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Abstract

The choice of the bandwidth is a crucial issue for kernel density estimation.

Among all the data-dependent methods for choosing the bandwidth, the direct plug-

in method has shown a particularly good performance in practice. This procedure is

based on estimating an asymptotic approximation of the optimal bandwidth, using

two ‘pilot’ kernel estimation stages. Although two pilot stages seem to be enough for

most densities, for a long time the problem of how to choose an appropriate number of

stages has remained open. Here we propose an automatic (i.e., data-based) method

for choosing the number of stages to be employed in the plug-in bandwidth selec-

tor. Asymptotic properties of the method are presented and an extensive simulation

study is carried out to compare its small-sample performance with that of the most

recommended bandwidth selectors in the literature.
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1 Introduction

In this paper we give a solution to an open problem posed by Park and Marron (1992), which

is also highlighted inWand and Jones (1995, p. 73). The background of the problem is kernel

density estimation. Specifically, if X1, . . . , Xn are independent copies of a real random

variable X , having an absolutely continuous probability distribution P , with density f , the

kernel estimator of f is defined as

fnh(x) =
1

n

n
∑

i=1

Kh(x−Xi), (1)

where the kernel K is a real integrable function with
∫

K = 1, h is a positive real number,

called the bandwidth or smoothing parameter, and we are using the notation Kh(x) =

K(x/h)/h.

It is widely known (see, e.g., Silverman, 1986; Simonoff, 1996) that the performance

of this estimator depends strongly on the choice of h. In this sense, the so-called op-

timal bandwidth hMISE is the minimizer of the mean integrated squared error function,

MISE(h) = E[ISE(h)], where ISE(h) =
∫

{fnh(x)− f(x)}2dx. Chacón, Montanero, Nogales

and Pérez (2007) provide sufficient conditions for hMISE to exist. A data-based bandwidth

selector is just an estimator of the theoretically optimal bandwidth hMISE.

For an arbitrary real function α, denote R(α) =
∫

α(x)2dx and µp(α) =
∫

xpα(x)dx for

p ∈ N. When a positive, symmetric and bounded kernel with a finite second-order moment

µ2(K) is used in (1), under some smoothness assumptions on f , it is possible to give an

asymptotic approximation of hMISE, namely

h0 = c1ψ
−1/5
4 n−1/5, (2)

where we are abbreviating ψr =
∫

f (r)(x)f(x)dx = Ef (r)(X) for an even number r (see

Wand and Jones, 1995) and c1 = [R(K)/µ2(K)2]1/5. As the only unknown quantity in (2)

is ψ4, the problem of providing a bandwidth selector reduces to that of estimating ψ4.

The kernel estimator of ψr for an arbitrary even r is given by

ψ̂r(g) =
1

n2

n
∑

i,j=1

L(r)
g (Xi −Xj) (3)

(Hall and Marron, 1987; Jones and Sheather, 1991), where in this case the kernel L and the

bandwidth g may be different from K and h. Although a better asymptotic performance

can be obtained by taking for L a higher-order kernel (see Wand and Jones, 1995, p. 67–

70), from a practical point of view, and in common with other studies in the literature

(see, e.g., Marron and Wand, 1992, or Jones et al. 1996), no significant improvements
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over the estimator based on a positive and symmetric kernel L are observed. Therefore

we will adopt the usual approach of taking L in (3) to be the standard Gaussian density

φ(x) = (2π)−1/2e−x2/2.

As ψr is a real parameter, it is natural to use in (3) the bandwidth g minimizing the

mean squared error of the estimator, MSE(g) = E[{ψ̂r(g)− ψr}2]. Under some additional

assumptions on f it is possible to obtain an asymptotic representation of the MSE function,

namely AMSE(g), and the minimizer of this AMSE function is given by

g0,r =

(

(−1)r/2+1r!

2(r−1)/2(r/2)!
√
π ψr+2n

)1/(r+3)

(4)

(Jones and Sheather, 1991; Wand and Jones, 1995, p. 70). In view of (4), it is clear that

the problem becomes somehow a cyclic process, as the asymptotically best bandwidth for

estimating ψr depends on ψr+2, another of these density functionals.

