Modules over linear spaces admitting a multiplicative basis

Antonio J. Calderón Martín ${ }^{\star}$, Francisco J. Navarro Izquierdo, and José M. Sánchez
Delgado
Department of Mathematics
Faculty of Sciences, University of Cádiz
Campus de Puerto Real, 11510, Puerto Real, Cádiz, Spain.
ajesus.calderon@uca.es; javi.navarroiz@uca.es; txema.sanchez@uca.es

Abstract

We study the structure of certain modules V over linear spaces W with restrictions neither on the dimensions nor on the base field \mathbb{F}. A basis $\mathfrak{B}=$ $\left\{v_{i}\right\}_{i \in I}$ of V is called multiplicative respect to the basis $\mathfrak{B}^{\prime}=\left\{w_{j}\right\}_{j \in J}$ of W if for any $i \in I, j \in J$ we have either $v_{i} w_{j}=0$ or $0 \neq v_{i} w_{j} \in \mathbb{F} v_{k}$ for some $k \in I$. We show that if V admits a multiplicative basis then it decomposes as the direct sum $V=\bigoplus_{k} V_{k}$ of well-described submodules admitting each one a multiplicative basis. Also the minimality of V is characterized in terms of the multiplicative basis and it is shown that the above direct sum is by means of the family of its minimal submodules, admitting each one a multiplicative basis.

Keywords: Multiplicative basis, infinite dimensional linear space, module over an algebra, representation theory, structure theory.

1 Introduction and previous definitions

We begin by noting that throughout this paper linear spaces V and W are considered of arbitrary dimensions and over an arbitrary base field \mathbb{F}, and also the increasing interest in the study of modules over different classes of algebras, and so over linear spaces, specially motivated by their relation with mathematical physics (see [6], [7], [8], [9], [11], [12], [13]).

Definition 1. Let V be a vector space over an arbitrary base field \mathbb{F}. It is said that V is moduled by a linear space W (over same base field \mathbb{F}), or just that V is a module over W if it is endowed with a bilinear map $V \times W \rightarrow V, \quad(v, w) \mapsto v w$.

Any kind of algebra is an example of a module over itself. Since the even part L^{0} of the standard embedding of a Lie triple system T is a Lie algebra, the natural action of L^{0} over T makes of T a (Lie) module over L^{0}. Hence the present paper extend the results in [5].

[^0]Definition 2. Let V be a module over the linear space W. Given a basis $\mathfrak{B}^{\prime}=\left\{w_{j}\right\}_{j \in J}$ of W we say that a basis $\mathfrak{B}=\left\{v_{i}\right\}_{i \in I}$ of V is multiplicative respect \mathfrak{B}^{\prime} if for any $i \in I$ and $j \in J$ we have either $v_{i} w_{j}=0$ or $0 \neq v_{i} w_{j} \in \mathbb{F} v_{k}$ for some (unique) $k \in I$.

To construct examples of modules over linear spaces admitting a multiplicative basis, we just have to fix two non-empty sets I, J and two arbitrary mappings $\alpha: I \times J \rightarrow$ I and $\beta: I \times J \rightarrow \mathbb{F}$. Then the \mathbb{F}-linear space V with basis $\mathfrak{B}=\left\{v_{i}\right\}_{i \in I}$ is a module respect to the \mathbb{F}-linear space W with basis $\mathfrak{B}^{\prime}=\left\{w_{j}\right\}_{j \in J}$, under the action induced by $v_{i} w_{j}:=\beta(i, j) v_{\alpha(i, j)}$, admitting \mathfrak{B} as multiplicative basis respect to \mathfrak{B}^{\prime}.

Remark 1. Definition 2 agree with the one for arbitrary algebras given in [5], and it is a little bit more general than the usual one in the literature ($[1-4,10]$).

2 Connections in the set of indexes. Decompositions

From now on and throughout the paper, V denotes a module over the linear space W, both endowed with respective basis $\mathfrak{B}=\left\{v_{i}\right\}_{i \in I}, \mathfrak{B}^{\prime}=\left\{w_{j}\right\}_{j \in J}$, and being \mathfrak{B} multiplicative respect to \mathfrak{B}^{\prime}. We denote by $\mathcal{P}(I)$ the power set of I.

