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Abstract

A class of Fourier series based direct plug-in bandwidth selectors for kernel density

estimation is considered in this paper. The proposed bandwidth estimators have a

relative convergence rate n−1/2 whenever the underlying density is smooth enough and

the simulation results testify that they present a very good finite sample performance

against the most recommended bandwidth selection methods in the literature.
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1 Introduction

Let X1, . . . , Xn be independent real-valued random variables with common density f de-

fined over a compact set of R. Assuming that f is smooth enough on R, we propose in

this paper Fourier series based direct plug-in bandwidth selectors for the kernel density

estimator defined, for x ∈ R, by

fn(x) =
1

n

n
∑

i=1

Kh(x−Xi), (1)

(Rosenblatt 1956, Parzen 1962) where Kh(·) = K(·/h)/h, for h > 0, K is a bounded and

symmetric density function on R (the kernel) and the smoothing parameter h = hn is a

sequence of strictly positive real numbers converging to zero as n tends to infinity (the

bandwidth). See Devroye and Györfi (1985) and Bosq and Lecoutre (1987) for some of the

most important asymptotic properties of fn as an estimator of f .

In the definition of fn, the kernel K and the bandwidth h enter as unspecified parame-

ters. For a fixed kernel the bandwidth is usually chosen on the basis of the data and this

choice is crucial to the performance of the estimator. Too small an h leads to an estimator

with large variability which produces noisy estimates showing some features not shared by

f whereas too large an h leads to a highly biased estimator producing flat estimates that

do not reveal some interesting characteristics of f . Because of its relevancy, the selection of

the bandwidth is one of the mostly studied topics in kernel density estimation and several

approaches have been proposed for choosing h. A very good overview of the variety of

methods that appeared in the literature since the late seventies can be found in Wand and

Jones (1995; chap. 3), Jones et al. (1996) and Chiu (1996). For some important comments

on bandwidth selection see also Loader (1999).

The direct plug-in method whose idea dates back to Woodroofe (1970), Nadaraya (1974)

and Deheuvels and Hominal (1980), is a very simple data-dependent method for choosing

the bandwidth. It is based on asymptotic approximations for the bandwidth h0 that min-

imizes the mean integrated square error MISE(f ;n, h) = E(ISE(f ;n, h)) = E ‖ fn − f ‖ 2
2,

where ‖·‖ 2 denotes the L2 distance:

h0 = argmin
h>0

MISE(f ;n, h).

See Chacón et al. (2007) for the existence and asymptotic behaviour of h0. Under some

moment and regularity conditions onK and f , respectively, two asymptotic approximations

to the optimal bandwidth h0 are given by

h1 = c1,K θ
−1/5
2 n−1/5 and h2 = c1,K θ

−1/5
2 n−1/5 + c2,K θ

−8/5
2 θ3 n

−3/5, (2)
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where θr denotes the quadratic functional

θr =

∫

f (r)(x)2dx =‖f (r)‖ 2
2,

with r = 0, 1, . . . , f (r) the rth derivative of f , and

c1,K = k
1/5
0 k

−2/5
2 , c2,K =

1

20
k
3/5
0 k

−11/5
2 k4, (3)

with k0 =
∫

K(u)2du, kj =
∫

ujK(u)du for j = 1, 2, . . . (cf. Hall and Marron 1987,

1991). These asymptotic approximations to h0 reduce the problem of estimating the optimal

bandwidth to that of estimating the quadratic functionals θ2 and θ3. This is the idea of

the direct plug-in approach to bandwidth selection.

The estimation of the quadratic functionals θr, for r = 0, 1, . . . , has been studied by

authors like Dmitriev and Tarasenko (1973), Levit (1978), Hall and Marron (1987, 1991),

Bickel and Ritov (1988), Donoho and Nussbaum (1990), Jones and Sheather (1991), Chiu

(1991), Efromovich and Low (1996) and Laurent (1996, 1997). The class of kernel estima-

tors proposed by Hall and Marron (1987) and Jones and Sheather (1991) is widely used in

practice leading to some well-known bandwidth selection methods such as those introduced

by Sheather and Jones (1991) and Hall et al. (1991). The sample characteristic function

based estimators proposed by Chiu (1991) leads to direct and adjusted plug-in bandwidths

selectors with particularly good asymptotic properties. To our knowledge, much less atten-

tion has been paid to the practical performance of the plug-in bandwidth selectors based

on the Fourier series estimators of θr studied by Laurent (1997) when the support of the

underlying density function f is known to be contained within a finite interval [a, b]. These

estimators achieve the n−1/2 rate whenever f is smooth enough and they are efficient. More-

over, when the n−1/2 rate is not achievable they achieve the optimal rate of convergence.

