
What are effective descent morphisms of

Priestley spaces?

George Janelidze∗ and Manuela Sobral†

Dedicated to the memory of Sergio Salbany

Abstract

We discuss the problem formulated in the title. We solve it only in
two very special cases: for maps with finite codomains and for maps
that are open and order-open, or, equivalently, open and order-closed.
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0 Introduction

A morphism p : E → B in a category C with pullbacks is said to be an
effective descent morphism if the pullback functor p∗ : (C ↓ B) → (C ↓ E)
is monadic. This definition was used many times since the early nineties by
various authors, who also explained where it comes from and how to deal
with it. Nevertheless let us briefly recall:

• Intuitively, when p : E → B is a good surjection, one can think of
E = (E, p) as an extension of B. If so, then given a problem on a
certain category AB associated with B, one can try first to solve it
for AE and then to use descent from E to B. This requires to have
an induced functor p∗ : AB → AE , and to be able to describe the
category AB as the category Des(p), called the category of descent
data for p, and constructed as the category of objects in AE equipped
with a certain additional structure defined using p∗. Accordingly, the
morphism p is said to be an effective descent morphism if a certain
comparison functor AB → Des(p) is a category equivalence. This
general idea of descent theory is due to A. Grothendieck (see e.g. [3]
and [4]).

∗Partially supported by South African NRF.
†Partially supported by CMUC through the program COMPETE and FCT under the

project PEst-C/MAT/UI0324/2013 and grants number PTDC/MAT/120222/2010 and
SFRH/BPD/69661/2010.

1



• There are several ways, later proposed by several authors, to describe
the category Des(p) at various levels of generality recalled in the sur-
vey papers [8] and [7]. In the ‘basic’ case of global descent, which
we are considering in the present paper: AB = (C ↓ B) is the cate-
gory of pairs (A, f), where f : A → B is a morphism in C; the functor
p∗ : (C ↓ B) → (C ↓ E) is defined by p∗(A, f) = (E×B A, π1) using the
pullback E×B A of p and f ; p∗ has a left adjoint p!, which is defined by
p!(D, g) = (D, pg), and Des(p) is defined as the category (C ↓ E)T

p
of

algebras over the corresponding monad Tp on (C ↓ E); the monadicity
of p∗ means that the standard comparison functor (C ↓ B) → Des(p)
is a category equivalence.

• The expression “good surjection” used above is suggested by the fact
that when C is ‘good’ (e.g. Barr exact), p is an effective descent
morphism if and only if it is a regular epimorphism. A general charac-
terization of effective descent morphisms is given in [7], but there are
many concrete examples, including C = Top (the category of topolog-
ical spaces), where a lot of further work is needed to understand its
meaning. Some of them are mentioned in Example 0.1 below.

Example 0.1. (a) For C = Top, the effective descent morphisms are char-
acterized by J. Reiterman and W. Tholen ([13]) in terms of ultrafilter con-
vergence.

(b) Let C be either the category of preorders (that is, sets equipped
with a reflexive and transitive relation) or the category of finite preorders.
Then p : E → B is an effective descent morphism if and only if for every
b2 ≤ b1 ≤ b0 in B there exists e2 ≤ e1 ≤ e0 in E with p(ei) = bi (i = 0, 1, 2).
This was shown in [5] (published as a preprint in 1999), as a simplified
version of the above-mentioned Reiterman-Tholen result. Note that this
result on preorders easily implies similar results for equivalence relations
and for order relations (finite or not).

(c) Since the category of compact Hausdorff spaces is Barr exact and its
regular epimorphisms are nothing but (continuous) surjections, its effective
descent morphisms also are nothing but surjections. However, the same is
true for Stone spaces, whose category is only regular; this was first observed
by M. Makkai (unpublished).

(d) As explained in [2], using (b) and (c) one can easily describe effective
descent morphisms of preordered Stone spaces and of ordered Stone spaces:
they are the same as continuous maps that are effective descent morphisms
of underlying preorders.

