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considering the contradictory objectives of keeping a low number of alternatives yet
not excluding the best one.
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1 Introduction

There exist many approaches to rank a set of decision alternatives or to se-
lect the best(s) one(s) taking into account multiple criteria (e.g., see [5,16]
for recent comprehensive reviews of multicriteria evaluation approaches). In
this paper we address multiattribute utility theory (MAUT) / multiattribute
value theory (MAVT) [23], a popular type of approach that yields a global
value assessment for each alternative. According to this technique, it is neces-
sary to begin by building a value function for each criterion, which expresses
on a cardinal scale the value associated with each level of the scale used to
measure performance in that criterion. In the case of the utility function it
is also possible to model di�erent attitudes towards risk. The value function
may be increasing or decreasing as the level increases (e.g., decreasing in the
case of a cost). The most popular model for aggregating multiple value func-
tions is the additive model: under some assumptions [23], the overall value
of an alternative is the sum of value functions (one for each evaluation cri-
terion), each of them weighted by a scale coe�cient. We will refer to these
scaling coe�cients simply as �weights�, although noting that they do not re-
�ect directly the intuitive notion of importance of each criterion, as they are
contingent on the range for which the value function was de�ned. This is one
of the most well-known methods among practitioners and researchers, it is
simple to understand, and its theoretical properties are well studied (e.g., see
[23,44,45]).

Usually it is assumed that the exact values for the parameters of multiat-
tribute evaluation models are known or can be elicited from a decision maker.
However, in many cases, this assumption is unrealistic or, at least, there are ad-
vantages in working with less precise information. Several reasons justify why
a decision maker might prefer to provide incomplete information [12,13,25,46]:
the decision might need to be taken under pressure of time and lack of data;
the decision maker might not feel con�dent in providing precise values for
intangible or non-monetary parameters (e.g., parameters re�ecting environ-
mental impacts); the decision maker might have limited capacity to process
information; the decision maker might not want to reveal his preferences in
public or might not want to set his preferences (as they could change during
the process); the evaluation of the alternatives in some criteria might result
from inaccurate statistics or measurements; the decision maker might consider
it is di�cult to translate qualitative judgements into precise numerical values;
the performance of some alternatives might depend on variables whose value
is not known at the time of analysis; the information that would set the value
of some parameters might be incomplete, not credible, contradictory or con-
troversial. Some of these factors could be reduced expending time, discussions
or money, but the decision maker may want to avoid incurring in these costs.
Working with models which require less e�ort from the decision makers is a
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way of fostering the adoption of formal methods for decision aiding. Namely,
the decision maker might indicate only qualitative or ordinal information, in-
stead of providing exact values for all parameters.

The concern of working with incomplete information arises, naturally, in the
context of the use of multiattribute value (or utility) functions. Most of the
proposed methods deal with imprecision on weights, considering the value of
each alternative in each criterion is precisely known (e.g., [2,13,20,40,42,46]).
There are also methods that address imprecision on performance values (e.g.,
[21]), or are able to deal with imprecision on weights and on performance
values simultaneously (e.g., [32,35,39,47]).

The work presented in this paper is motivated by the di�culty of eliciting a
precise value for each alternative in each criterion. It addresses imprecision on
performance values, both with and without imprecision on weights at the same
time. Eliciting incomplete information about weights and about the value of
each alternative in each criterion, although not precise, might be su�cient to
increase the knowledge of the decision maker about the issue under analysis,
leading to the identi�cation of the most promising alternatives.

A research question that arises in this context is to know how good the pro-
posed rules to select an alternative in the context of lack of precise information
are, compared with an ideal situation in which the value of all parameters of
the model is known. Usually this is studied using Monte-Carlo simulations:
generating randomly a large number of problems (criteria weights and value
of each alternative in each criterion), determining the alternative with high-
est multiattribute value, and comparing this alternative with the alternative
chosen by the rule being studied, which uses only part of the information.
As examples of such comparisons we can cite [4,40,41,42]. However, these ref-
erences consider that only the weights are unknown, and it is important to
extend this idea to the case where the values of the alternatives in each crite-
rion are also unknown.

This paper presents new rules and simulation studies comparing di�erent rules
for choice when information about the weight of the criteria and about the
value of each alternative in each criterion is imprecise. We consider that the
available information has an ordinal nature, which Larichev et al. [28] con-
sidered can be more con�dently elicited. For example, the decision maker can
indicate that one alternative has higher value than another alternative in one
criterion, without quantifying how much. The decision rules we will compare
are based on the concept of Rank Order Centroid ([4,43]), which has been
found to perform very well when there is ordinal information on the weights
and known cardinal information for the alternatives' values [4,42]. The main
purpose of our comparisons is then to assess how much the quality of the
results degrades when we consider ordinal information on the alternatives'
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values.

Unlike most previous research, we will not only focus on the best alternative
when comparing rules. Rather than using a rule to identify a single alternative,
our aim is to test how the rules behave in a strategy of progressive reduction
of the number of alternatives [13]. Our aim is to test rules as screening pro-
cedures that identify a subset of promising alternatives, trying to conciliate
the contradictory objectives of maintaining a minimum number of alternatives
while ensuring that the chosen subset contains the best alternative. These ex-
periments are designed to be comparable with previous studies. Hence, we test
similar problem dimensions.

In the next section we will present some of the existing approaches in the liter-
ature to deal with the use of ordinal information and other types of incomplete
information. The rules tested are presented in detail in section 3, which also
introduces the mathematical notation. In section 4 the conducted simulations
are described, and the corresponding results are presented in section 5. Section
6 presents some conclusions and some ideas for future research.