Therefore, from a theoretical point of view they are natural candidates for the estimation

of θ2 and θ3 in (2). The main aim of this paper is to describe the asymptotic and finite

sample behaviour of the direct plug-in bandwidths based on (2) with θ2 and θ3 replaced by

θ̂2,m̂ and θ̂3,m̂, respectively, where θ̂r,m denotes the Fourier series estimator of θr, m is the

number of Fourier terms included in the estimator, and m̂ = m̂(X1, . . . , Xn) is a random

sequence of positive integers.

The rest of the paper is organised as follows. In Section 2 we recall the definition of the

Fourier series estimator θ̂r,m of θr, and we establish the consistency, orders of convergence

and asymptotic normality of the proposed direct plug-in bandwidth selectors in terms of

the asymptotic behaviour of m̂. In Section 3 we present two data-driven methods for

choosing the number m of Fourier terms which are based on the methods proposed by )

(1985) and Chiu (1992) to address related problems. In Section 4 a simulation study is
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carried out to compare the finite sample performance of the proposed Fourier series based

direct plug-in bandwidths to those of the most recommended data-based bandwidths such

as the direct plug-in and cross-validation methods proposed by Chiu (1991, 1992), the

solve-the-equation method proposed by Sheather and Jones (1991) and the least squares

cross-validation method introduced by Rudemo (1982) and Bowman (1984). The simulation

results indicate that the Fourier series based methods perform very well in comparison to

all the above-mentioned methods. Section 5 contains the proofs. The simulations and plots

in this paper were performed using the R software (R Development Core Team 2009).

2 Fourier series based plug-in bandwidth selectors

If {pℓ, ℓ ≥ 0} is the orthonormal Fourier basis of L2([a, b]) given by

p0(x) =
1√
b− a

,

p2ℓ−1(x) =

√

2

b− a
sin (ξℓ (x− a)) ,

p2ℓ(x) =

√

2

b− a
cos (ξℓ (x− a)) ,

for ℓ > 0, and ξℓ = 2πℓ/(b−a), the projection estimator of θr, for r > 0, studied in Laurent

(1997) cames from the representation of θr as θr =
∑∞

ℓ=1 ξ
2r
ℓ cℓ, where cℓ = a22ℓ−1+ a22ℓ with

aℓ =
∫ b

a
f(x)pℓ(x)dx the Fourier coefficients of f , and is defined by

θ̂r,m =
m
∑

ℓ=1

ξ2rℓ ĉℓ,

where ĉℓ is the unbiased estimator of cℓ given by

ĉℓ =
2

n(n− 1)

∑

1≤j<k≤n

{p2ℓ−1(Xj)p2ℓ−1(Xk) + p2ℓ(Xj)p2ℓ(Xk)}

and m = m(n) is a sequence on integers converging to infinity. The number m of Fourier

terms plays the role of smoothing parameter and makes the trade-off between the variance

and the bias of the estimator. A large value of m implies a small bias but a large variance,

whereas a small m implies a large bias but a small variance. An interesting representation

for the projection estimator θ̂r,m is given by

θ̂r,m =
n

n− 1

2

b− a

m
∑

ℓ=1

ξ2rℓ {|φ̃(ξℓ)|2 − 1/n}

=
n

n− 1

1

2π

m
∑

ℓ=−m

ξ2rℓ {|φ̃(ξℓ)|2 − 1/n}(ξℓ − ξℓ−1),
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where φ̃(λ) = n−1
∑n

j=1 exp(i λXj) is the sample characteristic function. This shows that

θ̂r,m is a sample characteristic function based estimator of θr and also links θ̂r,m with

the plug-in estimator introduced in Chiu (1991) given by θ̃r,Λ = (2π)−1
∫ Λ

−Λ
λ2r{|φ̃(t)|2 −

1/n}dλ, where Λ converges to infinity, which is based on the representation of θr as θr =

(2π)−1
∫

λ2r|φ(λ)|2dλ, with φ(λ) =
∫

exp(i λx)f(x)dx the characteristic function of f .

