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Abstract

Given a density f we pose the problem of estimating the density functional ψr =
∫

f (r)f

for a non-negative even r making use of kernel methods. This is a well-known problem

but some of its features remained unexplored. We focus on the problem of bandwidth

selection. Whereas all the previous studies concentrate on an asymptotically optimal

bandwidth here we study the properties of exact, non-asymptotic ones, and relate them

with the former. Our main conclusion is that, despite being asymptotically equivalent,

for realistic sample sizes much is lost by using the asymptotically optimal bandwidth.

In contrast, as a target for data-driven selectors we propose another bandwidth which

retains the small sample performance of the exact one.
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1 Introduction

Let X1, . . . ,Xn denote independent and identically distributed random variables with com-

mon and unknown density f on the real line. In this paper we focus on the problem of

estimating the functional

ψr =

∫

f (r)(x)f(x)dx (1)

for r = 0, 2, 4 . . . whenever it makes sense and is finite, where f (r) denotes the rth derivative

of f . Notice that for such a functional to be finite it suffices, for instance, that both f

and f (r) be square integrable. Moreover, using integration by parts it is easy to show that

ψr = (−1)r/2
∫

{f (r/2)(x)}2dx under some additional conditions on f .

There exists a wide variety of estimates of these functionals. For instance, van Es (1992)

proposes an estimator of ψ0 based on the spacings of the order statistics and Laurent (1997)

and Prakasa Rao (1999), respectively, describe series and wavelet estimates for the problem.

However, here we will concentrate on kernel estimators,

ψ̂r(g) =
1

n2

n
∑

i,j=1

L(r)
g (Xi −Xj), (2)

where L is the kernel, that is, a real function such that
∫

L(x)dx = 1, g > 0 is the

bandwidth and L
(r)
g represents the rth derivative of the function Lg(x) = L(x/g)/g, that

is, L
(r)
g (x) = L(r)(x/g)/gr+1. The motivation for this precise type of kernel estimator can

be found, for instance, in Wand and Jones (1995).

This problem is also addressed in many other papers. For instance, the case r = 0

(estimation of the integral of a squared density) is closely related with the study of rank-

based nonparametric statistics, since it appears in the asymptotic variance of the Wilcoxon

signed-rank statistic and in the Pitman asymptotic efficiency of the Wilcoxon test relative

to the t-test (see Hettmansperger, 1984). The first kernel estimators of ψ0 date back to at

least Bhattacharya and Roussas (1969), Dmitriev and Tarasenko (1973, 1975) and Schuster

(1974), but see also Prakasa Rao (1983), Sheather, Hettmansperger and Donald (1994), and

references therein. A recent paper on the topic is Giné and Nickl (2008).

The quantities ψ2, ψ4 and ψ6 appear in the expression of the asymptotically optimal

bandwidths for histogram, frequency polygon and kernel density estimators (see Scott,

1992). The first papers analyzing the kernel-type estimates of ψr for arbitrary r, as a par-

ticular case of a more general nonlinear functional, are Dmitriev and Tarasenko (1973) and

Levit (1978), but the problem of bandwidth selection for the kernel estimator is considered

in Hall and Marron (1987) for the first time, although there the kernel estimate is defined as

n(n− 1)−1
{

ψ̂r(g)−n
−1L

(r)
g (0)

}

, in order to delete the non-stochastic terms in ψ̂r(g). How-

ever, Jones and Sheather (1991) show that indeed the estimator ψ̂r(g) has improved rates of

convergence over the one proposed by Hall and Marron when the bandwidth g is properly

chosen. On the other hand, Bickel and Ritov (1988) discuss the information bounds for
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this nonparametric problem and propose an efficient estimator. References dealing with

adaptive kernel procedures include Wu (1995) and Giné and Mason (2008), among others.

Multistep kernel estimators are investigated in Aldershof (1991) and also more recently in

Tenreiro (2003) and Chacón and Tenreiro (2011).

As usual for real-valued parameters, we will measure the accuracy of the estimator ψ̂r(g)

through its mean squared error (MSE), defined as MSE(g) = E[{ψ̂r(g) − ψr}
2]. In this

sense, the optimal bandwidth can be defined to be gMSE = argming>0 MSE(g). However,

it is not clear at all from its definition that such a minimizer exists, and well-experienced

researchers in the field take good care not to refer to this bandwidth, but to its asymptotic

counterpart (see Jones and Sheather, 1991, or Wand and Jones, 1995). In fact, the typical

approach to bandwidth selection starts from considering an asymptotic expansion of the

MSE function, say AMSE(g), and considering the asymptotically optimal bandwidth g0 =

argming>0AMSE(g) as a surrogate for gMSE, which is the exact (i.e., non-asymptotic) one.

The study of the asymptotically optimal bandwidth presents no doubts about its existence,

and even an explicit formula for it is available. But then another question may be raised:

how well does g0 approximate gMSE? The study of this question leads to the identification

of a new bandwidth gBA that annihilates the exact bias of ψ̂r(g). How well does this new

bandwidth approximate gMSE is another question that arises naturally. Therefore, the main

purposes of this paper are to present a set of sufficient conditions for the existence of an

exact optimal bandwidth and to examine, from an asymptotic and finite sample size point

of view, the quality of g0 and gBA as approximations of the exact optimal bandwidth.

The rest of the paper is organized as follows. In Section 2 we provide mild conditions on

the kernel and the density that ensure the existence of an exact optimal bandwidth gMSE

and a bias-annihilating bandwidth gBA. In Section 3 we study the asymptotic properties

of these bandwidths. In Section 4 we obtain the relative rates of convergence of g0 and

gBA to gMSE and so we quantify the order of these asymptotic approximations. We also

establish the order of convergence for MSE(g0)−MSE(gBA) which enables us to compare g0

and gBA in the sense of the mean squared error. As the results in Section 4 are asymptotic

in nature, to assess the quality of the approximations Section 5 contains the case-study of

normal mixture densities, for which small- and moderate-sample-size comparisons are made

between the three different bandwidths. We will see that for small and moderate sample

sizes MSE(gBA) seems to be much closer to MSE(gMSE) than MSE(g0). In view of these

finite sample size results we conclude that bandwidth selectors oriented to gBA should be

preferred to the usual ones, which are designed to estimate g0. All the proofs are deferred

to Section 6.
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2 Existence of an exact optimal bandwidth

Recall the definitions of ψr and ψ̂r(g) from (1) and (2) in Section 1. The mean squared

error (MSE) of the estimator ψ̂r(g) can be decomposed as MSE(g) = B2(g) + V (g), where

B(g) and V (g) are the bias and variance of ψ̂r(g). If we denote

RL,r,g(f) = EL(r)
g (X1 −X2) =

∫∫

L(r)
g (x− y)f(x)f(y)dxdy =

∫

(L(r)
g ∗ f)(x)f(x)dx,

with ∗ standing for the convolution operator, then it is clear that

B(g) = Eψ̂r(g)− ψr = n−1g−r−1L(r)(0) + (1− n−1)RL,r,g(f)− ψr. (3)

Moreover, using standard U -statistics theory we get that V (g) = Var ψ̂r(g) can be written

as

V (g) = 4(n − 2)(n − 1)n−3ξ1 + 2(n− 1)n−3ξ2 − (4n − 6)(n− 1)n−3ξ0, (4)

where ξ0 = {EL
(r)
g (X1−X2)}

2, ξ1 = E{L
(r)
g (X1−X2)L

(r)
g (X1−X3)} and ξ2 = E[{L

(r)
g (X1−

X2)}
2]. If we denote

SL,r,g(f) =

∫∫∫

L(r)
g (x− y)L(r)

g (x− z)f(x)f(y)f(z)dxdydz =

∫

{(L(r)
g ∗ f)(x)}2f(x)dx,

we just have ξ1 = SL,r,g(f). Besides, clearly ξ0 = {RL,r,g(f)}
2 and, using the fact that

{L
(r)
g (x)}2 = {L(r)(x/g)}2/g2r+2 = ({L(r)}2)g(x)/g

2r+1, we can also express ξ2 =

g−2r−1R{L(r)}2,0,g(f).

