (B,B ∩KL) is defined by two parallel strings in B, using the disk co-bounded
by the two strings B ∩KL in B we can show that S can be assumed disjoint from
B. However, this means that S is in Bc, which contradicts (Bc, Bc ∩ KL) being
locally unknotted. �

As for the construction of the knots Ki, we construct a knot K by identifying two
copies of H, say H and H ′, by identifying a meridian of one boundary to a longitude
of the other and defining a Heegaard decomposition H ∪ H ′ of S3, such that the
two copies of s, say s and s′ resp., are also identified along their boundaries. As
s is essential in H we have that ∂H defines a meridional incompressible surface in
the exterior of K, which means that K is not trivial. We also denote the copy of
the solid torus T of H in H ′ by T ′.



KNOTS WITH MERIDIONAL ESSENTIAL SURFACES OF ARBITRARILY HIGH GENUS 7

We will use this knot K, the knots Li and the construction of Lemma 3 to define
the knots Ki, but first we need the following lemma. Let Q be the ball as in Figure
2 and Qc its complement.

Lemma 4. The tangle (Qc, Qc ∩K) is locally unknotted.

Proof. Suppose (Qc, Qc ∩K) is locally knotted. Then there is a sphere S bounding
a ball P intersecting Qc ∩K at a single knotted arc. We have that s and s′ have
no local knots in T ∪ T ′. Then S intersects T or T ′.
Consider the intersection of S with ∂T and ∂T ′, and suppose it has a minimal
number of components. From the construction of the knot K the cores of the solid
tori T and T ′ define a two component link with each component being unknotted.
As the tangle (BT , BT ∩ s) is free and essential we can assume that S is disjoint
from BT (and similarly, that S is disjoint from BT ′).
The intersections of S with the boudaries of T and T ′ is a collection of simple closed
curves. As S is disjoint from BT and BT ′ the curves of intersection are either in
∂T −BT or in ∂T ′−BT ′ . Consider E a disk component of S separated by ∂T ∪∂T ′
from S. Suppose E is not in T ∪ T ′ and its boundary is in ∂T (or similarly ∂T ′).
From the minimality of |S ∩ ∂(T ∪ T ′)| and as S3 does not have a S2 × S1 or a
Lens space summand, we have that ∂E is a longitude of ∂T . Therefore, the core of
T bounds a disk disjoint from T ′, which is a contradiction to the cores of T and T ′

being linked from construction. Hence, E is in T or T ′. If E is in T (or similarly in
T ′) and is disjoint from s then as s is essential in T we have that ∂E bounds a disk
in ∂T − s. In this case we can reduce the number of components of S intersection
with ∂T ∪ ∂T ′, which is a contradiction to its minimality. Then, we can assume
that all disks E intersect s or s′. If some disk E intersects either s or s′ at two
points then some other disk component of S separated by ∂T ∪∂T ′ is disjoint from
s and s′, which is a contradiction to all disks E intersecting s or s′. Then, there is
an essential disk E in T (or similarly, in T ′) that intersects s at a single point. As
before, let RT be the solid torus separated by DT from T . From the construction
of s in T , if we cap off RT ∩ s with an arc in DT we get a torus knot. Then any
essential disk in RT intersects the knot in more than one point. As E is disjoint
from BT it is a non-separating disk in RT intersecting the torus knot at a single
point, which is a contradiction. Hence, (Qc, Qc ∩K) is locally unknotted. �

Proof of Proposition 1. The knots Ki are the knots KLi obtained from the knots
K and Li with a construction as in Lemma 3. From Lemmas 3 and 4 the knots Ki

are prime.
Each knot Ki is also sattelite with companion knot Li and pattern knot K. Then,
from the unicity of JSJ-decomposition of compact 3-manifolds and as the knots Li
are distinct we have that the knots Ki, i ∈ N, are an infinite collection of distinct
prime knots. �

3. Knots with meridional essential surfaces for all genus

In this section we prove Theorem 1, and its corollary, by showing the knots Ki,
i ∈ N, have meridional essential surfaces of all positive genus and two boundary
components. We start by constructing these surfaces, denoted by F1, . . . Fg, . . .
where Fg has genus g, in the complement of an arbitrary knot Ki, and afterwards
we prove they are essential in E(Ki). In this construction we denote the boundaries
of s and si by ∂1s (= ∂1si) and ∂2s (= ∂2si). Denote by X (resp., Y ) the punctured
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torus ∂T (resp., ∂Ti) obtained by cutting the interior of the discs ∂T ∩ ∂H (resp.,
∂Ti ∩ ∂H) . We also denote by ∂iX (resp., ∂iY ) the boundary component of X
(resp., Y ) related to ∂is, i = 1, 2.
The surface F1 is defined as X together with the annuli cut by ∂X from ∂H∩E(Ki),
that we denote by Oi, i = 1, 2, with respect to ∂iX. The surface F2 is obtained
from X and Y by gluing two copies of O1 to ∂1X and ∂1Y , pushing them slightly
into H and Hi respectively, and identifying the boundary components ∂2X and
∂2Y . In Figure 4 we have a schematic representation of F1 and F2.

(a)

F1

X

Ki

∂H
(b)

F2

X Y

Ki

∂H

Figure 4: A schematic diagram of surface F1, in (a), and surface F2, in (b).

To construct the surfaces Fg, for g ≥ 3, we follow a general procedure as ex-
plained next. In Hi consider a copy of Y and an annulus A, around si, defined
by ∂N(si)− (∂N(si) ∩ ∂Hi). We denote by Z the surface obtained by identifying
Y and A along the boundaries ∂1Y and ∂1A. Let n = g − 1 and A1, . . . , An−2 be
disjoint copies of A disjoint from Z. Consider also n disjoint copies of X in H,
denoted by X1, . . . , Xn. Denote ∂1Xj (resp., ∂2Xj) the boundary component of
Xj around ∂1s (resp., ∂2s). Similarly, we label the boundary components of Aj by
∂1Aj and ∂2Aj . To construct Fg we start by attaching ∂2Xn and ∂2Xn−1 to the
two boundary components of Z respecting the order from ∂2s. If g ≥ 4 we also
attach ∂2Xn−2, . . . , ∂2X1 to ∂2An−2, . . . , ∂2A1, respectively, and ∂1Xn, . . . , ∂1X3

to ∂1An−2, . . . , ∂1A1, respectively. The surface Fg has two boundary components
(∂1X1 and ∂1X2) and Euler characteristic −2g, which means the genus of Fg is g.
In Figure 5 we have a schematic representation of F3 and F4, and in Figure 6 a
representation of the general construction of Fg.

(a)

F3
Z

X2

X1

Ki

∂H
(b)

F4 Z

X3

X2

X1

A1

Ki

∂H

Figure 5: A schematic diagram of surface F3, in (a), and surface F4, in (b).

Lemma 5. The surfaces F1 and F2 are essential in the exterior of the knot Ki,
i ∈ N.
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Fg Z

Xg−1

Xg−2

Xg−3

X3

X2

X1
· · · A1

· · ·

Ag−3

Ki

∂H

Figure 6: A schematic general representation of the surface Fg, for g ≥ 3.

Proof. For g = 1, 2 we assume that Fg is not essential in E(Ki) and prove this
leads to a contradiction using innermost curve arguments. We denote generically
by D a compressing or a boundary compressing disk for Fg in E(Ki). In case D is
a boundary compressing disk then ∂D = a ∪ b where a is an arc in ∂E(Ki) − Fg,
with one end in each component of ∂Fg, and b is an arc in Fg. We also assume
|D ∩ ∂H| to be minimal. Consequently, using an innermost curve argument, as in
Lemma 1, we have that D does not intersect ∂H in simple closed curves.

