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Abstract

Exact solutions for the Lipkin—-Meshkov—Glick (LMG) model Hamiltonian are obtained by solving the
Bethe ansatz equation (BAE) which is derived from the variation equation based on the Bethe ansatz.
Unlike Pan and Draayer, we do not use bosonization and infinite-dimensional algebra techniques. Conse-
quently there are no restrictions on parameters specifying strengths of the interactions included in the LMG
Hamiltonian. Thus, for all the regimes of the interaction parameters, we get the exact solutions for the LMG
Hamiltonian by numerically solving the BAEs and give the numerical behaviour of an order paraﬁrj’eter
0 2006 Elsevier B.V. All rights reserved.

1. Introduction

For the past four decades, an approach to the exact solution of the BCS [foplelposed
by Richardson has shed light on theoretical developments in wider fields of quantum many-body
physics[2,3]. He has shown that it is possible to determine simultaneously the eigenvalues and
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the eigenstate of the BCS Hamiltonian from the solution of the algebraic equations, called the
Bethe ansatz equation (BAE]. Very recently, his method for the exact solution of the BAE

has attracted much theoretical attention, because the BAE is gradually recognized to enrich the
mathematical structures of the solutions in connection with the Gaudin’s rfjdtie integrable
models[6] and the conformal field theofy]. Also in a practical way his method is expected to
open a new field for the exploration of superconducting nature of ultrasmall metallic {Bhins

If his method is used, it is, however, not so easy to calculate the expectation value of the Hamil-
tonian. It may become easily tractable if we introduce auxiliary fermion operators in addition
to the original fermion ones. To show the effectiveness of our method, we will apply it to the
Lipkin—Meshkov—-Glick (LMG) mode[9].

The LMG model is also exactly soluble. Pan and Draayer (PD) showed that its exact solution
can be constructed by the BAEQ]. It has often been used as a simple but important model to
clarify essential features of various methods and approximations and to illustrate their validity
and effectivenesgl 1,12] The LMG Hamiltonian is given as

n

V n n
H= g Z(chH - C;—Ci—) ) Z Z(CLC;JFCV—Q— + CLC:’—C!'%CH)
i=1 i=1i'=1

Wt ot tot
-5 Z Z(ci+ci,_ci/+ci_ + cifcl.,_‘_c,-/_c,-_,_), (1.2)
i=1i'=1

Wherec;rg (cio) is a fermion creation (annihilation) operator of particle with the sted@do

(0 =+, —). The integer parameterdenotes the number of values, the quantum numbean
assume. For the case Bf = 0, analytical and numerical studies of this model had been made
extensively. For example, see REf2]. However, for the general case of all the regimes of the
interaction-strengthy’ and W, a search for analytical and numerical solutions has not been
pursued. Only for the case &f2 > V2, PD derived the BAE after bosonization and obtained
analytical expressions for the exact solutions by a method of infinite-dimensional loop algebra
but without central extension. They, however, could obtain no analytical solutiofig%er V2.

This problem is not solved yet. But it can be solved without the use of bosonization or infinite-
dimensional algebra techniques, unlike the PD approach.

In this paper we derive the BAE to obtain exact solutions of the LMG model for the most
general case includin$y’? < V2. Departing from the PD approach standing on the affine Lie
algebrasu(1, 1) for bosons but along a way similar to the Richardson’s approach, we can easily
get the BAE from a variational equation for the wavefunctions, if we introduce auxiliary fermion
operators in addition to the original fermion operators. The BAE obtained here avoids the strong
restriction governing the relations between parameters in the PDs BAE.

The paper is organized as follows: In Sectrwe express eigenstates of the LMG Hamil-
tonian as product forms of building blocks. In Sect®d, the BAE and analytical expressions
for the exact solutions of the LMG Hamiltonian are derived from the variational equation, for
the casen = even; A-series. For the cage= even; B-series, they are given in Sect®2. In
Sectiond, we illustrate the behaviour of the eigenvalue spectra and the order paraﬁ;?etefor
all cases. Finally, in Sectids we give a discussion and some concluding remarks. The solutions
for the case: = odd are given iiAppendix A
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2. Construction of eigenstates by using the Bethe ansatz