Combining (3) and (4) with the former representations for ξ0, ξ1, ξ2, we obtain an exact

formula for the MSE of the estimator ψ̂r(g),

MSE(g) =
{

n−1g−r−1L(r)(0) + (1− n−1)RL,r,g(f)− ψr

}2

+ 4(n − 2)(n − 1)n−3SL,r,g(f) + 2(n − 1)n−3g−2r−1R{L(r)}2,0,g(f) (5)

− (4n − 6)(n − 1)n−3{RL,r,g(f)}
2.

This exact error formula is the analogue of formula (2.2) in Marron and Wand (1992) for

kernel density estimators, and will be useful to explore the existence and limit behavior of

the optimal bandwidth as well as for the results in Section 5.

In the following results we will make the next assumptions on the kernel and the density:

(L1) L is a symmetric kernel with bounded and square integrable derivatives up to order

r such that L(r) is continuous at zero with (−1)r/2L(r)(0) > 0.

(D1) The density f has bounded and square integrable derivatives up to order r.

The next result shows that under these mild conditions there is always an exact optimal

bandwidth, that is, a bandwidth which minimizes the exact MSE of the kernel estimator.

In this sense, it can be considered as the analogue of Theorem 1 in Chacón et al. (2007a)

for kernel density estimators.
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Theorem 1. Under assumptions (L1) and (D1), there exists gMSE = gMSE,r,n(f) such that

MSE(gMSE) ≤ MSE(g), for all g > 0.

Notice that the previous result says nothing about the uniqueness of the optimal band-

width. Presumably, as in the examples in Marron and Wand (1992) it could be possible to

find a situation where the optimal bandwidth is not unique, however we do not pursue this

further in this paper.

From an asymptotic point of view, however, it is well known that the choice of g can be

made on the basis of annihilation of the dominant part of the bias (see Section 4 below).

We show next that, in fact, for every density f there is a choice of g = gBA that makes the

estimator ψ̂r(g) unbiased, that is, that annihilates the exact bias, rather than its asymptotic

counterpart.

Theorem 2. Under assumptions (L1) and (D1), there exists gBA = gBA,r,n(f) such that

B(gBA) = 0.

The existence of global bandwidths that make the kernel density estimate unbiased at

every point has been shown in Chacón et al. (2007b). In fact, strictly speaking we cannot

consider it an unbiased estimator since such bandwidths depend on the unknown f , but

at least we could say that there exists an ‘unbiased oracle estimator’. However, only a

very special class of density functions allows for this situation, namely the class of densities

whose characteristic function has bounded support.

In contrast, in the previous result we show that unbiased oracle kernel estimates of

ψr (not only asymptotical unbiased) exist under the same mild conditions needed for the

existence of the optimal bandwidth. This is a key difference between the problems of

estimating the density and the functionals ψr.

3 Limit behavior of exact bandwidths

From formula (5) and Lemma 1 in Section 6 below it readily follows that MSE(g) → 0 for

any bandwidth sequence g = gn such that g → 0 and ngr+1 → ∞ as n → ∞. Therefore,

conditions g → 0 and ngr+1 → ∞ are sufficient for ψ̂r(g) to be consistent. It is natural, then,

to wonder if the bandwidths gMSE and gBA also fulfill the previous consistency conditions.

We will see that the second condition holds quite generally but the same is not necessarily

true for the first one. This is similar to the situation with the optimal bandwidth for kernel

density estimation, as shown in Chacón et al. (2007b).

Theorem 3. Under assumptions (L1) and (D1), both ngr+1
MSE → ∞ and ngr+1

BA → ∞ as

n→ ∞.

For the analysis of the limit behavior of the sequences gMSE and gBA we use the notation

ϕF (t) =
∫

eitxF (x)dx, t ∈ R, for the characteristic function of an integrable real function
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F , and for every density f and every symmetric kernel L, we denote

Cf = sup{r ≥ 0 : ϕf (t) 6= 0 a.e. for t ∈ [0, r]},

Df = sup{t ≥ 0 : ϕf (t) 6= 0},

SL = inf{t ≥ 0 : ϕL(t) 6= 1},

TL = inf{r ≥ 0 : ϕL(t) 6= 1 a.e. for t ≥ r}

A detailed discussion about these quantities is presented in Chacón et al. (2007b). In

particular, we remark that all these exist, with Cf ,Df possibly being infinite, SL, TL ∈

[0,∞), Cf ≤ Df and SL ≤ TL. Notice that, by definition, SL > 0 for superkernels and

SL = 0 if L is a kernel of finite order ν (even), that is, if mj(L) = 0 for j = 1, 2, . . . , ν − 1

and mν(L) 6= 0 with |mν |(L) <∞, where mj(L) =
∫

ujL(u)du and |mj|(L) =
∫

|ujL(u)|du

(see Chacón et al. 2007a).

In the following result we show that both the exact optimal bandwidth gMSE and the

exact bias-annihilating bandwidth gBA converge to zero under very general conditions. In

particular, if L is a kernel of finite order the convergence to zero takes place with no

additional conditions on f other than (D1). The same property occurs in the superkernel

case whenever the characteristic function of f has unbounded support.

Theorem 4. Assume conditions (L1) and (D1). If SL = 0 or Df = ∞ then both gMSE → 0

and gBA → 0 as n→ ∞.

In the remaining case SL > 0 and Df < ∞ non-zero limits may occur. In the next

example we show that if we use a superkernel and the characteristic function of the density

has finite support then any positive number is a possible limit for gMSE or gBA.

Example 1. As in Chacón et al. (2007b), consider the trapezoidal superkernel given by

L(x) = (πx2)−1[cos x−cos(2x)] for x 6= 0 and L(0) = 3/(2π), whose characteristic function is

ϕL(t) = I[0,1)(|t|)+(2−|t|) I[1,2)(|t|), with IA(t) standing for the indicator function of the set

A, so that SL = TL = 1. This kernel is symmetric, differentiable of any order, with bounded

square integrable derivatives, and such that L(r)(0) = (−1)r/2[π(r+ 1)(r+ 2)]−1(2r+2 − 1),

so that it fulfils condition (L1). This is also an example of the so-called flat-top kernels, in

the terminology of Politis and Romano (1999).

Consider also the Fejér-de la Vallée-Poussin density, defined as f(x) = (πx2)−1(1−cos x)

for x 6= 0 and f(0) = 1/(2π), and let fa(x) = f(x/a)/a for any a > 0; see Figure 1. This

density is differentiable of any order, with bounded square integrable derivatives, so that it

fulfils condition (D1). The characteristic function of fa is ϕfa(t) = (1−a|t|) I[−1/a,1/a](t), so

that Cfa = Dfa = 1/a. Besides, we easily obtain ψr = (−1)r/22[πar+1(r+1)(r+2)(r+3)]−1.

From (14) in Section 6 below we know that lim sup g ≤ a for both g = gMSE and g = gBA.

