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Abstract

Since the late eighties several methods have been considered in the literature to re-

duce the sample variability of the least-squares cross-validation bandwidth selector

for kernel density estimation. In this paper a weighted version of this classical method

is proposed and its asymptotic and finite sample behaviour is studied. The simulation

results attest that the weighted cross-validation bandwidth performs quite well pre-

senting a better finite sample performance than the standard cross-validation method

for ”easy-to-estimate” densities, and retaining the good finite sample performance of

the standard cross-validation method for “hard-to-estimate” ones.
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1 Introduction

Let X1, . . . , Xn be independent random variables from an absolutely continuous probability

distribution with unknown density f on R, and let

fn(x) =
1

n

n
∑

i=1

Kh(x−Xi),

be the Parzen-Rosenblatt estimator of f (Rosenblatt, 1956, Parzen, 1962) based on kernel

K and bandwidth h, where K is an integrable function with
∫

K(u)du = 1, h = hn is

a sequence of strictly positive real numbers converging to zero as n tends to infinity, and

αh(·) = α(·/h)/h, for an arbitrary real function α (see Devroye and Györfi, 1985, Silverman,

1986, Bosq and Lecoutre, 1987, Wand and Jones, 1995, Simonoff, 1996, and Tsybakov, 2009,

for general reviews on density estimation).

The bandwidth controls the smoothness of the resulting curve estimate and its choice is

a crucial step in estimating f . Due to its relevancy, this is one of the mostly studied topics

in kernel density estimation and several approaches have been proposed for selecting h.

One of such approaches is the now classical least-squares cross-validation method proposed

by Rudemo (1982) and Bowman (1984). The cross-validation bandwidth is defined as

ĥCV = argmin
h>0

CV(h),

where the least-squares cross-validation criterion function is given by

CV(h) =
R(K)

nh
+

1

n(n− 1)

∑

1≤i 6=j≤n

Lh(Xi −Xj),

with L = (1−n−1)K∗K̄−2K, where ∗ denotes the convolution product, ᾱ(u) = α(−u) and
R(α) =

∫

α(x)2dx, whenever α is square integrable. For each h > 0, CV(h) is a minimum

variance unbiased estimator of MISE(f ;n, h)− R(f) (see Serfling, 1980, p. 176) where

MISE(f ;n, h) = E(ISE(f ;n, h)) = E

(
∫

{fn(x)− f(x)}2dx
)

is the mean integrated square error of the kernel density estimator fn. Denoting by hMISE

the exact optimal bandwidth in the sense that

hMISE = argmin
h>0

MISE(f ;n, h)

(see Chacón et al., 2007, for the existence and asymptotic behaviour of hMISE), it is well

known that under some regularity and moment conditions on K and f we have

ĥCV

hMISE

a.s.−→ 1,
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and also

n1/10

(

ĥCV

hMISE
− 1

)

d−→ N
(

0, σ2
CV(f ;K)

)

,

where

σ2
CV(f ;K) =

2R(ρK) θ(f)

25[R(K)9µ2(K)2]1/5
, (1)

with ρK(x) = x(K ∗ K̄)′(x)− 2x(Ks)′(x), where αs is the symmetrisation of α defined by

αs = (α + ᾱ)/2, θ(f) = R(f)R(f ′′)−1/5 and µk(α) =
∫

xkα(x)dx denotes the k-th moment

of α whenever |µk|(α) =
∫

|xkα(x)|dx is finite (see Hall, 1983, Stone, 1984, Nolan and

Pollard, 1987, Hall and Marron, 1987, and Park and Marron, 1990; all these authors take

for K a symmetric kernel in which case Ks = K).

Despite the inferior asymptotic performance presented by the cross-validation band-

width in comparison with some other bandwidth selectors ĥ = ĥ(X1, . . . , Xn), that achieve

both optimal root n order of convergence and optimal asymptotic variance for the relative

error ĥ/hMISE − 1 (see Hall and Marron, 1991, Hall et al., 1991, and Fan and Marron,

1992), it is well known that the cross-validation bandwidth presents a very good finite

sample behaviour for “hard-to-estimate” densities, that is, densities with distributional

characteristics such as strong asymmetry or multimodality usually leading to large values

of the density functional R(f ′′) and therefore small values of the density functional θ(f)

(see the examples discussed in Loader, 1999). However, the cross-validation bandwidth

also presents a large sample variability for “easy-to-estimate” densities. In this latter case

the cross-validation criterion quite often selects too small a bandwidths leading to under-

smoothing. This is an unattractive feature of ĥCV because the kernel density estimator is

penalised much more by excessively small rather than by excessively large bandwidths (see

Simonoff, 1996, p. 76, and references therein).

Several alternative methods have been considered in the literature in order to reduce

the sample variability of the cross-validation bandwidth. These include the biased cross-

validation method proposed by Scott and Terrel (1987), the smoothed cross-validation

method of Hall et al. (1992) and its variants, including bootstrap bandwidth selection,

and the direct plug-in method whose idea dates back to the works of Woodroofe (1970)

and Nadaraya (1974). Reviews of all these methods can be found in Cao et al. (1994),

Chiu (1996) and Chacón et al. (2008). In all these attempts the classical least-squares

cross-validation function is replaced by new criterion functions that are better estimators

of the entire MISE function, or an asymptotic approximation of it, than the least-squares

cross-validation function is as an estimator of MISE(h) − R(f). More recently, new least-

squares cross-validation based procedures have appeared in the literature such as those

proposed by Hall and Robinson (2009) (bootstrap aggregation), Mart́ınez-Miranda et al.
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(2009) (one-sided cross-validation) and Savchuk et al. (2010) (indirect cross-validation).

An alternative approach that can be seen as a hybrid between cross-validation and direct

plug-in bandwidths is considered in Chacón and Tenreiro (2013). For a recent simulation

study that includes some of the previous bandwidth selectors see Heidenreich et al. (2013).

Although the generality of these methods perform quite well for “easy-to-estimate”

densities improving the finite-sample performance of the cross-validation method, they

occasionally also present a poor behaviour for “hard-to-estimate” densities being clearly

outperformed by the classical cross-validation method. This is an undesirable feature in

particular when no information about the underlying density is available.