Suppose g = 1. By a small isotopy of a neighborhood of ∂F1 into H if necessary,
we can assume that F1 is in H. If D is a compressing disk for F1 in E(Ki) then
D ⊂ H, as D cannot intersect ∂H in simple closed curves and ∂D is disjoint from
∂H. This is a contradiction to Lemma 1, which says ∂T is incompressible in ET (s)
and in EH(T ). Assume now D is a boundary compressing disk of F1 in E(Ki). If
D is in T then we have a contradiction to Lemma 1(b) for s being essential in T .
If D is not in T then, by using an innermost curve argument, we can assume that
a intersects ∂H at two points and that D ∩ ∂H is an arc separating from D a disk
O in H with boundary an arc in ∂H and an arc that we can assume in ∂T having
ends in ∂H ∩ ∂T . Hence, O contradicts Lemma 2(b). Therefore, we have that F1

is essential in E(Ki).

Suppose g = 2. By a small isotopy of a neighborhood of ∂F2 we can assume that
the component of ∂F2 ∩ X is in H and that ∂F2 ∩ Y is in Hi. Suppose D is a
compressing disk of F2 in E(Ki). If D is disjoint from ∂H then D is a compressing
disk for X or Y in E(Ki), which is a contradiction to Lemma 1(a). Then, assume
D intersects ∂H at a minimal collection of arcs. Consider an outermost arc α of
D ∩ ∂H in D and let O be the respective outermost disk, with O ∩ F2 = β an
arc in X or in Y . Without loss of generality, suppose β is in X. If α or β does
not co-bound a disk in ∂H or X, respectively, with ∂2X we have a contradiction
to Lemma 2(b). Otherwise, ∂O bounds a disk O′ in ∂H ∪ ∂T and using the ball
bounded by O ∪ O′ we can isotope D reducing |D ∩ ∂H| which is a contradiction
to its minimality.
Suppose now that D is a boundary compressing disk for F2 in E(Ki). As the two
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components of ∂F2 are in opposite sides of ∂H by an innermost curve argument we
can prove that a intersects ∂H at a single point. Hence, D∩ ∂H is an arc with one
end in a and one end in b and, possibly, arcs with both ends in b, as in Figure 7.

a

D

b

Figure 7: Arcs of D ∩ ∂H when D is a boundary compressing disk of F2.

If D is in T ∪ Ti then the arcs of D ∩ ∂H with both ends in b are in the annulus
O2. Hence, each arc of D ∩ ∂H with ends in b co-bounds a disk in O2 with ∂2X.
Consider an outermost of such arcs in O2, and the respective outermost disk O.
By cutting and pasting D along O we contradict Lemma 1(b) or we can reduce
|D ∩ ∂H| contradicting its minimality. Therefore, in this case, D ∩ ∂H is an arc
with an end in a. This arc cuts D into two disks, one in T and the other in Ti,
contradicting Lemma 1(b). If D is in EH(T ) ∪ EHi(Ti) we consider an outermost
arc α between the arcs of D ∩ ∂H in D and the respective outermost disk, also
denoted by O. If the arc β, that is ∂O ∩ F2, co-bounds a disk in F2 with F2 ∩ ∂H,
using an argument as before, we can reduce |D ∩ ∂H| contradicting its minimality.
Otherwise, the disk O is in contradiction to Lemma 2(b). Hence, D∩∂H is only an
arc with an end in a, and the disk separated by this arc in D is also in contradiction
to Lemma 2(b). Consequently, F2 is essential in E(Ki). �

To prove the surfaces Fg, g ≥ 3, are essential in the complement of the knots
Ki, we use branched surface theory. First, we start by revising the definitions and
result relevant to this paper from Oertel’s work in [17], and also Floyd and Oertel’s
work in [6].
A branched surface B with generic branched locus is a compact space locally mod-
eled on Figure 8(a). Hence, a union of finitely many compact smooth surfaces in a
3-manifold M , glued together to form a compact subspace of M respecting the local
model, is a branched surface. We denote by N = N(B) a fibered regular neighbor-
hood of B (embedded) in M , locally modelled on Figure 8(b). The boundary of
N is the union of three compact surfaces ∂hN , ∂vN and ∂M ∩ ∂N , where a fiber
of N meets ∂hN transversely at its endpoints and either is disjoint from ∂vN or
meets ∂vN in a closed interval in its interior. We say that a surface S is carried by
B if it can be isotoped into N so that it is transverse to the fibers. Furthermore,
S is carried by B with positive weights if S intersects every fiber of N . If we asso-
ciate a weight wi ≥ 0 to each component on the complement of the branch locus
in B we say that we have an invariant measure provided that the weights satisfy
branch equations as in Figure 8(c). Given an invariant measure on B we can define
a surface carried by B, with respect to the number of intersections between the
fibers and the surface. We also note that if all weights are positive then the surface
carried can be isotoped to be transverse to all fibers of N , and hence is carried with
positive weights by B.
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(a) (b) (c)

∂ Nh

∂ Nv
w3 = w2 + w1

w1

w2w3

Figure 8: Local model for a branched surface, in (a), and its regular
neighborhood, in (b).

A disc of contact is a disc D embedded in N transverse to fibers and with
∂D ⊂ ∂vN . A half-disc of contact is a disc D embedded in N transverse to fibers
with ∂D being the union of an arc in ∂M ∩ ∂N and an arc in ∂vN . A monogon
in the closure of M −N is a disc D with D ∩N = ∂D which intersects ∂vN in a
single fiber. (See Figure 9.)

(a)

monogon

(b)

disk of
contact

Figure 9: Illustration of a monogon and a disk of contact on a branched
surface.

A branched surface embedded B in M is said incompressible if it satisfies the
following three properties:

(i) B has no disk of contact or half-disks of contact;
(ii) ∂hN is incompressible and boundary incompressible in the closure ofM−N ,

where a boundary compressing disk is assumed to have boundary defined
by an arc in ∂M and an arc in ∂hN ;

(iii) There are no monogons in the closure of M −N .

The following theorem proved by Floyd and Oertel in [6] let us infer if a surface
carried by a branched surface is essential.

Theorem 2 (Floyd and Oertel, [6]). A surface carried with positive weights by an
incompressible branched surface is essential.

We now prove that the remaining surfaces Fg are essential.

Lemma 6. The surfaces Fg, g ≥ 3, are essential in the exterior of the knot Ki,
i ∈ N.

Proof. To prove the statement of this theorem, we construct a branched surface
that carries Fg, g ≥ 3, and show that it is incompressible in the exterior of Ki,
i ∈ N.

Let us consider the puntured torus X in H, the annulus A in Hi, the annulus O1

and the punctured torus Y in Hi. Note that the boundaries of ∂iX, ∂iY and ∂iA, for
i = 1, 2, are the same. Consider the union X∪A∪Y and isotope ∂1Y , in this union,
into the interior of A ∩Hi. Now we add O1 to the previous union and denote the
resulting space by B. We smooth the space B on the intersections of the surfaces X,
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A, Y and O1 as follows: the annulus O1 in its intersection with X ∪A is smoothed
in the direction of X; the punctured torus Y on its boundary ∂1Y is smoothed
in the direction of ∂2A, and on its boundary ∂2Y is smoothed in the direction of
X. We keep denoting the resulting topological space by B. From the construction,
the space B is a branched surface with sections denoted naturally by X, O1, A′, A
and Y , as illustrated in Figure 3. We denote a regular neighborhood of B by N(B).

X

∂E(Ki)

Y

A

A′

O1

∂H

Figure 10: The branched surface B in E(Ki).