Let us introduce auxiliary fermion creation—annihilation operatﬂ)lEs and d, and use
two kinds of auxiliary vacuumg0)) satisfying d;,|0)) = 0 and |vag) defined by|vag) =
d,:r_ .- -dI_|0)), respectively. This is done in parallel to the usual manner that we introduce two

kinds of ordinary vacuums as, |0) = 0 and|vac = c,L e cL|O). We further define pair op-

eratorSa;r anda; aSal-T = c;r+c,~, ® 14 andg; = c;r_clur ® 14, wherel, is a unit operator in the

d-fermion space- - -)) and1 is the usual unit operator. We also introduce auxiliary pair operators
b;r andb; asb;r = ditrd,-, andb; = df_d,»+. Then, we have the identitie&%aiT =0 andb;rb;r =0
anda; |Vac) = 0 andb; [vag) = 0 where|Vac) = |[vad ® |vac).

The eigenstatelz) of the LMG model with 2 particle-states are spanned by linear combina-
tions of the states;[c,n "’ch1|0) (o =+, —). To construct the eigenstatps in product forms
of building blocks, it is convenient to introduce the following mapping

p:clTU — c;ra ®b;r, 0 Cio > Cig @ b;, 0:10) — |0) ® [vaog). (2.1)
Then, we have an important mapping rule for mathematical manipulations,

piCho el 10> [y, el ® b1 -+ b][10) ® [vag)]

- < [1 ch) ®b;r~--bﬂ[|vac) ® |vag)]
_ <c,1,,.i=c?+>

- ( [ cic-® 11) (1 ®b2-~-b[)}|Vac)
_ <cl,,.ic,l>

_[ I1 aj} (1®b)---bl)Vag). (2.2)
_(c;r(,l.;cH)

Two kinds of eigenstates can be constructed, which are classified into an A-series and a B-series.
The eigenstates belonging to the A-series are given by a linear combination of states containing
even numbers of) signs in configuratiorjoy, ..., 0,} and the B-series eigenstates with odd
numbers of ) signs in the{oy, ..., 0, }. From the above, any eigenstate belonging to A-series
(B-series) can be mapped to a state expressed as a linear combination of statevectors which are
generated by even (odd) numberszz?ifs acting on(1 ® b,;r . -bI)|Vac).

Define the statén), through the mapping of the eigenstat¢:) of the LMG model. Then,
the statgn), can be expressed as the product form of building bldgksD and A:

]_[’j/=1 B, |Vac) (for n = evenn’ = 5; A-series,
iy, = By=3i1 Ya(Afala) + ADA @ b[b)). 23
g ]_[’5;1 B,DAVac) (forn=evenn” =7 — 1; B-series,
D=Y" 1®bH),A=Y"_1al(1&b),
Iy, = ]’[ﬁil B,D|Vac) (forn=oddn"” = %(n —1); A-series, 2.4)
| I, ByAIVag)  (for n = odd n"” = (n — 1); B-series.
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3. Solutions of the LM G model Hamiltonian
3.1. Solution for the case n = even; A-series

The statgn), in the upper case dR.3)is expanded in terms of the statéﬁ%n ~~-ch1|0) ®
b;[ . --bI|vac)) as

n)p =NZ</71,.‘.,0,, p(o1,..., on)c;rwn ...cLl|O) ®bl .. .bI|VaC)), } (3.1)

N=[X, lp(o1, ..., <7,1)|2]_1/2 (normalization factor

-------

where)_" means the sum over all the possible terms with even numbenafign in the configu-
ration{o1, ..., 0,}. The expansion coefficiegt(o1, ..., 0,) can be regarded as a wave function.
From(2.3) and (3.1)we get the explicit form of the wave function in termsA)i andA§ as

p(o1,...,0n0) =m!(n — m)' /)' Z A A}D /A2 -A%ﬂ/, (3.2)

m'! (n' — Purgr’

wherem is the number of+) sign in the{ot, ..., 0,,} andm’ =m/2 and)_ , P is the sum over
then’! permutations of the indices 1., n'.
Since the mapping by is one-to-one as seen below,

/
p: Z 901, O, -1, [0)

> Z (01, ... on)chy, -1 0) ® b) - bl |vac)), (3.3)

.....

