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INTRODUCTION

A few years ago, the theory of n-Lie algebras attracted a lot of attention
because of its close relation with the Nambu Mechanics proposed in Nambu [11].
This connection was revealed in Takhtajan [15], where those algebras appear
under the name of Nambu-Lie algebras. Specifically, the notion of n-Lie algebra
is the implicit algebraic concept underlying the Nambu Mechanics—the proposal
of Nambu to obtain generalized Hamiltonian equations of the movement. The
definition of n-Lie algebra (n > 2) was introduced in Filippov [6] as a natural
generalization of the Lie algebra concept. Following Grabowski and Marmo [7] and
Pojidaev [12], in memory of Filippov’s remarkable work, we use the term Filippov
algebra instead of n-Lie algebra.

Let us mention that Faulkner [5] discussed a class of triple systems that were
called alternating triple systems. He encountered them while studying which trilinear
identities are satisfied by a triple system such that its left multiplication operators
are derivations and its derivation algebra acts irreducibly on it. By definition, a triple
system is alternating if its multiplication is alternating and its left multiplication
operators are derivations, properties that also characterize Lie algebras. So, one



can require the same for an n-linear multiplication on a vector space to naturally
generalize the concept of Lie algebra. This was done by Filippov, who achieved this
generalization of the Jacobi identity.

In this article, we consider the ternary Filippov algebra A, equipped with
a bilinear, symmetric, and nondegenerate form. We define, in Section 1, a new
multiplication on the underlying vector space of A,. The obtained algebra
1s said to be a ternary quaternion algebra because it appears analogously to
the construction of the quaternions from the Lie algebra 3((2). Moreover, in
Pojidaev [12], where a question on the existence of n-ary systems playing a role
of enveloping algebras for n-Lie algebras was mvestigated, it was proved that < 1s
an enveloping algebra for A,. We notice that & may be defined on quaternions by
{x,y, z} = xyz (equality up to a coefficient). The ternary algebras with such product
were considered by many authors, for example, Brown and Gray [3], Elduque [4],
Kamiya and Okubo [8], Pojidaev [13], Shaw [14]. As against the cited articles, we
investigate the 1dentities of small level or height (where height refers to the number
of operations in each term) in these ternary algebras.

Speaking finite dimensionally, it is possible to determine by hand identities
of some heights valid in an algebra that has a small dimension. But when we deal
with an algebra with a considerable dimension or we are looking for identities of
high height, it is imperative to substitute the hand calculations by computational
algebra. The articles of Bremner, Hentzel, and Peresi illustrate the applications of
computational linear algebra to the study of identities for nonassociative algebras
using the expansion matrix and the representation theory of the symmetric group
.. See, for instance, Bremner and Hentzel [1] and Bremner and Peres: [2].

Concerning the identities of height 1 valid in %, we first calculate them by
hand in Section 2. The problem arose while investigating the height 2 identities of
s which imply the work with the permutations of &;. At this point, we decided to
use a computational algebra software and Bremner’s method, the expansion matrix.
Concretely, as in Bremner and Hentzel [1], the information about the structure of
the space of identities is given by the nullspace of that matrix, and this linear-
algebraic data can be translated back into the identities we seek.

In the two following sections, where the previously obtained identities have
a relevant function, we continue studying the properties of . In Section 3 we
consider, namely, its simplicity and derivations. As far as Section 4, applying the
deduced identities of ¢, we construct some ternary enveloping algebras for ternary
Filippov algebras.

The final section contains some open problems related to the algebra . On
one hand, we make some remarks on higher level identities of s/ than the ones that
we consider in this article. On the other hand, a few questions concerning possible
generalizations of the presented work are raised.

In what follows, the symbol := denotes an equality by definition, ® 1s a ground
field, ch(®) 1s the characteristic of ® (ch(®) # 2) and (T) 1s the linear span of the

set T over D.



1. PRELIMINARIES

Given a vector space U over @, U is an Q-algebra over @ if Q is a system of
multilinear algebraic operations defined on U:

Q={w,:|w,|=neN,iel}

where |w;| denotes the arity of w;. In particular, we say that U is a triple system
(or a trernary algebra) over ® if U is equipped with a trilinear map p : U?> — U, i.e.,
) = {w} with |w| = 3. We omit the arity whenever it is clear from the context.

