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Abstract

We explore some properties of Schreier split epimorphisms between
monoids, which correspond to monoid actions. In particular, we prove
that the split short five lemma holds for monoids, when it is restricted
to Schreier split epimorphisms, and that any Schreier reflexive rela-
tion is transitive, partially recovering in monoids a classical property
of Mal’tsev varieties.
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1 Introduction

Classically, an action of a group B on a group X is defined as a group ho-
momorphism from B to the group Aut(X) of automorphisms of X. It is well
known that group actions are equivalent to split extensions (which are, in
this case, nothing but split epimorphisms). For many other algebraic struc-
tures, like Lie algebras, rings, associative algebras and many others, it is still
possible to define actions and to obtain the same kind of equivalence with
split extensions.
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In the case of monoids, actions can be defined in a similar way as for
groups: an action of a monoid B on a monoid X can be defined as a monoid
homomorphism from B to the monoid End(X) of endomorphisms of X.
These actions, however, are not equivalent to split epimorphisms. The ques-
tion arose, then, to characterize those split epimorphisms that correspond to
the actions defined as above. In the paper [6], the authors gave a description
of these split epimorphisms, and they called them Schreier split epimor-
phisms. The name was inspired by the pioneering work of Rédei [8], who
introduced the notion of Schreier extension in the context of semigroups,
monoids, semirings and semimodules over a semiring, and by the work of
Patchkoria [7], who defined the so-called Schreier internal categories in the
context of monoids and proved that they are equivalent to what he called
crossed semimodules. The definition of crossed semimodule is analogous to
the classical one of crossed module of groups, and uses the notion of monoid
action described at the beginning. Moreover, Patchkoria’s work was gener-
alized in [6] to the case of monoids with operations, a wide class of algebraic
structures, which includes monoids, semirings, join-semilattices with a bot-
tom element, distributive lattices with a top (or a bottom) element and other
examples.

The aim of the present paper is to start a deep study of Schreier split
epimorphisms, showing that they have many interesting properties, typical
of all split epimorphisms of groups, that are not valid, in general, for split
epimorphisms between monoids. An example is the fact that a Schreier
split epimorphism is necessarily the cokernel of its kernel. A first important
property is the split short five lemma: given a commutative diagram

X

t
��

k // A

u
��

f
// B

v
��

soo

X ′
k′

// A′
f ′

// B′s′oo

of monoid homomorphisms, where the two rows are Schreier split epimor-
phisms (together with their kernels), u is an isomorphism if and only if both
t and v are. This is not true for general split epimorphisms between monoids,
but it is well known to hold in the case of groups. This lemma is a key step in
order to construct group cohomology. The fact that it holds for Schreier split
epimorphisms between monoids can then be used to develop a cohomology
theory for monoids (see [2]).

A second important property studied in the present paper is related to
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Schreier reflexive relations. An internal relation on an algebra B in a variety
of universal algebra is nothing but a subalgebra of the product B × B; in
other words, it is completely described by a pair of homomorphisms

R
d0 //
d1

// B

that are jointly monomorphic. An internal relation is reflexive when d0 and
d1 have a common section s0. It is well known that, in Mal’tsev varieties [5],
every internal reflexive relation is an equivalence relation. This is false in
the variety of monoids. However, this property can be partially recovered if
we restrict our attention to Schreier reflexive relations, i.e. internal reflexive
relations of the form

R
d0 //

d1
// Bs0oo

such that the split epimorphism (d0, s0) is a Schreier one, see Theorem 5.5.

The paper is organized as follows. In Section 2 we introduce the notion
of Schreier split epimorphism and the stronger one of homogeneous split
epimorphism, and we describe their first properties, including the fact that
a Schreier split epimorphism is the cokernel of its kernel. In Section 3 we
give some examples of Schreier and homogeneous split epimorphisms. In
Section 4 we prove that the split short five lemma holds for monoids when
it is restricted to Schreier split epimorphisms. In Section 5 we study the
Schreier reflexive relations, showing that they have some typical properties
of reflexive relations in Mal’tsev varieties.

2 Definitions and first properties

Throughout all the paper, a split epimorphism between monoids, i.e. a dia-
gram of the form

A
f

// B
soo

such that fs = 1B, will be denoted by a 4-tuple (A,B, f, s). The kernel of f
will be denoted by K[f ].