if we can get all thep(al, ...,0p), the statgn) is completely determined. Giving only a num-
ber m, the corresponding wave functian can be solved independently on the configuration
{01, ..., 0,,}. Denote such a solution simply @§™. From the variation equation

8(n|H—Eln)  8(n|H — Eln)
8 (o1,...,00) 89 (01,...,0p)
the relations among™ (o4, ..., 0,) form =0, 2, ..., n are derived in the following form:

—0, (3.4)

={-'—m)e+m'e - E}(p(m)(al,...,on)

—VZ Z go(m+2)(al,...,[—ok],...,[—ol],...,on)

k [ (k<l)
(ox=01=—)
—Vvy > 9" P(on... (=0l =0, 0n)
k I (k<l)
(ox=01=+)
WY Y 0™ (on.. =0kl [0t 0n) (3.5)
k 1 (k#1)
(ox=—01)

and its complex conjugate.
In the above, the pair[{-ox], [—o;]} stands for values with opposite sign to those of the pair
{[ox], [07]} in the original configuration{o1, ..., 0,}. The second term, the third and the last in
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the right-hand side are given by sums o%en —m)(n—m-—1) terms,%m(m — 1) terms and
m(n — m) terms, respectively.
Substitution of Eq(3.2)into Eq.(3.5)for m’ =0, ..., n’ leads to

O={—(n—me+m'e— E}ZP[]_[A,ﬁ]_[AE}
P W v
_ %(n —m)(m + 1)2P[A};m/+lnAt [ A%}
P n

v

vEP, 1
v 2 1 2
_ E(n—m+1)mZP[A A B
P 2 v
M¢P)ﬂ/

— Wm(n _m)ZP[HAinAE]
P M v
=2 P[[{—(n/ —mye+m'e = E—Wmn—m)}ab A3
P

— V' +1)n - m/)Alm,A}Jm,H —vm'[2(n' —m') + 1}A%m/A2

/11/+l]

x ]_[ AL ]_[ Aﬂ, (3.6)
"

v
/L?éPm’ U#qu’l

/ P !/ -
where we have denoted the product symlﬂf;; p and[ ]2 P as[[, and]],, respectively.
To derive explicitly the BAEs, we will consider the following two cases.

The case (1) oV £ +V.
Let the forms ofA} andA? be

At P P2 3.7)
J 1—b1xj’ J 1—b2xj' '
We assume that the above sets of quantitbesb2) and (81, B2) satisfy the relations
b1=p1%,  b2= B2
Bi’+B _ 2w (3.8)
BiB2 v

and thatx; is a complex-number to be determined. The second relatiqi3i8)is very similar to

the relation adopted by PD for preserving the affine Lie algela¢a, 1) without central extension

[10]. Ours, however, avoids the strong restriction due to the affine Lie algebra. We also assume
the eigenvalué to be

_ PP+ /6+{

2 1

1
B1B2 B2 —
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Substituting Eqs(3.7), (3.8) and (3.9nto Eq.(3.6)for m’ =0, ..., n/, itis rearranged as

0= Zp[ﬁ—lz > =V
P i=1

P12 — B2V ) xi

n’
4 2 e\ 1l
x! > +;31A,.1+;32A,?+((n—1)+ Frpe —>—}
Xk = Xi
k=1 (ki)

n

x ]_[A,i]_[A§+ﬂ—1l Y. =V

n j=m’'+1
e /

X: > »+/31A}+52A§+<(n—1)+ 2p12 6>x1}
J

_ _ 22 _ p2
k=1(k#)) Xk x] 131 ﬂz Vv

<[145 11 A§i| (3.10)
g

in which, to our surprise, there appears a common term contained in the curly blackest. Then,
Eq. (3.10) is satisfied if the common term vanishes. Thus, we reach the BAE to detexmine
(j=1,...,n)as

2 €)1 2 2 " 4

Zﬂlﬂzzv} + ,312 - /322 - 3 A e

B1 B2 Xj — B1x; — B2°x; k=1 (k#)) k J

through which the eigenvalue and the corresponding eigenstate are gi{@9pgnd (3.7)
The case (2) oV =+V.
In this case we assume

{(n—1)+

_ _ upper sign fow =V,
ba=—b1, Pa==+p1 { lower sign forw = —V, (3.12)

