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Abstract. Assembling a localic map f : L → M from localic
maps fi : Si → M , i ∈ J , defined on closed resp. open sublocales
(J finite in the closed case) follows the same rules as in the classical
case. The corresponding classical facts immediately follow from the
behavior of preimages but for obvious reasons such a proof cannot
be imitated in the point-free context. Instead, we present simple
proofs based on categorical reasoning. There are some related as-
pects of localic preimages that are of interest, though. They are
investigated in the second half of the paper.

1. Introduction

In classical topology one has the useful two facts that

if A1, . . . , An are closed subspaces (resp. if Ai, i ∈ J ,
are open subspaces, J arbitrary) of a space X such that∪

iAi = X and if fi : Ai → Y are continuous maps such
that for all i, j,

fi|(Ai ∩ Aj) = fj|(Ai ∩ Aj),

then the map f : X → Y defined by f(x) = fi(x) for
x ∈ Ai is continuous.

The proof is extremely simple:

f−1[B] =
∪
i

f−1
i [B]

and hence if B is closed (resp. open) in Y then f−1[B] is closed (resp.
open) inX. Since continuous maps are characterized among the general
ones by sending the open (resp. closed) subsets to open (resp. closed)
ones by preimages, this is all we need.

This reasoning cannot be imitated in the point-free setting, but the
statement has an exact point-free counterpart nevertheless. Indeed, if
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localic maps fi : Si →M are defined on a system (Si)i∈J of open resp.
closed sublocales (J is finite in the closed case), if they agree on the
intersections Si ∩ Sj, and if

∨
i∈J Si = L then there is precisely one

localic map f : L→ M restricting to fi on Si. Proofs are presented in
Sections 3 and 4.

The classical and point-free facts have a common categorical back-
ground; namely, they can be viewed as pushing out. But while in the
classical case we have the simple fact that can be categorically inter-
preted, in the point-free modification we have the categorical facts first,
afterwards translated into the desired statements (a genuine applica-
tion of categorical reasoning, hopefully pleasing the category minded
reader). In particular in the statement on the closed sublocales we have
a fairly simple categorical proof but no reasonably simple direct one,
not to speak of something resembling the classical pointy one (the proof
in the open case is slightly more direct, but even there the categorical
view is essential).

We work with sublocales of a locale (frame) L as with subobjects
naturally carried by (some of the) subsets, that is, locales that are sub-
sets S of L embedded by inclusion maps j : S ⊆ L that are localic (thus,
in particular, in the statement above we have the fi actual restrictions
f |Si). Therefore we can speak of preimages of sublocales (in particular,
of the closed and open ones) under general maps f : L→ M . If f is a
localic one we have closed preimages of closed sublocales, and after a
certain modification (see 2.4 below) also open preimages of open sublo-
cales. As it is to be expected, this does not characterize the localic
maps among the general f : L → M but such information on f is of
interest. The associated questions are discussed in Section 5 which we
then conclude comparing the set-theoretical preimage with the localic
one (the modification mentioned above) in some cases.

2. Preliminaries

2.1. The category of frames. Recall that a frame is a complete lat-
tice L satisfying the distributivity rule

(
∨
A) ∧ b =

∨
{a ∧ b | a ∈ A} (2.1.1)

for all A ⊆ L and b ∈ L, and that a frame homomorphism h : L →
M preserves all joins and all finite meets. The resulting category is
denoted by Frm.

A co-frame satisfies (2.1.1) with the roles of joins and meets reversed.

The equality (2.1.1) states, in other words, that for every b ∈ L the
mapping − ∧ b = (x 7→ x ∧ b) : L → L preserves all joins (suprema).
Hence every − ∧ b has a right Galois adjoint resulting in a Heyting
operation→with

a ∧ b ≤ c iff a ≤ b→c.
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Thus, each frame is a Heyting algebra (note that, however, the frame
homomorphisms do not coincide with the Heyting ones so that Frm
differs from the category of complete Heyting algebras). The operation
→ and some of its basic properties (e.g. a → a = 1, a → b = 1 iff
a ≤ b, 1 → a = a, and a → (b → c) = (a ∧ b) → c) will be often used
in the sequel.