A simple alternative to the standard cross-validation approach, that we call weighted

least-squares cross-validation, is considered in this paper. We propose to replace the cross-

validation function CV by a weighted version defined by

CVγ(h) =
R(K)

nh
+

γ

n(n− 1)

∑

1≤i 6=j≤n

Lh(Xi −Xj), (2)

where the weight γ = γn, with 0 < γ ≤ 1, is at this point a deterministic value that needs

to be chosen by the user, and we consider the weighted cross-validation bandwidth given

by

ĥγ = argmin
h>0

CVγ(h). (3)

To the best of our knowledge a similar idea was for the first time mentioned by Hart

(1985) for selecting the number of terms to be used in a Fourier series density estimator

(see also Tenreiro, 2011). The major motivation for considering the previous weighted

cross-validation function, is the fact that the function γ 7→ ĥγ − ĥCV is nonnegative and

nonincreasing for 0 < γ ≤ 1. Therefore, by choosing an appropriate weight value γ we

introduce a positive bias with respect to the standard cross-validation bandwidth through

which we expect to control undersmoothing. Besides, at least from an asymptotic point

of view, ĥγ presents a significant reduction in variability with respect to ĥCV as described

below. These two features, with an apparent predominance of the former, are on the basis

of the finite-sample properties of the weighted cross-validation bandwidth selector that we

describe in this work.

The rest of the paper is organised as follows. In Section 2, we begin by stating the

asymptotic equivalence, with probability one, between ĥγ and the bandwidth hγ that min-

imizes the function

h 7→ ECVγ(f ;n, h) := E(CVγ(h)), (4)



5

that is,

hγ = argmin
h>0

ECVγ(f ;n, h), (5)

and we conclude that the weighted cross-validation bandwidth is asymptotically equiva-

lent to the optimal bandwidth hMISE whenever γ converges to one as n tends to infin-

ity. Moreover, we present an asymptotic expansion in probability for the relative error

ĥγ/hMISE − 1 which is the main result of this paper. It enables us to quantify the above

mentioned bias and variance effects and gives us a quite complete understanding of the

role played by the weighted least-squares cross-validation function. In Section 3 we address

the automatic choice of γ, which leads us to define the automatic weighted cross-validation

bandwidth ĥWCV. In Section 4 we undertake a simulation study to analyse its finite sample

behaviour. The simulation results confirm that the weighted cross-validation bandwidth

performs quite well presenting a better finite sample performance than the cross-validation

method for “easy-to-estimate” densities, and retaining the good finite sample performance

of the standard cross-validation method for “hard-to-estimate” ones. This is an important

property that is not shared by the generality of the bandwidth selector methods proposed

in the literature. All the proofs and some auxiliar results are deferred to Section 5. The

simulations and plots in this paper were carried out using the R software (R Development

Core Team, 2014).

2 Asymptotic behaviour of ĥγ

Next we describe the asymptotic behaviour of the weighted least-squares cross-validation

bandwidth ĥγ given by (3). Taking into account that ĥγ = ĥCV whenever γ = 1, the results

presented in this section include specifically those obtained by authors such as Hall (1983),

Stone (1984), Hall and Marron (1987), Nolan and Pollard (1987) and Park and Marron

(1990).

Consider the following set of assumptions on f and K:

(D.1) f has continuous, bounded and integrable derivatives up to order 2.

(K.1) K is a continuous function on R such that K(u) → 0, as |u| → ∞, and

R(K) < 2K(0).

(K.2) K is a second order kernel, that is,

µ0(K) = 1, µ1(K) = 0, and µ2(K) 6= 0.
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(K.3) K is of bounded variation on R.

The previous assumptions on K are satisfied by the kernels usually considered in the

literature. In particular, the inequality R(K) < 2K(0) is fulfilled for nonnegative kernels

with K(0) = supu∈RK(u). This set of assumptions is slightly different from the set of

assumptions of Hall and Marron (1987). In particular, no symmetry or compact support

conditions are imposed to K. This can be largely explained by the proof technique we

have employed which relies on the uniform almost sure limit theorems of Pollard (1986)

and Nolan and Pollard (1987). Finally, note that, by using the arguments of Stone (1984)

and Chacón et al. (2007), we can conclude that the minima of the functions h 7→ CVγ(h)

and h 7→ ECVγ(f ;n, h) given by (2) and (4), respectively, are actually taken on at some

h > 0 (the former with probability one) for

n >
1− γ

γ

R(K)

2K(0)− R(K)
.

Therefore, under the previous general conditions the sequences ĥγ and hγ given by (3) and

(5) are well defined for n large enough whenever the sequence of weights (γn) is such that

lim inf γ > 0.

We start by stating the asymptotic equivalence with probability one between ĥγ and

hMISE whenever the sequence of weights converges to one as n tends to infinity.

Theorem 1. Under assumptions (D.1), (K.1), (K.2) and (K.3), if γ is such that lim inf γ >

0, then
ĥγ
hγ

a.s.−→ 1.

Moreover, γ → 1, as n→ ∞, if and only if

ĥγ
hMISE

a.s.−→ 1.

Under some additional assumptions on f and K, we can establish the asymptotic nor-

mality of the weighted cross-validation bandwidth:

(D.2) f has continuous, bounded and integrable derivatives up to order 3.

(K.4) K has derivatives up to order 2 such that the functions x 7→ xiK(j)(x) are of

bounded variation on R and |µ6|(K(j)) <∞, for 0 ≤ i ≤ j and j = 0, 1, 2.

Our main result is as follows:
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Theorem 2. Under assumptions (D.2), (K.1), (K.2) and (K.4), if γ is such that lim inf γ >

0, then
ĥγ

hMISE
− 1 = (γ−1/5 − 1) + γ7/10n−1/10σCV(f ;K)Z + op(n

−1/10),

where Z is asymptotically normal N(0, 1) and σ2
CV(f ;K) is given by (1). Moreover, if

γ = 1 + o(n−1/10) we have

n1/10

(

ĥγ
hMISE

− 1

)

d−→ N
(

0, σ2
CV(f ;K)

)

.

