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INTRODUCTION

One of the interesting properties of n-Lie and n-ary Malcev algebras [5]
is the possibility of obtaining other algebras of the same class, but being the
arity of the new operations reduced in one unity (which suggests the name
of reduced algebras for the latter ones). More generally, if L is a given
Q-algebra over a field F - that is, L is a vector space over I with a system of
multilinear algebraic operations

Q={w;:|lw|=meN, iel}

where |@;| denotes the arity of w; - and @ € L is fixed, L can be equipped
with a system of new multilinear algebraic operations

Q' ={w' weh},
where
DX o ml ) = O s 5y Xuo1)

and |w‘| = |w| — 1 = n — 1. Then, L turns into an Q“-algebra, denoted by L,
and called a reduced algebra of L. 1f an Q-algebra L is anticommutative (i.c.,
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m 18 anticommutative for all @ € ), then its center is nonzero. In this case,
we will call reduced algebra just to the quotient algebra I, = L./Z(L,) and
not to L,.

In the present article, we study the reduced algebras of n-Lie algebras.
Recall that an n-Lie algebra I is an Q-algebra with one n-linear operation
[-,...,] satisfying the identities:

[«\'1: s :-xn] = 5gn (U)['\-U(I]: - :xr:l‘("]]

where ¢ 1s a permutation of the symmetric group S, and sgn(o) stands for
the sign of . If L is an n-Lie algebra (n > 3) then, by [1], L, is an (n — 1)-Lie
algebra for any a € L, with multiplication defined by

[’le"':“YJr—l}gr:[a:xl:"':'\‘"—l]' (l)

To simplify notations, each reduced (n — 1)-Lie algebra L, will be identified
with L.

It is important to relate the structure of the original algebra with the
one which corresponds to its reduced algebras. In the first section we recall
the definitions of k-solvable and k-nilpotent ideal of an n-Lie algebra L, and
show that if [ is k-solvable (k-nilpotent), with k < n, then for any element a
of an arbitrary basis of L, its reduced algebra L, is k-solvable (k-nilpotent)
too. The special case k = n is also analyzed in both situations. Further, we
establish the relation between the k-radical (2-nilradical) of L and the
k-radical (2-nilradical) of each L.

It is known that any 3-Lie algebra can be considered as a vector space
equipped with a system of binary operations such that it becomes a Lie algebra
with respect to each operation, and these are related to each other. In the
second section we consider the reciprocal problem, presenting a procedure of
obtaining a 3-Lic algebra starting from a family of Lic algebras and illustrating
with a concrete example how this can be done. Another interesting result,
included in this section, states that the reduced algebras of an n-Lie algebra of
type A; (as defined in [1]) which are obtained by fixing the elements of its
canonical basis, are isomorphic to an (n — 1)-Lie algebra of the same type,
under the condition of the ground field being algebraically closed with char-
acteristic zero. However, this doesn’t hold for any reduced algebra of 4.

Studying the reduced algebras can be a source of new examples of simple
and semisimple algebras. In the last two sections we present the main results of



this article, concerning two classes of simple n-Lie algebras introduced in [4]:
A(n, t) and E(n,t). We study its reduced algebras which arise from fixing the
elements of the respective canonical basis. In the case of a characteristic zero
field, we prove that those reduced algebras of A(m,t) and E(n,t) are new
examples of semisimple n-Lie algebras. In the third section we compute the
radical of any of those reduced algebras of A(n, ¢) in the case of a modular field
and prove that the quotient of this algebra by its radical is isomorphic to
A(n —1,7'), for some r'. In the last section we prove that, when n = 0 (mod p)
any of those reduced algebrasof E(n, ¢) is simple, while when n # 0 (mod p) its
square is simple. In both cases, the obtained reduced simple algebras are
(=1 — 2)-dimensional, where p = char Fand p* = |F|. Tt remains an open
question to say if these are isomorphic to any known simple n-Lie algebra
(namely, the possibility of being isomorphic to A(n — 1,#), for some 1,).

1 k-SOLVABILITY AND &-NILPOTENCE OF REDUCED
(# — 1)-LIE ALGEBRAS

The purpose of this section is to study the relations between n-Lie
algebras and its reduced (n — 1)-Lie algebras in which concerns k-solvability
and k-nilpotence. These notions were introduced in [2] and we recall them
below.