2.2. The concrete category Loc. The functor Ω: Top→ Frm from
the category of topological spaces into that of frames (Ω(f) sending an
open set U ⊆ Y to f−1[U ] for a continuous map f : X → Y in Top)
is a full embedding on an important and substantial part of Top, the
subcategory of sober spaces. This justifies to regard frames as a natural
generalization of spaces. Since Ω is contravariant, one introduces the
category of locales Loc as the dual of the category of frames. Often one
just considers the formal Frmop but it is of advantage to represent it as
a concrete category with specific maps as morphisms. For this purpose
one defines a localic map f : L → M as the right Galois adjoint of a
frame homomorphism h = f ∗ : M → L. This can be done since frame
homomorphisms preserve suprema; but of course not every mapping
preserving infima is a localic one. Here is a characterization (see [6] or
[5]):

2.2.1. Let f : L → M have a left adjoint f ∗ : M → L. Then it is a
localic map iff

(a) f [Lr {1}] ⊆M r {1}, and
(b) f(f∗(a)→ b) = a→ f(b).

2.3. The co-frame of sublocales. A sublocale of a frame L is a subset
S ⊆ L such that

(1) M ⊆ S implies
∧

M ∈ S, and
(2) if a ∈ L and s ∈ S then a→ s ∈ S.

If we require only (1) we speak of a meet-subset.
The set of all sublocales ordered by inclusion, denoted by

S(L),
is a co-frame, with the lattice operations∧

i∈J
Si =

∩
i∈J

Si and
∨
i∈J

Si = {
∧

A | A ⊆
∪
i∈J

Si}.

The top of S(L) is L and the bottom is the set O = {1} (the empty
sublocale).

We have the closed resp. open sublocales

c(a) = ↑a resp. o(a) = {x | a→ x = x} = {a→ x | x ∈ L}
modelling closed resp. open subspaces (and corresponding precisely
to the closed resp. open parts in [1]). They are complements of each
other, and the o(a) are in a natural one-to-one correspondence with
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the elements of L, preserving joins and finite meets. We have (see e.g.
[6]):

• o(0) = O, o(1) = L, o(a ∧ b) = o(a) ∩ o(b), o(
∨
ai) =

∨
o(ai),

• c(0) = L, c(1) = O, c(a ∧ b) = c(a) ∨ c(b), c(
∨
ai) =

∩
c(ai).

2.4. Images and preimages. For a localic map f : L → M and for
any sublocale S ⊆ L we have the image f [S] which is a sublocale again.
On the other hand, the set-theoretic preimage (briefly, set-preimage)
f−1[S] of a sublocale S is not necessarily a sublocale. It is a meet-
subset, though, and hence (see the formula for the join of sublocales
above) there is the largest sublocale

f−1[S] =
∨
{T | T∈ S(L), T ⊆ f−1[S]}

contained in f−1[S]. It will be referred to as the localic preimage. We
have the Galois adjunction

f [S] ⊆ T iff S ⊆ f−1[S].

For closed sublocales we have f−1[c(a)] = f−1[c(a)] = c(f ∗(a)). For
open sublocales the localic and set-preimages do not necessarily coin-
cide (see Section 5 below), but we do have f−1[o(a)] = o(f∗(a)).

For more about frames see e.g. [2, 6]. For basic facts from category
theory see [4] (or the Appendix in [6]), and for the basics of classical
topology see e.g. [3].

3. Assembling a localic map from open parts

3.1. Setting. We have a cover (ai)i∈J of a frame L, in the sublocale
language, a cover (o(ai))i∈J of L by open sublocales. Further, we have
localic maps fi : o(ai)→M and assume that

∀i, j ∈ J, fi|(o(ai) ∩ o(aj)) = fj|(o(ai) ∩ o(aj)).