To overcome this problem, the usual solution is to use an ℓ-stage bandwidth selection

procedure (see Tenreiro, 2003, and references therein), which consists in the following:

1. Provide a quick and simple estimate of ψr+2ℓ. This may be achieved by using an

estimate of the corresponding functional for some reference distribution. The normal

distribution with zero mean and standard deviation σ is mostly used as a reference

since in this case, following Wand and Jones (1995, p. 72), any functional ψs with

even s can be written as

ψNR
s ≡ ψNR

s (σ) =
(−1)s/2s!

(2σ)s+1(s/2)!
√
π
, (5)

so that an easy estimate of ψr+2ℓ is given by ψ̂NR
r+2ℓ = ψNR

r+2ℓ(σ̂) where σ̂ denotes any

scale estimate.

2. Estimate successively the ℓ density functionals

ψr+2(ℓ−1), ψr+2(ℓ−2), . . . , ψr+2, ψr,

with a kernel estimator. The bandwidth g = ĝ0,r+2j used in the kernel estimator

ψ̂r+2j(g) is just the one given by (4), with the unknown functional ψr+2(j+1) replaced

by its previously calculated estimate.

The final step of the above procedure will give us an estimate of ψr, which we will denote

ψ̂r,ℓ. In particular, for r = 4, replacing ψ4 with ψ̂4,ℓ in (2) results in what is called the ℓ-

stage plug-in bandwidth selector, ĥPI,ℓ. In particular the normal scale rule, which consists
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of replacing ψ4 with ψ̂NR
4 in (2), can be thought as being a zero-stage plug-in bandwidth

selector.

Park and Marron (1992) observed that the influence on the plug-in selector of the

arbitrary reference distribution used in the initial step diminishes as the number of stages

increases. However, the cost of using additional estimation steps results in an increment

of the variance of the bandwidth selector. Therefore, Park and Marron (1992) posed the

following problem: how many kernel functional estimation stages should be used? It would

be useful to have a method to select the correct (in some sense) number of steps, in order

to balance the two aforementioned effects. This is the main goal of this paper.

The rest of the paper is organized as follows. In Section 2, we describe the behavior

of plug-in bandwidth selectors depending on the number of pilot stages. In Section 3 we

introduce a method for choosing the number of pilot stages from the data, which can be

seen as a hybrid between cross-validation and direct plug-in bandwidths, and we describe

its asymptotic behavior. In Sections 4 and 5 we describe the finite sample behavior of the

proposed method. An extensive simulation study is carried out to compare its performance

with the most recommended methods in the literature. The simulation results confirm that

the new procedure performs quite well presenting a good overall performance for a wide

set of density features. All the proofs are deferred to Section 6.

2 Asymptotic and finite sample behavior of multi-

stage plug-in bandwidth selectors

Here we present some theoretical results and examples providing some insight into the

problem of how to select the number of stages for the plug-in bandwidth selector.

First of all we should say that, asymptotically, all the multistage plug-in bandwidth

selectors achieve the same order of convergence, as long as they use ℓ ≥ 2 pilot stages. This

is a well-known result, which can be stated in the following way. As mentioned before, we

set L in (3) to be the standard normal density.

Theorem 1 (Tenreiro, 2003). Assume that K is a positive, bounded and symmetric kernel

with a finite second-order moment, f has bounded derivatives up to order 4+ 2ℓ, and there

exists σf 6= 0 such that σ̂ − σf = OP (n
−1/2), where σ̂ is the scale distribution estimator

in the multistage procedure. Then ĥPI,ℓ/h0 − 1 = OP (n
−α) with α = 2/7 for ℓ = 1 and

α = 5/14 for all ℓ ≥ 2. Moreover, for all ℓ ≥ 2 we have n5/14(ĥPI,ℓ/h0 − 1)
d−→ N(0, σ2

PI),

where the asymptotic variance σ2
PI = 2−9/143−2/77π1/7ψ0ψ

−2
4 |ψ6|9/7/80 is independent of ℓ.