2 A review

There are many methods that allow working with ordinal information, see
for example [7]. The decision maker may indicate that a criterion is more
important than some of the others, or that an alternative has better perfor-
mance than another in a certain criterion, but not quantifying how much. This
concern arises not only in MAVT methods, but also in methods based on dif-
ferent principles. For instance, in the context of outranking methods Bisdor�
[6] extended the principle of concordance to the context of ordinal informa-
tion about criteria weights. The methods QUALIFLEX [34], and ORESTE
[37] also allow considering rankings in several criteria and a ranking of the
relative importance of these criteria.

Other ordinal information methods not based on the idea of a multiattribute
value function are Verbal Decision Analysis (VDA) [33], the TOMASOmethod
[31], and distance-based approaches, to cite rather diverse examples. VDA
methods (ZAPROS [26] for ranking problems, ORCLASS [27] for classi�cation
problems) are designed for problems with a large number of alternatives and
a small number of criteria, making very few assumptions about the way the
decision maker aggregates preferences. The TOMASO method can also be
used for sorting or ranking alternatives evaluated on ordinal scales, based on
Choquet integrals. Distance-based approaches attempt to �nd a ranking that
is as close as possible (according to some distance) to a set of rankings provided
as an input. As examples we can cite [10,11,18].
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The indirect elicitation of preferences is used in the paradigm of ordinal re-
gression. According to this paradigm, initially information regarding holistic
preferences concerning a set of reference alternatives is obtained and then
the parameters for the model that maximize compatibility with this informa-
tion are inferred. The inferred parameter values are then used to rank the
alternatives. In the context of MAVT, this class of methods includes UTA
[22], MACBETH [3], and GRIP [17]. Rather than inferring precise parame-
ter values, VIP Analysis [13] can use ordinal information to infer constraints
on MAVT weights, and then �nds the set of conclusions that is compatible
with these constraints (robust conclusions). The SMAA method [24] takes
the reverse perspective by �nding parameter values compatible with potential
results, e.g., allowing to �nd out what type of parameter values makes an al-
ternative the best one. The SMAA-O [25] is a variant of SMAA for problems
in which criteria are measured in ordinal scales.

To reconstitute the judgement of a decision maker concerning some alterna-
tives provided as examples it is not necessary to infer numerical constraints or
values. Greco et al. [19] presented the Decision Rule Approach, in which pref-
erences are shaped in terms of �if ..., then ...� rules, based on the Dominance-
based Rough Set Approach. Also based on the concept of dominance, Iyer
[21] explored the idea of extending dominance-based decision-making to prob-
lems with noisy evaluations. The author's idea was to eliminate alternatives
which are dominated by any other alternative according to the multi-criteria
evaluations, without assuming the aggregation method was known.

Much work has been developed for the case of MAVT/MAUT with incomplete
information, which includes ordinal information as a particular case. Sage and
White [39] proposed the model of imprecisely speci�ed multiattribute utility
theory (ISMAUT), in which precise preference information about both weights
and utilities is not assumed. Malakooti [30] suggested a new algorithm for
ranking and screening alternatives when there exists incomplete information
about the preferences and the value of the alternatives. An extended version
of Malakooti's work was presented by Ahn [1]. Park, Kim, and colleagues
[15,29,35] provided linear programming characterizations of dominance and
potential optimality for decision alternatives when information about values
and/or weights is not complete, extended the approach to hierarchical struc-
tures [29], and developed the concepts of weak potential optimality and strong
potential optimality [35]. White and Holloway [47] considered an interactive
selection process: a facilitator asks a decision maker questions and obtains re-
sponses that will be used to decide on the next question, aiming to eventually
identify the most preferred alternative.

Finally, some methods follow decision rules to rank alternatives under in-
complete information on the weights. Barron and Barret [4] studied algebraic
formulas such as equal weights and the use of ROC (rank order centroid)
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weights to select a representative weights vector w from a set of admissible
weights W , with the purpose of using w to evaluate the alternatives. These
authors concluded that ROC weights provide a better approximation than the
other weighting vectors they considered. Another type of rules that have been
proposed imply solving optimization problems [40]: the maximin rule consists
in evaluating each alternative for its minimum (worst case) value; the mini-
max regret rule consists in evaluating each alternative for the maximum loss
of value relatively to a better alternative (the �maximum regret�); the central
values rule consists in evaluating each alternative for the midpoint of the range
of possible values. Although none of these rules ensures that the alternative
indicated as being the best one is the same that would result if precise val-
ues for weights were elicited, simulations show that in general the alternative
selected is among the best ones (e.g., [42]).

The work in this paper belongs to this last group of approaches of using rules
based on information easy to elicit. Our objective is to rank the alternatives,
or to select one alternative, without requiring precise information from the
decision maker. We will propose two new rules, based on the ideas of the
ROC weights rule, to deal with incomplete information in the value of each
alternative in each criterion.

3 Notation and decision rules

3.1 Notation

Let us denote by A = {a1, ..., am} a discrete set of m alternatives. Let X =
{x1, ..., xn} denote a set of n criteria (attributes) for evaluating these alter-
natives. Let vi(.) denote the value function (or utility function - the dif-
ference here is not important) corresponding to criterion xi. Consequently,
vi(aj) ∈ [0, 1] denotes the value of the alternative aj according to criterion xi.