Based on the previous asymptotic expansion we conclude that by taking a large, but not

too large weight γ, the weighted cross-validation bandwidth ĥγ introduces a small positive

bias in the exact optimal bandwidth estimation process but, at the same time, it reduces

the variability associated to the standard cross-validation bandwidth. As n increases γ

should vary in such a way that each of the components of the asymptotic mean square

error of ĥγ/hMISE − 1 becomes smaller. Therefore, we should take γ = γ̃ where γ̃ is defined

as the minimiser of the function γ 7→ (γ−1/5 − 1)2 + γ7/5n−1/5σ2
CV(f ;K). It is easy to see

that γ̃ = η̃5, where η̃ is the unique root of the equation

7

2
n−1/5σ2

CV(f ;K)η9 + η − 1 = 0. (6)

Moreover, γ̃ is a decreasing function of σ2
CV(f ;K) that converges to one as n tends to

infinity with

n1/5(γ̃ − 1) → −35

2
σ2
CV(f ;K).

Under the conditions of Theorem 2 we conclude that the ideal weighted cross-validation

bandwidth defined by

ĥIWCV := ĥγ̃ = argminh>0CVγ̃(h), (7)

is such that

n1/10

(

ĥIWCV

hMISE
− 1

)

d−→ N
(

0, σ2
CV(f ;K)

)

.

Thus, from an asymptotic point of view, no first-order differences exist between weighted

and standard least-squares cross-validation bandwidths as estimators of hMISE. However,

as we will see later, from a finite sample point of view considerable improvements can

be obtained by the weighted cross-validation bandwidth for “easy-to-estimate” densities.

Table 1 gives us a first indication in this direction. In this table we present the theoretical

weights γ̃ for some of the densities of the well known Marron and Wand (1992) set of

normal mixture densities, where we take for K the standard Gaussian density. For densities
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Density number

n #1 #2 #3 #8 #12 #15

25 0.624 0.642 0.818 0.720 0.897 0.894

50 0.646 0.664 0.835 0.741 0.908 0.905

100 0.669 0.686 0.850 0.761 0.918 0.915

200 0.690 0.708 0.865 0.780 0.927 0.925

400 0.712 0.729 0.878 0.799 0.935 0.933

σCV(f ;K) 0.339 0.320 0.175 0.250 0.119 0.122

Table 1: Values of γ̃ for some of the Marron and Wand’s normal mixture densities where

K is the standard Gaussian density.

with small values of σCV(f ;K), we see that, even for small sample sizes, γ̃ is close to

one, which implies that marked differences between weighted and standard cross-validation

bandwidths are not expected for such densities. This is in fact a desirable property because,

as mentioned before, the standard cross-validation method performs quite well for this class

of densities. For densities with large standard deviations σCV(f ;K), the weights γ̃ given

in Table 1 reveal that an improvement of the weighted cross-validation bandwidth over

the standard one may be expected in this case, especially for small and moderated sample

sizes. We shall return to this point later.

3 The automatic weighted cross-validation bandwidth

The exact evaluation of the optimal weight γ̃ defined in the previous section, and therefore,

also the evaluation of the ideal weighted cross-validation bandwidth given by (7), is not

possible in practice because the asymptotic variance σ2
CV(f ;K) given by (1) depends on

the unknown density function f throughout the density functional θ(f) = R(f)R(f ′′)−1/5.

Denoting by η̂ the unique root of the equation obtained from (6) by replacing in σ2
CV(f ;K)

the unknown parameter θ(f) by a strongly consistent estimator θ̂n (that is, θ̂n → θ(f) a.s.),

and taking γ̂ = η̂5, we shall consider the automatic weighted cross-validation bandwidth

defined by

ĥWCV := ĥγ̂ = argmin
h>0

CVγ̂(h),

that we will use as a surrogate for the ideal weighted cross-validation bandwidth ĥIWCV.

Next we describe the asymptotic behaviour of ĥWCV.

Theorem 3. Assume that the density function f is such that θ̂n = θ̂n(X1, . . . , Xn) is a
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strongly consistent estimator of θ(f). Under the assumptions of Theorem 1 we have

ĥWCV

hMISE

a.s.−→ 1.

Moreover, under the assumptions of Theorem 2 we have

n1/10

(

ĥWCV

hMISE

− 1

)

d−→ N
(

0, σ2
CV(f ;K)

)

.

Although the asymptotic behaviour of the automatic weighted cross-validation band-

width ĥγ̂ does not depend on the considered strongly consistent estimator θ̂n of θ(f) =

ψ0(f)ψ4(f)
−1/5, where for the convenience of notation we write ψr(f) = (−1)r/2R(f (r/2))

for an even positive integer r, it is natural to expect that its finite-sample performance

could depend on θ̂n. In this paper we consider the estimator of θ(f) defined by

θ̂n = ψ̃0ψ̃
−1/5
4 , (8)

where ψ̃r denotes the two-stage direct plug-in kernel estimator of ψr given by

ψ̃r = ψ̂r

(

ϕr

(
∣

∣

∣
ψ̂r+2

(

ϕr+2

(

|ψ̂NR
r+4|

))
∣

∣

∣

))

, (9)

where:

◦ ψ̂r(g) is the kernel estimator of ψr introduced by Jones and Sheather (1991) (see also

Hall and Marron, 1987a, and Wand and Jones, 1995, p. 67–70) defined by

ψ̂r(g) =
1

n2

n
∑

i,j=1

φ(r)
g (Xi −Xj),

where φ denotes the standard Gaussian density, g > 0 is the bandwidth and φ
(r)
g

represents the rth derivative of the function φg(x) = φ(x/g)/g, that is, φ
(r)
g (x) =

φ(r)(x/g)/gr+1;

◦ ϕr is the real valued function defined for t > 0 by

ϕr(t) =

(

r!

2(r−1)/2(r/2)!
√
π n t

)1/(r+3)

;

◦ ψ̂NR
r is a quick and simple estimator of the functional ψr based on the normal reference

distribution given by

ψ̂NR
r =

(−1)r/2r!

(2σ̂)r+1(r/2)!
√
π
,

where σ̂ is any scale estimator.
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See Wand and Jones (1995, p. 71–74) for the motivation of this type of multistage

kernel estimators and Tenreiro (2003) for their weak consistency and asymptotic normality.