As in practical situations the choice of m should be based on the observations, this is,

m = m̂ = m̂(X1, . . . , Xn), we consider the automatic estimators θ̂r,m̂ of θr, and we use them

to define direct plug-in bandwidths based on (2) given by

ĥ1,m̂ = c1,K θ̂
−1/5
2,m̂ n−1/5 and ĥ2,m̂ = c1,K θ̂

−1/5
2,m̂ n−1/5 + c2,K θ̂

−8/5
2,m̂ θ̂3,m̂ n−3/5, (4)

with c1,K and c2,K given by (3). The asymptotic behaviour of the relative errors ĥi,m̂/h0−1,

which relies on the asymptotic behaviour of θ̂2,m̂ and θ̂3,m̂, is stated in the next result. Its

proof is deferred to Section 5.

Theorem 1. Let K be a bounded and symmetric density function such that
∫

|u|5 K(u)du <

∞ and assume that for s = p+α > 4, with p ∈ N and α ∈ ]0, 1], f is a density with support

on [a, b] which is p-times differentiable in R and f (p) satisfies the Lipschitz condition

|f (p)(x)− f (p)(y)| ≤ C|x− y|α, x, y ∈ [a, b], (5)

where C is a positive number. Finally, let m̂ be such that m̂
p−→ +∞ and n−1m̂5 p−→ 0.

a) Asymptotic behaviour of ĥ1,m̂. We have

ĥ1,m̂

h0

p−→ 1,

and if m̂ is such that

P
(

C1 n
ξ1 ≤ m̂ ≤ C2 n

ξ2
)

→ 1, (6)

where C1, C2, ξ1, ξ2 are strictly positive constants with

1

5(s− 2)
< ξ1 ≤ ξ2 <

3

25

then

n2/5

(

ĥ1,m̂

h0

− 1

)

p−→ c−1
1,Kc2,Kθ

−7/5
2 θ3.

b) Asymptotic behaviour of ĥ2,m̂. We have

ĥ2,m̂

h0

p−→ 1,
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and if m̂ satisfies (6) with
1

20(s− 3)
< ξ1 ≤ ξ2 <

9

70

then
ĥ2,m̂

h0

− 1 = Op

(

n−min{1/2,1−5ξ2,2ξ1(s−2)}
)

.

Moreover, if s > 4 + 1/2 and

1

4(s− 2)
< ξ1 ≤ ξ2 <

1

10

then
√
n

(

ĥ2,m̂

h0
− 1

)

d−→ N
(

0, σ2(f)
)

with

σ2(f) =
4

25

(

E(f (4)(X1))
2

E2(f (4)(X1))
− 1

)

.

Remark 1. When 4 < s < 4 + 1/2 the best rate of convergence given for the relative error

ĥ2,m̂/h0 − 1 is n−2(s−2)/(2s+1) and is achieved whenever m̂ satisfies (6) with ξ1 = ξ2 =
1

2s+1
.

When s ≥ 4 + 1/2 and (6) is fulfilled with ξ1 = ξ2 =
1
10
, we have ĥ2,m̂/h0 − 1 = Op(n

−1/2)

and this is, in a minimax sense, the best possible rate of convergence as shown by Hall and

Marron (1991).

Remark 2. When a lower bound s > 4 + 1/2 for the degree of smoothness of f is assumed

to be known, we conclude that the asymptotic normality of the relative error of ĥ2,m̂ will

take place whenever m̂ satisfies (6) with ξ1 = ξ2 = 1
2s+1

. Moreover, the variance σ2(f) is

the same as the best possible constant coefficient derived by Fan and Marron (1992).

3 The automatic choice of m

The methods considered in this section for the automatic choice of m are inspired by the

equality θ̂r,m = ‖ f̂ (r)
m ‖22 (1 + O(n−1)) + O(n−1m2r+1) that connects θ̂r,m with the L2-norm

of the r-derivative of the Fourier estimator of f defined by f̂m(x) =
∑2m

ℓ=0 âℓpℓ(x), where

âℓ = n−1
∑n

j=1 pℓ(Xj) are unbiased estimators of the Fourier coefficients aℓ (Tarter and

Kronmal 1968). For a squared integrable density function f with support contained within

a finite interval [a, b], Hart (1985) proves that the mean integrated square error of f̂m can
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be expressed as

E‖ f̂m − f ‖ 2
2 =

2m

n(b− a)
− n+ 1

n

2m
∑

ℓ=1

a2ℓ +
∞
∑

ℓ=1

a2ℓ

=
2

b− a

(

m

n
− n+ 1

n

m
∑

ℓ=1

|φ(ξℓ)|2 +
∞
∑

ℓ=1

|φ(ξℓ)|2
)