Given the invariant measure on B defined by wX = g− 1, wO1
= 2, wA′ = g− 3,

wA = g−2 and wY = 1, the weights for the sectionsX, O1, A′, A and Y respectively,
we have that, for each g ≥ 3, the surface Fg is carried with positive weights by B.
To prove that Fg, g ≥ 3, is essential in the complement of E(Ki) we show that B
is an incompressible branched surface in E(Ki) and use Theorem 2.
The space N(B) decomposes E(Ki) into three components: a component cut from
E(Ki) by X ∪ O1 ∪ A′ ∪ A that we denote EX ; a component cut from E(Ki) by
Y ∪ A that we denote by EY ; a component cut from E(Ki) by Y ∪ A′ ∪ X that
we denote by EB . Note that ∂EX ∩ ∂N(B) is ambient isotopic to ∂T in E(Ki).
Hence, from Lemma 1(b), we have that ∂hN(B) is incompressible and boundary
incompressible in EX , and also that there are no monogons in EX . Similarly,
∂EY ∩ ∂N(B) is ambient isotopic to ∂Ti in E(Ki). As ∂2Y corresponds to the
only component of ∂vN(B) in EY , a monogon in EY corresponds to the arc si
being trivial in Ti. Therefore, from Lemma 1, there are no monogons in EY , and
∂hN(B) is incompressible and boundary incompressible in EY . At last, we consider
the component EB , which corresponds to gluing EH(T ) and EHi(Ti) along their
boundaries as before. Suppose there is a compressing disk D for ∂EB in EB . Note
also that ∂EB is a ambient homotopic to X ∪ Y identified along their boundaries.
As in the proof of Lemma 5, we assume |D ∩ ∂H| to be minimal and that the
intersection D∩∂H contains no simple closed curves. If D is disjoint from ∂H then
∂D is a compressing disk for X in H or for Y in Hi, which contradicts Lemma 1(a).
Then, D intersects ∂H in a collection of arcs, as in Figure 11.

Consider an outermost arc in D between the arcs of D ∩ ∂H and denote it by
α. Let O be the outermost disk cut from D by α, and let ∂O = α ∪ β where β is
an arc in ∂EB . Consequently, the disk O is in H or in Hi. If β co-bounds a disk in
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αO

D

β

Figure 11: The disk D together with the arcs D ∩ ∂H.

∂N(B) with an arc in ∂H we can reduce |D ∩ ∂H| and contradict its minimality.
Then, O is a compressing disk of ∂EH(T ) in EH(T ). As ∂O has boundary defined
by the union of an arc in ∂T and an arc in ∂H, we have a contradiction to Lemma
2(b). �

Proof of Theorem 1. From Lemma 5 and 6 we have that the surfaces Fg, g ∈ N,
are essential in the complements of the knots Ki, i ∈ N. Together with Lemma 1,
we obtain the statement of the theorem. �

The proof Corollary 1.1 now follows naturally.

Proof of Corollary 1.1. In Theorem 1 we proved that the knots Ki, i ∈ N, are an
infinite collection of prime knots with meridional essential surfaces in their comple-
ments for each positive genus and two boundary components. Hence, considering
the knots Ki connected sum with some other knot, we have infinitely many knots
with meridional essential surfaces of genus g and two boundary components for all
g ≥ 0. �

4. Appendix

In this appendix we give an example of a 2-string essential free tangle with both
strings knotted.
For a string s in a ball B we can consider the knot obtained by capping off s along
∂B, that is by gluing to s an arc in ∂B along the respective boundaries. We denote
this knot by K(s). The string s is said to be knotted if the knot K(s) is not trivial.
Let s1 be an arc in a ball B such that K(s1) is a trefoil, and consider also an
unknotting tunnel t for K(s1), as in Figure 12.

(a)

s1 B

(b)

s1

t

B

Figure 12: The string s1 when capped off along ∂B is a trefoil knot
with an unknotting tunnel t.
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(a)

s1

t

B

(b)

s1

s2

B

Figure 13: Construction of a 2-string essential free tangle, with both
strings knotted, from s1 and the unknotting tunnel t.

