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Trapping neutral fermions with kink-like potentials
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Abstract

The intrinsically relativistic problem of neutral fermions subject to kink-like potentials (∼ tanhγ x) is investigated and the exact bound-st
solutions are found. Apart from the lonely hump solutions forE = ±mc2, the problem is mapped into the exactly solvable Sturm–Liouv
problem with a modified Pöschl–Teller potential. An apparent paradox concerning the uncertainty principle is solved by resorting to the
of effective mass and effective Compton wavelength.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The four-dimensional Dirac equation with an anomalo
magnetic-like (tensor) coupling describes the interaction
neutral fermions with electric fields and can be reduced
the two-dimensional Dirac equation with a pseudoscalar c
pling when the fermion is limited to move in just one directio
Therefore, the investigation of the simpler Dirac equation
1+1 dimension with a pseudoscalar potential might be rele
to a better understanding of the problem of neutral fermi
subject to electric fields in the more realistic 3+ 1 world.

The states of fermions in one-plus-one dimensions boun
a pseudoscalar double-step potential[1] and their scattering b
a pseudoscalar step potential[2] have already been analyze
and some quite interesting results have been found. Indeed
two-dimensional version of the anomalous magnetic-like in
action linear in the radial coordinate, christened by Moshin
and Szczepaniak[3] as Dirac oscillator and extensively studi
before[4–13], has also received attention. Nogami and Toya
[14], Toyama et al.[15] and Toyama and Nogami[16] studied
the behaviour of wave packets under the influence of that pa
conserving potential whereas Szmytkowski and Gruchow
[17] proved the completeness of the eigenfunctions. More
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cently Pacheco et al.[18] studied a few thermodynamic pro
erties of the 1+ 1 dimensional Dirac oscillator, and a gener
ization of the Dirac oscillator for a negative coupling const
was presented in Ref.[19]. The two-dimensional generalize
Dirac oscillator plus an inversely linear potential has also b
addressed in Ref.[20].

In recent papers, Villalba[21] and McKeon and Van Leeu
wen [22] considered a pseudoscalar Coulomb potential (V =
λ/r) in 3+1 dimensions and concluded that there are no bo
states. The reason attributed in Ref.[22] for the absence o
bound-state solutions is that the different parity eigenstates
Furthermore, the authors of Ref.[22] assert thatthe absence of
bound states in this system confuses the role of the π -meson in
the binding of nucleons. Such an intriguing conclusion sets t
stage for the analysis by other sorts of pseudoscalar poten
A natural question to ask is whether the absence of bound-
solutions by a pseudoscalar Coulomb potential is a charac
tic feature of the four-dimensional world. In Ref.[19] the Dirac
equation in one-plus-one dimensions with the pseudosc
power-law potentialV = µ|x|δ was approached and there it w
concluded thatV is a binding potential only forδ > 0. That con-
clusion sharply contrasts with the result found in[22]. Ref.[19]
shows that it is possible to find bound states for fermions in
acting by a pseudoscalar potential in 1+ 1 dimensions despit
the fact that the spinor is not an eigenfunction of the parity
erator.
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The parity-conserving pseudoscalar potential∼ tanhγ x is
of interest in quantum field theory where topological class
backgrounds are responsible for inducing a fractional ferm
number on the vacuum. Models of this kind, known as k
models, are obtained in quantum field theory as the con
uum limit of linear polymer models[23–25]. To the best of our
knowledge, no one has computed the complete set of b
states in the presence of this sort of potential. The pre
work investigates the bound-state solutions of fermions
mersed in the background of the pseudoscalar potentialV =
h̄cγg tanhγ x, termed kink-like potential. A peculiar feature
this potential is the absence of bound states in a nonrelativ
theory because it gives rise to an ubiquitous repulsive poten
The whole spectrum of this intrinsically relativistic proble
is found analytically, for both massive fermions and mass
fermions. Fortunately, apart from solutions corresponding
|E| = mc2, the problem is reducible to the finite set of so
tions of the nonrelativistic exactly solvable symmetric modifi
Pöschl–Teller potential for both components of the Dirac sp
subject to a constraint on their nodal structure. Finally, we
serve a remarkable feature of this problem: the possibility
trapping a fermion with an uncertainty in the position that c
shrink without limit as|γ | and |g| increase without violating
the Heisenberg uncertainty principle.