We start by introducing the following definition (which is inspired by the
definition of homogeneous internal category given in [4]):

Definition 2.1. A split epimorphism (A,B, f, s) between monoids is said to
be right homogeneous when, for any element b ∈ B, the map µb : K[f ] →
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f−1(b) defined by the multiplication on the right by s(b), as µb(k) = k · s(b),
is bijective. Similarly, by duality, we can define a left homogeneous split
epimorphism. (A,B, f, s) is said to be homogeneous when it is both right
and left homogeneous.

The following notion (which was inspired by the notion of Schreier internal
category introduced in [7]) first appeared in [6] (Definition 2.6):

Definition 2.2. A split epimorphism (A,B, f, s) between monoids is said to
be a Schreier split epimorphism when, for any a ∈ A, there exists a unique
α in the kernel K[f ] of f such that a = α · sf(a).

In other terms, a Schreier split epimorphism is a split epimorphism (A,B, f, s)
equipped with a unique set-theoretical map q : A 99K K[f ] with the property
that, for any a ∈ A, we have:

a = q(a) · sf(a).

The two notions of right homogeneous and of Schreier split epimorphism
are equivalent, as the following proposition shows:

Proposition 2.3. A split epimorphism (A,B, f, s) is right homogeneous if
and only if it is a Schreier split epimorphism.

Proof. Given a right homogeneous split epimorphism (A,B, f, s), the unique
α that appears in Definition 2.2 is given by α = µ−1

f(a)(a). Conversely, given a

Schreier split epimorphism, for any b ∈ B the inverse of the map µb : K[f ] →
f−1(b) is defined in the following way: if a ∈ f−1(b), µ−1

b (a) is the unique
α ∈ K[f ] such that a = α · sf(a).

There is an analogous description of left homogeneous split epimorphisms.
We do not give it explicitly, because the description of right homogeneous,
and, symmetrically, of left homogeneous split epimorphisms given in the
following proposition will be more useful later in the paper.

Proposition 2.4. A split epimorphism (A,B, f, s) is right homogeneous (i.e.
a Schreier split epimorphism) if and only if there exists a set-theoretical map
q : A 99K K[f ] such that:

q(a) · sf(a) = a

q(α · s(b)) = α
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for every a ∈ A, α ∈ K[f ] and b ∈ B. Dually, a split epimorphism is left
homogeneous if and only if there exists a set-theoretical map q̄ : A 99K K[f ]
such that:

sf(a) · q̄(a) = a

q̄(s(b) · α) = α

for every a ∈ A, α ∈ K[f ] and b ∈ B.

Proof. Suppose that for every a ∈ A, there exists a unique α ∈ K[f ] such that
a = α · sf(a). This property defines a map q : A→ K[f ], by q(a) = α, such
that a = q(a) · sf(a), for every a ∈ A. In order to prove that q(α · s(b)) = α
for any α ∈ K[f ], it suffices to observe that sf(α · s(b)) = s(b).

Conversely, given a set-theoretical map q : A→ B satisfying the asserted
identities, we can choose α = q(a) for every a ∈ A by the first identity;
suppose now that a = α′ · sf(a), then we get:

q(a) = q(α′ · sf(a)) = α′

by the second identity. The proof for the case of left homogeneous split
epimorphisms is similar.

We will call the following diagram:

K[f ]
k

// A
qoo

f
// B,

soo

the canonical Schreier split sequence associated with the Schreier split epi-
morphism, and q the associated Schreier retraction. We have the following
properties:

Lemma 2.5. Given a Schreier split epimorphism (A,B, f, s), we have:

(a) qk = 1K[f ], i.e. qk is the identity map on K[f ];

(b) qs is the null homomorphism, i.e. qs(b) = 1 for every b ∈ B;

(c) q(1) = 1.

Proof. (a) is a straighforward consequence of the second identity in Propo-
sition 2.4.

(b) for b ∈ B we have:
s(b) = 1 · sf(s(b))

and the uniqueness of q gives that qs(b) = 1 for every b ∈ B.
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(c) obviously we have 1 = 1 · sf(1).