Also, using the formulas for ψr and RL,r,g(f) in the Fourier domain given in Section 6,
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Figure 1: Fejér-de la Vallée-Poussin density (left) and the convolution with itself (right).

equation (12), it is not hard to show that, in this case, for g ∈ (0, SL/Dfa ] = (0, a] we have

B(g) = n−1g−r−1L(r)(0)− n−1ψr, V (g) = 2(n − 1)n−3g−2r−1R{L(r)}2,0,g(fa) +A,

where A ∈ R is a constant depending on L, f, r and n, but not on g.

With the formulas for L(r)(0) and ψr given above, it is clear that B(g) 6= 0 for g ∈ (0, a],

so that it should be that gBA ≥ a for every n ∈ N and this, together with the upper bound

for the limsup, implies that gBA → a as n→ ∞.

On the other hand, it can be shown that f ∗ f(x) = 2(πx3)−1(x− sinx) for x 6= 0 and

f ∗ f(0) = 1/(3π), so that f ∗ f is a symmetric density, decreasing for x > 0, and the same

is true for fa ∗fa. Therefore the function g 7→ R{L(r)}2,0,g(fa) is decreasing since from (9) in

Section 6 we can write R{L(r)}2,0,g(fa) = 2
∫∞
0 {L(r)(u)}2(fa ∗ fa)(gu)du. This implies that

for g ∈ (0, a] the function MSE(g) = B2(g) + V (g) is decreasing and so, that gMSE ≥ a for

every n ∈ N, leading to gMSE → a as n→ ∞.

4 The asymptotically optimal bandwidth

It is well known that the finite sample performance of ψ̂r(g) depends strongly on the choice

of the bandwidth g. In practice, this choice is usually based on the so called asymptoti-

cally optimal bandwidth, g0, that is, the bandwidth that minimizes the main terms of an

asymptotic expansion of MSE(g) when g tends to zero (see Jones and Sheather, 1991). In

order to present such an expansion, some additional conditions on the density f and on the

kernel L are needed.

(L2) L is a kernel of finite order ν (even) such that (−1)ν/2mν(L) < 0.

(D2) The density f has bounded and continuous derivatives up to order r + ν.
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Under conditions (L1), (L2), (D1) and (D2), if g → 0 the bias and variance of ψ̂r(g) given

by (3) and (4), respectively, admit the asymptotic expansions

B(g) = n−1g−r−1L(r)(0) + gνψr+νmν(L)/ν!− n−1ψr + o(gν) (6)

and

V (g) = 4n−1Varf (r)(X1) +O(n−1gν + n−2g−2r−1).

Therefore,

MSE(g) = 4n−1Varf (r)(X1) +B2
0(g) + o(n−2g−2r−2 + n−1gν−r−1 + g2ν), (7)

where B0(g) = n−1g−r−1L(r)(0) + gνψr+νmν(L)/ν! denotes the asymptotic bias. The

asymptotically optimal bandwidth corresponds to the value of g such that B0(g) = 0,

that is,

g0 =

(

−
ν!L(r)(0)

mν(L)ψr+νn

)1/(r+ν+1)

. (8)

Notice that the term inside the parenthesis is positive with our assumptions, since we have

(−1)r/2L(r)(0) > 0, (−1)(r+ν)/2ψr+ν > 0 and (−1)ν/2mν(L) < 0.

As the practical choice of g is usually based on this asymptotically optimal bandwidth,

g0, it is natural to wonder if g0 is a good approximation of the exact optimal bandwidth,

gMSE. In the following theorem we establish the asymptotic equivalence between g0, gBA

and gMSE, and also the order of convergence to zero of the relative errors g0/gMSE − 1,

gBA/gMSE − 1 and g0/gBA − 1.

Theorem 5. Under assumptions (L1), (L2), (D1) and (D2) we have:

a) The bandwidths gMSE, gBA and g0 are all of the same order; that is,

0 < lim inf n1/(r+ν+1)gMSE ≤ lim sup n1/(r+ν+1)gMSE <∞,

0 < lim inf n1/(r+ν+1)gBA ≤ lim sup n1/(r+ν+1)gBA <∞.

b) Additionally, if
∫

|u|{L(r)(u)}2du <∞ then

g0/gMSE → 1 and gBA/gMSE → 1.

c) Moreover, if |mν+2|(L) < ∞ and f has bounded continuous derivatives up to order

r + ν + 2, then there exist constants C, D and E such that

g0/gMSE − 1 = C n−1/(r+ν+1)(1 + o(1)), gBA/gMSE − 1 = Dn−1/(r+ν+1)(1 + o(1)),

g0/gBA − 1 = E n−min{r+1,2}/(r+ν+1)(1 + o(1)).
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From the previous result we see that asymptotically g0 and gBA approximate gMSE at

the same rate. Following closely the proof of Theorem 6 we can establish that MSE(g0) and

MSE(gBA) also approximate MSE(gMSE) at the same rate. In fact, for g = g0 and g = gBA

we have MSE(g) − MSE(gMSE) = O(n−(2ν+2)/(r+ν+1)). In the next result we restrict our

attention to the order of convergence to zero of MSE(g0)−MSE(gBA) which enables us to

compare the bandwidths g0 and gBA in the sense of the mean squared error.

Theorem 6. Under assumptions (L1), (L2) and (D1), if f has bounded and continuous

derivatives up to order r + ν + 2, |mν+2|(L) < ∞ and
∫

|u|3{L(r)(u)}2du < ∞, then there

exists a constant Λ such that

MSE(g0)−MSE(gBA) = ΛE n−min{r+2ν+2,2ν+3}/(r+ν+1)(1 + o(1)),

where E is the constant appearing in Theorem 5.

Explicit formulas for the constants C, D, E and Λ appearing in Theorems 5 and 6 are

given in Section 6, equations (22), (24), (25) and (26), respectively. From them we see that

C = D < 0 and Λ < 0 for all densities f whenever r ≥ 2, and also E < 0 if the kernel L is

such that (−1)ν/2mν+2(L) < 0 (which is in particular true for the Gaussian-based kernel L

to be used in the next section). Consequently, from an asymptotic point of view we conclude

that gBA is not only a better approximation to gMSE than g0 but is also a better bandwidth

than g0 in the MSE sense because in this case the constant ΛE appearing in Theorem 6 is

strictly positive. As we will see in the next section, even for small and moderate sample

sizes MSE(gBA) seems to be much closer to MSE(gMSE) than MSE(g0).

A different situation may occur when r = 0. When the kernel L is of order ν, for all

densities f satisfying
∫

f (ν)f2/
∫

f (ν)f−
∫

f2 > 0 (which seems to be true for all sufficiently

regular densities although we were not able to prove it) the constants C and D remain

negative but in this case C is always bigger than D which implies that E > 0. Hence, the

asymptotically optimal bandwidth g0 is a better asymptotic approximation for gMSE than

gBA. Also, we can prove that Λ < 0, so that in the MSE sense it follows that asymptotically

g0 is better than gBA too. Although this is valid asymptotically, we will see in next section

that for small and moderate sample sizes gBA may still be preferable to g0 in some cases.

5 Case study: normal mixture densities

Our goal in this section is to compare the performance of the three bandwidths, gMSE, gBA

and g0, in a non-asymptotic way. To this end we work with the exact MSE formula within

the class of normal mixture densities, that is, the class of densities f that can be written as

f(x) =
∑k

ℓ=1wℓφσℓ
(x−µℓ), where φσ(x−µ) denotes the density of the normal distribution

with mean µ and standard deviation σ. This class is very rich, containing densities with

a wide variety of features, such as kurtosis, skewness, multimodality, etc, and has been
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previously used for computing exact errors in the context of kernel density estimation (see

Marron and Wand, 1992).