2. The Dirac equation with a pseudoscalar potential
in a 1 + 1 dimension

The (1 + 1)-dimensional time-independent Dirac equat
for a fermion of rest massm coupled to a pseudoscalar potent
reads

(1)Hψ = Eψ, H = cαp + βmc2 + βγ 5V,

whereE is the energy of the fermion,c is the velocity of light
andp is the momentum operator. The positive definite funct
|ψ |2 = ψ†ψ , satisfying a continuity equation, is interpret
as a position probability density and its norm is a constan
motion. This interpretation is completely satisfactory for sing
particle states[26]. We useα = σ1 andβ = σ3, whereσ1 and
σ3 are Pauli matrices, andβγ 5 = σ2. Provided that the spino
is written in terms of the upper and the lower components,ψ+
andψ− respectively, the Dirac equation decomposes into:

(2)
(−E ± mc2)ψ± = ih̄cψ ′∓ ± iV ψ∓,

where the prime denotes differentiation with respect tox. In
terms ofψ+ andψ− the spinor is normalized as

+∞∫
−∞

dx
(|ψ+|2 + |ψ−|2) = 1

so thatψ+ andψ− are square integrable functions. It is cle
from the pair of coupled first-order differential equations giv
by (2) that ψ+ and ψ− have definite and opposite pariti
if the Dirac equation is covariant underx → −x, i.e., if the
pseudoscalar potential function is odd. The charge conjuga
operation requires that ifψ is a solution with eigenenergyE
l
n

-

d
nt
-

ic
l.

s

r
-
f

f

n

for the potentialV thenσ1ψ
∗ is a solution with eigenenerg

−E for the potential−V . It is interesting to note that the op
eration of just interchanging the upper and lower compon
of the Dirac spinor induced byiγ 5ψ preserves the eigene
ergies for a massless fermion whenV → −V . One can also
see that the operatorO = i[H,σ3]/2 anticommutes withH so
that it maps positive- into negative-energy solutions, and
versa. Although this last operator does not preserve the n
for scattering states, it can be used to obtain the norma
states corresponding to eigenenergies−E from the knowledge
of the normalized states with eigenenergiesE.

In the nonrelativistic approximation (potential energ
small compared tomc2 andE ≈ mc2) Eq.(2) becomes

(3)ψ− =
(

p

2mc
+ i

V

2mc2

)
ψ+,

(4)

(
− h̄2

2m

d2

dx2
+ V 2

2mc2
+ h̄V ′

2mc

)
ψ+ = (

E − mc2)ψ+.

Eq. (3) shows thatψ− is of order v/c � 1 relative toψ+
and Eq.(4) shows thatψ+ obeys the Schrödinger equatio
Note that the pseudoscalar coupling has the effect that
Schrödinger equation has an effective potential in the non
tivistic limit, and not the original potential itself. Indeed, this
the same side effect which in a(3+ 1)-dimensional space–tim
makes the tensor linear potential to manifest itself as a harm
oscillator plus a strong spin–orbit coupling in the nonrelativ
tic limit [3]. The form in which the original potential appea
in the effective potential, theV 2 term, allows us to infer tha
even a potential unbounded from below could be a confin
potential. This phenomenon is inconceivable if one starts
the original potential in the nonrelativistic equation.

It should be noted thatV → V + const in the Dirac equatio
and in its nonrelativistic limit does not yieldE → E + const.
Therefore, the potential and the energy themselves and no
the potential and energy differences have physical significa
It has already been verified that a constant added to the scre
Coulomb potential[27] or to the inversely linear potential[28]
is undoubtedly physically relevant. As a matter of fact, it pla
a crucial role in ensuring the existence of bound states.

For E 	= ±mc2, the coupling between the upper and
lower components of the Dirac spinor can be formally el
inated when Eqs.(2) are written as second-order different
equations:

(5)− h̄2

2
ψ ′′± +

(
V 2

2c2
± h̄

2c
V ′

)
ψ± = E2 − m2c4

2c2
ψ±.

This last result shows that the solution for this class of pr
lem consists in searching for bound-state solutions for
Schrödinger equations. It should not be forgotten, though,
the equations forψ+ or ψ− are not indeed independent b
causeE appears in both equations. Therefore, one has to se
for bound-state solutions for both signs in(5) with a common
eigenvalue. At this stage one can realize that the Dirac en
levels are symmetrical aboutE = 0. This means that the po
tential couples to the positive-energy component of the sp
in the same way it couples to the negative-energy compon
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In other words, this sort of potential couples to the mass of
fermion instead of its charge, so that there is no atmosp
for the spontaneous production of particle–antiparticle pa
No matter what the intensity and sign of the potential is,
positive- and the negative-energy solutions never meet
other. Thus there is no room for transitions from positive-
negative-energy solutions. This all means that Klein’s para
never comes into the scenario.