(e) For C being the category of compact (not necessarily Hausdorff) 0-
dimensional spaces the effective descent morphisms are characterized in [6],
although that category does not admit arbitrary pullbacks, and so the ex-
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istence of relevant pullbacks becomes a part of the definition of an effective
descent morphism there.

(f) Generalizing (c), all categories monadic over the category Set of sets
(which includes all varieties of universal algebras) are Barr exact and their
effective descent morphisms are exactly those morphisms that are mapped
to surjections by the forgetful functor to Set. However, this is not the case
for some quasi-varieties; the first simple counter-examples were given in the
first part of [8], and much more information, also about relational structures
was obtained by A. H. Roque (see [14], [15], [16]).

(g) When C is the opposite category of commutative rings (with 1),
p : E → B is an effective descent morphism if and only if, considered as
a B-module homomorphism, it is a pure monomorphism. We refer to the
third part of [8] for the proof; however, that proof essentially follows the
first published proof, due to B. Mesablishvili ([10]). In general, describing
effective descent morphisms in the opposite categories of varieties of uni-
versal algebras is often a hard problem; some results in this direction, but
very different from the commutative ring case, were obtained by D. Zan-
gurashvili (see [18] and [20]; see also [19] for effective descent morphisms in
some opposite topological categories).

As its title shows, this paper is about effective descent morphisms of
Priestley spaces, and we shall make some general remarks about them before
describing the content of the paper. Let us begin with a well-known result
that goes back to G. Birkhoff [1], but is formulated categorically-precisely:

Theorem 0.2. (“Birkhoff Duality”) The dual category (FDLat)op of finite
distributive lattices is equivalent to the category FOrd of finite ordered sets.
Both functors making the equivalence can be defined as hom(−,2), where:

(a) when L is a distributive lattice, hom(L,2) is defined as the ordered set
of lattice homomorphisms from L to the two-element lattice 2 = {0, 1};

(b) when X is an ordered set, hom(X,2) is defined as the lattice of order
preserving maps from X to the two-element ordered set 2 = {0, 1}.

Next, as observed e.g. by P. T. Johnstone in [9], the duality above
extends from finite to all distributive lattices simply by observing that:

• Since every finitely generated distributive lattice is finite, the cate-
gory DLat of distributive lattices is equivalent to the filtered colimit
completion of FDLat.

• Therefore the category (DLat)op is equivalent to what Johnstone (and
some other authors, but not us) calls the category of ordered Stone
spaces, since that category is equivalent to the filtered limit completion
of FOrd.
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However:

• The more complicated topological (or almost topological) approach to
the extended duality was developed long before the categorical one,
independently by several authors, but this again goes back to [1], and
to further ideas of M. H. Stone (see the details in the Introduction of
[9]; but see also [17] and its Zentralblatt review by G. Birkhoff).

• The more recent work of H. Priestley [11], partly independent and
proving a clearer picture in a sense, has influenced many authors in-
terested in (also in) universal algebra, and especially in various con-
crete algebraic dualities. We formulate Theorem 0.3, as these authors
would expect, replacing the term “ordered Stone space” with “Priest-
ley space”. Another reason for this replacement is that we also need
to reserve the term “ordered Stone space” for merely Stone spaces
equipped with an order relation, as it is done in [2].

Furthermore, it will be convenient for us to use three other related terms,
namely “Priestley covering family” (Problem 1.1), “Priestley-separated”
(proof of Proposition 1.3), and “Priestley extension” (Problem 2.1). In
particular, according to this terminology, an ordered Stone space A is a
Priestley space if and only if every pair (a, a′) of elements in A with a � a′

in A, can be Priestley-separated; this means that there exists an up-closed
clopen subset U of A with a ∈ U and a′ /∈ U . The Priestley form of the
above mentioned extended duality theorem formulates as:

Theorem 0.3. The dual category (DLat)op of distributive lattices is equiva-
lent to the category of Priestley spaces. Both functors making the equivalence
can be defined as hom(−,2), where:

(a) when L is a distributive lattice, hom(L,2) is defined as the Priestley
space of lattice homomorphisms from L to the two-element lattice 2 =
{0, 1};

(b) when X is a Priestley space, hom(X,2) is defined as the lattice of
continuous order preserving maps from X to the two-element ordered
set 2 = {0, 1} equipped with the discrete topology.