According to the additive aggregation model, the global (multi-attribute) value
of an alternative aj ∈ A is:

v(aj) =
n∑

i=1

wivi(aj) (1)

where wi represents the scale coe�cient or �weight� associated with vi. For
these parameters we have:
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w1, ..., wn ≥ 0 and
n∑

i=1

wi = 1 (2)

Without loss of generality we will consider that criteria weights are indexed
by descending order, given ordinal information provided by a decision maker,
for example, comparing �swings� from the worst to the best performance in
each value function [14,44] (we assume the worst level corresponds to value
0 and the best level corresponds to value 1). Thus, the set of all vectors of
weights compatible with this information is:

W = {(w1, w2, ...wn) : w1 ≥ w2 ≥ ... ≥ wn ≥ 0,
n∑

i=1

wi = 1} (3)

Let V denote the set of the n × m matrices, having as elements all values
vi(aj) (i = 1, ..., n; j = 1, ...,m) compatible with ordinal information provided
by the decision maker. We will consider that we have a ranking of the value of
each alternative in each criterion, and also possibly a ranking of the di�erence
of values between consecutive alternatives in each criterion.

3.2 Decision rules

3.2.1 Ordinal information on the weights

Since criteria weights are usually the parameters that are harder to elicit
[38], research e�orts have mostly focussed on the case in which incomplete
information refers only to the weights. Past studies have veri�ed that some
decision rules based on ordinal information about the weights lead to good
results [2,40,41,42]. In [42], among other experiments, a set of Monte-Carlo
simulations was carried out in order to see how di�erent rules (ROC weights,
maximin rule, minimax regret rule and central values rule) compared on dif-
ferent indicators. The rules were compared, for example, in terms of their �hit
rate�, which indicates the proportion of times in which the alternative chosen
with a vector of supposedly true weights (i.e., the vector that would be ob-
tained if precise weights were elicited) coincides with the alternative indicated
by the rule. The results indicate that, given a ranking of the weights, the ROC
weights are the best rule (having a hit rate between 79% and 88%, for problem
dimensions similar to those considered in this paper).

In this work we will also use ROC weights when the ordinal information refers
to the weights. ROC weights are computed from the vertices of polytope W
(3). This polytope corresponds to a simplex whose vertices are (1, 0, ..., 0),(

1
2
, 1

2
, 0, ..., 0

)
,
(

1
3
, 1

3
, 1

3
, 0, ..., 0

)
,...,

(
1
n
, 1
n
, ..., 1

n

)
. The coordinates of the centroid
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are found by averaging the corresponding coordinates of the de�ning vertices.
ROC weights can be easily calculated using the following formula (recall the
indices of criteria re�ect their order, w1 is the highest weight and wn is the
lowest one):

w
(ROC)
i =

1

n

n∑
j=i

1

j
, i = 1, ..., n. (4)

As referred by Butler and Olson [9], if ties exist, extreme points will coincide.
To obtain the centroid, only one of the tied values is included. For instance,
if in a case with three objectives the decision maker states that w1 ≥ w2 and
w2 = w3, then the vertices are (1, 0, 0), and

(
1
3
, 1

3
, 1

3

)
, hence w1 = 1

2

(
1 + 1

3

)
= 2

3

and w2 = w3 = 1
2

(
0 + 1

3

)
= 1

6
. Solymosi and Dombi [43] described the process

of generalizing the centroid approach to cases that include weak orders or
partial orders.

3.2.2 Ordinal information on the value of each alternative and value di�er-

ences in each attribute

If the decision maker states that it is di�cult to indicate the exact value of
each alternative in each attribute, a natural idea is to ask him for a ranking,
e.g., �considering the attribute x1, alternative a1 is the best one, followed by
a2 as the second best, and then a3�. In this work, we assume that for each
attribute the worst level corresponds to value 0 and the best level corresponds
to value 1. This is a usual convention that is legitimate if the weights are set
taking these levels into account.

Similarly to the case of ordinal information on the weights, we deem that in
this case it is also possible to use an algebraic formula to choose a vector of
values for each attribute, able to approximately represent all vectors values
compatible with the ordinal information. One possibility is to use ROC values
for each attribute, i.e., the centroid of the polytope de�ned by the ranking of
the values on that attribute. Since attributes are normalized in such a way
that the highest value in each attribute is 1 and the lowest value is 0, the
centroid corresponds to equally spaced values in the interval [0, 1]. Hence, for
attribute xi, the ROC values are de�ned as follows (i = 1, ..., n):

v
(ROC)
i (aj) =

m− ri(aj)

m− 1
, j = 1, ...,m. (5)

where ri(aj) represents the rank position of alternative aj considering the
attribute xi and ri(aj) < ri(ak)⇒ vi(aj) ≥ vi(ak). Suppose, for example, that
we have 5 alternatives, and for criterion xi, 1 = vi(a1) ≥ vi(a2) ≥ vi(a3) ≥
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vi(a4) ≥ vi(a5) = 0. The centroid of this simplex is
(
1, 3

4
, 2

4
, 1

4
, 0
)
since the

vertices are (1, 1, 1, 1, 0), (1, 1, 1, 0, 0), (1, 1, 0, 0, 0) and (1, 0, 0, 0, 0). In a case
with m alternatives, the centroid of the simplex de�ned by 1 = vi(a1) ≥
vi(a2) ≥ ... ≥ vi(am) = 0 is equal to

(
1, m−2

m−1
, ..., 1

m−1
, 0
)
.

The formula to approximate the values using ROC values can also be used if
there are ties concerning the value of the alternatives in some criteria. In cases
with one tie in one criterion, the problem is solved decreasing one dimension to
the number of alternatives of the problem, i.e, considering m− 1 value levels
instead of m in that criterion. In cases with two ties the problem is solved
decreasing two dimensions to the problem, and so on. We assume that there is
no attribute for which all alternatives have the same value (in practice, such
an attribute could be discarded).