The solutions forE = ±mc2, excluded from the Sturm
Liouville problem, can be obtained directly from the Dir
equation(2). One can observe that such isolated solutions,
E = +mc2, are

ψ− = N− exp
[−v(x)

]
,

(6)ψ ′+ − v′ψ+ = +i
2mc

h̄
N− exp

[−v(x)
]

and, forE = −mc2,

ψ+ = N+ exp
[+v(x)

]
,

(7)ψ ′− + v′ψ− = −i
2mc

h̄
N+ exp

[+v(x)
]
,

where N+ and N− are normalization constants andv(x) =∫ x
dy V (y)/(h̄c). Of course well-behaved eigenstates are p

sible only ifv(x) has an appropriate leading asymptotic beh
iour.

3. The kink-like potential

Now let us concentrate our attention on the potential

(8)V = h̄cγg tanhγ x,

whereγ and the dimensionless coupling constant,g, are real
numbers. The potential is invariant under the changeγ → −γ

so that the results can depend only on|γ | whereas the sign ofV
depends on the sign ofg. Since the solutions for different sign
of g can be connected by the charge conjugation transfo
tion, and by the chiral transformation in the event of mass
fermions, we restrict ourselves to the caseg > 0.

The Sturm–Liouville problem corresponding to Eq.(5) be-
comes

(9)− h̄2

2meff
ψ ′′± + V

[±]
eff ψ± = Eeffψ±,

where we recognize the effective potential as the exactly s
able symmetric modified Pöschl–Teller potential[29–33] (in
the notation of Refs.[31,32])

V
[±]
eff (x) = −U

[±]
0 sech2 γ x,

(10)U
[±]
0 = h̄2γ 2

2meff
g(g ∓ 1) > 0 ⇒ g > 1

whose normalizable eigenfunctions corresponding to bou
state solutions, subject to the boundary conditionsψ± = 0 as
|x| → ∞, are possible only if the effective potentials for bo
ψ+ andψ− present potential-well structures. According to(10),
e
re
.

h

x

r

-
-

-
s

-

-

this demands thatg > 1. The corresponding effective eigene
ergy is given by

(11)Eeff = E2 − m2
effc

4

2meffc2
= − h̄2γ 2

2meff
(s± − n±)2,

where

(12)s± = 1

2

(
−1+

√
1+ 8meffU

[±]
0

h̄2γ 2

)
⇒

{
s+ = g − 1,

s− = g,

(13)n± = 0,1,2, . . . < s±,

(14)meff =
√

m2 +
(

h̄γg

c

)2

.

Notice thatV [±]
eff is an even function underx → −x. Further-

more, Eqs.(12) and (13)show that the capacity of the potent
to hold bound-state solutions is independent ofγ . As for g, it
can be seen that the number of allowed bound states dep
linearly ong and there is always at least one bound-state
lution for anyg > 1. From(10) and (11)one can note that th
Dirac eigenenergies related to the bound-state solutions a
stricted to the range

(15)
√

m2c4 + (h̄cγ )2g < |E| <
√

m2c4 + (h̄cγ )2g2

and that the eigenenergies in the range

|E| >
√

m2c4 + (h̄cγ )2g2

correspond to the continuum. Since the positive- and nega
eigenenergies never intercept each other, one can see once
that Klein’s paradox is absent from this picture. In order
match the common effective eigenvalue for the effective
tentialsV

[+]
eff andV

[−]
eff one can see from(12) and (13)that the

following constraint

(16)an = s+ − n+ = s− − n− = g − 1− n+
must be satisfied. Eq.(16) implies that the quantum numbe
n+ andn− satisfy the relation

(17)n− = n+ + 1.

This last fact can be better understood by observing thatV
[+]
eff

is deeper thanV [−]
eff . Now, (11)–(14)tell us that

(18)E = ±
√

m2c4 + (h̄cγ )2
(
g2 − a2

n

)
,

where

n+ = 0,1,2, . . . < g − 1.

The upper and lower components of the Dirac spinor can
written as (see Ref.[32])

ψ± = N±2an	

(
an + 1

2

)√
|γ |an

π

	(n± + 1)

	(n± + 1+ 2an)

(19)× (
1− z2)an/2

C
(an+1/2)
n± (z),

wherez = tanhγ x andC
(a)
n (z) is the Gegenbauer (ultrasphe

ical) polynomial of degreen. SinceC
(a)
n (−z) = (−)nC

(a)
n (z)
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and C
(a)
n (z) hasn distinct zeros (see, e.g.,[34]), it becomes

clear thatψ+ and ψ− have definite and opposite parities,
expected, and the nodes ofψ+ andψ− just differ by ±1 ac-
cording to(17). The constantsN+ andN− are chosen such tha∫ +∞
−∞ dx |ψ±|2 = |N±|2 and their absolute values can be det

mined by substituting(19) directly into the original first-orde
coupled equations(2) and demanding a Dirac spinor norma
ized to unity. By using a couple of recurrence relations invo
ing the Gegenbauer polynomials (see, e.g., Ref.[34]) one can
find that

(20)|N±| =
√

E ± mc2

2E
.