Below we find an explicit formula for the MSE given in (5) in the case where f is

the aforementioned normal mixture density and L is the Gaussian-based kernel of even

order ν considered in Wand and Schucany (1990), given by L(x) =
∑ν/2−1

s=0 asφ
(2s)(x) with

as = (−1)s(2ss!)−1, which has mν(L)/ν! = −aν/2. Note that we only need to obtain explicit

formulas for L(r)(0), RL,r,g(f), ψr, SL,r,g(f) and R{L(r)}2,0,g(f).

For any even r1, r2 ∈ N, µ1, µ2, µ3 ∈ R and σ1 > 0, σ2 > 0, σ3 > 0, write

µ̃ =
{

σ−2
1 σ−2

2 (µ1 − µ2)
2 + σ−2

1 σ−2
3 (µ1 − µ3)

2 + σ−2
2 σ−2

3 (µ2 − µ3)
2
}1/2

,

σ̃ =
{

σ−2
1 + σ−2

2 + σ−2
3

}1/2
, ˜̃µ = σ̃−2

{

σ−2
1 µ1 + σ−2

2 µ2 + σ−2
3 µ3

}

,

and µ†k = µk − ˜̃µ. Then, for µ = (µ1, µ2, µ3) and σ = (σ1, σ2, σ3) let us denote

Ir1,r2(µ;σ) = (2π)−1/2φσ̃(µ̃)(σ1σ2σ3)
−1

×

r1
∑

j1=0

r2
∑

j2=0

OF(j1 + j2)

(

r1
j1

)(

r2
j2

)

Hr1−j1(σ
−1
1 µ†1)Hr2−j2(σ

−1
2 µ†2)σ

−r1−j1
1 σ−r2−j2

2 σ̃−j1−j2 ,

where for any p ∈ N we write OF(2p) = (2p−1)(2p−3) · · · 3·1 = (2p)!(2pp!)−1, OF(2p+1) =

0 and Hp(x) the pth Hermite polynomial, defined by Hp(x) = (−1)pφ(p)(x)/φ(x).

Theorem 7. For L(x) =
∑ν/2−1

s=0 asφ
(2s)(x) and f(x) =

∑k
ℓ=1wℓφσℓ

(x− µℓ) we have

B(g) = (−1)r/2n−1g−r−1(2π)−1/2

ν/2−1
∑

s=0

(−1)sasOF(2s + r)

+

k
∑

ℓ,ℓ′=1

wℓwℓ′

{

(1− n−1)

ν/2−1
∑

s=0

asg
2sφ

(2s+r)
σℓℓ′(g)

(µℓℓ′)− φ(r)σℓℓ′
(µℓℓ′)

}

and

V (g) = 4(n − 2)(n − 1)n−3
k
∑

ℓ1,ℓ2,ℓ3=1

wℓ1wℓ2wℓ3

×

ν/2−1
∑

s,s′=0

asas′g
2s+2s′I2s+r,2s′+r(µℓ1 , µℓ2 , µℓ3 ;σℓ1(g), σℓ2(g), σℓ3)

+ 2(n − 1)n−3
k
∑

ℓ,ℓ′=1

wℓwℓ′

ν/2−1
∑

s,s′=0

asas′g
2s+2s′I2s+r,2s′+r(0, 0, µℓℓ′ ; g, g, σℓℓ′ )

− (4n − 6)(n − 1)n−3

{ k
∑

ℓ,ℓ′=1

wℓwℓ′

ν/2−1
∑

s=0

asg
2sφ

(2s+r)
σℓℓ′(g)

(µℓℓ′)

}2

,

where µℓℓ′ = µℓ − µℓ′ and σ
2
ℓℓ′ = σ2ℓ + σ2ℓ′ for ℓ, ℓ

′ = 1, 2, . . . , k and for any σ > 0 we write

σ(g) = (σ2 + g2)1/2.
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For L and f as given in the previous theorem we can also write the asymptotic bias as

B0(g) = (−1)r/2n−1g−r−1(2π)−1/2

ν/2−1
∑

s=0

(−1)sasOF(2s+ r)− aν/2ψr+νg
ν

and its minimizer as

g0 =

∣

∣

∣

∣

(2π)−1/2

ν/2−1
∑

s=0

(−1)sasOF(2s+ r)a−1
ν/2ψ

−1
r+νn

−1

∣

∣

∣

∣

1/(r+ν+1)

,

with

ψr+ν =

k
∑

ℓ,ℓ′=1

wℓwℓ′φ
(r+ν)
σℓℓ′

(µℓℓ′),

as shown in the proof of Theorem 7 in Section 6.

The previous results allow us to compare the exact MSE function and its minimizer

gMSE with their asymptotic approximations. The first form of asymptotic MSE is defined

as the dominant expression in equation (7), that is, AMSE0(g) = 4n−1Varf (r)(X1)+B
2
0(g).

A second asymptotic approximation of the MSE is obtained by combining the asymptotic

variance and the exact bias, that is, AMSE1(g) = 4n−1Varf (r)(X1)+B
2(g). Notice that g0

and gBA minimize AMSE0(g) and AMSE1(g), respectively.

To analyze the finite sample behavior of the asymptotic approximations we use two of

the 15 normal mixture densities introduced in Marron and Wand (1992). Precisely, we

focus on density #1 (standard normal density) and density #12 (asymmetric claw density),

corresponding to the cases where the difficulty in estimating the density itself is low and

high. The comments that follow regarding density #1 are equally applicable to the first ten

Marron-Wand densities, whereas the situation for density #12 is shared by the last five of

them. Therefore, we prefer to stay with these two representatives and not to reproduce the

full graphics concerning all the densities to save space.

Figure 2 shows the graphs of MSE(g) and its two approximations with g on a log10

scale, for the normal density #1 and the asymmetric claw density #12. The kernel used in

the estimator was the standard normal density, which has order 2. Note that in the case of

density #1 the two asymptotic versions provide quite reliable approximations to the MSE,

and the same holds for their minimizers. Even so, the quality of g0 as surrogate for gMSE

deteriorates more rapidly than that of gBA as r increases. For density #12, however, the

situation is more clearly favorable to gBA, which stays close to gMSE whereas g0 gives a poor

approximation, even for r = 0.

To get further insight into the accuracy of the approximations to gMSE it is quite in-

formative to look at Figure 3, which shows, in a log10-log10 scale the values of gMSE, gBA

and g0 as a function of the sample size. Eventually these graphs take the form of a straight

line with slope −1/(r + 3) (see Theorem 5). As anticipated in Figure 2, whereas for the

normal density both approximations are quite close to the exact gMSE value, for density
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Figure 2: Comparison of MSE(g) (thick solid line) and its asymptotic approximations

AMSE0(g) (dashed line) and AMSE1(g) (thin solid line) for the normal density #1 (left

column) and the asymmetric claw density #12 (right column) and for r = 0, 2, 4. Their

respective minimizers, gMSE, g0 and gBA, are indicated by the vertical lines. The kernel is

the standard normal density and the sample size is n = 100.
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Figure 3: Comparison of gMSE (thick solid line) and its asymptotic approximations g0

(dashed line) and gBA (thin solid line) for the normal density #1 (left column) and the

asymmetric claw density #12 (right column) and for r = 0, 2, 4, as a function of the sample

size. The kernel is the standard normal density.
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Figure 4: Relative efficiencies of g0 and gBA with respect gMSE in terms of MSE (left) and

distribution boxplots for the estimator ψ̂r(g) with g = gMSE, gBA and g0, together with their

respective root sample MSEs (right).

#12 a sample size between n = 1000 and n = 10000 is needed before g0 can be considered a

reasonable surrogate for gMSE, as opposite to gBA, which stays close to gMSE even for small

values of n.