Proposition 2.6. If (A,B, f, s) is a Schreier split epimorphism, then f is
the cokernel of k. In other words the split sequence

1 // K[f ] k // A
f

// // B //soo 1,

where 1 is the trivial monoid, is exact.

Proof. Given a homomorphism g : A→ D such that gk is the null homomor-
phism, we have that gs makes the triangle below commutative:

K[f ] k // A

g ��@
@@

@@
@@

@
f // B

gs

��

s
oo

D.

Indeed, since gk(x) = 1 for any x ∈ K[f ], then gq(a) = 1 for any a ∈ A.
Then, for any a ∈ A, we have:

g(a) = g(q(a) · sf(a)) = gq(a) · gsf(a) = 1 · gsf(a) = gsf(a),

and hence gsf = g. Moreover, given any h : B → D such that hf = g, we
have that

h = hfs = gs.

3 Examples of Schreier and homogeneous split

epimorphisms

Proposition 3.1. Given any direct product diagram

X
⟨1X ,0⟩

// X ×B
πXoo πB // B,

⟨0,1B⟩
oo

the canonical split epimorphism (X ×B,B, πB, ⟨0, 1B⟩) is homogeneous.

Proof. The equality (x, 1) · (1, b) = (x, b) shows that it is right homogeneous,
while (1, b)·(x, 1) = (x, b) shows that it is left homogeneous. Here the Schreier
retraction πX is a monoid homomorphism.
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Corollary 3.2. The split epimorphism

X // 1oo

is homogeneous.

Corollary 3.3. The identity split epimorphism

X
1X // X,
1X

oo

and more generally any isomorphism, is homogeneous.

Proposition 3.4. If B is a group, then every split epimorphism (A,B, f, s)
is homogeneous.

Proof. Given a split sequence of the form

K[f ] k // A
f

// // B,
soo

let us define, for any a ∈ A, q(a) = a · sf(a)−1 ∈ K[f ]. This map q clearly
satisfies the conditions of Proposition 2.4, showing that it is a Schreier split
epimorphism. The map q̄(a) = sf(a)−1 · a ∈ K[f ], which satisfies the dual
conditions, shows that it is left homogeneous.

We will prove later that the converse is also true: if any split epimorphism
with codomain B is homogeneous, then B is a group.

Example 3.5. Consider the internal order in the variety of monoids given
by the usual order between natural numbers:

ON
p1

//

p0 //
N,s0oo

where
ON = {(x, y) ∈ N× N | x ≤ y},

p0 and p1 are the first and the second projection, and s0(x) = (x, x). Then
the split epimorphism (ON,N, p0, s0) is homogeneous.

Proof. The equality (x, y) = (0, y − x) + (x, x), for any (x, y) ∈ ON proves
that the split epimorphism in question is right homogeneous, while the com-
mutativity implies that it is left homogeneous.
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Example 3.6. We denote by Z∗ the monoid of non-zero integers with the
usual multiplication, and by N∗ its submonoid whose elements are the num-
bers greater than 0. Then the split epimorphism

Z∗
abs

// N∗,
ioo

where i is the inclusion and abs associates with any integer its absolute value,
is a homogeneous split epimorphism. In fact K[abs] = {±1}, and it is im-
mediate to see that any non-zero integer z can be written in a unique way as
z = ±1 · |z| = |z| · ±1.

Example 3.7. Let us fix a natural number n. We can define on the cartesian
product N× N the monoid structure given by

(x1, b1) · (x2, b2) = (x1 + nb1x2, b1 + b2). (1)

(when both n and b1 are 0, we use the convention 00 = 1). We denote this
monoid by NonN. The projection π1 : NonN → N defined by π1(x, b) = b is
a monoid homomorphism, in the same way as the section σ1 : N → N on N
defined by σ1(b) = (0, b). For any n ∈ N, the split epimorphism (N on

N,N, π1, σ1) is a Schreier split epimorphism: the (unique) map q : NonN 99K
K[π1] is just the first projection π0 : N × N 99K N. If n = 0, this split
epimorphism is not homogeneous (because it is not left homogeneous): for
example, for b = 1, the map λ1 : K[π1] 99K π−1

1 (1) defined by

λ1(x, 0) = (0, 1) · (x, 0) = (0, 1)

is clearly not bijective.