In order to obtain richer information about the alternatives' values, besides
a ranking of the alternatives in each attribute, it is also possible to ask the
decision maker to provide a ranking of the di�erences of value between con-
secutive alternatives. Suppose for instance that considering an attribute xi, a
decision maker draws his rough idea of the relative position of 4 alternatives
a1, a2, a3, a4 concerning their value according to xi as depicted in Figure 1.
From this drawing we could ask the decision maker to con�rm that not only
vi(a4) ≥ vi(a3) ≥ vi(a2) ≥ vi(a1), but also to con�rm that the ranking of
the consecutive value di�erences ∆i1 = vi(a2) − vi(a1), ∆i2 = vi(a3) − vi(a2),
∆i3 = vi(a4)− vi(a3) is ∆i1 ≥ ∆i3 ≥ ∆i2. This type of drawings-based elicita-
tion has been previously proposed to obtain parameter values, for instance in
[36], but in our case the objective is not to read an exact value for each alter-
native: we only consider ordinal information about the position of alternatives
and about the di�erence of value between consecutive alternatives. Of course,
the rank-order of the consecutive value di�erences might also be asked to the
decision maker directly without using a graphical representation.

li3=vi(a3)

li4=vi(a4)=1

i1

i3

i2

li1=vi(a1)=0

li2=vi(a2)

Figure 1. Example of a rough drawing on a scale for attribute xi.
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Based on this type of information, we can propose a rule to approximate the
alternatives values, which we will call ∆ROC rule. Let us consider an attribute
xi and let us denote s the number of di�erent value levels in this attribute
implied by the ordinal information provided by the decision maker, including
the value levels l1 = 0 and ls = 1, which bound all other levels. For instance,
if the ordinal information is vi(a4) ≥ vi(a2) ≥ vi(a1) ≥ vi(a3), then there are
four di�erent levels, which are by decreasing order l4 = vi(a4) = 1, l3 = vi(a2),
l2 = vi(a1) and l1 = vi(a3) = 0. Let us denote the value di�erence between two
consecutive levels as ∆ik = lk+1− lk, for k = 1, ..., s−1. From these de�nitions,
it is easy to check that:

∆i1, ...,∆i(s−1) ≥ 0 and
s−1∑
k=1

∆ik = 1 (6)

Since the values di�erences are ranked, are positive, and add up to 1, an
expression similar to the formula used to derive ROC weights can be used.
The approximation to the values of each alternative in each criterion can be
obtained using the following algorithm:

Step 1 Ask the decision maker to provide a ranking of the alternatives in
each criterion (possibly with ties). Label the resulting di�erent levels as
l1, ..., ls, ranked from lowest to highest, with l1 = 0 and ls = 1. Each level
will correspond to the value of one alternative (or more than one, in case of
ties).

Step 2 Ask the decision maker to provide a ranking of the di�erence of val-
ues between consecutive levels ∆i1, ...,∆i(s−1). For each k = 1, ..., s − 1, let
rank(k) denote the rank of ∆ik within the set {∆i1, ...,∆i(s−1)}. This rank is
an integer between 1 and s− 1, with rank 1 denoting the highest di�erence.

Step 3 Determine a rank order centroid for s− 1 variables:

∆[k] =
1

s− 1

s−1∑
j=k

1

j
, k = 1, ..., s− 1. (7)

Step 4 For each k = 1, ..., s − 1, set the the values provided by the centroid
approximation: ∆

(ROC)
ik = ∆[rank(k)].

Step 5 The approximate values for the levels in attribute xi, are then de�ned
as follows:

l1 = 0

lj =
j−1∑
k=1

∆
(ROC)
ik , j = 2, ..., s. (8)

Step 6 v
(∆ROC)
i (aj), the approximate values in attribute xi for alternative aj

(j = 1, ...,m) based on the ∆ ROC values rule, is equal to the approximate
value of the respective level, according to the values to levels correspondence
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created in step 1.

For the example presented in Figure 1, the ROC for three di�erences of value
(as there are 4 alternatives) is ∆[1] = 11

18
, ∆[2] = 5

18
, and ∆[3] = 2

18
. Taking into

account the order ∆i1 ≥ ∆i3 ≥ ∆i2, we obtain ∆
(ROC)
i1 = 11

18
, ∆

(ROC)
i2 = 2

18
, and

∆
(ROC)
i3 = 5

18
. Therefore, the ∆ROC values vector is

(
0, 11

18
, 13

18
, 1
)
:

• v
(∆ROC)
i (a1) = 0,

• v
(∆ROC)
i (a2) = ∆

(ROC)
i1 = 11

18
,

• v
(∆ROC)
i (a3) = ∆

(ROC)
i1 + ∆

(ROC)
i2 = 11

18
+ 2

18
= 13

18
,

• v
(∆ROC)
i (a4) = ∆

(ROC)
i1 + ∆

(ROC)
i2 + ∆

(ROC)
i3 = 11

18
+ 2

18
+ 5

18
= 1.

Note that this algorithm can account for the existence of ties in the value
of the alternatives in each criterion. Ties in the ranking of consecutive value
di�erences in step 2, on the other hand, can be dealt with using the procedures
proposed for the case of ties in the criteria weights [9,43].

4 Simulation

In the previous section we presented simple rules that can be used to generate
approximate values for the weights and for the alternatives values in each
attribute, given ordinal information about these parameters. The parameter
values derived by these rules can then be used to select a promising subset
of alternatives. However, the decision maker should have an idea of how good
these proposed alternatives are, when compared to the results that would have
been achieved if an elicitation of precise cardinal values for all the parameters
had been conducted (admitting such a precise elicitation was possible). In this
section we describe a sequence of experiments using Monte Carlo simulation
to compare the results provided by rules with the results that are obtained
under precise cardinal information.