(7)

=
2

b− a

(

H(m) +

∞
∑

ℓ=1

|φ(ξℓ)|2
)

,

where ξℓ = 2πℓ/(b−a), for ℓ ∈ N. Since the last term of these expressions does not depend

on m, we follow Hart’s idea and propose to take for m the first integer m̂H satisfying

m̂H = argmin
m∈Mn

Ĥ(m),

where Mn = {Ln,Ln+1, . . . ,Un}, Ln < Un are deterministic sequences of positive integers,

and Ĥ(m) is the unbiased estimator of H(m) given by

Ĥ(m) =
m

n
− n+ 1

n− 1

m
∑

ℓ=1

{

|φ̃(ξℓ)|2 −
1

n

}

.

Note that a similar idea was followed by Chiu (1991, 1992) for selecting the cut-off

frequency Λ appearing in the kernel density bandwidth selectors introduced in Chiu (1991).

The proposed methods have natural counterparts in the present context. The method

proposed in Chiu (1991; p. 1888) corresponds to take for m the first local minimizer of

Ĥ over N. It is easy to see that this local minimizer is no more than the first positive

integer m satisfying |φ̃(ξm+1)|2 ≤ 2/(n + 1). The method proposed in Chiu (1992; p. 774)

corresponds to take for m the global minimizer of Ĥ over N.

The value m̂H depends on Mn through the sequences Ln and Un that need to be chosen

by the user. If they are taken equal to Ln = ⌊C1n
ξ1⌋+1 and Un = ⌊C2n

ξ2⌋, where ⌊x⌋ is the
integral part of x and C1, C2, ξ1, ξ2 are strictly positive constants satisfying the conditions

of Theorem 1, we know that the data-dependent bandwidths ĥ1,m̂H
and ĥ2,m̂H

given by

(4) will possess good asymptotic properties. Assuming for ease of explanation that s ≥ 5

in Theorem 1, we deduce that the best orders of convergence for the relative errors of

each one of the data-dependent bandwidths ĥ1,m̂H
and ĥ2,m̂H

will take place by choosing

ξ1 = ξ2 = 1/11. In this case, since the power n1/11 remains small for very large sample

sizes, the sequences Ln and Un are dominated by the size of the constants C1 and C2.

In order to gain some understanding about the practical choice of these constants, for

two of the beta mixture distributions over the interval [0, 1] considered in Section 4, we
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Figure 1: Empirical distribution of ISE(f ;n, ĥ1,m) as a function of m for n = 200. The

number of replications is 500.

present in Figure 1 the empirical distribution of the integrated squared error associated to

the kernel density estimator (1) with bandwidth h = ĥ1,m as a function of the number of

terms m. We took for K the standard Gaussian kernel, [a, b] = [0, 1] and the integrated

squared error ISE(f ;n, h) was computed using the composite Simpson’s rule. In order to

assure the positivity of the estimates θ̂r,m in (4), whenever θ̂r,m is negative we will use

‖ f̂ (r)
m ‖ instead of θ̂r,m. From expression (7) it is reasonable to expect that small values for

m are more appropriate when the Fourier coefficients of f converge quickly to zero, which

is the case of distribution #2, whereas large values for m are the best choice for densities

whose Fourier coefficients converge slowly to zero, which is the case of distribution #9.

This is confirmed by Figure 1. Similar pictures can be observed for h = ĥ2,m. As no

significant finite sample differences were found, in particular for n ≥ 200, between the

bandwidth selectors based on ĥ1,m and ĥ2,m, in the following we will restrict our attention

to the plug-in bandwidth selector ĥ1,m̂.

From the previous considerations, we conclude that if we want to deal with a wide set

of distributional characteristics, the sequences Ln and Un should be chosen such that the

set Mn contains very small and moderately large values of m. In the following we take

C1 = 0.25 and C2 = 25 which leads to Ln = 1 and 30 ≤ Un ≤ 87 for 10 ≤ n ≤ 106. As we

will see later, the methods we introduce are quite robust against the choice of C2 and their

performance is not affected if larger values for C2 are taken.

However, the previous choice of C2 does not prevent us from getting excessively large

values for m which might lead to an overestimation of the quadratic functional θ2, and

therefore to an underestimation of the optimal bandwidth h0. This is an undesirable

situation since, as is well-known, the kernel density estimator is penalized much more
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by excessively small than by excessively large bandwidths. A similar situation was also

pointed out by Hart (1985) and Chiu (1992) and two proposals to overcome this problem

were suggested.