The last example is an application of the fact, proved in [6], that Schreier
split epimorphisms correspond to monoid actions. Let us briefly recall the
equivalence between these two concepts. Given a Schreier split epimorphism

K[f ]
k

// A
qoo

f
// B,

soo

we obtain an action of B on K[f ], i.e. a monoid homomorphism φ : B →
End(K[f ]), by putting

φ(b)(x) = q(s(b) · x)
for any b ∈ B and any x ∈ K[f ]. Conversely, given a homomorphism ψ : B →
End(X), we can define, on the cartesian product X ×B, a binary operation
as follows:

(x1, b1) · (x2, b2) = (x1 · ψ(b1)(x2), b1 · b2).
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It is easy to see that, in this way, we obtain a monoid, denoted by X oψ B,
and a Schreier split epimorphism

X
k

// X oψ B
qoo

f
// B,

soo

where f and q are the canonical projections of the product, while k and s
are the inclusions of X and B, respectively (this construction is inspired by
the classical semidirect product of groups).

In particular, the Schreier split epimorphisms having N both as codomain
and kernel are in bijection with the monoid homomorphisms N → End(N).
Hence it is easy to see that all such Schreier split epimorphisms are obtained,
up to isomorphisms, by the construction (1).

We have a similar description for homogeneous split epimorphisms: the
homogeneous split epimorphisms with codomain B and kernel X correspond
to the monoid homomorphisms B → Aut(X), where Aut(X) is the group of
automorphisms of X, as the following proposition shows.

Proposition 3.8. A Schreier split epimorphism

K[f ]
k

// A
qoo

f
// B

soo

is homogeneous if and only if the corresponding monoid homomorphism
φ : B → End(K[f ]) factors through Aut(K[f ]).

Proof. Suppose that (A,B, f, s) is homogeneous. Let us show that any en-
domorphism φ(b) is an automorphism. Suppose q(s(b) ·x) = q(s(b) ·x′), with
b ∈ B and x, x′ ∈ K[f ]. Then we have

s(b) ·x = q(s(b) ·x) ·sf(s(b) ·x) = q(s(b) ·x) ·s(b) = q(s(b) ·x′) ·s(b) = s(b) ·x′.

Since the split epimorphism is left homogeneous, we have x = x′ and φ(b) is
injective. Let z be in K[f ]. Since the split epimorphism is left homogeneous,
there exists t ∈ K[f ] such that s(b) · t = z · s(b). Then

φ(b)(t) = q(s(b) · t) = q(z · s(b)) = z

since z ∈ K[f ], and consequently φ(b) is surjective. Conversely, suppose that
the Schreier split epimorphism (A,B, f, s) corresponds to a homomorphism
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φ : B → Aut(K[f ]). This means that (A,B, f, s) is isomorphic to the Schreier
split epimorphism

K[f ]
⟨1K[f ],0⟩

// K[f ]oφ B
πK[f ]oo

πB
// B.

⟨0,1B⟩oo

We have to show that, for any b ∈ B, the map µb : K[f ] → π−1
B (b) defined by

µb(x) = (1, b) · (x, 1) = (φ(b)(x), b)

is bijective, but this follows immediately from the fact that φ(b) is an auto-
morphism.

4 The Schreier split short five lemma

The aim of this section is to prove that the split short five lemma holds also
for monoids, if we restrict our attention to Schreier split epimorphisms. We
will need the following auxiliary result:

Lemma 4.1. Consider the following commutative diagram, where the two
rows are Schreier split epimorphisms:

X

u
��

f
// // Y

soo

v
��

X ′
f ′

// // Y ′.
s′oo

Then, in the following diagram, completed with the kernels and the restriction
K(u) of u, the leftward left hand side square commutes:

K[f ]

K(u)

��

k
// X

u

��

f
// //

qoo Y
soo

v

��
K[f ′]

k′
// X ′q′oo

f ′
// // Y ′.

s′oo

In other terms, we have that q′u = K(u)q.