The previous result justifies the usual recommendation of using ℓ = 2 (Aldershof, 1990;
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Sheather and Jones, 1991; Park and Marron, 1992). However, from a nonasymptotic point

of view, considerable improvements can be obtained in some cases if we allow for a higher

number of pilot estimation stages.

To see this, let us consider the case where the kernel K is taken to be the standard

normal density, and the density f is a mixture of normal densities, as in Marron and Wand

(1992). For this kernel and class of densities there are fast and easy-to-implement formulas

to compute the exact ISE of the kernel estimator, therefore, we can easily obtain a sample

of size B of the random variable ISE(ĥPI,ℓ) by using B artificially generated samples with

density f . This way, we can explore the distribution of ISE(ĥPI,ℓ) for several values of

ℓ. Moreover, by averaging over the B samples we get an impression of the behaviour of

EISE(ℓ) = E[ISE(ĥPI,ℓ)] as a function of ℓ. It is to be remarked here that the EISE function

should not be mistaken for the MISE function (see Jones, 1991).

In Figure 1 we give plots showing the effect of the number of pilot stages both on the

ISE and the EISE. This figure shows 15 graphs, corresponding to the 15 normal mixture

densities in Marron and Wand (1992). In all cases we have set L in (3) to be the standard

normal density. Additionally, we have taken the estimator proposed by Silverman (1986,

p. 47) as the scale estimator σ̂. In each graph we show 21 boxplots representing the

distribution of the random variable ISE(ĥPI,ℓ) for ℓ = 0, 1, 2, . . . , 20 based on B = 1000

simulated samples of size n = 200. Also, we include a polygonal line going through the

sample mean values of these distributions, thus giving an approximation of EISE(ℓ) for

ℓ = 0, 1, 2, . . . , 20. The solid black circle is used then to point out the optimal number of

stages in the EISE sense; that is, the number of stages minimizing the (approximation of

the) EISE function.

Similar pictures were generated for sample sizes n = 50, 100, 400, 800 and 1600, but they

are not included here to save space. Nevertheless, we include in Table 1 the EISE-optimal

number of stages for these sample sizes for the 15 normal mixture densities considered.

In view of Table 1 and Figure 1 we can classify our 15 test densities into two groups:

1. When the true density is close to the normal one, the straightforward use of a normal

reference estimate of ψ4 in the formula of the asymptotically optimal bandwidth h0

does a good job. This is the case mainly for densities #1, #2 and #5. We can

also include in this group those densities having easy-to-identify features, such as

#6, #7, #8 and #9, for which a low number of stages (less than 5) seems to be the

reasonable choice. Finally, there are some hard-to-estimate densities that fall into

this group only when the sample size is small, like densities #10 and #12, or #13 for

small and moderate values of n and #11 for n ≤ 1600 at least. The reason for the

good performance of a low number of stages for such a combination of densities and
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Figure 1: Distribution of ISE(ĥPI,ℓ) depending on the number of stages (n = 200).
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Sample Density number

size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

n = 50 0 0 10 7 0 1 4 2 2 0 1 0 1 10 8

n = 100 0 0 11 7 0 2 4 3 3 16 2 10 2 12 8

n = 200 0 0 11 6 0 2 3 3 3 18 2 12 3 14 16

n = 400 0 0 11 6 0 3 3 4 4 13 2 11 4 16 26

n = 800 0 0 10 5 0 2 3 4 5 10 2 13 16 20 23

n = 1600 0 1 8 5 0 2 3 4 5 8 3 14 21 22 18

Table 1: EISE-optimal number of stages.

sample sizes is that they present distributional features that are not revealed until

the sample size is above some threshold. For instance, Figures 6 and 7 in Marron

and Wand (1992) show that it is difficult to distinguish between densities #6 and

#11 for n ≤ 104, and that is the reason for the similar number of optimal stages. It

is reasonable to expect, however, that for larger values of n a larger number of pilot

stages will be advisable for density #11, as happens with densities #10, #12 (for

n ≥ 100) and #13 (for n ≥ 800).