Hart (1985) suggested considering a weighted version of the criterion function Ĥ given

by

Ĥγ(m) =
m

n
− γ

n+ 1

n− 1

m
∑

ℓ=1

{

|φ̃(ξℓ)|2 −
1

n

}

,

for some 0 < γ < 1. If we denote by m̂Hγ
the first global minimizer of Ĥγ overMn, it is clear

that m̂Hγ1
≤ m̂Hγ2

whenever γ1 < γ2. Small values of γ generally improve Hart’s method for

distributions whose Fourier coefficients converge quickly to zero, and large values of γ are

more appropriate for distributions with Fourier coefficients converging slowly to zero. In

order to find a compromise between these to extreme situations we decide to take γ = 0.5.

We shall denote the associated kernel density bandwidth ĥ1,m̂Hγ
by ĥH.

An alternative modification of Ĥ is proposed by Chiu (1992). The basic idea is to take

for m the first local minimizer of Ĥ unless there exists a larger significant local minimizer.

Using standard U-statistic techniques we note that for q > p, Ĥ(q)−Ĥ(p) is asymptotically

normal with mean H(q)−H(p) and variance given by

σ2
p,q =

(

n+ 1

n

)2 q
∑

ℓ,ℓ′=p+1

{

2(n− 2)

n(n− 1)
Aℓ,ℓ′ +

1

n(n− 1)
Bℓ,ℓ′ −

4n− 6

n(n− 1)
Cℓ,ℓ′

}

, (8)

where Aℓ,ℓ′ = R
(

φ(ξℓ + ξℓ′)φ(ξℓ)φ(ξℓ′)) + φ(ξℓ − ξℓ′)φ(ξℓ)φ(−ξℓ′)
)

, Bℓ,ℓ′ = |φ(ξℓ + ξℓ′)|2 +
|φ(ξℓ − ξℓ′)|2 and Cℓ,ℓ′ = |φ(ξℓ)|2 + |φ(ξℓ′)|2, where z and R(z) denote, respectively, the

conjugate and the real part of the complex number z. Therefore, denoting by m̂l the first

local minimizer of Ĥ over Mn, Chiu’s proposal leads to take for m the global minimizer

m̂H∗
of Ĥ∗ over Mn with

Ĥ∗(m) = Ĥ(m) + 1.645 I{m>m̂l} σ̂m̂l,m,

where IA, the indicator function of the set A, is defined to be identically one on A and is

zero elsewhere, σ̂2
p,q is the estimator of σ2

p,q obtained from (8) by replacing φ by φ̃, and we

use the constant 1.645 because it is the 95th percentile of the standard normal distribution.

The corresponding kernel density estimator bandwidth ĥ1,m̂H∗
will be denoted by ĥH∗

.

In order to implement the previous procedures we have to assume that the support of

underlying density function f is contained within some finite reference interval [a, b]. For

a large set of beta mixture distributions and for different sample sizes we verified that ĥH

and ĥH∗
are quite robust against the choice of the reference interval. This is illustrated in

Figure 2 for bandwidth ĥH where we present the empirical distribution of ISE(f ;n, h) for
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Figure 2: ISE(f ;n, h) distribution for n = 200 and h = ĥH as a function of C2 and ǫ, where

a = 0− ǫ and b = 1 + ǫ. The number of replications is 500.

the above considered beta mixture distributions over the interval [0, 1] and n = 200, where

ĥH is evaluated by taking a = 0 − ǫ and b = 1 + ǫ for different values of ǫ > 0. A similar

behaviour was observed for ĥH∗
. The robustness of the proposed plug-in bandwidths against

the choice of the reference interval is a desirable property since in practice the exact support

of the underlying distribution may not be known. Finally note that the two procedures are

strongly robust against the choice of the constant C2 that we have fixed equal to 25. From

Figure 2 we clearly see that the performance of ĥH is not affected if larger values for C2 are

taken.

