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Trapping neutral fermions with kink-like potentials

Antonio S. de Castr®®, Marcelo Hott*

& Universidade de Coimbra, Centro de Fisica Computacional, P-3004-516 Coimbra, Portugal
b UNESP, Campus de Guaratingueta, Departamento de Fisica e Quimica, 12516-410 Guaratingueta, SP, Brazl

Received 6 July 2005; received in revised form 11 November 2005; accepted 14 November 2005
Available online 21 November 2005

Communicated by P.R. Holland

Abstract

The intrinsically relativistic problem of neutral fermions subject to kink-like potentialsafihy x) is investigated and the exact bound-state
solutions are found. Apart from the lonely hump solutions fot= +mc?, the problem is mapped into the exactly solvable Sturm-Liouville
problem with a modified P6schl-Teller potential. An apparent paradox concerning the uncertainty principle is solved by resorting to the conce
of effective mass and effective Compton wavelength.

0 2005 Elsevier B.V. All rights reserved.

1. Introduction cently Pacheco et 18] studied a few thermodynamic prop-
erties of the 1+ 1 dimensional Dirac oscillator, and a general-
The four-dimensional Dirac equation with an anomalousization of the Dirac oscillator for a negative coupling constant
magnetic-like (tensor) coupling describes the interaction ofvas presented in Ref19]. The two-dimensional generalized
neutral fermions with electric fields and can be reduced tdirac oscillator plus an inversely linear potential has also been
the two-dimensional Dirac equation with a pseudoscalar couvaddressed in Ref20].
pling when the fermion is limited to move in just one direction.  In recent papers, Villalbf21] and McKeon and Van Leeu-
Therefore, the investigation of the simpler Dirac equation in aven [22] considered a pseudoscalar Coulomb potential(
1+ 1 dimension with a pseudoscalar potential might be relevant /) in 3+ 1 dimensions and concluded that there are no bound
to a better understanding of the problem of neutral fermionstates. The reason attributed in REF2] for the absence of
subject to electric fields in the more realistig-3 world. bound-state solutions is that the different parity eigenstates mix.
The states of fermions in one-plus-one dimensions bound biurthermore, the authors of R§22] assert thathe absence of
a pseudoscalar double-step poteritldland their scattering by  bound states in this system confuses the role of the 7z -meson in
a pseudoscalar step potentjd] have already been analyzed the binding of nucleons. Such an intriguing conclusion sets the
and some quite interesting results have been found. Indeed, teage for the analysis by other sorts of pseudoscalar potentials.
two-dimensional version of the anomalous magnetic-like interA natural question to ask is whether the absence of bound-state
action linear in the radial coordinate, christened by Moshinskyolutions by a pseudoscalar Coulomb potential is a characteris-
and Szczepanigl] as Dirac oscillator and extensively studied tic feature of the four-dimensional world. In R§E9] the Dirac
before[4-13], has also received attention. Nogami and Toyamaquation in one-plus-one dimensions with the pseudoscalar
[14], Toyama et al[15] and Toyama and Nogarfi6] studied  power-law potential/ = p|x|® was approached and there it was
the behaviour of wave packets under the influence of that parityconcluded thav is a binding potential only fa$ > 0. That con-
conserving potential whereas Szmytkowski and Gruchowskglusion sharply contrasts with the result found2@]. Ref.[19]
[17] proved the completeness of the eigenfunctions. More reshows that it is possible to find bound states for fermions inter-
acting by a pseudoscalar potential ir-1L dimensions despite
Torresponding author. the fact that the spinor is not an eigenfunction of the parity op-
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The parity-conserving pseudoscalar potentialanhy x is  for the potentialV theno1y* is a solution with eigenenergy
of interest in quantum field theory where topological classical-E for the potential-V. It is interesting to note that the op-
backgrounds are responsible for inducing a fractional fermioreration of just interchanging the upper and lower components
number on the vacuum. Models of this kind, known as kinkof the Dirac spinor induced byy°y preserves the eigenen-
models, are obtained in quantum field theory as the continergies for a massless fermion whé&h— —V. One can also
uum limit of linear polymer modelfR23—25] To the best of our see that the operatd? = i[H, 03]/2 anticommutes wittH so
knowledge, no one has computed the complete set of bourtiat it maps positive- into negative-energy solutions, and vice
states in the presence of this sort of potential. The presemersa. Although this last operator does not preserve the norm
work investigates the bound-state solutions of fermions imfor scattering states, it can be used to obtain the normalized
mersed in the background of the pseudoscalar poteWitial  states corresponding to eigenenergids from the knowledge
hcygtanhyx, termed kink-like potential. A peculiar feature of of the normalized states with eigenenergies
this potential is the absence of bound states in a nonrelativistic In the nonrelativistic approximation (potential energies
theory because it gives rise to an ubiquitous repulsive potentiakmall compared te:c? and E ~ mc?) Eq. (2) becomes
The whole spectrum of this intrinsically relativistic problem