Proof. We have to show that q′u(x) = uq(x) for any x in the monoid X. It
is true since we have:

uq(x) · s′f ′u(x) = uq(x) · usf(x) = u(q(x) · sf(x)) = u(x) = q′u(x) · s′f ′u(x)

and then the thesis follows from the uniqueness in the Schreier condition.
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Theorem 4.2. Consider the following commutative diagram, where the two
rows are Schreier split sequences and K(u) is the restriction of u to the
kernels:

K[f ]

K(u)
��

k
// A

u

��

f
// //

qoo B
soo

v

��
K[f ′]

k′
// A′q′oo

f ′
// // B′.

s′oo

We have that

(i) u is a surjective homomorphism if and only if both v and K(u) are;

(ii) u is a monomorphism if and only if both v and K(u) are;

(iii) u is an isomorphism if and only if both v and K(u) are.

Proof. (i) If u is a surjective homomorphism, then so is vf = f ′u, and
this implies that v is surjective. The map q′ is surjective (this is an
immediate consequence of Lemma 2.5 (a)), then so is q′u = K(u)q,
and this implies that K(u) is surjective. Conversely, suppose that v
and K(u) are surjective. Consider a′ ∈ A′. There are α ∈ K[f ] and
b ∈ B such that u(α) = q′(a′) and v(b) = f ′(a′). Accordingly

u(α · s(b)) = u(α) · us(b) = q′(a′) · s′v(b) = q′(a′) · s′f ′(a′) = a′.

Hence the homomorphism u is surjective.

(ii) If u is a monomorphism, then so is us = s′v, which implies that v is
a monomorphism. Similarly uk = k′K(u) is a monomorphism, which
implies that K(u) is a monomorphism. Conversely, suppose that K(u)
and v are monomorphisms. Suppose now that u(a1) = u(a2). Then
we have f ′u(a1) = f ′u(a2) and then vf(a1) = vf(a2), whence f(a1) =
f(a2). Moreover, from u(a1) = u(a2), we can conclude that

K(u)q(a1) = q′u(a1) = q′u(a2) = K(u)q(a2).

Since the restriction K(u) of u to K[f ] is a monomorphism, we get
q(a1) = q(a2). With f(a1) = f(a2), we get a1 = a2.

(iii) It follows immediately from (i) and (ii).
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5 Schreier internal relations

As we recalled in the introduction, by internal relation on an algebra B in a
variety of universal algebra we mean a subalgebra of the product B×B. By
considering the homomorphic inclusion

R � B ×B

and by composing it with the two projections of the product, we get two
parallel homomorphisms

R
d0 //
d1

// B,

that are the first and the second projection of the relation. More explic-
itly, denoting an element of R by a pair xRy, such that x and y belong to B
and are linked by the relation R, we have that d0(xRy) = x and d1(xRy) = y.

An internal relation is reflexive when d0 and d1 have a common section
s0 : B → R. In the notation above, we have that s0(b) = bRb for any b ∈ B. A
fundamental property of Mal’tsev varieties [5] is that every internal reflexive
relation is an equivalence relation. In the variety of monoids this is not
true. For instance, the relations of Examples 5.3 and 5.4 below are internal
reflexive relations which are not symmetric. However, we are going to show
in this section that the property mentioned above can be partially recovered
if we restrict our attention to the Schreier reflexive relations, whose definition
is the following.

Definition 5.1. An internal reflexive relation of monoids

R
d1

//

d0 //
Bs0oo

is a Schreier reflexive relation if the split epimorphism (R,B, d0, s0) is a
Schreier one. It is homogeneous if (R,B, d0, s0) is homogeneous.

Example 5.2. For every monoid X, the discrete internal equivalence rela-
tion:

X
1X

//

1X //
X,1Xoo

i.e. the relation R such that xRy if and only if x = y, is a homogeneous
internal equivalence relation.
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Example 5.3. Example 3.5 shows that the internal order in the variety of
monoids given by the usual order between natural numbers:

ON
p1

//

p0 //
N,s0oo

where
ON = {(x, y) ∈ N× N | x ≤ y},

is a homogeneous order relation.

Example 5.4. Since Z, with the usual sum, is a group, the internal order
in monoids given by the usual order between integers:

OZ
p1

//

p0 //
Z,s0oo

where
OZ = {(x, y) ∈ Z× Z | x ≤ y},

is a homogeneous order relation (thanks to Proposition 3.4).