Given a ternary algebra U with multiplication (.,-,-), U denotes the
commutator algebra of U, that 1s, the ternary algebra with multiplication (-, -, -).
given by

(x15 X35 X3), 1= Z 53’1(5)(%{11: X(2) 3 -"f.cr{:i;):
E'EF.J":_;

the ternary version of the generalized commutator.

Let L be an ()-algebra over ® equipped with a single n-ary operation [-, ..., -];
L 18 a Filippov n-algebra (or n-ary Filippov algebra or n-Lie algebra, n > 2) over ®
if, forallxy. ..., % ¥, ¥, € Loand 0 € &

g e (1)
[[—xl? bRy Xﬂ], yl? LS }?n] = Z[xlr ok ) [Iia Yoo e, yn]: £ In]' (2)
i=1
If (1) holds, then [, ..., -] is said to be anticommutative; (2) is called the generalized

Jacobi identity.
The following example of an (n + 1)-dimensional n-Lie algebra, an analogue
of the 3-dimensional Lie algebra with the cross product as multiplication, appears

among the first ones given by Filippov [6].

Example 1.1. Let L be an (n 4 1)-dimensional Euclidean vector space over IR
equipped with the multiplication [-, ..., -], which is the vector product of » elements
in L, n=2.If x5 .., %, e L and &, ={e;,...x€,,} 18 an orthonormal basis of
L, then we have:

X11 3 ¢ = €
X321 Ay~ = o, €2
[xh » In] =
An+)1 Xm+1D2 - XmiDn  €ntl

where xy;, ..., x,., are the coordinates of x;,. The vector product is completely
determined by the rule

leg <= €i—1> E}, €irls v En—|—l] — (_l)n:ml-r_if?fa (3)



i €{l,...,n+ 1}, where the symbol ¢, means that e, is omitted. The remaining
products of the basis vectors are either zero or obtained from (3) and (1). The
basis €, for which the product is written in the form (3) is said to be canonical.
Filippov [6], showed that this ()-algebra is an n-Lie algebra. Following Pondaev [12],
we shall denote it by A,, clarifying its dimension whenever it may not be clear.

Let L be a Filippov algebra. A subspace I of L is an ideal of L provided that
|II,L,...,L]CLIf[L,...,L] # {0} and L lacks ideals other than {0} and L, then
we say that L is simple.

In Ling [9], it was proved that A, is the only (n + 1)-dimensional simple
- Filippov n-algebra over an algebraically closed field of characteristic zero, up to
isomorphism.

Consider the 4-dimensional ternary Filippov algebra A, over ® equipped
with a bilinear, symmetric, and nondegenerate form (-, -), and the canonical basis
€={e,, e, €3, ¢,}. We define a new multiplication on the underlying vector space of
A, 1n the following way:

{x, ¥z} ==, x4+ (x, 2y — (x, Yz + [x, 3, 7] 4)

We denote the obtained algebra by o, differing the multiplication (4) from that
which appears in Pojidaev [12] by a scalar. Note that IR - 1 @ 3[(2) with the product

(@ +X)(B+Y) = of — (x,3) +ay + fx + [x, )]

1s 1somorphic to the quaternions. This is the main reason for investigating 4 as a
ternary associative algebra, which is an enveloping algebra for A,

Let us emphasize that, in (4), [-, -, -] is a ternary vector cross product on
the underlying vector space of A; equipped with (-, -). According to Brown and
Gray [3], recall that this means that [, -, -] is a trilinear map from 03 to satisfying

(lay, ay, a3], a;) =0, (5)
([ay, a5, a;], [ay, a,, a;]) = det[(a,, a; b (6)

for all a,, ay, a; € ¢ and i, j € {1, 2, 3}. Notice that the skewsymmetry of [, <] 38
an immediate consequence of (6); ([, -, -], ) is skewsymmetric in its arguments by
the skewsymmetry of [, -, -] and by (5).

Let C be a 4-dimensional composition algebra over a field F of characteristic
# 2. Then C is a simple Filippov algebra with respect to the product

[, ¥, 2] = xyz — (v, D)x + (x, 2)y — (x, y)z,

Pojidaev [13]. Applying xy + yx = 2(x,y) = Xy + yx, we see that vy zl=ayz
Thus, we may use the last equality as an equivalent definition of {x,v,z}. We use
both definitions in this work.