Each generated random problem is characterized by a (precise) value matrix
and a (precise) weights vector. Using the additive model on the generated
random data we then compute the overall value of each alternative, and we
obtain the corresponding ranking of the alternatives. This is what we call the
supposedly true ranking, i.e., the ranking that would be obtained if cardi-
nal information was elicited. On the other hand, each of the rules is applied
considering only the ordinal information contained in the generated data. Us-
ing the approximate parameter values derived from a rule, we can build the
ranking of the alternatives that the rule yields. Comparing the ranking of the
alternatives according to the supposedly true parameters with the ranking of
the alternatives according to a decision rule, we consider the following results:
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• The position that the best alternative according to the true ranking reaches
in the ranking generated by the decision rule: this allows us to know how
many alternatives from the top of the ranking provided by the rule must
be kept to include the supposedly best alternative in the set of selected
alternatives.
• The position that the best alternative in the ranking generated by the rule
reaches in the supposedly true ranking: this allows us to know how good
the alternative chosen by the rule is in terms of the supposed true ranking.

Similarly to Barron and Barret [4] we also calculated the �value loss�, i.e.,
the di�erence of multiattribute value between the alternative selected by a
decision rule and the true best alternative, considering the supposedly true
parameter values.

In these experiments we have considered situations with 5, 10, and 15 at-
tributes, and 5, 10, and 15 alternatives. Similarly to [40] and [42], we have
generated 5000 random problems for each problem dimension (after verifying
that using a greater number of problems did not a�ect signi�cantly the re-
sults). The uniform distribution was considered for all generated parameters,
as in most comparable previous experiments ([2,40,42]).

The scaling weights were generated according to an uniform distribution in
W using the process described in [8]. To obtain weights for n attributes, we
generate n − 1 independent random numbers from a uniform distribution on
(0, 1) and rank these numbers. Let the ranked numbers be r(n−1) ≥ ... ≥
r(2) ≥ r(1). The following di�erences can then be obtained: wn = 1 − r(n−1),
wn−1 = r(n−1)−r(n−2),..., w1 = r(1)−0. Then, the set of numbers (w1, w2, ..., wn)
adds up to 1 and is uniformly distributed on the simplex de�ned by the rank-
order constraints (3), after relabelling.

The single-attribute values vi(aj) were generated from a uniform distribution
in the interval [0,1] and then normalized attribute-wise in such a way that
the highest value in each attribute is 1 and the lowest value is 0. For each
criterion, let vloi and vhii denote the lowest and highest values among the m
values generated. Then, the normalized value of vi(aj) is equal to (vi(aj) −
vloi )/(vhii − vloi ).

The �rst simulations were performed considering known cardinal weights and
ordinal information on the values (with and without ordinal information on the
value di�erences). Additional simulations were performed considering simulta-
neously ordinal information on weights and ordinal information on the values
(again, with and without ordinal information on the value di�erences). The
situation with known cardinal values and ordinal information on the weights
was already studied in [42]. Results are presented in the next section.
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5 Results

5.1 Incomplete information concerning the value of each alternative in each

attribute

In this set of experiments we considered the precise weights of the criteria
(henceforth referred to as TRUE weights) were known, but we supposed that
the decision maker indicated incomplete information about the value of each
alternative in each criterion. We tested the ROC values rule (assuming that
the decision maker ranked the alternatives) and the ∆ROC values rule (as-
suming that the decision maker ranked the alternatives and also ranked the
di�erence between consecutive alternatives) to derive approximate values for
the alternatives in each criterion.

A �rst set of experiments was carried out in order to see how the di�erent rules
compare if the analysis aims at selecting only the best alternative according
to a rule. These experiments indicate the position reached by the alternative
suggested by the ROC values and ∆ROC values rules on the supposedly true
ranking. Detailed results are presented in tabular form in Table 1 (in this table
TRUE ∆ROC indicates the use of TRUE weights and ∆ROC values and
TRUE ROC indicates the use of TRUE weights and ROC values). This table
shows, for each rule and for each size, the average position on the supposedly
true ranking (the minimum position was always 1) and the proportion of cases
where the position reached is 1, 2, 3, 4, or higher. Note that the proportion of
cases where the reached position is equal to 1 corresponds to the hit rate.

The results indicate that the use of supposedly TRUE weights and ∆ROC
values leads to a hit rate of at least 90%. It is also possible to observe that
the hit rate increases with the number of alternatives. Using TRUE weights
and ROC values the hit rate varies between 76% and 81%. Since the use of
the ∆ROC rule requires more information than the use of the ROC rule, it
is not surprising that the former performs better. However, it is noteworthy
that the use of ∆ROC values leads to a considerable increase in the hit rate
when compared with the use of ROC values.

Instead of using a rule to select a single alternative, the analysis can aim at
retaining a small subset of promising alternatives for further analysis, in a
strategy of progressive reduction of the number of candidates. In such cases,
the objective is to retain a subset of alternatives that is as small as possible,
yet without eliminating the best one. An interesting question is to know how
many alternatives should be retained when a rule based on ordinal information
is used. To answer this question, we studied in our simulations the position of
the supposedly best alternative in the ranking produced by each rule. Table
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2 shows, for each problem size, the average position of the supposedly best
alternative in the ranking provided by each rule (the minimum position was
always 1), as well as the proportion of cases where the position is 1, 2, 3, 4, or
higher. The probability of retaining the supposedly best alternative increases
naturally with the number of alternatives that are retained. In all cases, se-
lecting two alternatives would su�ce to keep the supposedly best one in 93%
of the cases, while selecting three alternatives would su�ce in 97% of the
cases. We can see that the additional information required from the decision
maker by the ∆ROC values rule is compensated by clearly superior results
when compared with the ROC values rule. Indeed, in at least 99% of the cases
the supposedly best alternative was one of the two best ranked alternatives
according to the ∆ROC values rule.