In what follows, L denotes an n-Lie algebra over a field F of arbitrary
characteristic and, for a fixed element a of a given basis of L, L, is a reduced
(n — 1)-Lie algebra of L. Further, if /is an ideal of L, it is clear that it is also
an ideal of L,. Indeed, we have

U LayerosLaly = [LLyo. L], = @ 1L, L) C [LL,...,.L]C L (2)
If we want to precise that 7 is being considered as an ideal of L, we denote it
by 1,.

Given an ideal 7 of L and a fixed & € {2,...,n}, let 1" denote the

descending sequence of ideals of L, defined by:

J
}{.»+l,k]

We say that [is a k-solvable ideal of L if I'¥) = 0 for some s € Ny. L is said
to be k-solvable if L% =0 for some 5 € Ny. The ideal 1) = [[,... 1] is
called the square of 1.
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Lemma 1.1. Fork € {2,...,n— 1}, if Iis a k-solvable ideal of L, then I, is a
k-solvable ideal of L. Furthermore, if I is an n-solvable ideal of L with index of
n-solvability equal tor and a € I then I, is an (n — 1)-solvable ideal of L,,.

Proof. Fixing k € {2,..., n— 1}, we will show by induction that e

155 for i_ill s € Ny, which is sufficient to prove the first assertion. Clearly, we
have L(:u] = [ = [0k By definition, we now have

EO=0, . 50 1, L,
—————

k

Thus, using the induction hypothesis,

U R, L) = 1,

Suppose now that 7 is n-solvable, being /(") =0 andll("—l-"] £ 0.
S n—

Admitting that a € I/~ we will prove by induction that It ) C 151 for
all s € {0 ..... r}. This is clearly true when s = 0. Further, suppose that

I{.\—u:—l i g
a

C =1 with s < . Then
[‘{].ur—l] & [!(.»—IJJ] ..... !(.L—l.njjd - [a= [(.»—IJJ] ..... !(.L—l.nJ].

Since a € I"=14 C [5=14) for all ¢ < r, this last ideal is included in /%) The
second assertion follows then from the inclusion (f‘"_l] C 1" and the
lemma is proved. O

Remark 1.1. Of course, if / = L, the additional condition appearing in the
second assertion of the above lemma is redundant.

Next we give two properties that are left without proof (which can be
found [2]).

Lemma 1.2. Let k€ {2,...,n} be fixed.

1) If L is k-solvable, then all subalgebras of L are k-solvable and all
ideals of L are k-solvable ideals of L;
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2)  If Land J are k-solvable ideals of L, then I + J is a k-solvable ideal
of L.

The second property justifies the existence of a maximal k-solvable
ideal of L foreach k € {2,..., n}, which is called the k-radical of L. denoted

by Rad(L). Further, L is said to be k-semisimple if Rad, (L) = 0.
Theorem 1.3. Let k be a fixed integer in {2,....n—1}. If L, is k-semi-
simple, then L is k-semisimple.

Proof. By Lemma 1.1, we can write

Rad(L,) 2 Radg(L), (3)

forall ke {2,..., n— 1}. The assertion is then a consequence of (3). |

Remark 1.2. The inclusion reciprocal to (3) is not valid in general. This will
be a consequence of Theorem 3.5.

Given an ideal [ of L and a fixed k € {2,...,n}, we can consider

another descending sequence of ideals of L, denoted by I'*, defined as
follows:

Pr=1
) SuR R L A A SR 4 I - €
N —
k-1
We say that I is a k-nilpotent ideal of L if F* =0 for some s € N. Of course,
if L% = 0 for some s € N, L is said to be k-nilpotent.
Lemma 14. Letke{2,..., n— 1} be fixed. If I is a k-nilpotent ideal of L,

then I, is a k-nilpotent ideal of L. Further, if a € I and I is an n-nilpotent ideal
of L, then I, is an (n — 1)-nilpotent ideal of L,.

Proof. Fixk € {2,...,n— 1} and prove by induction that I{‘If‘ C P for all
5 > 1. Clearly, I}:k = [ = " Assuming that I;‘I’l-k C P we have

The first assertion follows from this inclusion.
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Now, for a € I we prove that I;j”‘l C P" forall s > 1. The inclusion is
trivial when s = 1. Assume that £~ C P~ Then

s — 1 w—1n—1 w—1
[::‘" = [‘I:\: 5 ;Lr, g ':141]u g [[‘ "=[= - '=I]:r
n-2 n-2

= L. E PR L. 0 =P,
S e’ N e’

n-2 n—1

Thus, from this inclusion we conclude that the second assertion is valid too.
The lemma is proved. O

In general, when k > 2 the sum of two k-nilpotent ideals of L is not a
k-nilpotent ideal of L. But since the opposite holds when & = 2, then there
exists a maximal 2-nilpotent ideal of L, called the 2-nilradical of L and
denoted by N(L).