The morphisms of Priestley spaces are, of course, the order preserving
continuous maps; since all finite Priestley spaces are discrete, they become
just order preserving maps in the finite case. Working with Priestley spaces
we shall freely use their simple well-known properties, such as, e.g. sepa-
ration of closed subsets instead of separation of points, or the fact that the
up-closure of a (topologically) closed subset is closed, or the fact that the
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category of Priestley spaces is closed under pullbacks in the category of
ordered topological spaces.

As explained in [2], using general results of descent theory and (b) and
(c) in Example 0.1, the problem of describing effective descent morphisms
of Priestley spaces reduces to a problem that can be formulated in simple
terms not involving any categorical constructions except a single pullback.
The reduction theorem can be formulated as:

Theorem 0.4. A morphism p : E → B of Priestley spaces is an effective
descent morphism if and only if it satisfies the following conditions:

(a) for every b2 ≤ b1 ≤ b0 in B there exists e2 ≤ e1 ≤ e0 in E with
p(ei) = bi (i = 0, 1, 2);

(b) for every morphism f : A → B of ordered Stone spaces, A is a Priestley
space whenever so is the pullback E ×B A.

However, condition 0.4(b) needs a further clarification, and, moreover,
we do not even know whether it follows from condition 0.4(a). In fact we
are formulating this problem in Section 3, while in Sections 1 and 2 we
establish preliminary results and formulate related problems. In Section 3
we also present our two main results, namely Theorem 3.1 that describes
effective descent morphisms with finite codomain, and Theorem 3.3 that
gives another wide class of effective descent morphisms. In Section 4 we
briefly consider the passage from descent for Priestley spaces to codescent
for distributive lattices via Theorem 0.3.

We hope our problems and rather simple results will be of interest for cat-
egorical and point-set topologists working with Stone and Priestley spaces.

1 Remarks on Priestley spaces mapped to finite
ordered sets

The example mentioned by H. A. Priestley in her review [12] (which is, as
she says, due to W. G. Bowen) of an ordered Stone space S that is not a
Priestley space seems to be indeed ‘the’ simplest one: it is the topological
coproduct {xn| n ≤ ω}+{yn| n ≤ ω} of two copies of the ordinal ω+1, with
the order that has u < v if and only if u = xn, v = yn for some n 6= ω . This
space S admits, however, an order-preserving continuous map to the ordered
set {0, 1}, whose fibres are (order discrete) Priestley spaces, suggesting the
following:

Problem 1.1. Let B a Priestley space, and let us define a Priestley covering
family of B as a covering family (Ui)i∈I of B with the following property: If
A is an ordered Stone space and f : A → B a continuous order preserving

5



map, such that each f−1(Ui) (i ∈ I) is a Priestley space, then A is a Priestley
space.

(a) Is it possible to characterize Priestley covering families?

(b) If not, what are reasonably wide classes of such coverings?

According to the above-mentioned example, {{0}, {1}} (considered as
a two-member family) is not a Priestley covering of {0, 1}. Nevertheless
Proposition 1.3 below (see also Remark 1.4) gives a satisfactory answer to
Problem 1.1(b) for finite B. In order to prove it, we need the following very
simple lemma:

Lemma 1.2. Let f : A → B be an order preserving map of ordered sets, X
and Y subsets in A and B, respectively, with f(X) ⊆ Y , and b an element
in B. Then

(X ↑) ∩ f−1(b) = ∪y∈Y Ay,

where Ay is the intersection of f−1(b) and the up-closure of X ∩ (f−1(y) ∪
f−1(b)) in f−1(y) ∪ f−1(b).

Proof. If a is an element in (X ↑) ∩ f−1(b), then a is in f−1(b) and there
exists x ∈ X with x ≤ a. For y = f(x) we then have

x ∈ X ∩ f−1(y) ⊆ X ∩ (f−1(y) ∪ f−1(b)),

x ≤ a, and a ∈ f−1(b) ⊆ f−1(y) ∪ f−1(b). Therefore a is in Ay. That is
(X ↑) ∩ f−1(b) ⊆ ∪y∈Y Ay. The opposite inclusion is trivial.