4 Finite sample comparative study

We carried out a simulation study to compare the performance of the new bandwidths ĥH

and ĥH∗
(henceforth H and H∗, respectively) with some of the most important bandwidth

selection methods in the literature, namely the direct plug-in and cross-validation methods

introduced by Chiu (1991) (henceforth CHcv and CHdpi, respectively), where the cut-off

frequency selection is performed according to Chiu (1992), the solve-the-equation plug-in

method proposed by Sheather and Jones (1991) (henceforth SJ) and the least squares cross-

validation method (henceforth CV; some attractive asymptotic properties are described in

Hall, 1983, Stone, 1984, and Hall and Marron, 1987). In the implementation of SJ we

followed Wand and Jones (1995; p. 72). The normal density was used as the reference

distribution and we have taken the estimate proposed by Silverman (1986; p. 47), as the

estimate of scale. For CHcv and CV the minima were searched inside the interval [0.001, 2],

and for H and H∗ we took [a, b] = [−0.2, 1.2] as the reference interval. For all the cases K
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Mixture — Beta mixture distribution
∑

i wiB(pi, qi) —
number Weights w 1st shape parameters p 2nd shape parameters q

#1 1 4 4

#2 (1/7, . . . , 1/7) (4, . . . , 4) (4, 6, 8, 10, 12, 14, 16)

#3 (1/7, . . . , 1/7) (4, . . . , 4) (10, 20, 30, 40)

#4 (1/2, 1/2) (7, 13) (13, 7)

#5 (1/2, 1/2) (4, 20) (20, 4)

#6 (1/2, 1/2) (6, 100) (10, 60)

#7 (1/4, 1/2, 1/4) (4, 8, 40) (40, 8, 4)

#8 (1/4, 1/2, 1/4) (10, 4, 200) (30, 4, 60)

#9 (5/11, 3/11, 2/11, 1/11) (25, 160, 320, 800) (60, 100, 80, 90)

Table 1: Beta mixture test distributions.
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Figure 3: Beta mixture test densities.
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n H CHdpi SJ CV

Beta mixture #1

100 3.56e-02 (1.54e-03) 3.53e-02 (1.47e-03) 3.73e-02 (1.35e-03) 4.41e-02 (1.72e-03)
200 1.98e-02 (7.11e-04) 2.00e-02 (9.00e-04) 2.04e-02 (6.41e-04) 2.53e-02 (9.60e-04)
400 1.21e-02 (4.35e-04) 1.23e-02 (4.64e-04) 1.22e-02 (3.8e-04) 1.49e-02 (5.63e-04)

Beta mixture #2

100 5.41e-02 (1.60e-03) 5.25e-02 (1.44e-03) 5.20e-02 (1.40e-03) 6.53e-02 (2.55e-03)
200 3.36e-02 (8.82e-04) 3.30e-02 (8.58e-04) 3.24e-02 (8.19e-04) 4.09e-02 (1.31e-03)
400 1.98e-02 (5.39e-04) 1.97e-02 (5.35e-04) 1.89e-02 (4.45e-04) 2.30e-02 (7.78e-04)

Beta mixture #3

100 1.36e-01 (3.77e-03) 1.35e-01 (3.72e-03) 1.27e-01 (3.25e-03) 1.56e-01 (5.02e-03)
200 7.63e-02 (1.84e-03) 7.60e-02 (1.81e-03) 7.34e-02 (1.65e-03) 8.28e-02 (2.14e-03)
400 4.42e-02 (1.02e-03) 4.40e-02 (1.01e-03) 4.30e-02 (9.09e-04) 4.97e-02 (1.32e-03)

Beta mixture #4

100 5.85e-02 (1.59e-03) 6.16e-02 (1.60e-03) 5.07e-02 (1.32e-03) 6.38e-02 (2.32e-03)
200 3.13e-02 (8.07e-04) 3.33e-02 (1.14e-03) 3.09e-02 (7.50e-04) 3.74e-02 (1.30e-03)
400 1.85e-02 (4.67e-04) 1.90e-02 (5.01e-04) 1.85e-02 (4.53e-04) 2.12e-02 (5.87e-04)

Beta mixture #5

100 9.46e-02 (2.38e-03) 9.82e-02 (2.67e-03) 9.40e-02 (1.97e-03) 9.95e-02 (2.20e-03)
200 5.29e-02 (1.16e-03) 5.47e-02 (1.35e-03) 5.45e-02 (1.09e-03) 5.66e-02 (1.17e-03)
400 3.27e-02 (6.96e-04) 3.34e-02 (7.51e-04) 3.29e-02 (6.22e-04) 3.45e-02 (6.74e-04)

Beta mixture #6

100 1.40e-01 (3.62e-03) 1.40e-01 (3.84e-03) 1.37e-01 (3.33e-03) 1.59e-01 (4.32e-03)
200 8.31e-02 (1.96e-03) 8.24e-02 (1.95e-03) 8.24e-02 (1.97e-03) 9.15e-02 (2.36e-03)
400 4.79e-02 (1.09e-03) 4.81e-02 (1.18e-03) 4.77e-02 (1.06e-03) 5.34e-02 (1.40e-03)