Figure 3 shows how well g0 and gBA approximate gMSE, but perhaps it is even more

interesting to compare their performances in MSE terms. In Figure 4 (left column) we

show the relative efficiencies [MSE(gMSE)/MSE(g)]1/2 for g = gBA (solid lines) and g = g0

(dashed lines) against log10(n) for r = 0, 2, 4, 6. As expected, for each of g = gBA and

g = g0 the efficiency graphs are naturally placed in descending order as r increases, that

is, for g = gBA the top solid curve in each plot corresponds to r = 0 and the bottom
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solid curve corresponds to r = 6, and similarly for g = g0. This reflects the fact that the

approximations to gMSE given by gBA and g0 get worse (in the MSE sense) as the degree of

derivative r increases, as predicted by the asymptotic theory (see Theorems 5 and 6 above).

However, even though both MSE(gBA) and MSE(g0) exhibit the same relative order of

convergence to MSE(gMSE), we can see in the left column of Figure 4 that for small and

moderate sample sizes there are also marked differences between gBA and g0. Whereas for

n ≥ 10 and the cases r = 0, 2, 4, 6 represented in Figure 4 the efficiency of gBA is always

greater than 90%, showing that the loss in changing the goal from gMSE to gBA is nearly

negligible, in some cases Figure 4 shows that the use of the bandwidth g0 may lead to a

very disappointing performance of the estimator.

Specifically, for the normal density #1 g0 is even more efficient than gBA for density

#1 when r = 0, and it is also quite acceptable for r = 2, but for r ≥ 4 the efficiency of g0

decays rapidly, and it is already lower than 70% (for r = 4) or 50% (for r = 6) for sample

size n = 100. This effect is even more dramatic for the case of the asymmetric claw density

#12: for sample size n = 100 the efficiency of g0 is about 60% for r = 0 and it is lower than

10% for r ≥ 2.

Our conclusion is that g0 can be a bad surrogate for gMSE, especially for r ≥ 4. This

is quite a striking conclusion, since g0 is the usual target bandwidth for plug-in bandwidth

selection methods for the estimation of ψr.

In the right column of Figure 4 we show the boxplots for the distribution of log10
(

ψ̂r(g)/ψr

)

based on 500 generated samples of size n = 100. In each graph we have vertical lines divid-

ing the cases according to r = 0, 2, 4, 6 and, for each of these cases, we have three boxplots

corresponding to the use of the theoretical g = gMSE, g = gBA and g = g0 in the estimator,

from left to right. We have also added a solid circle to each boxplot indicating the sample

mean of the distribution and a number on top with the square root of the sample MSE of

ψ̂r(g)/ψr .

The boxplots show the reasons for the bad efficiency results of g0. Although this band-

width is meant to annihilate the bias term asymptotically, it looks like g0 does not get

close to this goal for moderate sample sizes, since ψ̂r(g0) clearly overestimates ψr in mean,

especially for r ≥ 4. Moreover, this occasionally large bias does not come with a reduction

in variance, since in fact ψ̂r(g0) is more variable than the other two estimators. Both effects

(in bias and variance) are highly stressed for the case of density #12. In contrast, it is

possible to observe how the estimator using the bandwidth gBA is unbiased, as it should be

by definition, at the expense of only a slight increase of variance over gMSE. Nevertheless,

the distributions of the estimator with gMSE or gBA are very similar.

Finally, we explore the consequences of using a higher order kernel for estimating ψr.

From expansion (7) it can be shown that MSE(gMSE) is of order n−(min{r,ν}+ν+1)/(r+ν+1),

thus achieving the optimal n−1 rate whenever ν ≥ r; moreover, the estimator has also the

optimal asymptotic variance if ν ≥ r + 2 (see Wand and Jones, 1995, p. 67–70).
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Figure 5: Comparison of MSE(g) and gMSE for normal kernels of order ν = 2 (thick solid

line), ν = 4 (dashed line) and ν = 6 (thin solid line) for the normal density #1 and for

r = 2 (left) and r = 4 (right). The sample size is n = 100.

However, for the problem of density estimation Marron and Wand (1992) showed that

these asymptotics may need a very large sample size before their effects begin to take place,

and that the gains for small or moderate sample sizes are usually minor. To investigate

the effect of using a higher order kernel we show in Figure 5 how the MSE function and

its minimizer varies for kernel orders ν = 2, 4, 6 for the normal density #1 and sample size

n = 100.

The effect of using a higher order kernel is that the whole MSE(g) curve and gMSE are

moved to the right. This is a consequence of the reduction in bias together with an increase

in variance, as noted in Marron and Wand (1992). We investigated how the use of higher

order kernels affected the asymptotic approximations to MSE(g) and gMSE as well, but we

have omitted their plots in Figure 5 for the sake of clarity, since they leaded basically to

the same conclusions. We note, however, that the approximation of gMSE by g0 seems to

get worse in the case of higher order kernels.

Also in accordance with the case of density estimation, it is noticeable that the corre-

sponding heights of the minima are not very different for the three kernel orders represented

in Figure 5, meaning that for n = 100 there is little to be gained by using a higher order

kernel. To explore this fact in more detail, Figure 6 shows log10 MSE(gMSE) as a function

of log10(n) for r = 0, 2, 4, 6 when kernels of orders ν = 2 (solid line), ν = 4 (dashed line)

and ν = 6 (dotted line) are used to estimate ψr. Notice that for r = 0 and r = 2, the

three kernel orders lead to an optimal MSE rate n−1, which is consistent with the corre-

sponding graphs having eventually the shape of a straight line with slope −1, and results

in nearly identical MSE performance. For r = 4 and r = 6 the use of higher order kernels
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Figure 6: Comparison of log10 MSE(gMSE) when kernels of orders ν = 2 (solid line), ν = 4

(dashed line) and ν = 6 (dotted line) are used to estimate ψr for the normal density #1.

improves the performance asymptotically, as predicted by theory, but a large sample size is

usually needed before these asymptotics become to produce a noticeable effect. The sample

size at which higher order kernel estimators become clearly preferable varies with the true

underlying density #1, it is about n = 1000 in the case of the normal density, but for

the asymmetric claw density #12 (not shown) higher order kernels still have not become

dominant for n = 106.

Remark 1. For the case ν = 2 the exact MSE formula for normal mixture densities can

be found in Aldershof’s thesis (1991). Even so, its consequences (as extracted from the

previous discussions) had not been fully explored yet.
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6 Proofs

We start by presenting some properties of RL,r,g(f) and SL,r,g(f) as functions of g. Let us

denote ψr,s =
∫

f (r)f (s)f .

Lemma 1. Under assumptions (L1) and (D1), we have:

a) The function g 7→ RL,r,g(f) is continuous and such that limg→0RL,r,g(f) = ψr

∫

L

and limg→∞ gr+1RL,r,g(f) = L(r)(0).

b) The function g 7→ SL,r,g(f) is continuous and such that limg→0 SL,r,g(f) = ψr,r(
∫

L)2

and limg→∞ g2r+2SL,r,g(f) = {L(r)(0)}2.

Proof. Using the fact that L(j) and f (j) are bounded and square integrable, for j =

0, 1, . . . , r, and the same tools as in Hall and Marron (1987), it is straightforward to check

that we can write

RL,r,g(f) =

∫

L(u)
(

f (r) ∗ f̄
)

(gu)du, (9)

with f̄(x) = f(−x). Therefore, as L ∈ L1 the continuity and the first limit in part a) follow

from the Dominated Convergence Theorem (DCT) and the boundedness and continuity of

the convolution product of square integrable functions, together with the fact that (f (r) ∗

f̄)(0) = ψr. For the second limit, using again the DCT, together with the boundedness and

continuity of L(r) at zero, we obtain

lim
g→∞

gr+1RL,r,g(f) = lim
g→∞

∫∫

L(r)(x−y
g )f(x)f(y)dxdy = L(r)(0)

as stated.