We start the study of ¢ deducing its identities of heights 1 and 2 (1-identities
and 2-identities, respectively). These identities will be mainly found using the
method of the expansion matrix. More details on this process can be found in
Bremner and Hentzel [1] and Bremner and Peresi [2].



2. IDENTITIES OF ¥«

Level 1. The first step 1s the seeking of the 1-identities valid in , 1.e., we search
for the identities of type:

> e Xo(1)s Xa2)> Xo3)t = 0, oy € D. (7)

GE-F
Theorem 2.1. All 1-identities for i follow from
{b,a,al = {4, a, b} (8)

Proof. In this demonstration, we use a manual approach. Considering some
valuations for x; in %, from (7), we obtain a system of linear equations on «, . The
resolution of this system gives that the 1-identities of s/ are of the shape

oafa, b, c} + (o — p){a, c, b} + pib. a, c}
+ (f—o){b, c,al — B{c, a, b} — a{c, b, a} =0,

where, for the sake of simplicity, the scalars were denoted by « and f. Linearnzing
b, a, a} ={a, a, b}, we see that all 1-identities of ¢ are implied by (8).

Observe that, despite (8), the ternary algebra ¢ 1s not a quadratic triple system
(as defined in Kamiya and Okubo [8]), since {a, a, b} = (a, a)b does not hold in .
By the same reason, (4, (-, -), {-, -, +}) is not a ternary composition algebra (see the
definition in Elduque [4] and Shaw [14]).

Corollary 2.2. The following identity holds in 34:
{a, b, c} +{a,c, b} —{b,c,a} —{c, b,a} =0. (9)

Proof. This is just the linearization of (8). []

In order to confirm the conclusions obtained for the 1-identities of ¢, we now
use, but with ch(®) = 0, the expansion matrix method. On the other hand, it 1s an
opportunity to recall the mentioned process, applying it to a smaller problem than
the one that will be considered for height 2.

Second Proof of Theorem 2.1. The {&;}-monomials (the terms arising from the
action of the six permutations in &%, over the arguments of {a, b, c}) can be seen as
elements of the %;,-module generated by the basic monomials (b, c)a, (a, c)b, (a, b)c
and [a, b, c¢]. Note that, for all ¢ € &, we have [o(a), o(b), c(c)] = sgn(o)|a, b, c]
and (o(a), a(b))a(c) € ((b, cla(a; e)ba(a, b)c}.

Denote by % the expansion matrix of {-,-, -} in height 1. Its columns are
given by the expansion of the {%;}-monomials as a linear combination of the basic
monomials. So, % is a 4 x 6 matrix whose entry x;; 1s the coefficient of the ith basic
monomial in the expansion of the jth {&;}-monomial. According to Bremner and
Hentzel [1], the 1-identities are given by the nullspace of this matrix. Then, if we



choose the lexicographical order for the permutations of the arguments of {a, b, c},
we have

150 S S e ™ 2
Fo=f &, =1 =4
ool (EAETCON R R U

RS SN EESS I G S

A basis for the nullspace of & 1s {(1, 1,0, —1,0, —1), (0,—1,1, 1, —1, 0)}. The basis
vectors represent the following 1-1dentities of &/

la, b, ¢} +{a, c, b} — {b,c,a} — {c, b, a} =0,

la, c, b} — {b, a,c} —{b, c, a} + {c, a, b} = 0.
It 1s clear that the second identity can be obtained by the action of the transposition

(a b) € & over the first one. So, the first 1dentity generdtes the whole space of
1-identities of %/ under the action of ;.

Level 2. We now seek the 2-1dentities of

Z (%{{xmma Xa(2) Jfﬁm}a Xo(4): xa[ﬁ}} + ﬁa{xau): [-’55(2}& Xe(3) xgm}}= xﬁ{i)}

ﬂ'- E l_:-rlj

HYelXotys ¥a) (X3 Xotays ¥o}}) =0, %6, Bou Vs € D (10)

It is always possible to obtain identities of a certain height d (d > 1) from
identities of height d — 1, procedure which appears in Bremner and Peresi [2] under
the name of /ift. The two possible ways to do it, obtaining [iftings, are the following:
replacing one variable by a triple, or embedding the identity in a triple. But the
interesting part related to the problem of searching 2-identities of &/ is to find the
new ones, that is, those that cannot be obtained, in any manner, from the ones of
the previous height. Next results give two of them, as justified in Remark 2.5.