2. The second group of densities comprises those for which using a multistage plug-in

selector with a large number of pilot stages is highly advisable, in the sense that a

big decrease of ISE is clearly noticeable from the 0-stage method to a certain number

of stages (depending on each particular density), from which the ISE distribution

stabilizes. In this group we include densities #3, #4, #14 and #15, and depending

on the sample size also #10, #12, #13 (for moderate and large values of n) and

#11 (for very large sample sizes). For these densities the EISE-optimal number of

stages is high but, in most of those cases, using such a high number of stages does not

represent a significant gain over using, say, a 10-stage method. However, for densities

#10, #14 and #15 using a higher number of stages is advisable for moderate and

large values of n.

The main conclusion after observing Figure 1 is that in some cases, especially for those

densities in group 2 above, the plug-in method may improve considerably if we allow for a

higher number of stages than the usual advice ℓ = 2.

We finish this section by presenting a result that gives some important theoretical insight

into the previously described finite sample behavior of the ℓ-stage plug-in bandwidth as a

function of ℓ. Based on this result, and taking into account that the simple normal scale

rule usually leads to a large bandwidth ĥPI,0 due to the fact that it is based on a very smooth
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reference distribution family (see Terrell, 1990, Theorem 1), the ℓ-stage plug-in bandwidth

selector can be seen as a correction for the zero-stage plug-in bandwidth whenever the

number of pilot stages ℓ is properly chosen. This is discussed in the next section.

Theorem 2. Under the conditions of Theorem 1, for a fixed ℓ̄ ∈ N assume that f has

bounded derivatives up to order 4 + 2ℓ̄ and

|ψ4+2ℓ| ≥ |ψNR
4+2ℓ(σf )|, for all ℓ = 1, 2, . . . , ℓ̄. (6)

Then P
(

ĥPI,ℓ̄ ≤ ĥPI,ℓ̄−1 ≤ · · · ≤ ĥPI,1 ≤ ĥPI,0
)

→ 1, as n→ ∞.

Remark 1. Condition (6) is not very restrictive due to the smoothness properties of the

normal distribution. However, it can be improved or even suppressed if for each ℓ =

1, 2, . . . , ℓ̄, an appropriate reference distribution family is used. This is the case when the

reference distribution used in the multistep procedure is taken from the scale family of the

beta distribution Beta(−1, 1, s/2 + 2, s/2 + 2) with s = 4 + 2ℓ. Precisely, if we denote by

ψBR
s ≡ ψBR

s (σ) the value of the ψs functional corresponding to the member of the scale

family of the distribution Beta(−1, 1, s/2 + 2, s/2 + 2) with standard deviation σ, then

condition (6) becomes |ψ4+2ℓ| ≥ |ψBR
4+2ℓ(σf )| for all ℓ = 1, 2, . . . , ℓ̄, which is fulfilled by every

density f (cf. Terrell, 1990, Theorem 1). Besides, as in the case of the normal reference

distribution, explicit formulas for ψBR
s for even s are easy to obtain. In fact,

ψBR
s =

(−1)s/2(s!)2(s+ 1)(s+ 3)

2s((s/2)!)2(s+ 5)(s+3)/2σs+1
,

where σ is the scale parameter. Some preliminary simulations were also conducted to

analyze the behavior of the proposed plug-in bandwidth selector for the beta scale rule but

no significant practical improvements over the normal scale rule were observed.

3 Data-based choice of the number of stages

The natural question which arises from the previous considerations is: how should we

choose the number of pilot stages ℓ in practice? If we fix a minimum and a maximum

number of pilot stages L and L, say, choosing a stage ℓ among the set of possible pilot

stages L = {L,L + 1, . . . ,L} is naturally equivalent to selecting one of the bandwidths

ĥPI,ℓ = c1ψ̂
−1/5
4,ℓ n−1/5,

for ℓ ∈ L . As discussed in the previous section, for densities such as those in group 2,

the plug-in method may improve considerably if we allow for a higher number of stages
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than the usual advice ℓ = 2. However, choosing a larger fixed number of pilot stages

will lead to undersmoothing especially for group 1 densities, as explained by Theorem 2.

This is an unattractive feature because, as is well known, the kernel density estimator is

penalized much more by excessively small rather than by excessively large bandwidths. An

alternative approach for choosing ℓ is described in this section. This approach enables us to

obtain a bandwidth selector that could deal with a higher number of pilot stages without

being strongly affected by undersmoothing.