Theorem 1.5. [f'n > 2, then N(L) C N(L,).
Proof. By the previous lemma, this inclusion is immediate. |

For simplicity, in the subsequent sections we use the words solvability,
semisimplicity and radical instead of n-solvability, n-semisimplicity and n-
radical, respectively.

2 ON THE FAMILY OF LIE ALGEBRAS DEFINING A 3-LIE
ALGEBRA

Let L be a 3-Lie algebra, {e|,...,en} a basis of L and consider the
reduced Lie algebras which arise from L by fixing ¢;, i = 1,...,m. To sim-

plify, hereafter we denote by L; the reduced Lie algebra L, and the corre-
sponding multiplication by [-, |,. It is clear that

m m

[, 3, = oylx,3], foreverya=) oe €L,
=1

J=1

so every reduced Lie algebra of L can be defined by means of the reduced
Lic algebras L,

Observe now that, as a consequence of the definition of 3-Lie algebra,
every three reduced multiplications [, -]}, [1,-],, [, ], on L are related by the
following equalities:
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{ s er)y = lenx];

[[()ki.y]i'lz]j = [.)": [Z: ':)j]p']k o [[2= fj]k:.y]f + [ffn [ysz]_;'li' (4)

Reciprocally, let {Li,..., Ly} be a family of Lie algebras all with
dimension m, and V an m-dimensional vector space over a field F. Suppose
that, for i=1,..., m, dim Z(L;) > 1, and ¢, : L; — V are linear injective

mappings such that:

1) It is possible to choose a basis {e|,...,e,} with ¢; € @,(Z(L}))
= Yoo 003
2) If Vis equipped with m multiplications o; defined by

Xoiy :(1’71([&4_[(’\)4';071()“)];), fori= peees ML

then (4) holds. Under these assumptions, ¥ can be equipped with a ternary
multiplication defined by

m m

[z, x,%] = Zoq-(xo;y), for every z = Zsc,-e,- ev. (5)
i=1

i=l

It is casy to prove that (¥, [,,]) is a 3-Lic algebra.

When Fis an algebraically closed ficld of characteristic zero, the fol-
lowing result establishes an important relation between a semisimple n -Lie
algebra and its reduced (n — 1)-Lie algebras relative to the canonical basis.

Theorem 2.1. Ler L be an m-dimensional semisimple n-Lie algebra over an
algebraically closed field F of characteristic zero. Then, the reduced algebras
Ly, ..., Ly, of L which arise by fixing the elements of its canonical basis, are

simple, isomorphic to A.

Proof. Under the above assumptions, we know [6, Thms. 2.7 and 3.9] that
L is a direct sum of simple ideals L = &_, W;, where each W; is isomorphic
to the (n + 1)-dimensional simple n-Lie algebra 4, defined by V.T. Filippov
in [1]. Being dim L =m = (n+ 1)s, we can rearrange the elements of the
canonical basis of L,

, ,c-fm} is a basis of W}, for j=1,...,s. Thus, it is
possible to define a family of (n — 1)-Lie algebras of L,

in such a way that {e/,. ..,
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Z(L{:) = <E{= EHE e,
and thus, dim Z(Lf) = (n+1)s —n=m— n. Hence, we have
L= Z(L) & 4,

where 4 is a simple n-dimensional (n — 1)-Lie algebra isomorphic to 4.
Recalling the identification of L}/Z(L}) with L], we may now conclude that
the reduced algebras L of L are pairwise isomorphic, of type 4, due to the
above decomposition and since the centers are pairwise isomorphic. The
theorem is proved. O

Remark 2.1. We emphasize that the conclusions of the above result are
restricted to the reduced algebras obtained by fixing the elements of the
canonical basis. Indeed, it is easy to observe that if ¢ is an arbitrary nonzero
clement of L, then the reduced (1 — 1)-Lie algebra L, may be solvable (thus,
not isomorphic to 4;).