If we slide ∂t along s1 into ∂B, as illustrated in Figure 13(a), we get a new string
that we denote by s2, as in Figure 13(b).
The knot K(s2) is the (3,−4)-torus knot, and hence knotted. The tangle (B, s1∪s2)
is free by construction. In fact, as t is an unknotting tunnel of K(s1), the comple-
ment of N(s1) ∪ N(t) in B is a handlebody. Henceforth, by an ambient isotopy,
the complement of N(s1) ∪N(s2) is also a handlebody. As the tangle (B, s1 ∪ s2)
is free and both strings are knotted then it is necessarily essential. Otherwise, the
complement of N(s1) ∪ N(s2) in B is not a handlebody as it is obtained by glu-
ing two non-trivial knot complements along a disk in their boundaries, which is a
contradiction to the tangle (B, s1 ∪ s2) being free.
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[3] M. Eudave-Muñoz, Incompressible surfaces in tunnel number one knots complements, Top.
Appl. 98 (1999), 167-189.

[4] E. Finkelstein, Closed incompressible surfaces in closed braid complements, J. Knot Theory

Ramifications 7 No. 3 (1998), 335–379.
[5] E. Finkelstein and Y. Moriah, Closed incompressible surfaces in knot complements, Trans.

Amer. Math. Soc. 352 No. 2 (2000), 655–677.
[6] W. Floyd and U. Oertel, Incompressible surfaces via branched surfaces, Topology 23 No. 1

(1984), 117-125.

[7] C. McA. Gordon and R. A. Litherland, Incompressible surfaces in branched coverings, The
Smith Conjecture (New York, 1979), Pure Appl. Math. 112, 139-152.

[8] C. McA. Gordon and A. W. Reid, Tangle decompositions of tunnel number one knots and
links, J. Knot Theory and its Ramifications Vol. 4 No. 3 (1995), 389-409.

[9] A. Hatcher and W. Thurston, Incompressible surfaces in 2-bridge knot complements, Invent.
Math. 79 (1985), 225-246.

[10] Y. Li, 2-string free tangles and incompressible surfaces, J. Knot Theory Ramifications 18 No.
8 (2009), 1081-1087.

[11] M. T. Lozano and J. H. Przytycki, Incompressible surfaces in the exterior of a closed 3-braid.

I. Surfaces with horizontal boundary components, Math. Proc. Cambridge Philos. Soc. 98
No. 2 (1985), 275–299.



KNOTS WITH MERIDIONAL ESSENTIAL SURFACES OF ARBITRARILY HIGH GENUS 15

[12] M. Lustig and Y. Moriah, Closed incompressible surfaces in complements of wide knots and

links, Topology Appl. 92 (1999), 1-13.

[13] H. C. Lyon, Incompressible surfaces in knot spaces, Trans. Amer. Math. Soc. 157 (1971),
53-62.

[14] W. Menasco, Closed incompressible surfaces in alternating knot and link complements, Topol-

ogy 23 (1984), 37-44.
[15] J. M. Nogueira, Tunnel number degeneration under the connected sum of prime knots, Topol-

ogy Appl. 160 No. 9 (2013), 1017–1044.

[16] U. Oertel, Closed incompressible surfaces in complements of star links, Pacific J. Math. 111
(1984), 209-230.

[17] U. Oertel, Incompressible branched surfaces, Invent. Math 76 (1984), 385-410.

[18] D. Rolfsen, Knots and Links, AMS Chelsea Publishing vol. 346, reprint 2003.

CMUC, Department of Mathematics, University of Coimbra, Apartado 3008, 3001-454

Coimbra, Portugal, nogueira@mat.uc.pt


	1. Introduction
	2. Construction of the knots
	3. Knots with meridional essential surfaces for all genus
	4. Appendix
	Acknowledgement
	References