Since o(ai)∩o(aj) = o(ai∧aj) this amounts to the system of equalities

∀i, j ∈ J ∀x ∈ L, fi((ai ∧ aj)→x) = fj((ai ∧ aj)→x).

3.2. Let hi : M → o(ai) be the frame homomorphisms adjoint to fi.

Lemma. For all i, j we have hi(x) ∧ ai ∧ aj = hj(x) ∧ ai ∧ aj.

Proof. For all y, hi(x) ∧ ai ∧ aj ≤ y iff hi(x) ≤ (ai ∧ aj)→ y iff x ≤
fi((ai ∧ aj) → y) = fj((ai ∧ aj) → y) iff hj(x) ≤ (ai ∧ aj) → y iff
hj(x) ∧ ai ∧ aj ≤ y. �
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3.3. Define a mapping f : L→M by setting

f(x) =
∧
i∈J

fi(ai→x)

and a mapping h : M → L by

h(x) =
∨
i∈J

(hi(x) ∧ ai).

3.4. Lemma. If x ∈ o(ak) then f(x) = fk(x).

Proof. If x ∈ o(ak) then for every i,

fi(ai→x) = fi(ai→(ak→x)) = fi((ai ∧ ak)→x) =

= fk((ai ∧ ak)→x) ≥ fk(ak→x)

and fk(x) = fk(ak→x) is among the factors in the definition of f(x).
�

3.5. Lemma. The mapping h : M → L preserves binary meets.

Proof. By 3.2 we have

h(x) ∧ h(y) =
∨
i,j

hi(x) ∧ hj(y) ∧ ai ∧ aj =
∨
i,j

hi(x) ∧ hi(y) ∧ ai ∧ aj =

=
∨
i,j

hi(x ∧ y) ∧ ai ∧ aj =
∨
i

hi(x ∧ y) ∧ ai ∧
∨
j

aj =

=
∨
i

hi(x ∧ y) ∧ ai = h(x ∧ y). �

3.6.Theorem. If localic maps fi : o(ai)→M agree on the intersections
o(ai) ∩ o(aj) and if

∨
i o(ai) = L then there exists precisely one localic

map f : L→M such that f |o(ai) = fi for all i, namely the f from 3.3.

Proof. By definition of
∨
Si in S(L) and taking into account that localic

maps preserve meets we see that there is at most one such f .
Now observe that the maps from 3.3 are adjoint. Indeed, we have

h(x) ≤ y iff ∀i ∈ J, hi(x) ≤ ai→y

iff ∀i ∈ J, x ≤ fi(ai→y) iff x ≤
∧
i∈J

fi(ai→y) = f(y).

Hence, first, h preserves all joins. By 3.5 it preserves binary meets;
since also h(1) =

∨
hi(1) ∧ ai =

∨
ai = 1, h is a frame homomorphism

and f is a localic map. �
3.7. Note. Needless to say, we have here the diagram

o(ai)
⊆

''PPPPPPPPPPPPPPP

o(ai) ∩ o(aj)

⊆
77oooooooooooo

⊆

''OOOOOOOOOOOO
(i, j ∈ J) L

o(aj)

⊆
77ooooooooooooooo
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about which we have proved that it is a generalized pushout, that is,
that

o(ai)
⊆

''PPPPPPPPPPPPPPP

(i, j ∈ J) L

o(aj)

⊆
77ooooooooooooooo

is the colimit of the rest of the diagram. In the next section it will be
of advantage to reverse the reasoning, namely considering the colimit
first and then deduce the required result.

4. Assembling a localic map from closed parts

4.1. Setting. This time we have a finite closed cover of L, that is,
closed sublocales c(a1), . . . , c(an) such that

∨n
i=1 c(ai) = L in S(L).

Further, we have localic maps fi : c(ai)→M such that

∀i, j, fi|(c(ai) ∩ c(aj)) = fj|(c(ai) ∩ c(aj)).

Since c(ai) ∩ c(aj) = c(ai ∨ aj) = ↑(ai ∨ aj), this amounts to the re-
quirement that

∀i, j, x ≥ ai ∨ aj ⇒ fi(x) = fj(x).