Other strong consistency results for this class of kernel estimators can be found in Liebscher

(1998). For the sake of completeness we finish this section by presenting a set of sufficient

conditions for the strong consistency of the two-stage direct plug-in kernel estimator ψ̃r

defined by (9).

Theorem 4. If the density function f has continuous, bounded and integrable derivatives

up to order r + 2, and there exists σf > 0 such that σ̂ → σf a.s., then ψ̃r → ψr a.s.

Taking for σ̂ the scale estimator proposed by Silverman (1986, p. 47), that is, σ̂ =

min{s, IQR/1.34}, where s is the sample standard deviation and IQR the sample in-

terquartile range, the previous assumption on σ̂ is fulfilled whenever the density function

f has a finite second moment and the corresponding distribution function is not flat in a

right-neighbourhood of its first and third quartiles (see Serfling, 1980, p. 74–75). Therefore,

under these general assumptions we conclude that θ̂n = ψ̃0ψ̃
−1/5
4 is a strongly consistent

estimator of θ(f) whenever f has continuous, bounded and integrable derivatives up to

order 6.

4 Simulation study

We present in this section the results of a simulation study carried out to analyse the

finite sample behaviour of the automatic weighted cross-validation bandwidth (WCV).

Three other bandwidth selection methods are included in the study: the standard cross-

validation method (CV), the bootstrap aggregation or bagging method (BAGG) proposed

by Hall and Robinson (2009) and the one-sided cross-validation method (OSCV) considered

in Mart́ınez-Miranda et al. (2009) (see also Mammen et al., 2011). These latter methods

are meant to reduce the stochastic variability of the cross-validation bandwidth, which

explains their inclusion in our simulation study. In implementing all these bandwidths we

take forK the standard Gaussian density. For the WCV bandwidth we take for σ̂ the above

mentioned scale estimator proposed by Silverman (1986, p. 47), and in the implementation

of the BAGG method we follow the recommendations of Hall and Robinson (2009) by

considering the approach based on half-sample bagging ĥCV. As the considered kernel K

is symmetric, note that the implemented OSCV bandwidth agrees with the right-sided

cross-validation and do-validation bandwidths considered in Mammen et al. (2011). We

use as test densities the 15 normal mixtures densities of Marron and Wand (1992) that we

have refereed to in Section 2. All the simulations results are based on 500 samples of sizes

n = 25, 50, 100, 200 and n = 400, from each test density in the study.
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Figure 1: Average and standard deviation of the bandwidths produced by the bandwidth

selection methods IWCV, WCV and CV. The number of replications is 500.

We start by presenting in Figure 1 the average and the standard deviation of the band-

widths produced by the ideal (IWCV) and automatic weighted cross-validation bandwidth

selectors for densities #2 and #3. For comparative proposes we also present the average

and standard deviation of the bandwidths selected by the standard cross-validation method.

In view of this figure we see that ĥWCV is a better surrogate for the ideal bandwidth ĥIWCV

for the “easy-to-estimate” density #2, than for the “hard-to-estimate” density #3. We

know that the two-stage direct plug-in kernel estimators ψ̃r defined by (9) can perform

poorly when the true underlying distribution deviates severely from normality because

of their use of the normal reference density, which may explain the observed numerical

results. In this particular case, the overestimation of θ(f) produced by the considered

kernel estimator (8), leads to systematic smaller estimated weights γ̂ than ideal weights

γ̃, which explains the fact that the bandwidths produced by the automatic WCV method

being larger that those generated by its ideal version. In both cases the simulation re-

sults do not reveal any significant bandwidth variability reduction in comparison to the
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Figure 2: Empirical L2–norm of ISE(f ;n, ĥ) associated to the bandwidth selector methods

WCV, CV, OSCV and BAGG, for some “easy-to-estimate” densities. The number of

replications is 500.

standard cross-validation bandwidth as we could expect from the asymptotic theory pre-

sented in Theorem 2. However, they clearly show the positive systematic bias introduced

by the weighted cross-validation bandwidth with respect to the standard cross-validation

bandwidth selector. As we will see below, this effect seems to dominate the finite sample

behaviour of the weighted cross-validation bandwidth ĥWCV.

For each one of the bandwidths WCV, CV, OSCV and BAGG, we describe in Figures 2

and 3 the behaviour of the following measure of the stochastic performance of the bandwidth

selector ĥ:

L2–norm of ISE(f ;n, ĥ) =

√

Var(ISE(f ;n, ĥ)) + E2(ISE(f ;n, ĥ)).

In Figure 2 we include some “easy-to-estimate” Marron and Wand’s densities such as

densities #2,#6,#8 and #9, whereas in Figure 3 some “hard-to-estimate” densities, such

as densities #3,#4,#12 and #15, are considered.

As we can see from the graphics the OSCV and BAGG bandwidths present the best
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Figure 3: Empirical L2–norm of ISE(f ;n, ĥ) associated to the bandwidth selector methods

WCV, CV, OSCV and BAGG, for some “hard-to-estimate” densities. The number of

replications is 500.

results for “easy-to-estimate” densities whereas the WCV and CV bandwidth selectors are

the best methods for “hard-to-estimate” densities. With the exception of the multimodal

densities #12 and #15 where the OSCV method shows a poor behaviour, the different

bandwidths perform similarly when the sample size is large. Although inferior to OSCV

and BAGG bandwidths for “easy-to-estimate” densities, the WCV bandwidth presents a

better finite sample performance than the CV method for such densities, in particular

for small sample sizes. Moreover, it retains the good finite sample performance of the

CV method for “hard-to-estimate” densities. Based on this evidence, we expect that the

new data-based bandwidth might present a good overall performance for a wide range

of density features, which is an important property in particular when no information

about the underlying density is available or when a complex data structure is suspected.

Note also that this relevant attribute is not shared by the generality of the bandwidth

selector methods proposed in the literature, which are usually high performing for “easy-



14

to-estimate” densities, but, at the same time, they may be quite inefficient for densities

presenting hard distributional features as strong asymmetry or multimodality.