Following Hall and Marron (1988) who used cross-validation as a method for choosing

the kernel order for kernel density estimators, we propose here a similar technique for the

practical choice of the number of pilot stages to be used in the plug-in bandwidth selec-

tor. The least-squares cross-validation criterion proposed by Rudemo (1982) and Bowman

(1984), is given by

CV(h) =
R(K)

nh
+

1

n(n− 1)

∑

i 6=j

(n−1
n
Kh ∗Kh − 2Kh)(Xi −Xj),

where ∗ denotes the convolution product. For a fixed h > 0, CV(h) is an unbiased estimator

of MISE(h)−R(f), and the cross-validation bandwidth selector is given by the value ĥCV

of h > 0 that minimizes CV(h). See Hall (1983), Stone (1984), Hall and Marron (1987b)

and Park and Marron (1990) for some asymptotic properties of ĥCV.

Using the previous criterion, our proposal is to take for the number of pilot stages the

value ℓ̂ = ℓ̂(L,L;X1, . . . , Xn) defined by

ℓ̂ = argminℓ∈LCV(ĥPI,ℓ). (7)

This method for choosing the number of pilot stages leads to the data-based bandwidth

ĥPI,ℓ̂, that can be seen as a hybrid between cross-validation and direct plug-in bandwidths.

Next we show that ĥPI,ℓ̂ inherits the asymptotic rates of convergence of the worst per-

forming bandwidth of the set {ĥPI,ℓ}ℓ∈L . This is established in the next result as a direct

consequence of Theorems 1 and 2. Although it is stated for the previously introduced

data-dependent choice of ℓ, it is also valid for any other (measurable) rule ℓ̂ for choosing ℓ

taking values in L . Note that this result justifies the recommendation of using L = 2 in

(7). The role of L will be discussed later in detail.

Theorem 3. Under the conditions of Theorem 1, if f has bounded derivatives up to order

4 + 2L we have ĥPI,ℓ̂/h0 − 1 = OP (n
−α) with α = 2/7 for L = 1 and α = 5/14 for L ≥ 2.

Moreover, if L ≥ 2 and condition (6) is fulfilled with ℓ̄ = L, then n5/14(ĥPI,ℓ̂/h0 − 1)
d−→

N(0, σ2
PI), where σ

2
PI is given in Theorem 1.
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Remark 2. The order of convergence OP (n
−5/14) obtained in Theorem 3 is also shared by

the two-stages direct plug-in method (see Theorem 1), by the two-stage solve-the-equation

bandwidth selector method proposed by Sheather and Jones (1991) and by the improved

Sheather and Jones method recently introduced by Liao, Wu and Lin (2010). However,

we improve on the CV order of convergence OP (n
−1/10) (see Hall and Marron, 1987b) by

choosing h from a set of well-behaved plug-in bandwidths (instead of the whole h > 0

range). Therefore, it is expected that ĥPI,ℓ̂ presents less sample variability than the CV

bandwidth.

4 Finite sample behavior of the proposed method

In order to gain some insight into the finite sample behavior of the bandwidth ĥPI,ℓ̂ as

a function of L for ℓ̂ given by (7), we consider one density from each one of the groups

described in Section 2: we take density #1 from group 1 and density #15 from group

2. For each one of these densities, we compare in Figure 2 the empirical distributions

of ISE(ĥPI,ℓ̂) for different values of L based on 500 simulated samples of size n = 400.

We take L = 5, 10, 20, 40. Moreover, aiming to illustrate the usefulness of the proposed

cross-validation based procedure for selecting the number of pilot stages in relation to a

fixed based approach, the empirical distributions of ISE(ĥPI,ℓ), for ℓ = 5, 10, 20, 40, are

also shown. For comparative purposes we also include in the figure the ISE distributions

of the standard two-stage direct plug-in bandwidth ĥPI,2 proposed by Sheather and Jones

(1991) (labeled SJdpi) and the cross-validation bandwidth ĥCV (labeled CV). We adopt the

previous recommendation of using L = 2 and we take for K the standard normal density.