The previous example can be obviously generalized to the case of the or-
der relation OG associated with any ordered group G.

We are now ready to prove the main result of this section. We will use
the fact that every Schreier reflexive relation is right homogeneous (because
of Proposition 2.3).

Theorem 5.5. Any Schreier reflexive relation is transitive. It is an equiva-
lence relation if and only if K[d0] is a group.

Proof. Let us first observe that the elements of K[d0] are of the form 1Rb,
with b ∈ B.

Suppose that xRy and yRz. Since the reflexive relation is a Schreier one,
and hence right homogeneous, from xRy we know that there is a unique
element t ∈ B such that 1Rt and

xRy = (1Rt) · s0(x) = (1Rt) · (xRx) = (1 · x)R(t · x),

which gives t · x = y; from yRz we get an element τ ∈ B such that 1Rτ and

yRz = (1Rτ) · s0(y) = (1Rτ) · (yRy) = (1 · y)R(τ · y),

which gives τ ·y = z. Hence 1R(τ · t) and then xR(τ · t ·x) = xR(τ ·y) = xRz.
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Suppose now that R is symmetric. Then any y such that 1Ry is such
that yR1. Since R is a Schreier reflexive relation, there is a unique element
y′ such that 1Ry′ and

yR1 = 1Ry′ · s0(y) = 1Ry′ · yRy = (1 · y)R(y′ · y),

which gives y′ · y = 1; so, any element y ∈ K[d0] has a left inverse, which
implies that K[d0] is a group. Conversely, suppose that K[d0] is a group and
that we have xRy. There is an element t such that 1Rt and

xRy = (1Rt) · s0(x) = (1Rt) · (xRx) = (1 · x)R(t · x),

which gives t ·x = y. There exists t−1 such that 1Rt−1. Whence yR(t−1 ·y) =
yRx.

Examples 5.3 and 5.4 are instances of Schreier reflexive relations that are
not equivalence relations; actually they are order relations.

Proposition 5.6. Given a monoid X, the indiscrete equivalence relation ∇X

given by:

X ×X
p1

//

p0 //
X,s0oo

i.e. the relation R such that xRy for any x, y ∈ X, is a Schreier equivalence
relation if and only if X is a group. In this case ∇X is actually homogeneous.

Proof. If X is a group, it is an immediate consequence of Proposition 3.4; ac-
tually the equivalence relation∇X is even homogeneous. Conversely, suppose
the indiscrete equivalence relation is a Schreier equivalence relation. Then,
according to the previous proposition, K[p0] = X is a group.

We can now prove the converse of Proposition 3.4:

Corollary 5.7. Given any monoid B, the three following conditions are
equivalent:
(a) the monoid B is a group
(b) any split epimorphism with codomain B is homogeneous
(c) any split epimorphism with codomain B is a Schreier split epimorphism.

Proof. (a) ⇒ (b) is given by Proposition 3.4.
(b) ⇒ (c) holds since any homogeneous split epimorphism is a Schreier one.
(c) ⇒ (a) Condition (c) implies that the indiscrete relation ∇B is a Schreier
equivalence relation, and consequently B is a group.
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6 Conclusion

In this paper we showed some important properties of Schreier split epi-
morphisms between monoids. They gave evidence to the need of a more
systematic study of these structures, which will allow to understand better
the intrinsic properties of monoids, as it was already done for groups and
other structures, like rings and Lie algebras, with the notions of protomod-
ular [1] and Mal’tsev [3] categories. This systematic study, together with an
extension of the results presented in this paper to the case of semirings, will
appear in the forthcoming work [2], in which, in particular, some cohomo-
logical properties are investigated.
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algébriques, J. Algebra 67 (1980), 385-414.

[5] A. I. Mal’cev, On the general theory of algebraic systems, Mat. Sbornik
N. S. 35 (1954), 3-20.

15



[6] N. Martins-Ferreira, A. Montoli, M. Sobral, Semidirect products and
crossed modules in monoids with operations, J. Pure Appl. Algebra 217
(2013), 334-347.

[7] A. Patchkoria, Crossed semimodules and Schreier internal categories in
the category of monoids, Georgian Math. Journal 5 n.6 (1998), 575-581.
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