is found analytically, for both massive fermions and masslesg,_ — (L + i%)@ﬂ ©)
fermions. Fortunately, apart from solutions corresponding to 2mc  2mc

|E| = mc?, the problem is reducible to the finite set of solu- K2 d2 vZ RV’ )

: vist ic modified( 5= 7 + 53 + 5 ) ¥+ = (E —mc®)vs. )
tions of the nonrelativistic exactly solvable symmetric modified\ ~2,,, 752 " 2:c2 " 2me

Pdschl-Teller potential for both components of the Dirac spinor ) ]

subject to a constraint on their nodal structure. Finally, we obEd- (3) shows thaty._ is of orderv/c < 1 relative toy.,
serve a remarkable feature of this problem: the possibility of"d EQ-(4) shows thaty,, obeys the Schrédinger equation.
trapping a fermion with an uncertainty in the position that canNOt€ that the pseudoscalar coupling has the effect that the

shrink without limit as|y| and |g| increase without violating Schrodinger equation has an effective potential in the nonrela-
the Heisenberg uncertainty principle. tivistic limit, and not the original potential itself. Indeed, this is

the same side effect which in(@+ 1)-dimensional space—time
makes the tensor linear potential to manifest itself as a harmonic
oscillator plus a strong spin—orbit coupling in the nonrelativis-
tic limit [3]. The form in which the original potential appears
in the effective potential, th& 2 term, allows us to infer that
even a potential unbounded from below could be a confining
potential. This phenomenon is inconceivable if one starts with
the original potential in the nonrelativistic equation.
Hy =Ev¥, H=cap+ Bmc®+ By°V, 1) It should be noted that — V + const in the Dirac equation

) o ) ] and in its nonrelativistic limit does not yiel# — E + const.
whereE is the energy of the fermiom, is the velocity of light  Therefore, the potential and the energy themselves and not just
andp is the momentum operator. The positive definite functionihe potential and energy differences have physical significance.
[wI> = ¢y, satisfying a continuity equation, is interpreted | a5 already been verified that a constant added to the screened
as a position probability density and its norm is a constant ot 5y10mb potential27] or to the inversely linear potentig28]
moti.on. This interpretation is completely satisfactory for single-;g undoubtedly physically relevant. As a matter of fact, it plays
particle state¢26]. We usex = o1 andp = o3, whereoy and 5 crycial role in ensuring the existence of bound states.
o3 are Pauli matrices, anly® = 0. Provided that the spinor For E # +mc?, the coupling between the upper and the
is written in terms of the upper and the lower componegts,  |ower components of the Dirac spinor can be formally elim-

2. TheDirac eguation with a pseudoscalar potential
inal+1dimension

The (1 4+ 1)-dimensional time-independent Dirac equation
for a fermion of rest masa coupled to a pseudoscalar potential
reads

andy . respectively, the Dirac equation decomposes into:  jnated when Eqs(2) are written as second-order differential
(—E £ me?) s = ihey, £V, (2 cauations:
2 2 2 2.4

where the prime denotes differentiation with respeck tdn —h—lﬂl " (V_ " EV’) . E? —m?c e 5)
terms ofy,. andy_ the spinor is normalized as 2 2c27 2 2c2
+00 This last result shows that the solution for this class of prob-
/' dX(Ilﬂ 24w |2) -1 lem consists in searching for bound-state solutions for two