We begin this section by developing connection techniques among the elements in the set of indexes I as the main tool in our study. For each $j \in J$, a new variable $\bar{j} \notin J$ is introduced and we denote by $\bar{J}:=\{\bar{j}: j \in J\}$ the set of all these new symbols. We will also write $\overline{(\bar{j})}:=j \in J$.

We consider the operation $\star: I \times(J \dot{\cup} \bar{J}) \rightarrow \mathcal{P}(I)$ given by:

- If $i \in I$ and $j \in J$,

$$
i \star j:=\left\{\begin{array}{c}
\emptyset \text { if } 0=v_{i} w_{j} \\
\{k\} \text { if } 0 \neq v_{i} w_{j} \in \mathbb{F} v_{k}
\end{array}\right.
$$

- If $i \in I$ and $\bar{j} \in \bar{J}$,

$$
i \star \bar{j}:=\left\{k: 0 \neq v_{k} w_{j} \in \mathbb{F} v_{i}\right\}
$$

Now, we also consider the mapping $\phi: \mathcal{P}(I) \times(J \dot{\cup} \bar{J}) \rightarrow \mathcal{P}(I)$ defined as $\phi(U, j):=\bigcup_{i \in U}(i \star j)$.

Lemma 1. Let $a, b \in I$ be. Given $j \in J \dot{\cup} \bar{J}$ we have that $a \in b \star j$ if and only if $b \in a \star \bar{j}$.

Proof. Let us suppose that $a \in b \star j$. If $j \in J$ then $v_{b} w_{j} \in \mathbb{F} v_{a}$, and if $j \in \bar{I}$ we have $v_{a} w_{\bar{j}} \in \mathbb{F} v_{b}$. In any case $b \in a \star \bar{j}$. To prove the converse we can argue in a similar way.

Lemma 2. Given $j \in J \dot{\cup} \bar{J}$ and $U \subset \mathcal{P}(I)$ then $i \in \phi(U, j)$ if and only if $\phi(\{i\}, \bar{j}) \cap$ $U \neq \emptyset$.

Proof. Let us suppose that $i \in \phi(U, j)$. Then there exists $k \in U$ such that $i \in k \star j$. By Lemma 1 we have $k \in i \star \bar{j}=\phi(\{i\}, \bar{j})$. So $k \in \phi(\{i\}, \bar{j}) \cap U \neq \emptyset$. By arguing in a similar way the converse can be proven.

Definition 3. Let $i, k \in I$ be with $i \neq k$. We say that i is connected to k if there exists a subset $\left\{j_{1}, \ldots, j_{n}\right\} \subset J \dot{\cup} \bar{J}$, such that the following conditions hold:

1. $\phi\left(\{i\}, j_{1}\right) \neq \emptyset, \phi\left(\phi\left(\{i\}, j_{1}\right), j_{2}\right) \neq \emptyset, \ldots, \phi\left(\phi\left(\ldots \phi\left(\{i\}, j_{2}\right) \ldots\right), j_{n-1}\right) \neq \emptyset$.
2. $k \in \phi\left(\phi\left(\ldots \phi\left(\{i\}, j_{1}\right) \ldots\right), j_{n}\right)$.

We say that $\left\{j_{1}, \ldots, j_{n}\right\}$ is a connection from i to k and we accept i is connected to itself.

Lemma 3. Let $\left\{j_{1}, j_{2}, \ldots, j_{n-1}, j_{n}\right\}$ be any connection from some i to some k where $i, k \in I$ with $i \neq k$. Then the set $\left\{\bar{j}_{n}, \bar{j}_{n-1}, \ldots, \bar{j}_{2}, \bar{j}_{1}\right\}$ is a connection from k to i.

Proof. Let us prove it by induction on n. For $n=1$ we have that $k \in \phi\left(\{i\}, j_{1}\right)$. It means that $k \in i \star j_{1}$ and so, by Lemma $1, i \in k \star \bar{j}_{1}=\phi\left(\{k\}, \bar{j}_{1}\right)$. Hence $\left\{\bar{j}_{1}\right\}$ is a connection from k to i.