Proposition 1.3. If B is a finite Priestley space that has more than one
element, then its covering family formed by all two-element subsets of B is
a Priestley covering family.

Proof. Let A be an ordered Stone space and f : A → B a continuous order
preserving map, such that f−1(b)∪ f−1(b′) is a Priestley space for each pair
(b, b′) of elements in B. We have to prove that A is a Priestley space. That
is, we have to prove that every pair (a, a′) of elements in A, with a � a′

in A, can be Priestley-separated, in the sense that there exists an up-closed
clopen subset U of A with a ∈ U and a′ /∈ U .

Since B is a Priestley space, this is trivial when f(a) � f(a′) in B,
and we can therefore assume f(a) ≤ f(a′). The case f(a) = f(a′) can
also be excluded, since f−1f(a) is a clopen Priestley subspace of A, and if
x ≤ y ≤ z in A with x and z in f−1f(a), then y is in f−1f(a). We shall
therefore assume f(a) < f(a′). On the other hand, using induction by the
number of elements in B, we can assume that if B′ is a proper subset of B,
then f−1(B′) is a Priestley space.

We shall construct the desired set U in several steps as follows:
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• We choose a clopen subset V of the Priestley space f−1f(a)∪f−1f(a′),
up-closed in it, that contains a but not a′.

• We put B′ = {b ∈ B| f(a) < b} and C = ∪b∈B′((V ↑) ∩ f−1(b));
obviously C has no element less or equal to a′. We claim that each
(V ↑) ∩ f−1(b) is closed, and since B′ is finite, this implies that C
is closed. Our claim follows from Lemma 1.2 applied to X = V and
Y = {f(a), f(a′)}. Indeed, (V ↑) ∩ f−1(b) becomes the union of the
following two closed sets: the intersection of f−1(b) and the up-closure
of V ∩ (f−1f(a)∪f−1(b)) in the Priestley space f−1f(a)∪f−1(b), and
the intersection of f−1(b) and the up-closure of V ∩(f−1f(a′)∪f−1(b))
in the Priestley space f−1f(a′) ∪ f−1(b).

• Since B′ = {b ∈ B| f(a) < b} has strictly less elements than B,
f−1(B′) is a Priestley space. Since C is a closed subset in it, with no
element less or equal to a′, we can choose a clopen W , up-closed in
f−1(B′) and not containing a′.

• Finally, we take U = (V ∩ f−1f(a)) ∪W .

All we need to show now is that U is up-closed in A. Moreover, since W is
up-closed in f−1(B′) and B′ is up-closed in B, it suffices to show that if u is
in V ∩ f−1f(a) and u ≤ t in A, then t is in U . Since u ≤ t and f(u) = f(a),
we either have f(a) = f(t), or f(a) < f(t). If f(a) = f(t), then t is in
V ∩f−1f(a) since V is up-closed in f−1f(a)∪f−1f(a′). If f(a) < f(t), then
f(t) is in B′, and t is in (V ↑) ∩ f−1(f(t)) ⊆ C ⊆ W ⊆ U .

Remark 1.4. Let A be an ordered Stone space, B a Priestley space,
f : A → B a continuous order preserving map, and a and a′ elements in
A. Since B is a Priestley space, whenever f(a) � f(a′) in B, the pair (a, a′)
can be Priestley-separated. Therefore, formulating Proposition 1.3 we can
replace all two-element subsets of B with all subsets {b, b′} with (at most
two elements and) either b ≤ b′ or b′ ≤ b. Moreover, since every closed sub-
space of a Priestley space is itself a Priestley space, we can make a further
reformulation: If B is a finite Priestley space and (Ui)i∈I a covering family
of B such that, for every b ≤ b′ in B, there exists i ∈ I with b and b′ in Ui,
then (Ui)i∈I is a Priestley covering family.
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2 Involving pullbacks

Problem 2.1. Let us define a Priestley extension as a morphism p : E → B
of Priestley spaces such that for every pullback diagram of the form

E ×B A
π2 //

π1

²²

A

f

²²
E p

// B

in the category of ordered Stone spaces, where E ×B A is a Priestley space,
the space A also is a Priestley space.