Beta mixture #7

100 1.33e-01 (2.11e-03) 1.34e-01 (2.24e-03) 1.50e-01 (2.04e-03) 1.36e-01 (2.19e-03)
200 7.70e-02 (1.21e-03) 7.75e-02 (1.23e-03) 8.98e-02 (1.26e-03) 7.93e-02 (1.24e-03)
400 4.65e-02 (7.20e-04) 4.67e-02 (7.26e-04) 5.25e-02 (7.69e-04) 4.71e-02 (7.24e-04)

Beta mixture #8

100 1.74e-01 (3.46e-03) 1.72e-01 (3.42e-03) 1.89e-01 (3.03e-03) 1.68e-01 (3.03e-03)
200 9.30e-02 (1.56e-03) 9.35e-02 (1.60e-03) 1.10e-01 (1.79e-03) 9.40e-02 (1.57e-03)
400 5.53e-02 (8.87e-04) 5.56e-02 (9.2e-04) 6.41e-02 (1.04e-03) 5.66e-02 (9.07e-04)

Beta mixture #9

100 2.45e-01 (3.58e-03) 2.45e-01 (4.14e-03) 3.35e-01 (3.08e-03) 2.37e-01 (3.43e-03)
200 1.47e-01 (2.25e-03) 1.50e-01 (2.48e-03) 2.09e-01 (2.09e-03) 1.46e-01 (2.01e-03)
400 8.94e-02 (1.20e-03) 9.14e-02 (1.24e-03) 1.26e-01 (1.28e-03) 8.95e-02 (1.12e-03)

Table 2: Estimates for E(ISE(f ;n, ĥ)) based on 500 replications for each case. The values

inside the brackets are the estimated standard errors of the sample averages.
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is the standard Gaussian density.

A set of beta mixture distributions over the interval [0, 1], which represents a variety of

different shapes, was taken as test distributions. Here we present the results of 9 typical

cases defined in Table 1 and whose density functions are plotted in Figure 3. For each test

distribution, three sample sizes n = 100, 200 and 400 were considered and 500 replications

were used to estimate E(ISE(f ;n, h)). As before the integrated squared error ISE(f ;n, h)

has been computed using the composite Simpson’s rule.

The simulation results testify that H and H∗ perform very well in comparison with all

the considered methods. Similar results were obtained by H and H∗ and by CHdpi and

CHcv, but H and CHdpi are easy to implement and less time-consuming than H∗ and CHcv,

respectively. Therefore, the simulation results summarised in Table 2 exclusively concern

the bandwidth selectors H, CHdpi, SJ and CV.

From Table 2 we see that H and CHdpi perform quite similarly, specially for moderate

and large sample sizes, for all the considered test distributions. This can be explained

by the strong connection between the estimators θ̂2,m and θ̃2,Λ as explained in Section 2.

Additionally, H and CHdpi behave very well for all the considered densities. This nice

feature is not shared by SJ or CV. SJ is specially good for unimodal and bimodal densities

but performs poorly for multimodal densities when many minor peaks are present, and

CV shows a superior performance when the underlying density is multimodal but is less

effective for some of the unimodal and bimodal densities. These conclusions are enlightened

in Figure 4 where the empirical distribution of ISE(f ;n, h) is shown for densities #2, #5

and #8 and n = 200.

Taking into account the previous simulation results, if we were to recommend one single

method for general purposes, we would take the new H method which is less time-consuming

than CHdpi specially for large sample sizes. The bandwidth ĥH is easy to obtain, presents an

overall good performance against all the above considered bandwidths, and the simulation

results indicate that it should be a reliable bandwidth for most practical situations.