Let us suppose that the assertion holds for any connection with $n \geq 1$, elements and let us show this assertion also holds for any connection $\left\{j_{1}, j_{2}, \ldots, j_{n}, j_{n+1}\right\}$.

By denoting the set $U:=\phi\left(\phi\left(\ldots \phi\left(\{i\}, j_{1}\right) \ldots\right), j_{n}\right)$ and taking into the account the second condition of Definition 3 we have that $k \in \phi\left(U, j_{n+1}\right)$. Then, by Lemma 2, $\phi\left(\{k\}, \bar{j}_{n+1}\right) \cap U \neq \emptyset$ and so we can take $h \in U$ such that

$$
\begin{equation*}
h \in \phi\left(\{k\}, \bar{j}_{n+1}\right) . \tag{1}
\end{equation*}
$$

Since $h \in U$ we have that $\left\{j_{1}, j_{2}, \ldots, j_{n-1}, j_{n}\right\}$ is a connection from i to h. Hence $\left\{\bar{j}_{n}, \bar{j}_{n-1}, \ldots, \bar{j}_{2}, \bar{j}_{1}\right\}$ connects h with i. From here and by Equation (1) we obtain $i \in \phi\left(\phi\left(\ldots \phi\left(\phi\left(\{k\}, \bar{j}_{n+1}\right), \bar{j}_{n}\right) \ldots\right), \bar{j}_{1}\right)$. So $\left\{\bar{j}_{n+1}, \ldots, \bar{j}_{2}, \bar{j}_{1}\right\}$ connects k with i.

Proposition 1. The relation \sim in I, defined by $i \sim k$ if and only if i is connected to k, is an equivalence relation.

Proof. The reflexive and symmetric character is given by Definition 3 an Lemma 3.
If we consider the connections $\left\{a_{1}, \ldots, a_{m}\right\}$ and $\left\{b_{1}, \ldots, b_{n}\right\}$ from a to b and from b to c respectively, then is easy to prove that $\left\{a_{1}, \ldots, a_{m}, b_{1}, b_{2}, \ldots, b_{n}\right\}$ is a connection from a to c. So \sim is transitive and consequently an equivalence relation.

By the above Proposition we can introduce the quotient set $I / \sim:=\{[i]: i \in I\}$, becoming $[i]$ the set of elements in I which are connected to i.

Recall that a submodule Y of a module V (respect to the linear space W) is a linear subspace of V such that $Y W \subset Y$. Our next aim is to associate an (adequate) submodule to each $[i] \in I / \sim$. We define the linear subspace $V_{[i]}:=\bigoplus_{j \in[i]} \mathbb{F} v_{j}$.

Proposition 2. For any $i \in I / \sim$ we have that $V_{[i]}$ is a submodule of V.
Proof. We need to check $V_{[i]} W \subset V_{[i]}$. Suppose there exist $i_{1} \in[i], j_{1} \in[j]$ such that $0 \neq v_{i_{1}} w_{j_{1}} \in v_{n}$, for some $n \in I$. Therefore $n \in \phi\left(\left\{i_{1}\right\}, j_{1}\right)$. Considering the connection $\left\{j_{1}\right\}$ we get $i_{1} \sim n$, and by transitivity $n \in[i]$.

Definition 4. We say that a submodule $Y \subset V$ admits a multiplicative basis \mathfrak{B}_{Y} inherited from \mathfrak{B} if $\mathfrak{B}_{Y} \subset \mathfrak{B}$.

Observe that any submodule $V_{[i]} \subset V$ admits an inherited basis $\mathfrak{B}_{[i]}:=\left\{v_{j}: j \in\right.$ $[i]\}$. So we can assert

Theorem 1. Let V be a module admitting a multiplicative basis \mathfrak{B} respect to a fixed basis of W. Then

$$
V=\bigoplus_{[i] \in I / \sim} V_{[i]},
$$

being any $V_{[i]} \subset V$ a submodule admitting a multiplicative basis $\mathfrak{B}_{[i]}$ inherited from \mathfrak{B}.