(a) Is the necessary condition for p to be a Priestley extension, given
in Proposition 2.3 below, also sufficient? (Proposition 2.4 gives the
affirmative answer in the case of finite B.)

(b) If not, how can one characterize the class of Priestley extensions?

(c) What are reasonably wide classes of such extensions?

Remark 2.2. The Problems 1.1 and 2.1 are closely related of course. In
particular, if (Ui)i∈I is a finite covering family of a Priestley space B, in
which each Ui is a closed subspace of B, then the coproduct

∐
i∈I Ui is a

Priestley space and the canonical map
∐

i∈I Ui → B is a Priestley extension
if and only if (Ui)i∈I is a Priestley covering.

Proposition 2.3. If p : E → B is a Priestley extension, then for every
b ≤ b′ in B there exist e ≤ e′ in E with p(e) = b and p(e′) = b′.

Proof. We shall exclude the obvious case b = b′. After that, given b < b′

in B, we take A to be the space S considered at the beginning of Section
1, and define f : A → B by f(xn) = b and f(yn) = b′. Since A is not a
Priestley space, in order to prove the existence of e ≤ e′ in E with p(e) = b
and p(e′) = b′, it suffices to prove that if there is no such e ≤ e′, then E×B A
is a Priestley space.

The ordered Stone space E×B A is a topological coproduct of the Priest-
ley spaces p−1(b)× f−1(b) and p−1(b′)× f−1(b′), such that:

• No element of f−1(b′) is smaller than any element of f−1(b), and so
no element of p−1(b′)×f−1(b′) is smaller than any element of p−1(b)×
f−1(b).

• To say that there is no e ≤ e′ in E with p(e) = b and p(e′) = b′, is
to say that there is no element of p−1(b) smaller than any element
of p−1(b′), and so no element of p−1(b) × f−1(b) is smaller than any
element of p−1(b′)× f−1(b′).
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That is, if there is no e ≤ e′ in E with p(e) = b and p(e′) = b′, then E ×B A
is the coproduct of the Priestley spaces p−1(b)×f−1(b) and p−1(b′)×f−1(b′)
in the category of ordered Stone spaces, and so it is a Priestley space.

Proposition 2.4. Let p : E → B be a morphism of Priestley spaces, in
which B is finite and for every b ≤ b′ in B there exist e ≤ e′ in E with
p(e) = b and p(e′) = b′. Then p is a Priestley extension.

Proof. Let F be the coproduct of all subsets in B with at most two elements
in the category of finite ordered sets (or, equivalently, in the category of
Priestley spaces), let q : F → B be the map induced by the inclusion map,
and let u : F → E be any order preserving map with pu = q. Such a u
does exist by our assumption on p. For an arbitrary order preserving map
f : A → B, in which A is an ordered Stone space, consider the diagram

F ×B A
u×1 //

π1
′

²²

E ×B A
π2 //

π1

²²

A

f

²²
F u

// E p
// B

in obvious notation, whose both squares are pullbacks in the category of
ordered Stone spaces. If E ×B A is a Priestley space, then:

• F ×B A is a Priestley space, since the left-hand square is a pullback.

• Since F ×B A is a Priestley space, then so is A by Proposition 1.3 (see
also Remarks 1.4 and 2.2).

3 Descent theorems

This section is devoted to our two main results on effective descent mor-
phisms of Priestley spaces. The first of them is an immediate consequence
of (Theorem 0.4 and) Proposition 2.4:

Theorem 3.1. Let p : E → B be a morphism of Priestley spaces with finite
B. Then p is an effective descent morphism if and only if for every b2 ≤
b1 ≤ b0 in B there exists e2 ≤ e1 ≤ e0 in E with p(ei) = bi (i = 0, 1, 2).