5 Proofs

In this section we prove the asymptotic results stated in Sections 2 and 3. Before that several

preliminar and auxiliar results are needed. We start by studying the limit behaviour of

the deterministic sequence hγ , where we assume that the sequence of weights (γn) is such

that lim inf γ > 0. This condition, that we assumed valid from now on, assures that

the sequences ĥγ and hγ are well defined for n large enough whenever the kernel K is a

continuous function that vanish at infinity with R(K) < 2K(0), and f is a square integrable

density (see the arguments of Stone, 1984, and Chacón et al., 2007). Although the results

presented in this paper can be extended to continuous kernels on R\{0} with finite one-

sided limits K(0−) and K(0+), we always assume that K is a continuous function on R.

Taking into account that hγ = hMISE for γ = 1, the next two results include the

corresponding ones obtained by Chacón (2004) and Chacón et al. (2007). The technique

used in their proofs was borrowed from these two references. For notational ease we write

ECVγ(n, h) or ECVγ(h) instead of ECVγ(f ;n, h) := E(CVγ(h)). As the functions CVγ(h)

and CV(h) are related by

CVγ(h) = (1− γ)
R(K)

nh
+ γCV(h), (10)

the function ECVγ(h) can be expressed in terms of MISE(h) by

ECVγ(h) = (1− γ)
R(K)

nh
+ γ(MISE(h)−R(f)). (11)

Proposition 1. Assume that f is square integrable and let K be a kernel satisfying condi-

tions (K.1) and µ2(K) 6= 0. We have

limhγ = 0 and limnhγ = ∞.

Proof: We start by proving that γ 7→ hγ is a non-increasing function of γ ∈ ]0, 1]. For

that we use the fact that hγ minimises h 7→ ECVγ(h) to first write that γ2ECVγ1(hγ1) +

γ1ECVγ2(hγ2) ≤ γ2ECVγ1(hγ2) + γ1ECVγ2(hγ1), for every γ1, γ2 ∈ ]0, 1]. As the previous

inequality is equivalent to (hγ1 − hγ2)(γ2 − γ1) ≥ 0, the non-increasing monotonicity of

γ 7→ hγ is established. From this property we deduce that hMISE ≤ hγ and therefore

lim inf nhMISE ≤ lim inf nhγ . This shows that limnhγ = ∞ because limnhMISE = ∞ (see
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Chacón et al., 2007, Theorem 2, p. 291). Next, taking into account (11) and the fact that

ECVγ(hγ) ≤ ECVγ(hMISE), we deduce that

0 ≤ (1− γ)
R(K)

nhγ
+ γMISE(hγ) ≤ (1− γ)

R(K)

nhMISE
+ γMISE(hMISE),

where limMISE(hMISE) = 0 (see Chacón et al., 2007, proof of Theorem 2, p. 297). There-

fore, we have lim γMISE(hγ) = 0, and also limMISE(hγ) = 0 as lim inf γ > 0. Finally,

using the fact that K is a kernel whose Fourier transform is not identically equal to 1 in a

neighbourhood of the origin, we conclude that limhγ = 0 (see Chacón et al., 2007, proof

of Theorem 3, p. 299). �

Proposition 2. Under assumptions (D.1), (K.1) and (K.2) we have:

a) 0 < lim inf n1/5hγ ≤ lim sup n1/5hγ <∞.

b) hγ/h
∗
γ → 1, where h∗γ = γ−1/5c0(f)n

−1/5 with c0(f) = R(K)1/5µ2(K)−2/5R(f ′′)−1/5.

Additionally, if f satisfies assumption (D.2) and |µ4|(K) <∞, we have:

c) hγ/h
∗
γ − 1 = O

(

n−2/5
)

.

Proof: a) For h→ 0 consider the asymptotic expansion

MISE(h) =
R(K)

nh
+
h4

4
µ2(K)2R(f ′′) +O(n−1) + o(h4) (12)

(see Bosq and Lecoutre, 1987, p. 80–81). Using (11) we get, as n→ ∞,

n4/5
(

ECVγ(h
∗
γ) + γR(f)

)

= (1− γ)
R(K)

n1/5h∗γ
+ γn4/5MISE(h∗γ)

=
R(K)

n1/5h∗γ
+ γ

(n1/5h∗γ)
4

4
µ2(K)2R(f ′′) + o(1)

=
R(K)

γ−1/5c0(f)
+ γ

(γ−1/5c0(f))
4

4
µ2(K)2R(f ′′) + o(1). (13)

Therefore,

lim sup n4/5
(

ECVγ(h
∗
γ) + γR(f)

)

≤ R(K)4/5µ2(K)2/5R(f ′′)1/5 <∞. (14)

On the other hand, from Proposition 1 we have

n4/5
(

ECVγ(hγ) + γR(f)
)

=
R(K)

n1/5hγ
+ γ

(n1/5hγ)
4

4
µ2(K)2R(f ′′) +O(n−1/5) + o((n1/5hγ)

4). (15)
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Together with (14) this enables us to get the stated order of convergence for hγ.

b) In order to prove that γ1/5n1/5hγ converge to c0(f), let γ
1/5
nk n

1/5
k hγ(nk) → λ ∈ ]0,∞[

be a convergent subsequence of γ1/5n1/5hγ . From (13) and (15) we get

R(K)

λ
+
λ4

4
µ2(K)2R(f ′′) ≤ R(K)

c0(f)
+
c0(f)

4

4
µ2(K)2R(f ′′),

which implies that λ = c0(f). This concludes the proof of statement b).

c) Taking into account that the function h 7→ MISE(h) is twice differentiable for h > 0

(see Hall and Marron, 1987, p. 569), the same is true for h 7→ ECVγ(h), which enables us

to use the Taylor’s formula to get the expansion

0 = ECV′
γ(hγ) = ECV′

γ(h
∗
γ) + ECV′′

γ(h̃γ)(hγ − h∗γ),

with h̃γ between hγ and h∗γ. Therefore

hγ
h∗γ

− 1 = −
(

ECV′′
γ(h̃γ)h

∗
γ

)−1

ECV′
γ(h

∗
γ),

where

ECV′
γ(h

∗
γ) = −(1− γ)

R(K)

nh∗γ
2 + γMISE′(h∗γ)

and

n2/5ECV′′
γ(h̃γ) = (1− γ)

2R(K)

(n1/5h̃γ)3
+ γn2/5MISE′′(h̃γ).