* B Schrddinger equations. It should not be forgotten, though, that
- the equations foty or ¢_ are not indeed independent be-

so thaty, and+_ are square integrable functions. It is clear causeE appears in both equations. Therefore, one has to search
from the pair of coupled first-order differential equations givenfor bound-state solutions for both signs(#) with a common

by (2) that v, and y_ have definite and opposite parities eigenvalue. At this stage one can realize that the Dirac energy
if the Dirac equation is covariant under— —x, i.e., if the levels are symmetrical abo#t = 0. This means that the po-
pseudoscalar potential function is odd. The charge conjugatiotential couples to the positive-energy component of the spinor
operation requires that if’ is a solution with eigenenergi in the same way it couples to the negative-energy component.
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In other words, this sort of potential couples to the mass of théhis demands that > 1. The corresponding effective eigenen-
fermion instead of its charge, so that there is no atmospherergy is given by

for the spontaneous production of particle—antiparticle pairs. 5 P 2 2

. . . . E“ —msxc h
No matter what the intensity and sign of the potential is, theg 4 — efzf - (54 —ny)?, (11)
positive- and the negative-energy solutions never meet each 2meftc 2mett

other. Thus there is no room for transitions from positive- towhere

negative-energy solutions. This all means that Klein's paradox BN
never comes into the scenario. 1 8meftUyg sy =g—1,
. 2 se=5| -1+ 1+ ——>— | = (12)
The solutions forE = £mc*, excluded from the Sturm-— 2 hey2 s_=g,

Liouville problem, can be obtained directly from the Dirac . =0,1,2,... < s, (13)

equation(2). One can observe that such isolated solutions, for >

E =+mc?, are Meft = | m2 + (_hyg) . (14)
C

Y_=N_exg—v(x)],

Notice thatVeEff] is an even function under — —x. Further-

vl =Yy = +i%N_ exp[—v(x)] (6) more, Eqs(12) and (13show that the capacity of the potential
h to hold bound-state solutions is independenyofAs for g, it
and, forkE = —mc?, can be seen that the number of allowed bound states depends
linearly ong and there is always at least one bound-state so-
Vi = Nyexpg+v(x)], lution for anyg > 1. From(10) and (11)one can note that the
2 Dirac eigenenergies related to the bound-state solutions are re-
vy = —i— =Ny exg+v(x)], (7)  stricted to the range

where N, and N_ are normalization constants andx) =  ,/m2c%+ (hicy)2g < |E| < \/m2c* + (hcy)2g? (15)

[*dy V(y)/(hc). Of course well-behaved eigenstates are pos- . L
sible only if v(x) has an appropriate leading asymptotic behav-and that the eigenenergies in the range

our. |E| > /m2c* + (hicy)2g?

3. Thekink-like potential correspond to the continuum. Since the positive- and negative-
eigenenergies never intercept each other, one can see once again
Now let us concentrate our attention on the potential that Klein’s paradox is absent from this picture. In order to
match the common effective eigenvalue for the effective po-
V = heygtanhyx, (8) tentialsV.t! and vl one can see frortl2) and (13)hat the

. . . following constraint
wherey and the dimensionless coupling constantare real

numbers. The potential is invariant under the chapge —y ap=8sy —ny=s_—n_=g—1—ny (16)
so that the results can depend only|ghwhereas the sign df
depends on the sign gt Since the solutions for different signs
of g can be connected by the charge conjugation transform
tion, and by the chiral transformation in the event of masslesg_ =, 4 1. (17)
fermions, we restrict ourselves to the cgse 0.

The Sturm-Liouville problem corresponding to K§) be-

must be satisfied. Eq16) implies that the quantum numbers
Qi+ andrn_ satisfy the relation

This last fact can be better understood by observing Vééf

comes is deeper tharVe[f?]. Now, (11)—(14)tell us that
n? 2.4 2(p2 _ 42
— 5, VL + Vi W = Eerfz. © E=:%/m2c+ (hey)2(g? —a?), (18)
eff

. ) ) where
where we recognize the effective potential as the exactly solv-

able symmetric modified Pdschl-Teller poten{iad-33] (in n.=0,1,2,...<g— 1

the notation of Ref431,32) The upper and lower components of the Dirac spinor can be

Ve[fﬂfc] (x) = _Uc[)i] secK yx, written as (see Ref32])