We recall that a module V is simple if its only submodules are $\{0\}$ and V.
Corollary 1. If V is simple then any couple of elements of I are connected.
Proof. The simplicity of V applies to get that $V_{[i]}=V$ for some $[i] \in I / \sim$. Hence $[i]=I$ and so any couple of elements in I are connected.

3 The minimal components

In this section we show that, under mild conditions, the decomposition of V of Theorem 1 can be given by means of the family of its minimal submodules. We begin by introducing a concept of minimality for V that agree with the one for algebras in [5].

Definition 5. A module V, (over a linear space W), admitting a multiplicative basis \mathfrak{B} respect to fixed basis of W, is said to be minimal if its unique nonzero submodule admitting a multiplicative basis inherited from \mathfrak{B} is V.

Let us also introduce the concept of \star-multiplicativity in the framework of modules over linear spaces in a similar way to the analogous one for arbitrary algebras (see [5] for these notions and examples).

Definition 6. We say that a module V respect W admits a \star-multiplicative basis $\mathfrak{B}=$ $\left\{v_{i}\right\}_{i \in I}$ respect to a fixed basis $\mathfrak{B}^{\prime}=\left\{l_{j}\right\}_{j \in J}$ of W, if it is multiplicative and given $a, b \in I$ such that $b \in a \star j$ for some $j \in J \dot{\cup} \bar{J}$ then $v_{b} \in v_{a} W$.

Theorem 2. Let V be a module respect W admitting $a \star$-multiplicative basis $\mathfrak{B}=$ $\left\{v_{i}\right\}_{i \in I}$ respect to the basis $\mathfrak{B}^{\prime}=\left\{w_{j}\right\}_{j \in J}$ of W. Then V is minimal if and only if the set of indexes I has all of its elements connected.

Proof. The first implication is similar to Corollary 1. To prove the converse, consider a nonzero submodule $Y \subset V$ admitting a multiplicative basis inherited from \mathfrak{B}. Then, for a certain $\emptyset \neq I_{Y} \subset I$, we can write $Y=\bigoplus_{i \in I_{Y}} \mathbb{F} v_{i}$. Fix some $i_{0} \in I_{Y}$ being then

$$
\begin{equation*}
0 \neq v_{i_{0}} \in Y . \tag{2}
\end{equation*}
$$

Let us show by induction on n that if $\left\{j_{1}, j_{2}, \ldots, j_{n}\right\}$ is any connection from i_{0} to some $k \in I$ then for any $h \in \phi\left(\phi\left(\cdots \phi\left(\left\{i_{0}\right\}, j_{1}\right) \ldots\right), j_{n}\right)$ we have that $0 \neq v_{h} \in Y$.

In case $n=1$, we get $h \in \phi\left(\left\{i_{0}\right\}, j_{1}\right)$. Hence $h \in i_{0} \star j_{1}$, then, taking into account that Y is a submodule of V, by \star-multiplicativity of \mathfrak{B} and Equation (2) we obtain $v_{h} \in v_{i_{0}} W \subset Y$.

Suppose now the assertion holds for any connection $\left\{j_{1}, j_{2}, \ldots, j_{n}\right\}$ from i_{0} to any $r \in I$ and consider some arbitrary connection $\left\{j_{1}, j_{2}, \ldots, j_{n}, j_{n+1}\right\}$ from i_{0} to any $k \in I$. We know that for $x \in U$, where $U:=\phi\left(\phi\left(\cdots \phi\left(\left\{i_{0}\right\}, j_{1}\right) \cdots\right), j_{n}\right)$, the element

$$
\begin{equation*}
0 \neq v_{x} \in Y \tag{3}
\end{equation*}
$$

Taking into account that the fact $h \in \phi\left(\phi\left(\cdots \phi\left(\left\{i_{0}\right\}, j_{1}\right) \ldots\right), j_{n+1}\right)$ means $h \in$ $\phi\left(U, j_{n+1}\right)$, we have that $h \in x \star j_{n+1}$ for some $x \in U$. From here, the \star-multiplicativity of \mathfrak{B} and Equation (3) allow us to get $v_{h} \in v_{x} W \subset Y$ as desired.