In order to conclude it suffices to use part b) and the following asymptotic expansions

that can be derived by standard methods (see Hall and Marron, 1987, and Hall et al., 1991):

MISE′(h) = −R(K)

nh2
+ h3µ2(K)2R(f ′′) +O(n−1h) +O(h5), (16)

and

MISE′′(h) =
2R(K)

nh3
+ 3h2µ2(K)2R(f ′′) +O(n−1) +O(h4). �

Proof of Theorem 1: Taking into account that f is a bounded density function with

a square integrable second order derivative, and K is a second order kernel of bounded

variation on R, we first note that by using the uniform almost sure limit theorems of

Pollard (1986) and Nolan and Pollard (1987) we have

sup
h>0

∣

∣

∣

∣

CV(h) +R(f)− Zn

MISE(h)
− 1

∣

∣

∣

∣

a.s.−→ 0, (17)
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where

Zn =
2

n

n
∑

i=1

(

f(Xi)− Ef(Xi)
)

(see Pollard, 1986, p. 16–19, and Nolan and Pollard, 1987, p. 794–795). Hence, from (10),

(11) and the fact that ECVγ(h) + γR(f) ≥ γMISE(h) > 0 we get

sup
h>0

∣

∣

∣

∣

CVγ(h) + γR(f)− γZn

ECVγ(h) + γR(f)
− 1

∣

∣

∣

∣

a.s.−→ 0.

Now by the arguments of Nolan and Pollard (1987, p. 794) we conclude that

ECVγ(ĥγ) + γR(f)

ECVγ(hγ) + γR(f)

a.s.−→ 1,

which, together with (11) and (12), enables us to deduce the stated almost sure asymptotic

equivalence between ĥγ and hγ . Finally, using Proposition 2.b) and the equality

ĥγ
hMISE

=
ĥγ
hγ

hγ
h∗γ

h∗γ
hMISE

=
ĥγ
hγ

hγ
h∗γ

h∗1
h1
γ−1/5,

we deduce that γ → 1 if and only if ĥγ/hMISE
a.s.−→ 1. �

The following lemmas are crucial for the proof of Theorem 2 allowing us to establish

the asymptotic normality of the relative error ĥγ/hγ − 1. Consider the U-statistic

Uϕ(h) =
2

n(n− 1)

∑

1≤i<j≤n

{ϕh(Xi −Xj)− E(ϕh(Xi −Xj))},

where h = hn is a non-random sequence of positive numbers converging to zero as n tends

to infinity, and ϕ is a symmetric real-valued function.

The next lemma presents useful although standard expansions for the expectation

E(ϕh(X1 −X2)), for a general, non necessarily symmetric function ϕ.

Lemma 1. Assume that f has bounded and continuous derivatives up to order s ∈ N and

let ϕ be a (non necessarily symmetric) real-valued function. The following expansions hold:

a) If |µ2s−2|(ϕ) <∞ we have

E(ϕh(X1 −X2)) =

2s−3
∑

ℓ=0

hℓ

ℓ!
µℓ(ϕ)(f̄ ∗ f)(ℓ)(0) +O(h2s−2).

b) If |µ2s−1|(ϕ) <∞ we have

E(ϕh(X1 −X2)) =

2s−2
∑

ℓ=0

hℓ

ℓ!
µℓ(ϕ)(f̄ ∗ f)(ℓ)(0) +O(h2s−1).
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c) If |µ2s|(ϕ) <∞ we have

E(ϕh(X1 −X2)) =

2s−1
∑

ℓ=0

hℓ

ℓ!
µℓ(ϕ)(f̄ ∗ f)(ℓ)(0) + h2s

(2s)!
µ2s(ϕ)R(f

(s))(1 + o(1)).

Next we describe the asymptotic variance and the asymptotic distribution of Uϕ(h),

when ϕ is a symmetric and square integrable function with vanishing moments up to order

k − 1 for some even integer k (see Lee, 1990, p. 12, Hall, 1984, and Tenreiro, 1997).

Lemma 2. Assume that f has bounded and continuous derivatives up to order s ∈ N0, and

let ϕ be a symmetric and square integrable function such that |µk|(ϕ) <∞ and µj(ϕ) = 0,

j = 0, 1, . . . , k − 1, for some even integer k ∈ {0, 2, 4, ...}. We have

Var(Uϕ(h)) = 2n−2h−1R(ϕ)R(f) +O(n−1h2(k∧s)) + o(n−2h−1).

Moreover, if h is such that nh2k+1 → 0, lim inf nδh > 0, for some 0 < δ < 2, and

lim sup nh2s+1 <∞, we have

nh1/2Uϕ(h)
d−→ N

(

0, 2R(ϕ)R(f)
)

.

The following lemma gives an uniform in h almost sure upper bound for Uϕ(h) that

relies on the uniform almost sure limit theorems of Pollard (1986) and Nolan and Pollard

(1987).

Lemma 3. Under the assumptions of Lemma 2, let ϕ be of bounded variation on R. If β

is a fixed natural number, then for all 0 < c1 < c2 <∞ we have

sup
c1n−1/(2β+1)≤h≤c2n−1/(2β+1)

|Uϕ(h)| = o
(

n−2(β∧s∧k)/(2β+1)
)

a.s.

Proof of Theorem 2: Consider the expansion

ĥγ
hMISE

− γ−1/5 =
hγ

γ−1/5hMISE

γ−1/5

(

ĥγ
hγ

− 1

)

+ γ−1/5

(

hγ
γ−1/5hMISE

− 1

)

,

where, taking into account Proposition 2.c), we have

hγ
γ−1/5hMISE

− 1 =
h∗1
h1

((

hγ
h∗γ

− 1

)

−
(

h1
h∗1

− 1

))

= O
(

n−2/5
)

.