Proposition 2.3 (Pojidaev [12]). In « the following identity holds:

{{a, b, cl, d, e} ={a, b, {c.d,e}). (11)

Proof. As we proved before, {x, v, z} = xyz. Now, (11) follows immediately.

According to the terminology in Kamiya and Okubo [8], and since (11) holds
in o0, we may conclude that this ternary algebra 1s an associative triple system. We
presented an easier way to prove this fact, via quaternions, than the one indicated
in Pojidaev [12].

Proposition 2.4. The following identity holds in A :

Waab.clodi el =la,dd.c.b).e} (12)



Proof. We have {{a, b, ¢}, d, e} = abcde = {a, {d, c, b}, e}.

Notice that, by Loos [10], (11) and (12) are the defining identities for an
associative triple system of the second kind.

Remark 2.5. We constructed a 600 x 360 matrix in GAP to store all height 2
liftings of (9) under the action of ;. As (11) and (12) do not belong to the row
space of this matrix, they won’t belong to the ¥s-module generated by the liftings
of (9). Therefore, the mentioned identities are not consequences of (8). Moreover,
we can conclude that (11) 1s not a consequence of (12) through a similar reasoning.

Returning to our purpose, with ch(®) = 0, all identities of height 2 can be
found using the expansion matrix method. The calculations, in the context of linear
algebra with large matrices, were made using GAP. See The GAP Team [16] for more
details on this system for computational algebra.

Theorem 2.6. The identities (8), (11), and (12) imply all 2-identities of 3.

Proof. As considered in (10), for the operation {-,-,-}, in height two, we
have three association types represented by the ;-monomials: {{a, b, ¢}, d, e},
{a, {b, c, d}, e}, {a, b, {c,d, e}}. By Propositions 2.3 and 2.4, we only have to
consider the first type for the construction of the expansion matrix.

We have four types of basic monomials that we describe and count below
taking into account the symmetry of (-,-), the skewsymmetry of [-,-,-], the
generalized Jacobi identity and the skewsymmetry of (|-, -, -], -).

(a) The monomials of type (a, b)(c, d)e; we have 15 monomials of this type.
(b) The monomials of type ([a, b, c], d)e; we have 5 of them.

(¢) The monomials of type (a, b)[c. d, e]; there are 10 of these monomials.
(d) Finally, the monomials of type [[a, b, c], d, e]; we have 6 of them.

Thus, we have 36 basic monomials and the expansion matrix %, in height 2, has

size 36 x 120. The 120 columns of ¥ are labeled by the {<}-monomials of the first

association type. This matrix has rank 35, so its nullspace / has dimension 85.
Now, we obtain a basis of V' with GAP. One of the basis vectors represents the

following 2-identity of /:
Hb,d,c}, a, e} + {{a, b, e}, d, c} — {{e, b, a}, d, c}
— b, e,a},d, c} —{{e,a,b},d, c}+{{b,d, c}, e,a} = 0. (13)

This identity generates, under the action of &, a subspace of dimension 85, that 1s,
the whole space /. So, (11), (12), and (13) imply all 2-1dentities of .

From (9), we have

({a, b, e}, d, ¢} + {{a, e, b}, d, ¢} — {{e. b, a}. d, ¢} — {{b, e, a}. d, c} =0, (14)

b,d, c},a, el +{{b,d,c},e a}l —{e a, b d c}}—{a,e {b,d, c}} =0. (15)



Applying (11) in (15), we obtain
{1b.:d, ¢}, a, e} + {{b.d; ¢} exa) —{leia. b}, d, c}—{{a; e b} die} =0. ~(16)

Thus, adding member to member (14) and (16), we arrive at (13). Therefore, we
conclude that (13) is a consequence of (8) and (11).

3. SOME PROPERTIES OF ¥

Simplicity. Fix a,, a, € . For the operation {-,...,-}, the right, left and
outer multiplication operators R, ,.,L, ., and M, ., respectively, are the linear
mappings from ¢ to s/ defined in the following way:

R, ik a,a], L, .. ' %7 {aa0x) M S5 (dri s )
Recall that the associative algebra s¢*, called the multiplication algebra of , 1s
generated by the previous operators. ¢* 1s a subalgebra of the associative algebra
of linear endomorphisms of the underlying vector space of the ternary algebra .
A subalgebra [ is an ideal of  provided that {I, s¢, s¢}, {4, I, s}, {sd, sd, I} C I; A 1s
simple if and only if {4, o4, 0} # {0}, and the only ideals of « are {0} and .