Using ideas from the previous theorem and the preceding considera-
tions we illustrate with a concrete example how a 3-Lie algebra can be built
from a family of Lie algebras.

Example 2.2. Consider a 4-dimensional Lie algebra (L,[-,-]) over F gen-
erated by {e,f, g, z} and such that

L=sl2)&Z

with Z = (z}. Let now ¥V = {ey,...,e4)p be a 4-dimensional vector space

over F and consider the following injective linear maps ¢, : L+ V' defined
on the basis of L by the rules:

Pi(e) = e Bale) = e Bile) = e Pale) = el
di(f)=e O (f)=—ex  Pi(f)=e2 alf) = —e2
P (g) = —ea hr(g) = e h3(g) = —ea $4(g) = —es
$(2)=e $r(z) =€ $3(z) = e3 $alz) =e4

Itis clear that ¢; € ¢,(Z). We can define 4 multiplications o; on I by means of

Xoy = qu([ﬁba_l ("'_): qba_l (}’)D,
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under which each (1, 0;) is a Lie algebra isomorphic to (L, [-,-]). It can be
verified by direct computations that the multiplications o; satisfy (4). So, for
every X,y € Vand w = ZLI we; € V the operation

4
[“":‘\'-:y] = z !X;'()EO;‘}’)
i=I

defines a ternary multiplication, under which V" becomes a 3-Lic algebra.

3 REDUCED (n — 1)-LIE ALGEBRAS OF A(n, )

In this section we investigate the structure of the reduced (1 — 1)-Lie
algebras of 4(n, t) obtained by fixing the vectors of its canonical basis, when
char F = 0 and when char F = p, but ' # Z,. First, we recall the definition
of the algebra A(n,1).

Let A be a vector space over a field F generated by the elements ¢, such
that a € F", that is,

A= {e,:a€ F.

For each fixed ¢ € F', define an m-ary anticommutative multiplication
[,...,.] on A by the rule:

[(’u, PR (’u,,] = ‘Hl PR a}:‘£’41,+—~+4:,,+!; (6)

where a; = (aj1,...,ap) € F" and |ai, ..., a, = det(q;), and extend it by
n-linearity to all vectors in A. Equipped with any such multiplication, 4 isan
Q-algebra denoted by A(n, 1) (or A(n) if t = 0). Further, it has already been
proved [3] that A(n, t) is an n-Lie algebra.

Consider now the quotient n-Lie algebra A(n,1) = A(n, 1)/ Feo, where
Feg = (eo} and define the n-Lie algebra A(n, 1) as follows:

B j(ﬂ,t); ifr=20
A(n, t) = {j“”](n,f) ifr#£0"

Then

A(nt) = (Fg=e,+ Fep 1 a € F'\{0,1}) . (7)
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It is easy to see that A(m,t) is infinite dimensional if char F = 0, while if
char F" = p and |F] = p", then

: m_1, ifr=0
dim A(n, 1) = { P 0! .
il () {p""—Z, if1#0

By [4], A(n, t) is a simple n-Lie algebra.

Let us fix an element ¢, of the canonical basis of A(n, t) (simplifying
notations, we identify hereinafter e; =e, + Fep with e¢,) and put
L= An,t),.

Lemma 3.1. Z = {e,:ac ()\{0,1}) is the center of L.

Proof. 1If a € (v) (a+# 0,¢) then it is obvious that ¢, € Z(L). Reciprocally,
suppose that e, is a nonzero vector of Z(L) but a¢{v). Then it is possible to
take as, ..., a, € F" such that

dim{v,a,a3,...,a4,) =n and v+a+az+-- +a, # —t

Then, e,¢ Z(L), contradicting the assumption. The lemma is proved. []
We are going to describe the ideals of the reduced algebra

L=L/Z(L). In order to simplily notations, cach ¢, + Z will be identified

with e, and F"\ ({t)pU{r}) with ®.

Lemma 3.2. If [ is a proper ideal of L, then I belongs to the family of ideals

B={Ik;e,...,6; 71, .7), K€ N,a,7v € F},

where
k
I o, oy 0 Y150 Y0) = (’a"‘zaifzrﬁ‘;u: ) (8)
i=1 F
Proof. Let I be a proper ideal of L and consider u = 1:11 sieq € Fan

element with minimal length. Without loss of generality, we may assume
that %) = 1. Suppose that k& > 1. By definition of ideal, [u,ep,, ..., e5], €1
for all e, € L. Observe now that

k+1
[.ens. - -ven ], = levuen,. .. en] = Z Py i )

i=1
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where B, = |v,a1, b3, ..., Bo| € F, 1= 1,004 k+1and b=bs+ -+ b, + 1.