The proof of part b) can be obtained in a similar way. For the first limit we start by

writing

SL,r,g(f) =

∫∫∫

L(u)L(v)f (r)(gu− x)f (r)(gv − x)f̄(x)dxdudv (10)

=

∫∫

L(u)L(v)
(

f (r) ⊙ f (r) ⊙ f̄
)

(gu, gv)dudv,

where we are denoting

(α⊙ β ⊙ γ)(y, z) =

∫

α(y − x)β(z − x)γ(x)dx.

Reasoning as in the proof of Theorem 21.33 in Hewitt and Stromberg (1965), for α, β, γ ∈ L3

it can be shown that α⊙β⊙γ is a bounded continuous function. Consequently, as f, f (r) ∈ L3

(since they are bounded and square integrable), we get the stated limit by using again the

DCT, together with the fact that (f (r) ⊙ f (r) ⊙ f̄)(0, 0) = ψr,r. The second limit again

follows from a direct application of the DCT, since

lim
g→∞

g2r+2SL,r,g(f) = lim
g→∞

∫∫∫

L(r)(x−y
g )L(r)(x−z

g )f(x)f(y)f(z)dxdydz = {L(r)(0)}2.



19

Proof of Theorem 1. From the previous lemma, together with (3) and (4), we conclude that

B2(g) and V (g) are continuous functions such that

lim
g→0

B2(g) = ∞, lim
g→∞

B2(g) = ψ2
r , lim

g→0
V (g) = ∞, lim

g→∞
g2r+2V (g) = 0.

So the MSE function, which equals MSE(g) = B2(g) + V (g), is a continuous function such

that

lim
g→0

MSE(g) = ∞, lim
g→∞

MSE(g) = ψ2
r .

Therefore, to show that there exists a value gMSE = gMSE,r,n(f) minimizing the MSE func-

tion, it suffices to show that, for big enough g∗, we have MSE(g∗) < ψ2
r . So if we define

D(g) = MSE(g)− ψ2
r = [B2(g)− ψ2

r ] + V (g),

all that we need to show is that, for some ρ > 0, we have limg→∞ gρD(g) < 0.

But using the previous lemma we have

lim
g→∞

g2r+2[B2(g)− ψ2
r ] = − sgn

(

ψrL
(r)(0)

)

· ∞,

where sgn(x) = x/|x| for x 6= 0. As our assumptions imply that sgnψr = sgnL(r)(0) =

(−1)r/2, it immediately follows that limg→∞ g2r+2[B2(g) − ψ2
r ] = −∞. This, together with

the limit properties of the variance allows us to conclude that limg→∞ g2r+2D(g) = −∞

and so the proof is complete. ✷

Proof of Theorem 2. From the previous lemma, together with (3), we know that B(g) is a

continuous function such that

lim
g→0

B(g) = (sgnL(r)(0)) · ∞, lim
g→∞

B(g) = −ψr.

Again, our assumptions imply that sgn
(

− ψr · L
(r)(0)

)

= −1, which yields the proof using

Bolzano’s theorem. ✷

Proof of Theorem 3. For g = gMSE or g = gBA, suppose that ngr+1 does not converge to

infinity. Then ngr+1 has a subsequence which is upper bounded by some positive constant

C. Therefore, along that subsequence we have g → 0.

For g = gMSE this implies that

lim sup
n→∞

MSE(gMSE) ≥ lim sup
n→∞

B2(gMSE) = lim sup
n→∞

{n−1g−r−1
MSE L(r)(0)}2 ≥ {L(r)(0)/C}2 > 0,

which contradicts the fact that 0 ≤ MSE(gMSE) ≤ MSE(n−1/(r+2)) → 0 that follows from

(5) together with the previous lemma.

Similarly, for g = gBA we would obtain that

0 = B2(gBA) = lim sup
n→∞

B2(gBA) = lim sup
n→∞

{n−1g−r−1
BA L(r)(0)}2 ≥ {L(r)(0)/C}2 > 0,
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so that the result also follows by contradiction. ✷

Proof of Theorem 4. Let us prove the result for gMSE. Denote by Λf,L the set of accumulation

points of the sequence (gMSE). Take 0 < λ ∈ Λf,L and (gnk
) a subsequence of (gMSE) such

that λ = limk→∞ gnk
. Writing B(g;n) and MSE(g;n) for B(g) and MSE(g), respectively,

from equalities (3) and (4) we get that, for fixed g > 0,

lim
n→∞

MSE(g;n) = lim
n→∞

B2(g;n) = {RL,r,g(f)− ψr}
2,

so that using Lemma 1 and Theorem 3, we obtain

0 = lim
g→0

{RL,r,g(f)− ψr}
2 = lim

g→0
lim
k→∞

B2(g;nk) = lim
g→0

lim
k→∞

MSE(g;nk)

≥ lim
k→∞

MSE(gnk
;nk) ≥ lim

k→∞
B2(gnk

;nk) = {RL,r,λ(f)− ψr}
2.

Therefore

Λf,L ⊂ {λ ≥ 0 : RL,r,λ(f) = ψr} = {λ ≥ 0 :
∫∞
0 tr|ϕf (t)|

2[1− ϕL(tλ)]dt = 0}, (11)

since from Parseval’s formula, together with ϕf(r)(t) = (it)rϕf (t) (see Butzer and Nessel,

1971, Proposition 5.2.19) we easily get that

ψr = (−1)r/2π−1

∫ ∞

0
tr|ϕf (t)|

2dt, RL,r,λ(f) = (−1)r/2π−1

∫ ∞

0
tr|ϕf (t)|

2ϕL(tλ)dt. (12)

Additionally, we also have

Λf,L ⊂

[

0,min

(

SL
Cf

,
TL
Df

)]

. (13)

This is because in fact, if λ > 0 is such that λ ∈ Λf,L, from (11) we have
∫ Cf

0
tr|ϕf (t)|

2[1− ϕL(tλ)]dt = 0 and

∫ ∞

TL/λ
tr|ϕf (t)|

2[1− ϕL(tλ)]dt = 0.

Taking into account that ϕL is a real function (for L being symmetric) and such that

1−ϕL(tλ) ≥ 0, from the first equality we conclude that ϕL(s) = 1 for all 0 ≤ s ≤ λCf , and

then SL ≥ λCf , that is, λ ≤ SL/Cf . From the second equality we have ϕf (t) = 0 for all

t ≥ TL/λ, and then Df ≤ TL/λ, that is, λ ≤ TL/Df .

From (13) we finally get

0 ≤ lim sup
n→∞

gMSE ≤ min

(

SL
Cf

,
TL
Df

)

, (14)

which concludes the proof for gMSE.

Similarly, notice that any λ being an accumulation point of gBA the equality RL,r,λ(f)−

ψr = 0 should also hold, due to Theorem 3, the continuity properties in Lemma 1 and the

fact that B(gBA) = 0. Consequently, (14) is also true for gBA and so the desired result. ✷

As a tool for the proof of Theorem 5 we will need the following lemma, which follows

directly from expressions (9) and (10) for RL,r,g(f) and SL,r,g(f), respectively, the differen-

tiation theorem under the integral sign and standard Taylor expansions.
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Lemma 2. Under assumptions (L1), (L2), (D1) and (D2) we have:

a) The function g 7→ RL,r,g(f) is differentiable with

RL,r,g(f) = ψr + gνψr+νmν(L)/ν! + o(gν),

dRL,r,g(f)/dg = gν−1ψr+νmν(L)/(ν − 1)! + o(gν−1).