We are looking for an f : L→M such that f |c(ai) = fi for all i.

4.2. Consider the diagram of frame homomorphisms

L
β−−−→ ↑b

α

y yα′

↑a β′
−−−→ ↑(a ∨ b)

(4.2.1)

with α(x) = α′(x) = a∨x and β(x) = β′(x) = b∨x. It is a well known
(and almost obvious) fact that this diagram is a pushout. But we also
have the following

Proposition. If a ∧ b = 0 then (4.2.1) is a pullback.

Proof. Extend (4.2.1) to
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L
β //

ε

##HHHHHHHH

α

��

↑b

α′

��

↑a× ↑b

p2
88qqqqqqqqqq

p1

{{wwwwwwww

↑a β′
// ↑(a ∨ b)

with pi the product projections and ε the mapping given by

ε(x) = (a ∨ x, b ∨ x).

By the standard construction of pullback it suffices to prove that ε is
the equalizer of β′p1 and α′p2 (the equalities α = p1ε and β = p2ε are
trivial).

First, obviously ε is a frame homomorphism, and

β′p1ε(x) = a ∨ b ∨ x = α′p2ε(x).

It is one-to-one: if a∨x = a∨y and b∨x = b∨y then x = (a∧ b)∨x =
(a ∨ x) ∧ (b ∨ x) = (a ∨ y) ∧ (b ∨ y) = y.

Now let

h : M → ↑a× ↑b

be a frame homomorphism such that β′p1h = α′p2h. That is, for
hi = pih we have h1(x) ∨ b = h2(x) ∨ a. We need to show that there is
a unique k that completes the diagram

L
ε // ↑a× ↑b

β′p1 //

α′p2

// ↑(a ∨ b)

M

k

OO

h

==

Define

k : M → L by setting k(x) = h1(x) ∧ h2(x).

Then

εk(x) = (a ∨ (h1(x) ∧ h2(x)), b ∨ (h1(x) ∧ h2(x))) =

= ((a ∨ h1(x)) ∧ (a ∨ h2(x)), (b ∨ h1(x)) ∧ (b ∨ h2(x))) =

= ((a ∨ h1(x)) ∧ (b ∨ h1(x)), (a ∨ h2(x)) ∧ (b ∨ h2(x))) =

= ((a ∧ b) ∨ h1(x), (a ∧ b) ∨ h2(x)) = (h1(x), h2(x)) = h(x).

Since h, ε are homomorphisms and ε is one-to-one it follows that k is
a homomorphism and that it is unique such that h = εk. �
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4.3. Consider the embedding (localic) maps

j1 : c(a) ↪→ L and j2 : c(b) ↪→ L.

They are the right adjoints of the α resp. β above and hence the
pullback (4.2.1) in Frm translates to the pushout in Loc

L
j2←−−− c(b)

j1

x xj′1

c(a)
j′2←−−− c(a ∨ b)

(4.3.1)

with j′1 and j′2 the inclusion maps.

4.4. Theorem. Let c(ai), i = 1, 2, . . . , n, be closed sublocales of L such
that

∨n
i=1 c(ai) = L and let fi : c(ai)→M be localic maps such that

for all i, j, fi|(c(ai) ∩ c(aj)) = fj|(c(ai) ∩ c(aj)).

Then there exists precisely one localic map f : L→M such that f |c(ai) =
fi for all i.

Proof. It suffices to prove the statement for n = 2. Set a = a1 and
b = a2. Since L = c(a) ∨ c(b) = ↑(a ∧ b) we have a ∧ b = 0 and can
use the pullback from 4.2, and consequently the pushout (4.3.1). The
equality

f1|(c(a) ∩ c(b)) = f2|(c(a) ∩ c(b))

reads, in the notation from 4.3, f1j
′
2 = f2j

′
1 and hence we have a localic

map f : L→M such that fji = fi, that is, f |c(a) = f1 and f |c(b) = f2.
The uniqueness follows also from the pushout (or, alternatively, by f
preserving meets, as the uniqueness in 3.6). �

5. Maps f : L→M and preimages

5.1. In this section we will, first, discuss preserving closed and open
sublocales by preimages. That is, we have frames L and M and ask
what mappings f : L → M are characterized by the requirement(s)
that

f−1[S] is closed for closed S resp. f−1[S] is open for open S. (5.1.1)

For a localic map f we have

f−1[c(a)] = f−1[c(a)] = c(f ∗(a)) and f−1[o(a)] = o(f∗(a).