Thus, Theorem 2 follows if we can prove that

γ−9/10n1/10

(

ĥγ
hγ

− 1

)

d−→ N
(

0, σ2
CV(f ;K)

)

,
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with σ2
CV(f ;K) given by (1). Because K is twice differentiable on R, we start by using

Taylor’s formula in order to write

−CV′
γ(hγ) = CV′

γ(ĥγ)− CV′
γ(hγ) = CV′′

γ(h̃γ)(ĥγ − hγ),

and also
ĥγ
hγ

− 1 = −
(

CV′′
γ(h̃γ)hγ

)−1

CV′
γ(hγ),

for some random variable h̃γ between ĥγ and hγ . Now consider the expansion

γ−9/10n1/10

(

ĥγ
hγ

− 1

)

= −
(

γ−2/5n3/5CV′′
γ(h̃γ)hγ

)−1 {

γ−3/10n7/10
(

CV′(hγ)− E(CV′(hγ))
)

+ n7/10E(CV′
γ(hγ))

}

.

The asymptotic behaviour of each one of the right-hand side terms will be described

in the following propositions. Together with the previous expansion, they enable us to

conclude the proof of Theorem 2.

Proposition 3. Under assumptions (D.1), (K.1) and (K.2), if K has a bounded derivative

and |µ5|(K(j)) <∞, for j = 0, 1, we have

γ−3/10n7/10 (CV′(hγ)− E(CV′(hγ)))
d−→ N(0, σ2),

where

σ2 = 2R(K)−3/5µ2(K)6/5R(ρK)R(f)R(f
′′)3/5,

and ρK(x) = x(K ∗ K̄)′(x)− 2x(Ks)′(x).

Proof: We have

CV′(h) = −R(K)

nh2
− 1

nh(n− 1)

∑

1≤i 6=j≤n

Ṁh(Xi −Xj)

+
1

n2h(n− 1)

∑

1≤i 6=j≤n

Ṅh(Xi −Xj), (18)

where M = K ∗ K̄ − 2K, N = K ∗ K̄, and α̇(x) = α(x) + xα′(x) for a differentiable real

valued function α. Thus

CV′(hγ)− E(CV′(hγ))

= − 2

nhγ(n− 1)

∑

1≤i<j≤n

{Ṁhγ (Xi −Xj)− E(Ṁhγ (Xi −Xj))}

+
2

n2hγ(n− 1)

∑

1≤i<j≤n

{Ṅhγ(Xi −Xj)− E(Ṅhγ (Xi −Xj))}

= − 1

hγ
UṀs(hγ) +

1

nhγ
UṄ(hγ), (19)
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where Ṁs and Ṅ are symmetric and square integrable functions.

Taking into account that µj(Ṅ) = 0, j = 0, 1, and µ2(Ṅ) = −4µ2(K) 6= 0 (notice

that, by using the integration by parts formula, we have µj(α
′) = −jµj−1(α), for every

differentiable and integrable function α with bounded derivative such that |µj|(α) < ∞
and |µj|(α′) <∞, with j ∈ N), by using Lemma 2 (with k = s = 2) and Proposition 2, we

get

1

nhγ
UṄ (hγ) = Op

(

1

nhγ

(

n−1h−1/2
γ + n−1/2h2γ

)

)

= Op(n
−17/10). (20)

On the other hand, we have µj(Ṁ
s) = 0, j = 0, 1, 2, 3, and µ4(Ṁ

s) = −24µ2(K)2 6= 0.

Therefore, by using Lemma 2 (with k = 4 and s = 2) and Proposition 2, we get

nh1/2γ UṀs(hγ)
d−→ N

(

0, 2R(Ṁs)R(f)
)

. (21)

Finally, taking into account (19), (20), (21) and Proposition 2 we get

γ−3/10n7/10(CV′(hγ)−E(CV′(hγ)))=− 1

(γ1/5n1/5hγ)3/2
nh1/2γ UṀs(hγ)+Op(n

−1),

where the last term is negligible and the first one is asymptotically normal with zero mean

and variance

2R(Ṁs)R(f)

c0(f)3
= 2R(K)−3/5µ2(K)6/5R(Ṁs)R(f)R(f ′′)3/5,

with

R(Ṁs) = R(Ms) +R(x(Ms)′) +

∫

2x(Ms)′(x)Ms(x)dx = R(x(Ms)′) = R(ρK). �

Proposition 4. Under assumptions (D.1), (K.1) and (K.2), if K has a bounded derivative

and |µ6|(K(j)) <∞, for j = 0, 1, we have

E(CV′
γ(hγ)) = O(n−4/5).

Proof: Using (18) and Lemma 1.a) and b), we have

E(CV′
γ(h)) = −(1− γ)

R(K)

nh2
+ γE(CV′(h))

= −R(K)

nh2
− γ

h
E(Ṁh(X1 −X2)) +

γ

nh
E(Ṅh(X1 −X2)),

where

E(Ṁh(X1 −X2)) =
h4

4!
µ4(Ṁ)R(f ′′) +O(h5) = −h4µ2(K)2R(f ′′) +O(h5),
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and

E(Ṅh(X1 −X2)) = O(h2),

whenever h converges to zero. Thus from Proposition 2 we get

E(CV′
γ(hγ)) = −R(K)

nh2γ
+ γh3γµ2(K)2R(f ′′) +O(n−4/5). (22)

On the other hand, from (11) and (16) we have

0 = MISE′
γ(hγ)=−(1 − γ)

R(K)

nh2γ
+ γMISE′(hγ) = −R(K)

nh2γ
+ γh3γµ2(K)2R(f ′′) +O(n−4/5).

Together with (22) this enables us to conclude the proof. �

Proposition 5. Under assumptions (D.2), (K.1), (K.2) and (K.4), we have

γ−2/5n3/5CV′′
γ(h̃γ)hγ = 5R(K)3/5µ2(K)4/5R(f ′′)2/5 + o(1) a.s. (23)

Proof: We have

CV′′(h) =
2R(K)

nh3
+

2

nh2(n− 1)

∑

1≤i<j≤n

M̈h(Xi −Xj)

− 2

n2h2(n− 1)

∑

1≤i<j≤n

N̈h(Xi −Xj),

where α̈(x) = 2α(x) + 4xα′(x) + x2α′′(x), for a twice differentiable function α, and M̈

and N̈ are square integrable with |µ4|(M̈) < ∞ and |µ2|(N̈) < ∞, where µj(M̈) = 0 for

j = 0, 1, 2, 3, µ4(M̈) = 72µ2(K)2 6= 0, µj(N̈) = 0 for j = 0, 1, and µ2(N̈) = 4µ2(K) 6= 0.