Additionally, if |mν+2|(L) <∞ and f has bounded continuous derivatives up to order

r+ν+2, the previous residual term o(gν) may be replaced by gν+2ψr+ν+2mν+2(L)/(ν+

2)! + o(gν+2).

b) If
∫

|u|{L(r)(u)}2du < ∞, the function g 7→ R{L(r)}2,0,g(f) is differentiable and such

that dR{L(r)}2,0,g(f)/dg = o(1).

c) The function g 7→ SL,r,g(f) is differentiable and such that

dSL,r,g(f)/dg = 2gν−1ψr+ν,rmν(L)/(ν − 1)! + o(gν−1).

Proof of Theorem 5. a) From expansion (7) and taking for g the asymptotically optimal

bandwidth (8), we easily get

n2ν/(r+ν+1)
(

MSE(g0)− 4n−1Varf (r)(X1)
)

= o(1)

and then, as MSE(gMSE) ≤ MSE(g0),

lim supn2ν/(r+ν+1)
(

MSE(gMSE)− 4n−1Varf (r)(X1)
)

<∞. (15)

Moreover, using the fact that gMSE → 0 (that follows from Theorem 4, due to condition

(L2)), from expansion (7) we also get

n2ν/(r+ν+1)
(

MSE(gMSE)− 4n−1Varf (r)(X1)
)

=
(

(n1/(r+ν+1)gMSE)
−r−1L(r)(0) + (n1/(r+ν+1)gMSE)

νmν(L)ψr+ν/ν!
)2

+o
(

(n1/(r+ν+1)gMSE)
−2r−2 + (n1/(r+ν+1)gMSE)

ν−r−1 + (n1/(r+ν+1)gMSE)
2ν
)

,

which contradicts (15) if lim inf n1/(r+ν+1)gMSE = 0 or lim sup n1/(r+ν+1)gMSE = ∞.

Therefore the proof for gMSE is complete. The proof for gBA can be obtained in a similar

way by noting that, using (6),

0 = nν/(r+ν+1)B(gBA)

=
{

(n1/(r+ν+1)gBA)
−r−1L(r)(0) + (n1/(r+ν+1)gBA)

νmν(L)ψr+ν/ν!
}

(1 + o(1)).
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b) From Lemma 2 and equalities (3) and (4) the functions B(g) and V (g), and therefore

MSE(g), are differentiable with

B′(g) = −(r + 1)n−1g−r−2L(r)(0) + νgν−1ψr+νmν(L)/ν! + o(gν−1) (16)

and

V ′(g) = 2c1,r n
−1gν−1mν(L)/ν!− 2c2,r n

−2g−2r−2 + o(n−1gν−1 + n−2g−2r−2), (17)

with c1,r = 4ν(ψr+ν,r − ψr+νψr) and c2,r = (2r + 1)ψ0

∫

{L(r)}2.

From these expansions together with (6), part a) of this result and equation MSE′(gMSE) =

2B(gMSE)B
′(gMSE) + V ′(gMSE) = 0 we obtain

ngr+1
MSEB(gMSE)ng

r+2
MSEB

′(gMSE)

= −n2g2r+3
MSEV

′(gMSE)/2

= −c1,r ng
2r+ν+2
MSE mν(L)/ν! + c2,r gMSE + o(ng2r+ν+2

MSE + gMSE) (18)

where

ngr+1
MSEB(gMSE) = L(r)(0) + ngr+ν+1

MSE ψr+νmν(L)/ν! + o(1) (19)

and

ngr+2
MSEB

′(gMSE) = −(r + 1)L(r)(0) + ν ngr+ν+1
MSE ψr+νmν(L)/ν! + o(1)

= (−1)r/2+1{(r + 1)|L(r)(0)|+ ν ngr+ν+1
MSE |ψr+ν ||mν(L)|/ν!} + o(1).

is such that lim inf ngr+2
MSE|B

′(gMSE)| > 0. Therefore, from (18) we finally get

L(r)(0) + ngr+ν+1
MSE ψr+νmν(L)/ν! = o(1), (20)

that concludes the proof for gMSE. Also, notice that from 0 = ngr+1
BA B(gBA) and (6) we

obtain the same formula as in (20) with gBA instead of gMSE and thus the limit g0/gBA → 1

and, consequently, gBA/gMSE → 1.

c) Using the fact that f has a bounded derivative of order r + ν + 2, from Lemma 2

we know that the residual term o(gν) appearing in the expansion of B(g) can be replaced

by O(gν+2). This enables us to improve the order of convergence of the residual term in

equation (19) which can be replaced by O(g2MSE) = o(gMSE). Using again equation (18) and

the fact that ngr+2
MSEB

′(gMSE) = −c3,r(1 + o(1)), where c3,r = (r + ν + 1)L(r)(0), we get

L(r)(0) + ngr+ν+1
MSE ψr+νmν(L)/ν! = c1,rc

−1
3,r ng

2r+ν+2
MSE mν(L)/ν!− c2,rc

−1
3,r gMSE + o(gMSE).

Taking into account that g0 satisfies the equality

L(r)(0) + ngr+ν+1
0 ψr+νmν(L)/ν! = 0, (21)
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for some ḡ between g0 and gMSE we have

n(r+ν+1)ḡr+ν(g0/gMSE−1)ψr+νmν(L)/ν! = −c1,rc
−1
3,r ng

2r+ν+1
MSE mν(L)/ν!+ c2,rc

−1
3,r + o(1).

In order to conclude it suffices to remark that n1/(r+ν+1)ḡ = c0,r(1 + o(1)) where cr+ν+1
0,r =

−ν!L(r)(0)/(mν(L)ψr+ν). Therefore, the announced convergence for g0/gMSE−1 takes place

with

C = CL,r,ν(f) = −c0,rc
−2
3,r{c2,r + 4ν(ψν,0ψ

−1
ν − ψ0)L(0)δr0}, (22)

where δr0 is the Kronecker symbol, that is, δr0 = 1 for r = 0 and δr0 = 0 for r 6= 0.

On the other hand, starting from 0 = ngr+1
BA B(gBA) and using (6) with the residual term

o(gν) replaced by O(gν+2) we come to

L(r)(0) + ngr+ν+1
BA ψr+νmν(L)/ν! = gr+1

BA ψr +O(ngr+ν+3
BA ). (23)

Reasoning as before we conclude that the announced convergence for gBA/gMSE−1 takes

place with

D = DL,r,ν(f) = −c0,rc
−2
3,r{c2,r + (4ν(ψν,0ψ

−1
ν − ψ0) + (ν + 1)ψ0)L(0)δr0}. (24)

Finally, using the fact that f has a bounded continuous derivative of order r + ν + 2,

from Lemma 2 we know that the residual term o(gν) appearing in the expansion of B(g) can

be replaced by gν+2ψr+ν+2mν+2(L)/(ν + 2)! + o(gν+2) which enables us write the residual

term in equation (23) more precisely. Together with equation (21) we conclude that the

announced convergence for g0/gBA − 1 takes place with

E = EL,r,ν(f) = −c0,rc
−1
3,r{c

r+ν+2
0,r ψr+ν+2mν+2(L)/(ν + 2)!(1 − δr0)− ψ0δr0}. (25)

✷

The orders of convergence for the higher order derivatives of RL,r,g(f), R{L(r)}2,0,g(f)

and SL,r,g(f) given in the next lemma will be used in the proof of Theorem 6. They follow

directly from expressions (9) and (10), the differentiation theorem under the integral sign

and standard Taylor expansions.