Before formulating the second one, let us state:

Problem 3.2. Let p : E → B be a morphism of Priestley spaces. According
to Theorem 0.4, and our definition of a Priestley extension in Problem 2.1,
it is an effective descent morphism if it satisfies condition 0.4(a) (repeated in
Theorem 3.1) and is a Priestley extension. Therefore Problem 2.1 suggests
asking:
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(a) Can one drop the finiteness assumption in Theorem 3.1?

(b) If not, how can one characterize the class of effective descent mor-
phisms of Priestley spaces?

(c) What are reasonably wide classes of such morphisms?

Of course Problem 3.2(c) might have many answers, including the fol-
lowing:

Theorem 3.3. A morphism p : E → B of Priestley spaces is an effective
descent morphism whenever it is:

(a) surjective;

(b) open and order-closed, that is, for every b1 ≤ b0 in B and e1 in E with
p(e1) = b1, there exists e0 in E with p(e0) = b0 and e1 ≤ e0.

Proof. Condition 0.4(a) obviously follows from conditions 3.3(a) and 3.3(b).
Therefore we only need to prove that these conditions imply 0.4(b). First,
considering the pullback diagram displayed in the formulation of Problem
2.1, we observe that the projection π2 : E ×B A → A is open since so is
p : E → B. On the other hand π2 : E ×B A → A is closed since it is a
continuous map between compact Hausdorff spaces. Furthermore, it pre-
serves up-closed subsets, as easily follows from the fact that p is order-
closed. Therefore it preserves up-closed clopen subsets. Now we can show
that A is a Priestley space whenever so is E ×B A. Suppose a � a′ in A.
We choose e ∈ E with p(e) = a and observe that (e, a) � (e′, a′) for every
e′ ∈ p−1(f(a′)). Since E×BA is a Priestley space, this allows us to choose an
up-closed clopen subset U of E×B A with (e, a) ∈ U and p−1(f(a′))×U = ∅.
It follows that π2(U) is an up-closed clopen subset of A with a ∈ π2(U) and
a′ /∈ π2(U).

Reversing the orders we obtain:

Corollary 3.4. A morphism p : E → B of Priestley spaces is an effective
descent morphism whenever it is:

(a) surjective;

(b) open and order-open, that is, for every b1 ≤ b0 in B and e0 in E with
p(e0) = b0, there exists e1 in E with p(e1) = b1 and e1 ≤ e0.

4 From Priestley spaces to distributive lattices

Let L be a distributive lattice. A homomorphism l : L → 2 is completely
determined by the inverse image l−1(0) of 0 ∈ 2, which is a prime ideal
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of L, and, conversely, every prime ideal of L is of this form for some ho-
momorphism l : L → 2. This gives a more traditional (from the viewpoint
of lattice theory) formulation of Theorems 0.2 and 0.3, where hom(L,2) is
replaced with the ordered set PI(L) of prime ideals of L (one also replaces,
for a Priestley space X, the lattice hom(X,2) either with the lattice of up-
closed clopen subsets of X, or with the lattice of down-closed clopen subsets
of X there, but we shall not need that). Theorem 3.1, translated literally,
becomes:

Theorem 4.1. Let p : B → E be a homomorphism of distributive lattices
with finite B. Then p is an effective codescent morphism, that is, it makes
the induced pushout functor (B ↓ DLat) → (E ↓ DLat) comonadic, if and
only if for every triple (b2, b1, b0) of prime ideals of B with b2 ⊆ b1 ⊆ b0,
there exist prime ideals e2 ⊆ e1 ⊆ e0 in E with p−1(ei) = bi (i = 0, 1, 2).

Everything else we say in the previous sections can also be reformulated
for distributive lattices. Let us omit that and only mention that it would
be interesting to compare the results on distributive lattices with those for
commutative rings (see the third part of [8]), and try to unify them in the
context of commutative semirings.
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University of Cape Town Universidade de Coimbra
Rondebosh 7700, Cape Town Ap. 3008, 3001-454 Coimbra
South Africa Portugal
george.janelidze@uct.ac.za sobral@mat.uc.pt

13