If there exists some j # 1 such that a;¢ (v, ai), since bs. ..., b, are arbitrary,

we can take b3 =a and, if n >3, choose bh4,...,bh, satisfying

dim{v,a;,ay,b4,...,b,) =n. This implics that f;, =0 and, since at least

B; # 0, we may conclude that the length of [u,ep,, ..., ep], # 0 is less then
k + 1, contradicting the hypothesis. So, all ¢; € {v,a,}.

We now investigate under what conditions we have v+ a; + b € (v, v+
ay + by. It follows from ¢ + a; +b € {v,v +a; + b) that there exist 6,7, € F

such that

v+ ai+ b=+ 6{(v+a + b), (10)
whence
(1 —8)b=(y;+ 6 — Do+ diay — a. (11)

Suppose that d; # 1 for some i. Then, since a; € {v,a,), it follows from (11)
that b € (v, a1). But, being bs, ..., b, arbitrary, it is possible to choose them
such that A¢(v,a;). Thus. §; = 1,i=1,...,k + 1. From this and from (10)
we obtain @; = a; + y,v, and since «; = 1, we conclude that every u € [ can
be written in the form

k+1
u=ey + E i€y 4anu- (12)
=2

To complete the proof, we now show that if u, = e, + Z‘f:gl %€ 1y, then
u, € I for all y € ®©. Assume first that y — ré(v, a1 ). If n > 3, we can choose
b3,....by_1 such that dim{v,a;,bs,...,by_1,y — 1) = n. By setting b, =

v—t—v—ua —by—--— b, it follows from (12) that

186512 ven,),, = levitts ety .. 00,

k+l
= |U: a1 sbagenvibn 1,9 — I‘ (()_l' + Z mi(’_lur*;,ar) el

=2

and u, € I. If n = 3, we just have to put b3 = y —1 — v — g, arriving to the
same conclusion. Suppose now that y —¢ € {v,4;) and consider z € ®
satisfying z#(v,a). Then y — t¢(v,z} and, analogously, we have u, € I.

If the length of the element u is equal to 1 then, similarly to what was
done with the element y we would conclude that / = L which contradicts the
assumption that [ is a proper ideal. The lemma is finally proved. O
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We now want to investigate the structure of some specific ideals in E.
Namely, we are interested in the ideals

L= {es — eqran : a € DY,

where « is fixed in F*. To do so, we need an auxiliary number theory result,
suggested by A.P. Pozhidaev.

Lemma 3.3. () Let n € N and p < n be a prime number. Then for any i =

n

Proof. Define a mapping ¢ from Z[x] into the ring ZP[x] of truncated
polynomials given by

Plmx*) = my o,
where k = k, (modp), m = m, (mod p), 0 < mp, k, < p, x* =1, and exten-

ded to Z[x| by linearity. It is easy to see that ¢ is an homomorphism. Then
we have

n 71
$((1 —x)") = qb(z (l)kC‘f}-\*) => ',
k=0 i=0

where

n

3 (=1fck | (modp).

n

W

=0
k=i{modp)

On the other hand, ¢((1 — x)") =0 since ¢((1 —x)") =0 and ¢ is an
homomorphism. This means that y; = 0(mod p) for i =0,....p — 1, and the
lemma is proved. O

'"This lemma was suggested by A_P. Pozhidaev.
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Lemma 34. For a fixed » € F*, I, is a proper ideal of L, which is

—on-solvable, if char F = (;
—solvable, if char F = p.

Proof. Without loss of generality, we may assume that « = 1, since
otherwise v can be replaced by ¢ = aw. Put 4} = e, —e,,, and 1= {e, —
€urp - @ € O . Note that developing the product

a4, L (13)

according to (6), all the determinants are equal and for each & the coeflicient
of ez ie (Where @ = ay + -+ + au_i + v+ 1), is equal to the coeflicient of x*
on the binomial development of (1 — x)"_{. To simplify notations, let us
denote by uﬁ the element obtained from (13) after dividing by that deter-
minant. Repeating the previous calculation with w2 instead of u, a similar
situation occurs for the coefficients, which are now those of the binomial
development of (1 — x){”fni. And similarly, for the ith iteration, the coef-
ficients are those of (1 — x)("fnl. Thus, if char F = 0 it is obvious that fis a
non-solvable ideal of L. In the case of char F= p, taking into account
Lemma 3.3 we conclude that [ is a solvable ideal, ending the proof of this
lemma. O