The boxplots show that a smaller value for L is recommended for densities from group

1 whereas a larger value for L is most suitable for densities from group 2. This behavior,

which is explained in large part by Theorem 2, is in accordance with the conclusions of

Section 2. For both densities we see that the best results are observed when L is close to

the EISE-optimal number of stages given in Table 1. However, ĥPI,ℓ̂ is quite robust against

the choice of L whenever L is larger, but not excessively larger, than the EISE-optimal

number of stages. This last property, that is not shared by ĥPI,ℓ, shows the usefulness of

the proposed data-based method for choosing ℓ. In order to find a compromise between

these two situations, in view of Table 1 we decided to take L = 10. By choosing such an

intermediate value for L we expect that the new data-based bandwidth might present a

good overall performance for a wide range of density features. This is studied in the next

section.
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Figure 2: Distribution of ISE(ĥPI,ℓ) as a function of ℓ and of ISE(ĥPI,ℓ̂) as a function of L

(n = 400).

5 Simulation study

We performed a simulation study to compare the new procedure based on ĥPI,ℓ̂ with L = 2

and L = 10 (labeled CT) with some of the most successful bandwidth selection methods

in the literature, namely the two-stage direct plug-in method and the two-stage solve-the-

equation plug-in method proposed by Sheather and Jones (1991) (labeled SJste and SJdpi,

respectively) and the classical least-squares cross-validation method (labeled CV). These

methods have been shown to provide quite reasonable results in practice; see Cao, Cuevas

and González-Manteiga (1994) or Jones et al. (1996), and references therein. A recently

proposed solve-the-equation plug-in type method by Liao et al. (2010) (labeled LWL) that

has revealed a promising behavior was also included in the study. In the implementation

of CT, SJdpi and SJste the normal density was used as the reference distribution and we

have taken the estimator proposed by Silverman (1986, p. 47) as the scale estimator. See

Wand and Jones (1995, p. 71–75) for the implementation of the Sheather and Jones (1991)

methods.

We use as test densities the same 15 normal mixture densities that we referred to in

Section 2. Based on 500 samples of sizes n = 100, n = 400 and n = 800, from each test

density in the study we plot in Figures 3, 4 and 5 the boxplots for the distributions of ISEs

corresponding to each of the five bandwidth selection methods.

From the figures we see that the SJdpi, SJste and LWL methods are the best of the

considered methods for the densities of group 1. However, for some of the densities of group

2 the SJ methods present a disappointing performance, especially the SJdpi method. The
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Figure 3: ISE distribution for the bandwidth selectors methods SJdpi, SJste, LWL, CT and

CV (n = 100).
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Figure 4: ISE distribution for the bandwidth selectors methods SJdpi, SJste, LWL, CT and

CV (n = 400).
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Figure 5: ISE distribution for the bandwidth selectors methods SJdpi, SJste, LWL, CT and

CV (n = 800).
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strong dependence of the SJdpi method on the normal reference distribution explains its

relatively weak performance for the densities of group 2. The methods SJste and LWL,

especially the latter one, are shown to be much more robust against the use of the normal

density as reference distribution.

The new CT procedure presents a good overall performance for a wide range of density

features: it is slightly more variable than the considered plug-in methods for densities of

group 1, but not so variable as cross-validation, and it improves over both SJ methods

for densities of group 2. This robust behavior, which is shared with the LWL method,

is relevant for real data situations, where there is usually little prior information on the

underlying density shape. This indicates that the new CT procedure should produce reliable

bandwidths for most practical scenarios.

6 Proofs

We first obtain a non-asymptotic result that describes the behavior of the multistage plug-

in bandwidths ĥPI,ℓ as a function of ℓ. Recall that the standard Gaussian density is used

as the kernel for the estimator (3).

Lemma 1. If for fixed r ∈ {0, 2, . . . } and ℓ ∈ {0, 1, . . .} the sample X = {X1, . . . , Xn} is

such that |ψ̂r+2ℓ,1| ≥ |ψ̂NR
r+2ℓ| then |ψ̂r,ℓ+1| ≥ |ψ̂r,ℓ|. Therefore, if X is such that |ψ̂4+2ℓ,1| ≥

|ψ̂NR
4+2ℓ|, for all ℓ = 0, 1, . . . , ℓ̄, then ĥPI,ℓ̄ ≤ ĥPI,ℓ̄−1 ≤ · · · ≤ ĥPI,2 ≤ ĥPI,1 ≤ ĥPI,0.