/

\% \%4
E:q:EnZ:I:En—i—eblej. (3.13)
j=1
Using these relations, E@.6)for m’ =0, ..., n’ is transformed to

Bo & 4 by b

0= P =) (-V) + =ty 2 Azj:bl— AT T A2

XP: |:b2; (le:'xk_xi b P2 H MH '

i= =1(k#i) /;éi v
"

n'
4 b by
§ (- V>< > -+t 2 Azibl—)]"[All_[Av},
Ljemia itpp TN P P2 B oz

(3.14)
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from which we get the BAE

€ by by “ 4
+b— + + =— Z . (3.15)
V  1-bix; 1—box; k=1 (k) Xk —Xj

3.2. Solution for the case n = even; B-series

The statejn), in the lower case 0f2.3) has as the same expression(@4) but the sum is
made for all the possible terms with odd numbersse §igns in the configuratiofvy, ..., o, }.
Then, we have

(p(m)(o-l’ ..y 0n)
—m'(n—m)'i;ZPAl AL A2 . A2 (3.16)
o ‘m’ (" —m")! > Py B =" Pt 1 B '
wherem” = (m — 1)/2 and)_, P is the sum over”! permutations of the indices 1.,n".
Applying again the variation equatid8.4), the wave functiong™ (o1, ..., 0,,) are required to
satisfy the same equation @s5)but form =1, 3, ..., n — 1. Substitution 0{3.16)into (3.5)for
m” =0,...,n" leads to

0= Z P|:[{—(n/ —me+m'e —E—Wm(n— m)}A})m”Af)m”+1
P

—V@n"+ 30" —m"Ay AL, V20" —m") +3)AF A% ]
1 2
<[] 4w ] A} (3.17)
M// v//
”’//#Pm” U//7£Pm”+1

where we have denoted the product symt]‘cl)l%}ipl and]'[f,’Z;P - as[],, and[],,, respec-

tively.

The case (1) oV # +V.

Along a way similar to the one in the previous subsection, using¥Ed)and the assumptions
(3.8)and

24 B2 1 2 "1
=_%;{’6—W(ﬂ—l)+{ (n—l)V+ﬁe}Z—, (3.18)
B1°— B2 B1B2 Pr°—B2" )i %
then, the BAE forj =1, ..., n"” becomes
2 1 32 36,2 4
{(n_1)+_2ﬂ1ﬂ2 2i}_ ﬂlz + ﬂzz == > (3.19)
Pr1°— 2"V ] x;  1-pa%x; 11— 2%k ket o) e X
The case (2) oV =+V.
Using Eq.(3.7)and the assumptior{8.12)and
E=vln2s Y +bi ; (3.20)
=F 2n 2n €by X .

j=1
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then, the BAE forj =1, ..., n"” becomes

"

€ 3b 3b i 4
S ) . (3.21)
V  1-bix; 1-—box; k=1 ) Xk —Xj

The solutions forn = odd are given ilAppendix A
4. Behaviour of eigenvalue spectra and (sz)

Let us introduce a dimensionless interaction-strength parametédr /e and a dimensionless
eigenvaluef = E /¢. For the case (2) oW =V, in all the regimes ob, the eigenvalue and the
eigenstate are described in the previous section. Now we consider two limiting cases; One is
v — 0 and the othepr — cc.

For the limiting case ob — 0, the eigenvalu€ of n particles system is given as follows:
E=-5,-5+2,-5+4,... (A-seriey, 41
E=—-3+1-5+3,... (B-series. D

The corresponding eigenstate is given by the usual eigenstate of angular momdniyim,

‘](: n>M> {M: —J,—J+2,—J+4, ... (A-seriey,

> M=—J+1-J+3,... (B-series. 2

For the strong coupling limit of — oo, the eigenvalu€ is given as follows:

1 1 2 =n' (n =even, A-series, |
E= <——v) v2 — (——v)n, n” (n = evern, B-series, | (4.3)
2 =n"" (n=o0dd), A-series Ill; B-series IV,

wherev=n —2r andr =0, 1, ..., 2. Due to(4.3), it turns out that fon = even the eigenvalue
becomes always two-fold degenerate except the levekoD and forn = odd the eigenvalue is
always two-fold degenerate.