Turning now to the isolated solutions, one can observe f
(6) and (7)that a normalizable isolated solution is possible o
if the upper component of the spinor vanishes andE = −mc2.
The normalized Dirac spinor can be written as

(21)ψ =
√

|γ |√
π

	(g + 1/2)

	(g)

(
1− z2)g/2

(
0
1

)
.

Note that the lonely hump probability amplitude does exist
dependently of the strength ofg. One can also note thatOψ = 0
such that there is no state withE = +mc2 (for g > 0).

4. Conclusions

We have succeeded in obtaining the complete set of e
bound-state solutions of fermions in the background of a k
like potential. Except for the solutionE = −mc2, the kink-like
potential presents a spectral gap equal to

2
√

m2c4 + (h̄cγ )2(2g − 1).

SinceC
(a)
0 (z) = 1 (see, e.g.,[34]) one can see that the pos

tion probability amplitude corresponding to the isolated so
tion given by(21)can be written in the very same mathemati
structure of the remaining amplitudes. Thus, one could sus
that the isolated solution is just a particular case and tha
existence is due to the particular method used in this Le
However, the isolated solution has some distinctive chara
istics when compared to the solutions of the Sturm–Liouv
problem which lead us to believe that, in fact, they belong
a different class of solutions. The isolated solution breaks
symmetry of the energy levels aboutE = 0 exhibited by the
solutions of the Sturm–Liouville problem, and the correspo
ing eigenspinor has only one component differing from zero
is this asymmetric spectral behaviour that leads to the frac
alization of the fermion number in quantum field theory[25].
Furthermore, unlike the Sturm–Liouville solutions, the isola
solution is there even if the kink-like potential is not so stro
i.e., there exists an isolated solution even ifg � 1.

For massless fermions, except forE = 0, the spectral gap
equals to 2̄hc|γ |√2g − 1 and the Dirac Hamiltonian anticom
mutes withσ3 in such a way that the positive- and negativ
eigenenergy solutions can be mapped by the operationψ−E =
σ3ψE . The charge self-conjugate solution given by(21) ap-
pears now in the center of the spectral gap. As a matte
ct
-

-

ct
s
r.
r-

e

-
t
-

,

f

fact, the kink-like potential used for massless fermions a
solitonic scalar coupling[35] (of course one cannot distinguis
a pseudoscalar from a scalar coupling for massless ferm
was used originally to show the generation of fractional ferm
number from the charge self-conjugate solution.

It is noteworthy that the width of the position probabili
density for both class of solutions decreases as|γ | or g in-
creases. As such it promises that the uncertainty in the pos
can shrink without limit. It seems that the uncertainty prin
ple fails since such a principle implies that it is impossi
to localize a particle in a region of space less than hal
its Compton wavelength (see, for example,[36]). This appar-
ent contradiction can be remedied by resorting to the con
of effective Compton wavelength defined asλeff = h̄/(meffc).
Hence, the minimum uncertainty in the position consonant w
the uncertainty principle is given byλeff/2 whereas the maxi
mum uncertainty in the momentum is given bymeffc. It means
that the localization of a neutral fermion under the influe
of the kink-like potential can shrink to zero without spoilin
the single-particle interpretation of the Dirac equation, eve
the trapped neutral fermion is massless. It is true that as|γ |
or g increases the binding potential becomes stronger, tho
it contributes to increase the effective mass of the fermio
such a way that there is no energy available to produce ferm
antifermion pairs.

As mentioned in the Introduction, the anomalous magne
like coupling in the four-dimensional world turns into a pseu
scalar coupling in the two-dimensional world. The anomal
magnetic interaction has the form−iµβ �α · ��φ(r), whereµ is
the anomalous magnetic moment in units of the Bohr magn
andφ is the electric potential, i.e., the time component of a v
tor potential[26]. In one-plus-one dimensions the anomalo
magnetic interaction turns intoσ2µφ′, then one might conside
the kink potential as coming from an electric potential prop
tional to ln(coshγ x)g . Therefore, the problem addressed in t
Letter could be considered as the one of trapping neutral fe
ons by a bowl-shaped electric potential.
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