Lemma 3. Under assumptions (L1), (L2) and (D1), if f has bounded and continuous

derivatives up to order r + ν + 2, |mν+2|(L) < ∞ and
∫

|u|3{L(r)(u)}2du < ∞, then the

functions g 7→ RL,r,g(f), g 7→ R{L(r)}2,0,g(f) and g 7→ SL,r,g(f) are three-times differentiable

with

d2RL,r,g(f)/dg
2 = O(gν−2), d3RL,r,g(f)/dg

3 = O(gν−3),

d2R{L(r)}2,0,g(f)/dg
2 = O(1), d3R{L(r)}2,0,g(f)/dg

3 = O(1),

d2SL,r,g(f)/dg
2 = O(gν−2), d3SL,r,g(f)/dg

3 = O(gν−3).
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Proof of Theorem 6. From Lemmas 2 and 3 and equalities (3) and (4) the functions B(g)

and V (g), and therefore MSE(g), are three-times differentiable with

B′′(g) = O(n−1g−r−3 + gν−2), B′′′(g) = O(n−1g−r−4 + gν−3)

and

V ′′(g) = O(n−2g−2r−3 + n−1gν−2), V ′′′(g) = O(n−2g−2r−4 + n−1gν−3).

Moreover, a Taylor expansion for g 7→ MSE(g) around g = gBA leads to

MSE(g0)−MSE(gBA) = MSE′(gBA)gBA(g0/gBA − 1) +MSE′′(gBA)g
2
BA(g0/gBA − 1)2/2

+ MSE′′′(g̃)g3BA(g0/gBA − 1)3/3!,

for some g̃ between g0 and gBA. Taking into account that B(gBA) = 0 and n1/(r+ν+1)gBA =

c0,r(1+ o(1)), from the previous orders of convergence for B′′(g), B′′′(g), V ′′(g) and V ′′′(g),

the expansions (16) and (17) for B′(g) and V ′(g), respectively, and Theorem 5.c), we get

MSE′(gBA)gBA = c−2r−1
0,r dr n

−(2ν+1)/(r+ν+1)(1 + o(1)),

MSE′′(gBA)g
2
BA(g0/gBA − 1) = 2c−2r−2

0,r c23,rE n
−min(r+2ν+1,2ν+2)/(r+ν+1)(1 + o(1))

and

MSE′′′(g̃)g3BA(g0/gBA − 1)2 = O(n−(2ν+2)/(r+ν+1)),

where dr = −2{c2,r + 4ν(ψν,0ψ
−1
ν − ψ0)L(0)δr0} and the constants c0,r, c2,r and c3,r are de-

fined in the proof of Theorem 5. Therefore, from Theorem 5.c), the announced convergence

for MSE(g0)−MSE(gBA) will take place with

Λ = ΛL,r,ν(f) = c−2r−2
0,r {c0,rdr + c23,rEδr0}. (26)

✷

Proof of Theorem 7. As noted previously, to obtain an explicit formula for the MSE func-

tion we just need to provide explicit formulas for L(r)(0), RL,r,g(f), ψr, SL,r,g(f) and

R{L(r)}2,0,g(f). From Fact C.1.6 in Appendix C in Wand and Jones (1995) we already

have

L(r)(0) = (−1)r/2(2π)−1/2

ν/2−1
∑

s=0

(−1)sasOF(2s+ r).

Also, using Fact C.1.12 there, taking into account that r is even,

ψr =

∫

f (r)(x)f(x)dx =
k
∑

ℓ,ℓ′=1

wℓwℓ′

∫

φ(r)σℓ
(x− µℓ)φσ′

ℓ
(x− µℓ′)dx

=
k
∑

ℓ,ℓ′=1

wℓwℓ′φ
(r)
σℓℓ′

(µℓℓ′).
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And from the same result and Fact C.1.11 we have

RL,r,g(f) =

∫

L(r)
g ∗ f(x)f(x)dx

=

k
∑

ℓ,ℓ′=1

wℓwℓ′

ν/2−1
∑

s=0

asg
2s

∫

(

φ(2s+r)
g ∗ φσℓ

)

(x− µℓ)φσℓ′
(x− µℓ′)dx

=

k
∑

ℓ,ℓ′=1

wℓwℓ′

ν/2−1
∑

s=0

asg
2s

∫

φ
(2s+r)
σℓ(g)

(x− µℓ)φσℓ′
(x− µℓ′)dx

=

k
∑

ℓ,ℓ′=1

wℓwℓ′

ν/2−1
∑

s=0

asg
2sφ

(2s+r)
σℓℓ′ (g)

(µℓℓ′)

and so, the formula for the bias is complete.

On the other hand, Theorem 6.1 in Aldershof et al. (1995) with m = 3 and r3 = 0

states that
∫

φ(r1)σ1
(x− µ1)φ

(r2)
σ2

(x− µ2)φσ3(x− µ3)dx = Ir1,r2(µ;σ). (27)

But we have L
(r)
g ∗ f(x) =

∑k
ℓ=1 wℓ

∑ν/2−1
s=0 asg

2sφ
(2s+r)
σℓ(g)

(x−µℓ) so that from (27) we obtain

SL,r,g(f) =

∫

{L(r)
g ∗ f(x)}2f(x)dx

=
k
∑

ℓ1,ℓ2,ℓ3=1

wℓ1wℓ2wℓ3

ν/2−1
∑

s,s′=0

asas′g
2s+2s′

×

∫

φ
(2s+r)
σℓ1

(g) (x− µℓ1)φ
(2s′+r)
σℓ2

(g) (x− µℓ2)φσℓ3
(x− µℓ3)dx

=

k
∑

ℓ1,ℓ2,ℓ3=1

wℓ1wℓ2wℓ3

ν/2−1
∑

s,s′=0

asas′g
2s+2s′

× I2s+r,2s′+r(µℓ1 , µℓ2 , µℓ3 ;σℓ1(g), σℓ2(g), σℓ3).

For the remaining term, it is easy to check that

f ∗ f̄(z) =

k
∑

ℓ,ℓ′=1

wℓwℓ′φσℓℓ′
(z − µℓℓ′)

and we also know that

g−2r−1R{L(r)}2,0,g(f) =

∫∫

{L(r)
g (x− y)}2f(x)f(y)dxdy =

∫

{L(r)
g (z)}2(f ∗ f̄)(z)dz

so that in the normal mixture case we have

g−2r−1R{L(r)}2,0,g(f) =

k
∑

ℓ,ℓ′=1

wℓwℓ′

ν/2−1
∑

s,s′=0

asas′g
2s+2s′

∫

φ(2s+r)
g (z)φ(2s

′+r)
g (z)φσℓℓ′

(z − µℓℓ′)dz



26

and we conclude by using formula (27) with µ1 = µ2 = 0, µ3 = µℓℓ′ and σ1 = σ2 = g,

σ3 = σℓℓ′ . ✷
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limit behavior of the optimal bandwidth for kernel density estimation. Statist. Sinica, 17,

289–300.

Chacón, J.E. and Tenreiro, C. (2011) Data-based choice of the number of pilot

stages for plug-in bandwidth selection. To appear in Comm. Statist. Theory Methods.

doi:10.1080/03610926.2011.606486

Dmitriev, Y.G. and Tarasenko, F.P. (1973) On the estimation of functionals of the prob-

ability density and its derivatives. Theory Probab. Appl., 18, 628–633.

Dmitriev, Y.G. and Tarasenko, F.P. (1975) On a class of non-parametric estimates of

non-linear functionals of density. Theory Probab. Appl., 19, 390–394.
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