Theorem 3.5. If char F= 0 then L is a semisimple (n — 1)-Lie algebra. If
charF = p then R =% .5 I, + Z(L) is the radical of L; further, L/R is a
semisimple algebra isomorphic to the simple (n — 1)-Lie algebra A(n —1,¢)
Sfor some t' € © and in the case (n — 2) # 0 (mod p) there exists a subalgebra S
of L such that L =R® §and 5= L/R.

Proof. 1f char F = 0 then, using Lemma 3.4, it is easy to see that there are
no solvable ideals in L. Therefore, L is semisimple.

Let F be a field of characteristic p. By Lemma 3.4, it is obvious that
Rad(L) C R. Note that

ég=¢e;+R=e4p+R=284p, foranyfcF

On the other hand, if @ — b¢ (v}, a,b¢ (v) thenit is easy to see that &, and &,
are hnearly independent. Let v,¢y,...,¢,1 be a basis of F”. Denote the
vector space {¢|,.. ., 1)y by F''. Then L/R= (g, : a € F'"),. By Cor-

ollary 2.1 of [3] there are linear mappings fy, ..., hu_t from F™!into F such

that |v,-,...,-| =" A - A By and for some ¢ € ® we have
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L/R=A(n—1,7)

by [3]. In the case (n —2) # 0 (modp) we can choose a subalgebra S as
follows

S= e

L=
A—sl!

S gy T

It is easy to see that L = R& S and S = L/R. The theorem is proved. [

4 REDUCED (n—1)-LIE ALGEBRAS OF E(n. 1)

Analogously to the previous section, our aim is to investigate the
structure of the reduced (i — 1)-Lie algebras of E(n. t) obtained by fixing the
elements of the respective canonical basis. This family of algebras was also
introduced in [4] and we recall below its definition.

Consider a vector space (e, : @ € F" '), and lor ¢ fixed in F"~! define
a multilinear anticommutative multiplication by

apy o a1

[E'm yerer €| = Ca)ottan s (14)

ty) BRI . | 1

where, for each i=1,...,n, a;=(an,...,a;,—1) € F''. To simplify, we

shall denote the above determinant by |ay, .. ., dyl;. Clearly, the resulting n-

]:ie algebra, denoted by E(n,t), is isomorphic to an n-Lie subalgebra of

A(n,t).
Let us define an n-Lie subalgebra of E(n, 1) in the following way:

E(n,f) = E(n.1). if n # 0 (mod p) or char F =0
T EY) nyr),  ifn =0 (modp)

It is easy to see that if char F= p and |F| = p*, then

. Ko ifn# 0 (mod
_ )P s if n % 0 (mod p)
dim E(m I) {p"’("fn —1, ifn=0 (mod P)!

while in the case char F = 0, E{n, t) is obviously infinite dimensional. By [4],
E(n, 1) is a simple n-Lie algebra.



REDUCED #-LIE ALGEBRAS

Let us fix an element e, on the canonical basis of E(n.t) (v# 1 if
n = 0(modp)) and put L = E(n,t), , with n > 3.

Lemma 4.1. Z = {(e,) is the center of L.

elements ¢,,...,e, € L, which is equivalent to |v,a,43,....4
Cotatay+ta+1 = 0. If @ = v, it is clear that e, € Z(L). Suppose that a # v.
Then e, € Z(L) if and only if |v,a,as, ..., a|, = 0, that is, if and only if a —
v, a3 — v,...,a, — v are linearly dependent for all a3,...,a, € F*~'. Observe
that we can choose a3,...,a, € F"~! such that dim{a —v,a3 —v,...,

ay — v) = n— 1. Therefore, e, ¢ Z(L) if a # v, and the lemma is proved. [J

Proof. We have e, € Z(L) if and only if e, e, ..., Lq,”]m_ = 0 for all basis

We now consider the reduced algebra L = L/Z and. for simplicity,
make the identification ¢, = ¢,, where é, = ¢, + Z.