We can give the definition of ideal for s in terms of the multiplication algebra
of . Concretely, I 1s an ideal of o 1f I 1s a subspace of & that 1s invariant under the
multiplication algebra s¢*. Note that { 1s simple 1f and only if $/* 1s an irreducible
~algebra of linear transformations.

Denote the right, left, and outer multiplication algebras generated by the rlght
left, and outer operators by {7, ¢7 and 4, respectively; the number of inversions

in the 3-tuple (i, j, k) by inv(i, J, k)

Lemma 3.1. Let F € {L,R}. If i, J,k, 1 are different elements in {1,2,3,4} then
we have

0 fF=1L

Id = —F ‘
b wiafiBe=—= R

€, €

: = K )+ e
R 0 i SR {
: i+j+k+invli, j, k
FEI'_-E.’-J: = _FEJ,E{-! Fﬁ'! E'JFEI - (_1) g Ay }FEI By

Proof. For example, let us prove that R, , R, ., = (- stk DR s Byi( 1)
and (4), we have

({x, &1, e}, e €} = {x, €, {es, €, €;}} = (1) 01, ¢;, €},

Other equalities may be proved analogously.

By direct computation, s¢* = M, (®); therefore, we have the following theorem.
Theorem 3.2. The algebra A is simple.

Denote the Lie algebra generated by the multiplication operators (right, left,
and outer) by (,.



Theorem 3.3. <, = 3[(4).

Proof. We can see that for i,je {l1,2,3,4} and i# j, ¢; € [}, ¥},] and, for
i=1,2,3, e; — €141 € [547, ).

Derivations. Recall that a linear mapping D : / — { such that, for every
2 O T e

D({a, b, c}) = {D(a), b, c} + {a, D(b), c} + {a, b, D(c)} (17)

is called a derivation of 4. We denote by Der(sd) the derivation Lie algebra of /. In
this subsection, we use the obtained identities of ¥ to describe Der(s4).

Lemma 3.4. In 3 the following identity holds:

{eilabod) eyi= {6 bt de} = e {da, b)ep—iglead, af s biels (18)
Proof. By (12), we have

{e,{d, b, a}, e} —{{c,a, b}, d, e} ={c, {b,a,d}, e} — {{c, d, a}, b, e}.
To finish the proof, using (9), we only have to notice that

{c,{d, b, a}, e} — {c, {b, a,d}, e} = {c, {a, b, d}, e} — {c, {d, a, b}, e}.

Let x, y € « fixed, and

D

X,y

MR (19)
Proposition 3.5. For every fixed x,y € %, D, , € Der(31).
Proof. Take u,v, w € ¥. We have

D,,({u, v, w}) = {{u, v, w}, x, 3} — {x,y, {u, v, w}}
On the other hand,
{D,,(u), v, w}+{u, D ,(v), w}+ {u, v, D, ,(w)}

= {{u, x, y}, v, w} — {{x, y, u}, v, w} + {u, {v, %, y},
— {u, {x, y, v}, w} + {u, v, {w, X, y}} — (%, V, 1X, Y, W}}

Therefore, by (11) and (18), we obtain

D, ,({u, v, w}) —{D, ,(u), v, w} —{u, D, ,(v), w} — {u, v, D, (w)]

= —{{u, x, y}, v, w} — {u, {v, x, y}, w} + {u, {x, y, v}, w} + {u, v, {x, y, w}} = 0.




Theorem 3.6. Der(sd) = o(4).

Proof. D € Der(:d) < the matrix [D], 1s skewsymmetric.

Previously, we pointed out that (3¢, (-, -), {-, -, -}) 1s not a ternary composition
algebra. Even so, the above result coincides with the one obtained in Elduque [4],
for the derivations of a ternary composition algebra. In the mentioned article, from
any composition algebra of dimension 4 or 8, the properties of the associated triple
products are deduced from properties of the composition algebras. Our approach
for the algebra { 1s different, and we reach many of the properties applying the
determined heights 1 and 2 identities.

Corollary 3.7. D € Der(sd) & D e (D, : x,y € ).