The question is what maps we obtain if one or both of the conditions
(5.1.1) are assumed.

5.2. Proposition. Preimages f−1[c(a)] of closed sublocales are closed
iff f has a left adjoint (that is, iff f preserves all meets).
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Proof. Let f ∗ exist. Then for any a ∈M ,

f−1[c(a)] = {x ∈ L | a ≤ f(x)} = {x ∈ L | f ∗(a) ≤ x} = c(f∗(a)).

On the other hand, if for each a there is a b = ϕ(a) such that f−1[c(a)] =
c(ϕ(a)) then a ≤ f(x) iff ϕ(a) ≤ x. �

5.2.1. Note. Here we have a characteristics of meet-preserving maps
among all the f : L → M akin to that of continuous maps in classical
topology. Hence, the reader may expect at least a proof of assembling
a meet-preserving map

f : L = ↑a1 ∨ · · · ∨ ↑an →M

from meet-preserving fi : ↑ai → M following precisely the trivial rea-
soning about assembling a continuous map. But even here the transla-
tion is not quite straightforward (

∨
Si is not

∪
Si), and a value of such

a result is meagre: meet-preserving maps do not have much geometric
sense, taking the ↑a for something like closed subobjects is only a weak
analogy, there are no reasonable opens complementing them, etc.

5.3. The set- and localic preimages of closed sublocales under localic
maps coincide. This is, however, not the case for open sublocales. We
will discuss preserving open sublocales by set-preimages for general
f : L → M (we have to: f−1[S] makes sense for localic maps only).
Thus we have to keep in mind that the condition f−1[o(a)] = o(b) is
not automatic even for a localic f (while f−1[o(a)] = o(b) is).

The coincidence of f−1[o(a)] and f−1[o(a)] will be discussed in the
second part of this section.

5.4. Observation. Let L,M be frames and let f : L → M be a map-
ping. Then all the f−1[S] with open S are open iff there is a mapping
ϕ : M → L such that

ϕ(x)→y = y iff x→f(y) = f(y). (5.4.1)

(Indeed, (5.4.1) is just a reformulation of o(ϕ(x)) = f−1[o(x)].)

5.4.1. Remarks. (1) Note that even if f is a right adjoint, such ϕ may
exist without coinciding with the f∗. Consider the following trivial
example:

Take f = const1, the right adjoint of which is f ∗ = const0. Now
for ϕ = const1 ̸= f ∗ one has always ϕ(x)→ y = 1→ y = y and also
x→f(y) = x→1 = 1.

(2) For each localic map one has f(f ∗(x) → y) = x → f(y) (recall
2.2.1). Thus, for ϕ = f ∗ (and f localic) the implication “⇒” in (5.4.1)
is automatic.
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5.5. The linear case. The situation is simpler in the case of linearly
ordered frames L, M . We have

Proposition. Let L,M be linearly ordered frames and f : L → M a
mapping. Then the following statements are equivalent.

(1) f has a left adjoint f ∗ such that f ∗(1) = 1.
(2) f is a localic map.
(3) f−1[S] is closed for each closed S and satisfies (5.4.1) with ϕ = f∗

(and hence in particular f−1[S] is open for each open S).

Proof. (1)≡(2) is trivial, since x ∧ y = min{x, y} is preserved by any
monotone map.