5 Proof of Theorem 1

Let m̂ = m̂(X1, . . . , Xn) be a random sequence of positive integers, and consider the se-

quences hi and ĥi,m̂, for i = 1, 2, defined by (2) and (4), respectively. Taking into account

the decomposition
ĥi,m̂

h0
− 1 =

hi

h0

(

ĥi,m̂

hi
− 1

)

+
hi

h0
− 1,



14

H CHdpi SJ CV

0.
00

0.
10

0.
20

Beta mixture #2
IS

E

H CHdpi SJ CV

0.
05

0.
10

0.
15

Beta mixture #5

IS
E

H CHdpi SJ CV

0.
05

0.
15

0.
25

Beta mixture #8

IS
E

Figure 4: ISE(f ;n, h) distribution for n = 200 and h = ĥH, h = ĥCHdpi, h = ĥSJ and

h = ĥCV. The number of replications is 500.

and the expansion

h0 = c1,K θ
−1/5
2 n−1/5 + c2,K θ

−8/5
2 θ3 n

−3/5 +O(n−4/5),

which is valid forK a bounded and symmetric density function such that
∫

|u|5K(u)du < ∞
and f a density defined over a compact set of R which is 4-times continuously differentiable

in R (see Hall et al. 1991; section 2), the proof of Theorem 1 relies on the asymptotic

behaviour of θ̂r,m̂ that we established in the following result.

Lemma 1. For r > 0 and s = p + α, with p ∈ N and α ∈ ]0, 1], assume that f is a

density with support on [a, b] which is p-times differentiable in [a, b] with f (ℓ)(a) = f (ℓ)(b)

for ℓ = 0, 1, . . . , p− 1, and f (p) satisfies the Lipschitz condition (5).

a) Consistency. If m̂ is such that m̂
p−→ +∞ and n−1m̂2r+1 p−→ 0 then

θ̂r,m̂
p−→ θr.
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b) Rates of convergence. If m̂ satisfies (6) with

0 < ξ1 ≤ ξ2 <
1

2r + 1
,

then

θ̂r,m̂ − θr = Op

(

n−min{1/2,1−ξ2(2r+1),2ξ1(s−r)}
)

.

c) Asymptotic normality. If s > 2r + 1/2 and m̂ satisfies (6) with

1

4(s− r)
< ξ1 ≤ ξ2 <

1

2(2r + 1)
,

then √
n
(

θ̂r,m̂ − θr
) d−→ N

(

0, 4Var(f (2r)(X1))
)

.

The proof of Lemma 1 will be based on the double inequality

θ̂r,m1
− c n−1m2r+1

2 ≤ θ̂r,m̂ ≤ θ̂r,m2
+ c n−1m2r+1

2 , (9)

where c = 2π−1(2π/(b−a))2r+1 and m1 = m1(n) and m2 = m2(n) are sequences of nonneg-

ative integers with m1 ≤ m̂ ≤ m2, and on the following result that describes the asymptotic

behaviour of θ̂r,m when m = m(n) is a deterministic sequence of positive integers.

Proposition 1 (Laurent, 1997, p. 190–204). For r,m ∈ N, if f satisfies the conditions of

Lemma 1 with s > r we have

E(θ̂r,m − θr)
2 ≤ D1 n

−1m−min{0,2(s−2r−1/4)} +D2 n
−2m4r+1 +D3m

−4(s−r),

where D1, D2 and D3 are positive constants independent of n and m. Moreover, if s >

2r + 1/4 and n−1/2m2r+1/2 + n1/2m−2(s−r) → 0, as n → ∞, we have

√
n
(

θ̂r,m − θr
) d−→ N

(

0, 4Var(f (2r)(X1))
)

.

Proof of Lemma 1: If m̂ is such that m̂
p−→ +∞ and n−1m̂2r+1 p−→ 0, we deduce that

P
(

m1 ≤ m̂ ≤ m2

)

→ 1, for all N ∈ N and ξ > 0, where m1 = N and m2 = ⌊(ξn)1/(2r+1)⌋.
From the double inequality (9) and Proposition 1 we easily conclude that for all ǫ > 0 and

δ > 0 there exist N ∈ N, ξ > 0 and n0 ∈ N such that P(| θ̂r,m̂ − θr| > ǫ) < δ for all n ≥ n0.

This concludes the proof of part a).

From Proposition 1, we deduce that for m = m1 = ⌊C1 n
ξ1⌋ or m = m2 = ⌊C2 n

ξ2⌋+ 1,

with C1, C2, ξ1, ξ2 strictly positive constants, we have

θ̂r,m − θr = Op

(

n−min{1/2,1−ξ2(2r+1/2),2ξ1(s−r)}
)

,
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if 0 < ξ1 ≤ ξ2 < 1/(2r + 1), and

√
n
(

θ̂r,m − θr
) d−→ N

(

0, 4Var(f (2r)(X1))
)

,

whenever 1/(s − r) < ξ1 ≤ ξ2 < 1/(4r + 1). These convergence results, together with (6)

and (9), enable us to conclude the proof of parts b) and c).
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