Since given any $k \in I$ we know that i_{0} is connected to k, we can assert by the above observation that $\mathbb{F} v_{k} \subset Y$. We have shown $V=\bigoplus_{k \in I} \mathbb{F} v_{k} \subset Y$ and so $Y=V$.

Theorem 3. Let V be a module, over the linear space W, admitting $a \star$-multiplicative basis \mathfrak{B} respect to a fixed basis of W. Then $V=\bigoplus_{k} V_{k}$ is the direct sum of the family of its minimal submodules, each one admitting $a \star$-multiplicative basis inherited from \mathfrak{B}.

Proof. By Theorem 1 we have $V=\bigoplus_{[i] \in I / \sim} V_{[i]}$ is the direct sum of the submodules $V_{[i]}$.
Now for any $V_{[i]}$ we have that $\mathfrak{B}_{[i]}$ is a \star-multiplicative basis where all of the elements of $[i]$ are connected. Applying Theorem 2 to any $V_{[i]}$ we have that the decomposition $V=\bigoplus_{[i] \in I / \sim} V_{[i]}$ satisfies the assertions of the theorem.

References

1. Bautista, R., Gabriel, P., Roiter, A.V. and Salmeron, L.: Representation-finite algebras and multiplicative basis. Invent. math. 81 (1985), 217-285.
2. Bovdi, V.: On a filtered multiplicative bases of group algebras. II. Algebr. Represent. Theory 6 (2003), no. 3, 353-368.
3. Bovdi, V., Grishkov, A. and Siciliano, S.: Filtered multiplicative bases of restricted enveloping algebras. Algebr. Represent. Theory 14 (2011), no. 4, 601-608.
4. Bovdi, V., Grishkov, A. and Siciliano, S.: On filtered multiplicative bases of some associative algebras. Algebr. Represent. Theory. DOI 10.1007/s10468-014-9494-7.
5. Calderón, A.J. and Navarro, F.J.: Arbitrary algebras with a multiplicative basis. Linear Algebra and its Applications. In press.
6. Chu, Y.J., Huang, F., Zheng, Z.J.: A commutant of $\beta \gamma$-system associated to the highest weight module V_{4} of $s l(2, \mathbb{C})$. J. Math. Phys. 51(9), 092301, 32 pp , (2010).
7. Dimitrov, I., Futorny, V., Penkov, I.: A reduction theorem for highest weight modules over toroidal Lie algebras. Comm. Math. Phys. 250(1), 47-63, (2004).
8. Grantcharov, D., Jung, J.H., Kang, S.J., Kim, M.: Highest weight modules over quantum queer superalgebra $U_{q}(\mathfrak{q}(n))$. Comm. Math. Phys. 296(3), 827-860, (2010).
9. Iohara, K.: Unitarizable highest weight modules of the $N=2$ super Virasoro algebras: untwisted sectors. Lett. Math. Phys. 91(3), 289-305, (2010).
10. Kupisch, H. and Waschbusch, J.: On multiplicative basis in quasi-Frobenius algebras. Math. Z. 186, (1984), 401-405.
11. Liu, D., Gao, S., Zhu, L.: Classification of irreducible weight modules over W-algebra $W(2,2)$. J. Math. Phys. 49(1), 113503, 6 pp, (2008).
12. Takemura, K.: The decomposition of level-1 irreducible highest-weight modules with respect to the level-0 actions of the quantum affine algebra. J. Phys. A 31, n. 5., 1467-1485, (1998).
13. Zapletal, A.: Difference equations and highest-weight modules of $U_{q}[\operatorname{sl}(n)]$. J. Phys. A 31, n. 47, 9593-9600, (1998).

[^0]: * The first and the third authors are supported by the PCI of the UCA 'Teoría de Lie y Teoría de Espacios de Banach', by the PAI with project numbers FQM298, FQM7156 and by the project of the Spanish Ministerio de Educación y Ciencia MTM2010-15223. Third author acknowledges the University of Cadiz for the contract research.