24,2 1 lv|a F(ny+1)
Y 1)>0 1 10 = N2 (a4 2 ) [ £
Uy 2m‘eﬁs,f(gﬂF )>0 = g> (10) Y+ =N+ an + 3 x Toa+ilt2a)
whose normalizable eigenfunctions corresponding to bound- < (1—z2)“"/2c,51"+1/2>(z), (19)

state solutions, subject to the boundary conditigns= 0 as @
Ix| — oo, are possible only if the effective potentials for both wherez = tanhyx andC," (z) is the Gegenbauer (ultraspher-
¥ andy_ present potential-well structures. According10), ical) polynomial of degree:. SinceC,(f')(—z) = (—)”C,(,“)(z)
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and C,ﬁ“)(z) hasn distinct zeros (see, e.g34]), it becomes fact, the kink-like potential used for massless fermions as a
clear thaty, andy_ have definite and opposite parities, as solitonic scalar couplin§35] (of course one cannot distinguish
expected, and the nodes ¢f. andv_ just differ by 1 ac- a pseudoscalar from a scalar coupling for massless fermions)
cording to(17). The constant®/, andN_ are chosen such that was used originally to show the generation of fractional fermion
ff;o dx |¥+|? = |N+|2 and their absolute values can be deter-number from the charge self-conjugate solution.

mined by substituting19) directly into the original first-order It is noteworthy that the width of the position probability
coupled equation§?) and demanding a Dirac spinor normal- density for both class of solutions decreasegjdsor g in-

ized to unity. By using a couple of recurrence relations involv-creases. As such it promises that the uncertainty in the position
ing the Gegenbauer polynomials (see, e.g., [B8f]) one can can shrink without limit. It seems that the uncertainty princi-

find that ple fails since such a principle implies that it is impossible
5 to localize a particle in a region of space less than half of
INL| = | E£mc _ (20) its Compton wavelength (see, for exam@6]). This appar-
2E ent contradiction can be remedied by resorting to the concept

Turning now to the isolated solutions, one can observe fron®f effective Compton wavelength defined &g = i/ (meftc).
(6) and (7)that a normalizable isolated solution is possible onlyHence, the minimum uncertainty in the position consonant with
if the upper component of the spinor vanishes @ng —mc¢2.  the uncertainty principle is given byeri/2 whereas the maxi-

The normalized Dirac spinor can be written as mum uncertainty in the momentum is given faysc. It means
that the localization of a neutral fermion under the influence
v Iyl T(g+1/2) (1- 2)g/2 (O) 21) of the kink-like potential can shrink to zero without spoiling
Jro T(2) 1) the single-particle interpretation of the Dirac equation, even if

Note that the lonely hump probability amplitude does exist in—the t'rapped heutral .fer'mlon IS m'assless. Itis true thayas
or g increases the binding potential becomes stronger, though,
dependently of the strength gf One can also note théty =0 . . . . L
. 4 2 it contributes to increase the effective mass of the fermion in
such that there is no state with= +mc~ (for g > 0). . ; .
such away that there is no energy available to produce fermion—
antifermion pairs.
As mentioned in the Introduction, the anomalous magnetic-

We have succeeded in obtaining the complete set of exag{(e coupling in the four-dimensional world turns into a pseudo-

bound-state solutions of fermions in the background of a kinkScalar c_ou_pllng n the two-d|mens.|0nall V\iorld' The anomalous

like potential. Except for the solutiofi = —mc2, the kink-like ~ Magnetic interaction has the formyupa - V¢ (r), wherep is

potential presents a spectral gap equal to the an_omalous mggnenc r_norr_1ent in unlts of the Bohr magneton
andg is the electric potential, i.e., the time component of a vec-

2\/,"264_,_ (hey)2(2g — 1). tor potential[26]. In one-plus-one dimensions the anomalous
magnetic interaction turns int®u¢’, then one might consider

SinceCé“)(z) =1 (see, e.g.[34]) one can see that the posi- the kink potential as coming from an electric potential propor-

tion probability amplitude corresponding to the isolated solu-ional to In(coshy x)8. Therefore, the problem addressed in this

tion given by(21) can be written in the very same mathematicalLetter could be considered as the one of trapping neutral fermi-

structure of the remaining amplitudes. Thus, one could suspecns by a bowl-shaped electric potential.

that the isolated solution is just a particular case and that its
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