Proof: For r = 0, 2, . . . , denote

ϕr(t) =

(

r!

2(r−1)/2(r/2)!
√
π n t

)1/(r+3)

, t > 0,

so that we can write g0,r = ϕr(|ψr+2|) for the AMSE-optimal bandwidth of the kernel

estimator (3). The ℓ-stage plug-in estimator ψ̂r,ℓ of ψr which involves the estimation of the

ℓ density functionals ψr+2(ℓ−1), ψr+2(ℓ−2), . . . , ψr, can be written in a recursive way in terms

of the i-stage plug-in estimators ψ̂r+2i,ℓ−i of ψr+2i, for i = 1, . . . , ℓ− 1:

ψ̂r,ℓ = ψ̂r(ϕr(|ψ̂r+2,ℓ−1|)),
ψ̂r+2,ℓ−1 = ψ̂r+2(ϕr+2(|ψ̂r+4,ℓ−2|)),

...

ψ̂r+2(ℓ−2),2 = ψ̂r+2(ℓ−2)(ϕr+2(ℓ−2)(|ψ̂r+2(ℓ−1),1|)),
ψ̂r+2(ℓ−1),1 = ψ̂r+2(ℓ−1)(ϕr+2(ℓ−1)(|ψ̂NR

r+2ℓ|)).
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Therefore,

|ψ̂r,ℓ| = Ψr(Ψr+2(. . . (Ψr+2(ℓ−1)(|ψ̂NR
r+2ℓ|))))

and also

|ψ̂r,ℓ+1| = Ψr(Ψr+2(. . . (Ψr+2(ℓ−1)(|ψ̂r+2ℓ,1|)))),
where Ψs = |ψ̂s|◦ϕs, for s = 0, 2, . . . , is a function depending on the sample X . Since X is

such that |ψ̂r+2ℓ,1| ≥ |ψ̂NR
r+2ℓ|, and ϕs is a strictly decreasing function, in order to conclude it

is enough to prove that g → |ψ̂s|(g) is a decreasing function. Using the positive-definiteness

of (−1)s/2φ(s) we get |ψ̂s|(g) = (−1)s/2ψ̂s(g) for all g > 0, and then

d|ψ̂s|
d g

(g) = − 1

n2gs+2

n
∑

i,j=1

W

(

Xi −Xj

g

)

≤ 0,

for all g > 0 since W (t) = (−1)s/2((s + 1)φ(s)(t) + tφ(s+1)(t)) is also a positive-definite

function on the real line, as it is the Fourier transform of x→ xs+2φ(x).
✷

Proof of Theorem 2: Taking into account that ψ̂4+2ℓ,1 = ψ4+2ℓ(1 + oP (1)) (see Tenreiro,

2003) and ψ̂NR
r+2ℓ = ψNR

r+2ℓ(σf )(1 + oP (1)), Theorem 2 follows easily from Lemma 1.

✷

Proof of Theorem 3: Let us denote ξℓ̂ = ĥPI,ℓ̂/h0 − 1, ξL = ĥPI,L/h0 − 1 and ξL =

ĥPI,L/h0 − 1. For L ≥ 1, the stated probability orders of convergence follow easily from

Theorem 1 and the inequality P (nα|ξℓ̂| > M) ≤ P (nα|ξL| > M) + P (nα|ξL| > M), which

is valid for all α > 0 and M > 0. Writing ΩL = {ĥPI,L ≤ ĥPI,L}, by Theorem 2 we

have P (ΩL) → 1, as n goes to infinity. Therefore, the stated asymptotic normality follows

from Theorem 1 since ξL ≤ ξℓ̂ ≤ ξL for a sample in ΩL, and n
5/14ξL and n5/14ξL are both

asymptotically normal N(0, σ2
PI), whenever L ≥ 2.

✷
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