Suppose; = 1 andby; = —1. The BAEs in Sectio and inAppendix Abecomes:

2
1 51 52 4 s1=13), s2=1(3), 1 ()
= - = ’ AV
U+1_xj 1+x; k:%:#)xk—xj’ {S1=1(3), s2=3(), Il (IV). (4.4)
Forz; =3 (j=1,...,%), Eq.(4.4)becomes
2
2 1 1
1- 3 . 2__o. (4.5)

. 2. T, .1
k=1(katj) <1 K 2zj—3 2zj+3

In the above equation when— oo, we can neglect the orde&? (1/v). Suppose th&s2 — r)
variablesz, 11, ..., z¢, are in0O(1/v) and the other variableszy, ..., z,, are inO(1). Then,
in the limit of v — oo, a part of the solutions of the BAE;y, ..., z,, satisfies

. 2 1(1
1- > ——{—(s1+s2)+2(9—r)}=0 G=1....r). (4.6)
_ N Zj 2k 2j 2
k=1(k#])
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The solutions of these equations are given by the zeros of the Sonine polyfit3nial], deter-
mined byLﬁ”)(%) = 0. The remaining solution is governed by an equation simild#é) but
without a term Jv.

We are now in the stage to investigate the behaviour of the order parameter of the LMG
model within the framework of the BAE. Let us introduce an angular momentum operator
Jy = %(J+ +Jo), Jy = Z?:1C;+Cl/_ =J' Forw = V, as an example, the order parame-
ter (Jf) = (nlez|n) for, the casen = even belonging to the A-series is computed to be

12|n>=i22: B B L P T e
2N\ 2 2 2

x Z Cho Clol 0), 4.7

----- On

(m 2k)

wherem is again the number of) sign in the configuratiofos, ..., 0,} and N is given soon
below. From(4.7) we have the final forms o(fJ2 and theN as

(72)= %{i <2k) (2;)¢(2k)* @&=2) 4 Z (Zk) (" _22k>¢(2k)*¢(2k+2)
o]

_ 2 n *
k=0

At a finite range ofv, the eigenvalue spectra, a terlé(m having been subtracted, exhibit
intermediate behaviour between those obtained at the two limiting cases mentioned above. In
Fig. 1, they are plotted versus the paramateat 0< v < 0.6 for n = 10 where the symbols AO,
etc., in the figure box mean the levels for the A-series, with0, etc. The behaviour is exactly
the same as that drawn by PID] except that the interaction-strength parameter is attractive, i.e.,
—v(v > 0). In Fig. 2, we show the order parametﬂf) as a function ob. It should be noticed
that its behaviour has strong resemblance to the one shown ifilRE#vhich has been obtained
by the resonating mean-field approximat[@s].

As pointed out in the previous section, only for the caséVdf> V2, PD have derived the
BAE and obtained the analytical expressions for the exact solutions by employing the techniques
of bosonization and infinite-dimensional loop algebra without central exteflsd$rThey, how-
ever, could obtain no analytical expressions #f < V2. This problem is not still solved yet.

In this paper with the use of the auxiliary fermion operator method, we have derived the BAE
to get the exact solutions of the LMG model for the most general regime includithg V2.

For the case (1) oW # V, the behaviour of the eigenvalues as functions ébr n = 10 with

W = 0-10V is presented irFigs. 3—6 In particular,Fig. 4 gives an illustration of the solution
belonging to the case d¥2 < V2. In Figs. 5 and 6which illustrates the cas&?2 > V2, we can

see that there occur many remarkable crossings of the eigenvalues among different levels and
series as the strength 8f is increased compared to thatbf The crossings, however, occur at
stronger interaction regimes as the rafig V increases. This is a very interesting phenomenon
and suggests the existence of a new phase transition. Such a phenomenon of crossings cannot b
found in the case oW? < V2.
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5. Discussion and concluding remarks

The BAE is derived variationally based on the Bethe ansatz. The eigenvalue and eigenstate
are given in terms of solutions of the BAE with two parameters.