In Table 3 it is possible to see the value loss implied by selecting the top-
ranked alternative obtained by the di�erent rules. In this table ROC TRUE
refers to the use of ROC weights and TRUE values, ROC ∆ROC refers to the
use of ROC weights and ∆ROC values, ROC ROC refers to the use of ROC
weights and ROC values, TRUE ∆ROC refers to the use of TRUE weights and
∆ROC values, and TRUE ROC refers to the use of TRUE weights and ROC
values. Considering the weights are known and using ∆ROC values (TRUE
∆ROC columns), the average value loss varies between 0.0070 and 0.0316.
The maximum value loss is a value between 0.0580 and 0.2455. Considering
the weights are known and using ROC values (TRUE ROC columns), the
average value loss varies between 0.0051 and 0.0139. The maximum value
loss is a value between 0.0998 and 0.3123. In average, when considering the
weights are known, using the ∆ROC values leads to roughly half of loss of
value incurred by using the ROC values. Note however that in both cases the
average value loss can be considered very small.

TRUE ∆ROC TRUE ROC
n m average % 1 % 2 % 3 % 4 % ≥ 5 average % 1 % 2 % 3 % 4 % ≥ 5
5 5 1.10 91.00 8.20 0.72 0.08 0.00 1.25 78.78 17.44 3.36 0.40 0.02
5 10 1.09 91.82 7.36 0.68 0.14 0.00 1.28 78.66 16.38 3.64 1.04 0.28
5 15 1.08 93.32 5.88 0.62 0.18 0.00 1.29 79.02 15.30 4.14 1.06 0.40
10 5 1.10 90.76 8.46 0.74 0.04 0.00 1.24 80.94 14.92 3.38 0.70 0.06
10 10 1.09 91.58 7.54 0.76 0.12 0.00 1.32 77.38 16.02 4.50 1.58 0.52
10 15 1.08 93.00 6.28 0.64 0.08 0.00 1.31 77.76 16.04 4.50 1.16 0.54
15 5 1.10 90.80 8.36 0.80 0.04 0.00 1.26 79.20 16.64 3.38 0.70 0.08
15 10 1.09 91.88 7.12 0.92 0.06 0.02 1.31 76.84 16.7 4.64 1.26 0.56
15 15 1.08 92.80 6.40 0.64 0.14 0.00 1.30 79.00 14.74 4.40 1.44 0.42

Table 1
Position of the best alternative according to the ROC values and ∆ROC values rule
in the supposedly true ranking (n denotes the number of criteria and m the number
of alternatives).

TRUE ∆ROC TRUE ROC
n m average % 1 % 2 % 3 % 4 % ≥ 5 average % 1 % 2 % 3 % 4 % ≥ 5
5 5 1.10 91.00 8.12 0.80 0.08 0.00 1.25 78.78 17.60 3.28 0.30 0.04
5 10 1.09 91.82 7.50 0.64 0.04 0.00 1.28 78.66 16.44 3.68 0.94 0.28
5 15 1.07 93.32 5.96 0.66 0.04 0.02 1.29 79.02 14.92 4.40 1.20 0.30
10 5 1.10 90.76 8.46 0.76 0.02 0.00 1.24 80.94 15.10 3.22 0.64 0.01
10 10 1.10 91.58 7.26 1.10 0.04 0.02 1.32 77.38 16.06 4.80 1.24 0.52
10 15 1.08 93.00 6.26 0.72 0.02 0.00 1.31 77.76 16.36 3.72 1.42 0.74
15 5 1.10 90.80 8.38 0.76 0.06 0.00 1.26 79.20 16.56 3.40 0.80 0.04
15 10 1.09 91.88 7.10 0.90 0.06 0.00 1.31 76.84 16.82 4.44 1.36 0.54
15 15 1.08 92.80 6.48 0.64 0.06 0.02 1.29 79.00 14.88 4.58 1.12 0.42

Table 2
Position of the supposedly best alternative in the ranking induced by the ROC values
and ∆ROC values rule.
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ROC TRUE ROC ∆ ROC ROC ROC TRUE ∆ ROC TRUE ROC
n m average maximum average maximum average maximum average maximum average maximum
5 5 0.0589 0.4222 0.0663 0.4926 0.0816 0.5351 0.0316 0.2455 0.0655 0.3123
5 10 0.0433 0.2999 0.0482 0.3177 0.0668 0.5143 0.0171 0.0994 0.0459 0.2377
5 15 0.0383 0.3009 0.0400 0.2364 0.0543 0.4223 0.0076 0.1755 0.0391 0.2105
10 5 0.0391 0.3053 0.0459 0.3605 0.0662 0.3808 0.0238 0.1195 0.0535 0.2602
10 10 0.0314 0.3092 0.0339 0.3466 0.0480 0.2845 0.0119 0.0705 0.0367 0.1996
10 15 0.0276 0.2158 0.0292 0.2780 0.0412 0.2804 0.0100 0.0607 0.0292 0.1599
15 5 0.0285 0.2217 0.0365 0.4018 0.0534 0.3167 0.0207 0.0991 0.0447 0.2341
15 10 0.0236 0.2448 0.0280 0.1751 0.0346 0.1946 0.0111 0.0693 0.0311 0.1922
15 15 0.0207 0.1610 0.0215 0.1869 0.0355 0.2080 0.0070 0.0580 0.0243 0.0998

Table 3
Value loss implied by selecting the best alternative according to a rule based on
ordinal information.