(2)⇒(3): In view of 5.2 it suffices to prove the statement about (5.4.1).
In a linearly ordered frame we have x→y = 1 if x ≤ y and x→y = y
otherwise. Furthermore, if f∗ is a frame homomorphism, f(x) = 1
implies x = 1. Thus we have for y = 1, both f∗(x) → y = y and
x→f(y) = f(y) for any x, and for y ̸= 1, f∗(x)→y = y iff f ∗(x) � y
iff x � f(y) iff x→f(y) = f(y).

(3)⇒(1): By 5.2 f is a right adjoint. Now to prove that f∗(1) = 1
we have to show that f(y) = 1 implies y = 1: if f(y) = 1 we have
x→ f(y) = f(y) and hence f∗(x)→ y = y and also x ≤ f(y), so that
f ∗(x) ≤ y and hence y = f∗(x)→y = 1. �

5.6. Let f : L→M be a localic map. We have

Proposition. f−1[o(a)] is a sublocale for each a ∈M iff

(a→f(y) = f(y), f ∗(a) ≤ x→y) ⇒ x→y = 1 (that is, x ≤ y).

Proof. Evidently f−1[o(a)] is a sublocale of L iff

∀x, y ∈ L, (a→f(y) = f(y) ⇒ a→f(x→y)).

But a→f(x→y) =
∨
{w | w ∧ a ≤ f(x→y)} and therefore a→f(x→

y) = f(x→y) iff

w ∧ a ≤ f(x→y) ⇒ w ≤ f(x→y).

This formula is obviously equivalent to

x ∧ f ∗(w) ∧ f∗(a) ≤ y ⇒ x ∧ f ∗(w) ≤ y

and this, in turn, to

x ∧ f ∗(a) ≤ y ⇒ x ≤ y

(by setting in particular w = 1). �
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5.7. One extreme case of the behavior of the f : L → M with respect
to the preimages of open sublocales is the case of linear L and general
M . Since in L, x→y = 1 or y, f−1[o(a)] which is always a meet-set is
automatically a sublocale. In fact, an L such that for all f : L → M ,
f−1[o(a)] is a sublocale has typically only trivial pseudocomplements
and hence “is not far from being linear” (an element x with 0 < x∗ < 1
and a localic map f : L → M with linear M � {0, 1} and f(x) = 0
would contradict 5.6: set a = f(x)).

5.8. We know, however, more about the other extreme case, that of a
Boolean M .

Theorem. f−1[o(a)] is a sublocale for each f : L → M and a ∈ M if
and only if M is Boolean.

Proof. “⇐” follows from 5.6, but also directly: a→x = a∗ ∨ x = x iff
x ≥ a∗; hence f−1[o(a)] = f−1[c(a∗)] which is a sublocale.

“⇒”: Let the statement on the f hold. Take L = S(M)op and f : L→
M the right adjoint to the frame embedding h = (x 7→ c(x)) : M → L.
Thus in particular f(c(x)) = x.

Now for a fixed y ∈ M consider a = y ∨ y∗ so that in particular
a→ 0 = a∗ = 0 and 0 ∈ o(a). We have f(0M) = 0 and hence 0M ∈
f−1[o(a)]. Since f−1[o(a)] is a sublocale, each complemented element
of L, in particular each c(x), is in f−1[o(a)]. Thus,

a→x = a→f(c(x)) = x

for each x, and 1 = a→a = a. �

5.9. Remark. Examples of localic maps with (in our notation)

f−1[S] = O ̸= f−1[S]

can be found in [7]:

(a) In Example 4.2 we find a localic surjection f : L → Q such that
for any nonzero pointless sublocale S of Q, its localic preimage f−1[S]
is zero. Of course, since f is a surjection, the set-theoretical preimage
f−1[S] must be nonzero.

(b) Example 4.10 yields another localic surjection f : L → Q that
satisfies the identity

f−1[S] = f−1[X r (X r S)]

for every sublocale S of Q for which f−1[S] is closed. Therefore, it suf-
fices to take such an S for which X r (X r S) (the double supplement
of S) differs from S: their set-theoretical preimages will be certainly
different. Furthermore, Proposition 4.9 in [7] shows that the same hap-
pens with any surjection f : L→M which is a regular epimorphism.
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