In the case (1), we adopt the parametersand 8, satisfying(3.8). Although, at a glance,
the BAE and the equation determining eigenvalues seem to depend on the parameters, the same
eigenvalue and the same eigenstate can be obtained for any choice of the parameters only, pro-
vided they are subjected {8.8). It means that the BAE and the equation for the eigenvalue
corresponding to each choice of the parameters are transformed to each other by certain trans-
formations of some variables. In relation to this transformatioii3id) instead one can pu’l}

andA? into quite different forms, respectively. As an illustration, for the cas#cf 0 and for
the A-series withh = even, if one puts them as

Y1 2 iyl
A= , A% = , 5.1
I e — Xj T e+ X (5-1)
with a non-zera:-numbery; and adopt the assumption
E=—ieV{i(n—1)+i— Zi (5.2)
- 1% ; X; ’ '
another form of the BAE is derived as
el 1l 1 1 4
{(n—1)+iv}f+ - — —=— > -. (5.3)
Xj € —Xj €+ Xxj k(k#)xk—xj

The above equation for the eigenvalue and the BAE coincides(@i#h and (3.11)respectively
when the parameteg andp, are taken ag12 = 1/ andpo = if1.
For the case (2), the BAE

€ b1 by 4

+b1— + - =— ; (5.4)
V  1-bix; 1+bix; k(k;éj)xk_xj
is transformed, through the replacements of the variables; 1/x; andb; — 1/¢, into
11 1 1 4x
Foo e T = £ (5.5)
X —€X; +€x; k(k#j)xk—xj

a form which is suitable to be compared with the equation of FI).

In the case (2) oW = V, we have shown that a part of the solutions of the BAE in the strong
coupling limit of v — oo is given as the solutions of the zeros of the Sonine polynomial. The
BAE in all the regimes ob can be solved easily by the following way: First solve the BAE for a
largev adopting the solutions in the limit af — oo as initial values, and next repeatedly solve
the BAE for a smallew than the former one adopting the solutions obtained formerly as new
initial values.

The BAE becomes at present of increasing interest in wider fields of quantum many-body
physics. It very often happens that it is difficult to implement some standard diagonalization
procedure for a particular matrix, in spite of its diagonalization being in principle possible. There-
fore, an exploration into the exact and analytical solutions of the BAE is not only of increasing
theoretical interest but also of wider applicability for practical use.
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Appendix A. Solutionsfor the case n = odd; A-seriesand B-series

From (2.4), we obtain the same E{3.2) but with n”” instead ofs” and(3.16) but with n””
instead of:”. Substitution of the equations in(8.5) leads to

Ar 0=3p P[[{-0'—mhe+m'e —E—~Wm@mn—m}Ap A}
—Ven +1Hw" - m’)Al A}, »
_ / "o o1 2 2
Vm {2(n m)+3}A AP’l]
X Al K AZ/// )
I, g, Al VAP ]
s (A1)
B: 0=),P [[{ n' —mHe+m'e—E—Wm(n —m)} P //Af’,,,//+1
AL
— V(Z,n// + 3)(n/// //)AP , b o
2 42
- Vm”{z(n/// - m//) + 1}APm//APmN+1]
X 1_[ l/-” Al]:LN 1_[ N A‘%/W]-
M//7éPm// VNH;&Pm”Jrl
The case (1) oV £ +V.
Using Eq.(3.7)and the assumptior{8.8) and
_ /3 2+/3 2 1 ,B 1 " 1
E— _ﬂij_ﬂzznw — ey _2 n"'vV + {m(n HV + 5 2 ﬂ 26} Z?:l 3
. _ _ BBy ﬁ 1 "o
B: E— _ﬁiz_ﬂzznwE + 26 + 1,y {m(rz HV + 5 2 s 26}2’}:1 L
(A.2)

then, the BAEs forj =1, ...,n"” become

"

2(34,2 24,2 n
A (B): {(n_1)+ 26182 é}x L PaTBBT) | 3B7(BT) )3 4
J

B1 2 ﬂzz \% 1—ﬂ12xj~ 1—,322)6.1' k=1t )) Xk —xj'
(A.3)
The case (2) oV = +V.
Using Eq.(3.7) and the assumptior{8.12)and
V 2 V 1 n///
AB): E=F_n iEn—(+)§e+eb12x,~, (A.4)

j=t



350 H. Morita et al. / Nuclear Physics B 737 [FS] (2006) 337350

then, the BAEs forj =1, ..., n"” become

€ bi3b1)  3ba(by) 4
A B): +b1— = —
© W T o, T bay, 2

k=1t K TN
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