5.2 Incomplete information concerning weights and concerning the value of

each alternative in each attribute

In this section we consider the criteria weights and the value of each alternative
in each criterion are unknown. The decision maker indicates only ordinal infor-
mation about the weights and about the value of alternatives in each criterion,
possibly adding ordinal information about di�erences of value between consec-
utive alternatives in each criterion. We tested the rule of using ROC weights
together with ROC values, as well as the rule of using ROC weights together
with ∆ROC values. Table 4 shows the position in the supposedly true ranking
of the best alternative obtained by each rule (in this table ROC ∆ROC means
the use of ROC weights and ∆ROC values and ROC ROC means the use of
ROC weights and ROC values). Using ROC weights and ∆ROC values the
hit rate (column %1) decreases with the number of alternatives.

Table 5 shows the position of the supposedly true alternative in the ranking
induced by the ROC weights / ROC values and ROC weights / ∆ROC values
rules. In the previous experiments that considered TRUE weights and ∆ROC
values, results indicated the hit rate was higher than 90%. If we consider that
we also do not know the weights, and use ROC weights, the results are still
fairly good (the hit rate is greater than 78%). If the two top-ranked alternatives
obtained using ROC weights and ∆ROC values are kept, instead of a single
one, then the supposedly best alternative is one of these two in at least 94%
of the cases.

The results are obviously worse than in the case with known weights, as in
this situation the rules use less information. However, it should be noted that
combining ROC weights with ∆ROC values yields results very close to those
obtained in [42] assuming that the values of the alternatives were known (see
Table 6). Once again the additional information requested from the decision
maker by the ∆ROC values rule is compensated by superior results when
compared with the ROC values rule. These results suggest that using the ROC
weights and ∆ROC values rule to facilitate the elicitation of information leads
to a rapid identi�cation of the most promising alternatives.

In Table 3 it is possible to see the value loss of the di�erent rules. Considering
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the weights are unknown (using ROC weights) and using ∆ROC values the
average value loss varies between 0.0215 and 0.0663. The maximum value loss
is a value between 0.1869 and 0.4926. Considering the weights are unknown
and using ROC values the average value loss increases to values between 0.0355
and 0.0816, and the maximum value loss is a value between 0.1946 and 0.5351.
Considering both the weights and the values of each alternative in each at-
tribute are unknown, the average value loss is still small. Comparing the third
and �fth columns of Table 3 indicates that when there is only ordinal infor-
mation about the weights and ROC weights are used, the average loss of value
using ∆ROC values is very similar to the average loss of value implied by the
ROC weights alone (i.e., considering TRUE values for the alternatives).

ROC ∆ROC ROC ROC
n m average % 1 % 2 % 3 % 4 % ≥ 5 average % 1 % 2 % 3 % 4 % ≥ 5
5 5 1.21 83.12 13.40 3.06 0.42 0.00 1.32 74.98 19.22 4.74 0.98 0.08
5 10 1.29 79.44 14.84 3.88 1.42 0.42 1.41 72.92 17.80 6.00 2.42 0.90
5 15 1.31 78.98 14.56 4.18 1.34 0.60 1.47 71.26 17.86 6.52 2.70 0.92
10 5 1.21 83.02 13.90 2.66 0.38 0.04 1.31 75.98 18.14 4.62 1.18 0.08
10 10 1.25 81.42 13.82 3.42 1.02 0.32 1.42 72.26 18.24 60.6 2.26 1.18
10 15 1.29 80.50 13.90 3.48 1.20 0.92 1.46 71.84 17.92 6.08 2.36 1.80
15 5 1.19 84.40 12.44 2.76 0.40 0.00 1.32 76.20 17.52 4.92 1.12 0.24
15 10 1.23 83.24 12.72 2.74 0.94 0.36 1.39 74.02 17.40 5.48 2.12 0.98
15 15 1.26 81.40 13.30 3.76 1.02 0.52 1.39 75.22 15.80 5.74 1.86 1.38

Table 4
Position of the best alternative according to the ROC weights / ROC values and
ROC weights / ∆ROC values rules in the supposedly true ranking.

ROC ∆ROC ROC ROC
n m average % 1 % 2 % 3 % 4 % ≥ 5 average % 1 % 2 % 3 % 4 % ≥ 5
5 5 1.21 83.12 13.54 2.90 0.44 0.00 1.32 75.00 19.28 4.46 1.10 0.16
5 10 1.28 79.44 15.16 3.70 1.14 0.56 1.43 72.92 17.84 5.46 2.18 1.60
5 15 1.31 78.98 14.66 4.08 1.28 0.68 1.47 71.26 17.84 6.66 2.48 1.08
10 5 1.20 83.02 14.08 2.58 0.30 0.02 1.32 75.98 17.26 5.42 1.24 0.10
10 10 1.25 81.42 13.66 3.50 1.10 0.32 1.43 72.26 18.26 5.86 2.36 1.26
10 15 1.28 80.50 13.82 3.72 1.32 0.64 1.46 71.84 17.48 6.72 2.26 1.70
15 5 1.19 84.40 12.60 2.54 0.42 0.04 1.31 76.20 18.18 4.42 1.04 0.16
15 10 1.22 83.24 12.86 2.78 0.88 0.24 1.39 74.02 17.32 5.74 1.96 0.96
15 15 1.25 81.40 13.54 3.76 0.90 0.40 1.38 75.22 16.22 5.20 2.44 0.92

Table 5
Position of the supposedly best alternative in the ranking induced by the ROC
weights/ ROC values and ROC weights / ∆ROC values rules.