Proof. We only have to notice that R, , — Lﬂ.-ﬁeﬂ,- = 2(e;; — e;).

L |

Recall that a derivation 1s called inner if 1t belongs to the Lie algebra 4, .

Cornllary 3.8. All derivations of A are inner.

4. ENVELOPES FOR TERNARY FILIPPOV ALGEBRAS

We see that the ternary algebra s satisfies a lot of interesting identities which
are similar to those of associative algebras, namely, (11). Also, notice that (8) looks

like a weak commutativity of .
In what follows, we assume that ch(®) £ 2,3. Let VA be the variety of

ternary algebras over @ given by the following i1dentities (of ):

(a. b, b)Y=1Db,b, a), (20)
((a,b.e), d, e)=(a.blc.d.e)) 21)
(b . c) d, e) = a (d c:hye). (22)

Theorem 4.1. Given B € WA, B is a ternary Filippov algebra.

Proof. Equip 2 with the ternary commutator

(x1, X3, X3), = Z 53“(5)(%“}1 Xe(2) ‘xﬂ'{:ﬂ)'

TES,

By construction, (-, -, -). 1s skewsymmetric. Applying the linearized form of (20),

we have

c

ta.bc).=3la.b.c)= (c.b.a)).
Using (21), the generalized Jacobi identity holds in 22 if and only if

((a,d,e),b,c)+ (c, b, (e,d,a)) + (a, (b,d, e),c)— (c, (b,d,e), a)
— (a, (e, d, b),c) + (c, (e,d, b),a) — ((c,d, e), b,a) — (a, b, (e, d, c)) =0.



From the linearized form of (20) and by (21), we can write

((a,d,e),b,c)+ ((c,b,e),d,a)— (a, (b,e,d), c) + (a, (d, e, b), c)
+(c, (b, e;d), a) — (c,(d, e, b),a) — ((c,d, e), b, a) — ((a, b, ¢e),d, c) =0.

Thus, invoking (22), we conclude that the generalized Jacobi identity holds in 9.
Therefore, '~ 1s a ternary Filippov algebra.

5. FINAL REMARKS

In this article, we studied a ternary analogue ¢ of the quaternion algebra.
Namely, we have considered the 1-identities and the 2-identities valid in /.
Observe that one could also consider the trilinear operations defined by

a(y, 2)x + b(x, 2)y + c(x, y)z + [x, ¥, z], (23)

where a, b, ¢ are some bilinear symmetric forms. These algebras are enveloping
algebras for A, as well. One of the open problems i1s to study the polynomial
identities satisfied by the family of operations defined 1n (23). Specifically, to know
how those identities depend on a, b, ¢. Our research focused on the particular case
where a = ¢ = —1 and b = 1 due to already pointed reasons.

A very interesting problem arises from the fact that the 2-identities of ¢
are just the familiar identities for associative triple systems. Concretely, a natural
question is to know whether or not there are any new identities of height 3. Since
the height 2 identities of ¢ imply ternary associativity, we just have to consider one
association type in height 3, for instance,

SERN AN A S

Therefore, the size of the expansion matrix in the mentioned height may be reduced
in order to make the computation feasible. Depending on the chosen programme to
implement the method, three problems might appear: time and space requirements
of exact rational arithmetic imposing limits on the height of the identities that
can be studied: arbitrarily large integers may not be available; 1in the last case, all
calculations should be done in modular arithmetic with respect to a suitable prime
p, holding the results only in characteristic p.

As we pointed out, the algebra ¢ appears analogously to the quaternions from
the Lie algebra 3[(2). This raises a relevant question: Is there some generalization of
the ternary operation defined in (4) that would produce an n-ary associative algebra
from the simple Filippov n-algebra of dimension n + 17?

It is very interesting to describe the polynomial identities of height <3 of the
ternary algebra defined on the octonions by (xy)z. Note that the operation

[X, ¥zl = (9)z — On ) (X 2)) — (s )2

equips the octonions with the structure of a ternary Malcev algebra (see
Pojidaev [13]). Thus, one may expect that the study of the identities for the ternary



product (xy)z on the octonions leads to an interesting class of ternary alternative
algebras.

Finally, we highlight the obtained envelopes for ternary Filippov algebras
since, until now, no good class of algebras has been found playing a role of the
universal enveloping algebras for Filippov algebras.
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