Theorem 4.2. Forn >3 (F # Z, ifn =3, the algebra Lis a simple (n — 1)-
Lie algebra if n = 0 (mod p), and its square is a simple (n — 1)-Lie algebra of
codimension 1 in L if n # 0 (mod p) or char F = 0.

Proof. Computing the square of L, it is possible to observe that
€rine £ L1=Y when n # 0 (mod p) or char F= 0. Thus, to simplify nota-
tions, we are going to put

W — E, if n =0 (mod p)
T L EMU ifm % 0 (mod p) or char F =0
This way, W = (¢, : a € ®), where ® = F"~'\ {0, 1+ no} ().

Let 1 be a proper ideal of W and u = f.‘:l] oe,, € 1 be an clement of
minimal length, k + I, with 2% = 1. Suppose that k£ > 1. For all basis ele-
ments ep, € Wwe have [u,ep,, ..., e,], €1 Observe now that

k+1
[u: Ehyyvees L)h,,le, — [Eiil Hy €hyy e :'?b,,} = Z oci'ﬁiey+ul+5: (15)

where B, = |v,ai,b3,.... 00|, = @i — 0,03 —v,....0p—v|€F, i=1,... , k+

1 and b=bhy+ - +b,+t. 1f there exists some j# 1 such that

*(observe that if n = 0 (mod p), then ¢ +nv = ¢ (mod p) and I can also be represented
this way).
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a; — v {a) — v}, since b3, ..., b, are arbitrary, we can take b3 = a; and, if

n > 3, choose by, ..., b, satistying

hypothesis. So,

ag—ve{m—v)y, i=1,....k+1, (16)
that is,
ai = (1 -y v+ for somey; € F. (17)

If we take b3, ..., b, € @ such that |v, a;, b3, ..., bul, # 0,thene, , 5 € {and

by (16) we must have
vta+b—veE (v+a +b—0),

that is, for each i = 1,...,k + | there exists d; € F such that

a; = diay + (8; — 1)b, (18)
where d; = 1. By (17) and (18),
(7, = 6))ay + (1 =y o+ (1 = 8,)b = 0. (19)

for some d;, y; € F. Consider n > 3. Supposing that d; # 1 for some j # 1,
(19) implies that b € (v, a1). But this contradicts the arbitrariness of b, since
we can choose bs, ..., by € ® such that b¢ (v,a;). Thus, 6; =1, for i=

I,...,k+ 1 and from (18) it follows ¢;=a;, i=1,...,k+ 1. Let n =3. If
char ' =0, or if char F = p and v € (a;) the previous reasoning is still valid.
Consider then the modular case with v (a)}. If we admit that 7; # 1 for
some j # 1, from (19) we get that v € (b, a,), for all b. So, in particular, for a
choice of b; € @ such that b € {(a)), we get v € (ay), which is impossible.
Thus, y;,=1, for i=1,...,k+1 and from (17) it follows @ =ay, i=

1,...,k+ 1. So, for n > 3, we must conclude that ¢, € [ for some a € ®.

Consider then e, € I for some a € ®, where [ is a nonzero ideal of W.
We now proceed to show that e, € f for all y € ®. Given a fixed basis
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element e, € W, if n > 3, one can always take arbitrary b3, ..., b, and put
by=y—(v+a+ b+ -+ by_ +1). By doing so,

I3 [(’a: Chyyenns E’h,,],._,‘.
:‘Q—L?:bg—LT,...;f)n,l—L’;y—zl)—a—bg—...—b,,,l —!\e_,.
=la=0,b3=0,...., b1 =0,y = (t +nv)le,. (20)

Whence, ¢, € [ if and only if
y—(t+nv)¢ (a— v} (21)
If n = 3, we just have to take b3 =y — (v +a + 1) to conclude that
leasen,),, = la— v,y — (t+ 3v)|ey,

obtaining the same conclusion as in (21), with # = 3. In both cases, we can
also choose by, ..., b, € @ such that

a—vé{a+bi+ -+ b+ 5

and |a—v,by—v,... by — | #0. (22)
Putting z=v+a+ b3 +---+ b, + ¢, we conclude by (20) that e. € I, and
using (21), e, € [ if and only if

y—(t+nv)¢{z—v). (23)

It is easy to see that for every y € ® we have (21) or (23). The simplicity of W
follows from here and the theorem is proved.

Remark 4.3. When n = 3, if F= Z, some of the arguments in the above
proof are not valid. However, it can be easily proved that W is simple only if
t =(0,0).
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