(A) (B)
n m average % 1 % 2 % 3 % 4 % ≥ 5 average % 1 % 2 % 3 % 4 % ≥ 5
5 5 1.18 84.96 12.26 2.40 0.34 0.04 1.18 84.96 12.16 2.66 0.22 0.00
5 10 1.25 81.76 13.22 3.58 1.10 0.34 1.25 81.76 13.36 3.54 1.00 1.34
5 15 1.30 79.72 14.14 3.90 1.36 0.88 1.29 79.72 14.40 3.90 1.24 0.74
10 5 1.17 85.58 11.98 2.18 0.20 0.06 1.17 85.58 12.00 1.94 0.42 0.06
10 10 1.24 82.46 13.10 3.20 0.78 0.46 1.24 82.46 12.76 3.36 1.02 0.40
10 15 1.27 80.80 13.58 3.84 1.26 0.52 1.27 80.80 13.78 3.94 0.90 0.58
15 5 1.14 87.92 10.08 1.76 0.24 0.00 1.15 87.92 9.92 1.82 0.26 0.04
15 10 1.20 84.46 12.10 2.64 0.50 0.30 1.21 84.46 11.92 2.66 0.66 0.30
15 15 1.24 82.96 12.34 3.30 1.08 0.32 1.23 82.96 12.94 2.74 0.88 0.48

Table 6
Position of the best alternative according to the ROC weights in the supposedly true
ranking (A), and position of the supposedly best alternative in the ranking induced
by the ROC weights (B), assuming the true values for the alternatives were known
(results from [42]).

6 Conclusions

This work presented a sequence of Monte-Carlo simulations with the aim of
assessing di�erent decision rules for the context where there exists only ordinal
information about the weights of the attributes and about the values of each
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alternative in each attribute. The rules studied in this paper consisted in
computing approximate values for the parameters, which can then be used for
ranking alternatives based on the multiattribute additive aggregation model.

Previous studies considered using this type of rules based on algebraic formulas
to compute approximate values for the weights. If the decision maker provides
a ranking of the weights, then the ROC weights rule was found to provide
the best approximation [4], and was found to perform even better than more
complex optimization-based rules [42]. The originality of our new study is the
consideration of analogous decision rules for the case in which we have also
ordinal information concerning the value of each alternative in each attribute.
We proposed an adaption of the ROC weights rule for this purpose: the ROC
values rule. We also proposed a new rule that requires a little more information
(but easily elicited, for example, by a rough drawing): the ∆ROC values rule.

Another noteworthy aspect of this study is that we tested strategies to se-
lect more than one alternative. This contrasts with the assumption that the
decision maker uses these rules to select only the top alternative according
to the rule, which would lead us to focus only on the calculation of hit rates
and loss of value. Hence, we were also interested in �nding out how many
alternatives should be kept to ensure a good probability of not excluding the
truly best one. The objective of this type of strategies is the simpli�cation of
the problem in terms of the number of alternatives, with the aim of studying
the most promising ones in more detail, or with the aim of eliciting more in-
formation. This is particularly interesting when assessing the performance of
all alternatives under all the criteria would imply signi�cant costs, time, or
e�ort.

As our experiments have shown, using ordinal information leads in general to
good results in the identi�cation of the most promising alternatives. The best
rule presented for cases without any cardinal information was the combined use
of ROC weights and ∆ROC values. With this rule, the hit rate varies between
79% and 85%. This rule is also very interesting for selecting a subset of the
most promising alternatives: selecting the two best alternatives according to
this rule is su�cient in 94% of the cases or more, depending on the problem
dimension, to retain the best alternative according to the true weights and
values.

Another �nding resulting from these experiments is that the ∆ROC values
rule leads to results that are clearly superior to the results of the ROC values
rule, reducing the average value loss to roughly one half, and in some cases
even less. Finally, we found out that the combined use of ROC weights and
∆ROC values does not provide results signi�cantly worse than when ROC
weighs are used in a situation with known cardinal values.
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The elicitation of ordinal information makes the cognitive task of the decision
maker easier. Hence, given these results, we deem that the use of this type
of rules to identify a small subset containing the most promising alternatives
is an interesting possibility, whenever it is costly or di�cult to obtain precise
values for all parameters. Eliciting ordinal information about consecutive value
di�erences requires a little additional e�ort, but the resulting increase in the
quality of the results, in our opinion, justi�es this extra step.

The conclusions presented in this paper should be read carefully, since the
experiments were restricted to the case where the decision is based on a com-
plete ranking of the criterion weights and on a complete ranking of the value
of each alternative in each attribute. For the case where the set of acceptable
weights and the set of acceptable values are de�ned by a set of general linear
restrictions, it is possible that the ROC and ∆ROC rules lose some power.
However, as referred by [4], the ROC is a speci�c example of centroid values,
which generalizes to any convex value set speci�ed by linear inequalities, and
for a large class of situations the centroid computations are not very di�cult
[43]. Testing the quality of centroid-based approximations for other types of
constraints is an interesting subject for future research.

Another future research path is the use of this type of approximations in multi-
actor settings, namely group decisions and negotiations, where eliciting order
relations is less prone to disagreement than eliciting precise parameter values.
Finally, we deem that this type of approximations might also be interesting
to be studied for other multi-criteria methods besides additive MAVT.
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