Thus, by using Lemma 1.a) and c) we have

E(CV′′
γ(h)) = (1− γ)

2R(K)

nh3
+ γE(CV′′(h))

=
2R(K)

nh3
+

γ

h2
E(M̈h(X1 −X2))−

γ

nh2
E(N̈h(X1 −X2))

=
2R(K)

nh3
+

γ

h2
h4

4!
µ4(M̈)R(f ′′)(1 + o(1)) +

γ

nh2
O(h2)

=
2R(K)

nh3
+ 3γh2µ2(K)2R(f ′′) +O(n−1) + o(h2).

Using Proposition 2 and taking h = h̃γ we get (recall that h̃γ/hγ → 1 a.s.)

γ−2/5n3/5E(CV′′
γ(h))hγ =

2R(K)

(γ1/5n1/5hγ)2
+ 3(γ1/5n1/5hγ)

3µ2(K)2R(f ′′) + o(1) a.s.

= 5R(K)3/5µ2(K)4/5R(f ′′)2/5 + o(1) a.s.
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Thus, (23) follows if we can prove that

sup
c1n−1/5≤h≤ c2n−1/5

|CV′′
γ(h)− E(CV′′

γ(h))| = o(n−2/5) a.s. (24)

for all c1, c2 > 0. For that, let us write

CV′′
γ(h)− E(CV′′

γ(h)) =
2

nh2(n− 1)

∑

1≤i<j≤n

{M̈h(Xi −Xj)− E(M̈h(Xi −Xj))}

− 2

n2h2(n− 1)

∑

1≤i<j≤n

{N̈h(Xi −Xj)− E(N̈h(Xi −Xj))}

=
1

h2
UM̈s(h)−

1

nh2
UN̈(h),

where M̈s and N̈ are symmetric and square integrable functions of bounded variation on

R with |µ4|(M̈s) <∞ and |µ2|(N̈) <∞, with µj(M̈
s) = 0 for j = 0, 1, 2, 3, and µj(N̈) = 0

for j = 0, 1. Hence, (24) follows from Lemma 3 by taking β = 2, ϕ = M̈s and ϕ = N̈ . �

Proof of Theorem 3: Taking into account the convergence σ̂2
CV → σ2

CV(f ;K) a.s., we

first notice that

n1/5
(

γ̂ − 1)
a.s.−→ −35

2
σ2
CV(f ;K). (25)

As in the proof of Theorem 1, in view of (17) and (25) we can prove that

sup
h>0

∣

∣

∣

∣

CVγ̂(h) + γ̂R(f)− γ̂Zn

γ̂MISE(h)
− 1

∣

∣

∣

∣

a.s.−→ 0.

This implies the convergence
MISE(ĥγ̂)

MISE(hMISE)

as−→ 1,

from which we deduce the almost sure asymptotic equivalence between ĥWCV = ĥγ̂ and

hMISE, which concludes the proof of the first part of Theorem 3.

Reasoning as in the proof of Theorem 2 we can write

ĥWCV

hMISE
− 1 = −

(

CV′′
γ̂(h̃)hMISE

)−1

CV′
γ̂(hMISE), (26)

for some random variable h̃ between ĥWCV and hMISE. Taking into account the equalities

CV′
γ̂(hMISE) = −(1 − γ̂)

R(K)

nh2MISE

+ γ̂CV′(hMISE)

and

CV′′
γ̂(h̃) = 2(1− γ̂)

R(K)

nh̃3
+ γ̂CV′′(h̃),
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the asymptotic normality of ĥWCV/hMISE − 1 follows now from (26), the asymptotic nor-

mality

n7/10CV′
γ̂(hMISE)

d−→ N(0, σ2),

that can be derived from Proposition 3, and the almost sure convergence

n3/5CV′′
γ̂(h̃)hMISE

a.s.−→ 5R(K)3/5µ2(K)4/5R(f ′′)2/5,

which is a consequence of Proposition 5. �

Proof of Theorem 4: We will show that if f has continuous, bounded and integrable

derivatives up to order s (s ≥ 0 is even) then ψ̂s(gs) → ψs a.s. whenever the bandwidth gs

takes the form gs = gs,nn
−1/(s+3) with gs,n → gs,∞ a.s., for some deterministic positive value

gs,∞. Two applications of this result for s = r + 2 and s = r, gives the convergence ψ̃r →
ψr a.s. for every density function f with continuous, bounded and integrable derivatives

up to order r + 2.

Taking into account that

E(ψ̂s(g)) = n−1g−s−1φ(s)(0) + (1− n−1)

∫

φ(u)f (s) ∗ f̄(gu)du

(see Chacón and Tenreiro, 2012, p. 525, 539), from the continuity of f (s) ∗ f̄ and the

Lebesgue’s dominated convergence theorem we conclude that

E(ψ̂s(g))
as−→ f (s) ∗ f̄(0) = ψr, for g = gs. (27)

Moreover, we have

ψ̂s(g)− E(ψ̂s(g)) =
1

gs
2

n2

∑

1≤i<j≤n

{ϕg(Xi −Xj)− E(ϕg(Xi −Xj))}

=
1

gs
(1− n−1)Uϕ(g),

where ϕ = φ(s) is a symmetric function of bounded variation on R, with |µs|(ϕ) < ∞ and

µj(ϕ) = 0, for j = 0, 1, . . . , s− 1. Thus, from Lemma 3 we get

sup
c1n−1/(s+3)≤g≤c2n−1/(s+3)

|ψ̂s(g)− E(ψ̂s(g))| a.s.−→ 0, for all c1, c2 > 0,

from which we deduce that

ψ̂s(g)− E(ψ̂s(g))
a.s.−→ 0, for g = gs.
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Together with (27) this implies that ψ̂s(gs) → ψs a.s. �
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