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Abstract

The nonlinear diffusion model introduced by Perona and Malik in 1990 is well suited to preserve

salient edges while restoring noisy images. This model overcomes well-known edge smearing effects of

the heat equation by using a gradient dependent diffusion function. Despite providing better denoising

results, the analysis of the PM scheme is difficult due to the forward-backward nature of the diffusion

flow. We study a related adaptive forward-backward diffusion equation which uses a mollified inverse

gradient term engrafted in the diffusion term of a general nonlinear parabolic equation. We prove a

series of existence, uniqueness and regularity results for viscosity, weak and dissipative solutions for

such forward-backward diffusion flows. In particular, we introduce a novel functional framework for

wellposedness of flows of total variation type. A set of synthetic and real image processing examples

are used to illustrate the properties and advantages of the proposed adaptive forward-backward

diffusion flows.

Keywords: Anisotropic diffusion, forward-backward diffusion, wellposedness, regularization, Perona-

Malik PDE, image restoration, total variation flow.

1 Introduction

The nonlinear diffusion model, introduced in image processing by Perona and Malik [55], involves solving

the following initial-boundary value problem

∂u(x, t)

∂t
= div

(
C(|∇u(x, t)|2)∇u(x, t)

)
in Ω× (0, T ),

∂u(x, t)

∂ν
= 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

(1)
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(a) Original (b) Noisy

(c) PMADE (1) result (d) GRADE (3) result

Figure 1: Spatial regularization in the diffusion coefficient alters discontinuities in a given image. (a)

Original synthetic image of size 31 × 31, a square (gray value = 160) at the bottom right corner with

uniform background (gray value = 219). (b) Input image obtained by adding Gaussian noise σn = 30

to the original image. This noisy image is used as the initial value u0 for the nonlinear PDEs with C1
diffusion coefficient and K = 20. Results of PMADE (1) with 20 iterations in (left) image (right) surface

format (c), and GRADE (3) with 20 iterations in (left) image (right) surface format (d). The intersection

of red dotted lines indicate the exact corner location of the square. (For interpretation of color in this

figure, the reader is referred to the web version of this article.)

where u0 : Ω→ R is the observed (noisy) image, Ω ⊂ R2 is a bounded domain with Lipschitz boundary.

The function C : R+
0 → R+

0 is non-increasing such that C(0) = 1 and lims→+∞ C(s) = 0. Note if C(s) ≡ 1

then we recover the heat equation. The diffusion coefficient function C(·) in Eqn. (1) is an edge indicator

function that reduces the amount of diffusion near edges and behaves locally as inverse heat equation.

The original choices of C(·) by Perona and Malik [55] are

C1(s) = exp
(
− s

K2

)
, C2(s) =

1

1 + s/K2
, (2)

where K > 0 is a tunable parameter also known as the contrast parameter [57].

Despite impressive numerical results obtained in image processing using the Perona-Malik equation (1)

with C = C1, it was shown [44, 43] to be an ill-posed PDE due to the degenerate behavior for large

gradients. Thereby, although existence of infinitely many solutions in a relaxed setup involving Young

measures was established in [77, 21], many authors have been looking for regularizations of the Perona-
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Malik equations which inherit its usefulness in image restoration but have better mathematical behavior.

One of the pioneering works of this kind [17] replaced the magnitude of the image gradient s = |∇u|

used in the diffusivity functions by the spatially regularized gradient, s = |∇Gσ ∗ u|, where Gσ denotes

the two- dimensional Gaussian kernel, Gσ(x) = (2πσ)−1 exp (− |x|2 /2σ2) and ∗ denotes the convolution

operation. Thus, the Catté et al. [17] Gaussian regularized anisotropic diffusion equation (GRADE for

short) reads as

∂u

∂t
= div

(
C(|∇Gσ ∗ u|2)∇u

)
. (3)

This modification of equation (1) is sufficient to obtain the existence and uniqueness of solution to the

initial-boundary value problem for GRADE in Eqn. (3). However, the space-invariant Gaussian smoothing

inside the divergent term tends to push the edges away from their original locations, see Figure 1 for

an illustration of this effect on a synthetic corner image. This effect, known as edge dislocation, can be

detrimental to further image analysis. This can also be seen via the regularity of solution to GRADE,

which belongs to a high order Sobolev space. Furthermore, the use of isotropic smoothing is against

the principle of anisotropic diffusion which aims to smooth homogeneous regions without affecting edges.

To remedy this, one can use time regularization instead of spatial regularization, or a related idea of

decoupling the diffusion coefficient into a separate evolutionary PDE [53, 11, 12, 4, 63]. Another direction

to improve the well-posedness of the Perona-Malik equation (1) is to approximate the nonlinear diffusion

coefficient C1 with less degenerate ones, see [34, 38, 35, 36]. Fourth order regularizations were introduced

and studied in a bulk of papers, for instance, in [33, 13, 40, 39]. We refer to the recent paper [37] for a

nice and detailed overview on anisotropic diffusions arising in image processing from the perspective of

mathematical analysis.

Motivated by the correspondence between the variational and PDE methods for imaging problems,

which we discuss in the next section, in this paper we consider a Perona-Malik type PDE with the

generic diffusion function inspired by the stationary nonlinear regularization approach. Engrafting a

mollified gradient within the adaptive diffusion function we obtain a general forward-backward diffusion

PDE. We prove a series of existence, uniqueness and regularity results for viscosity, weak, strong and

dissipative solutions for a wide class of the proposed generalized forward-backward diffusion models.

Experimental results on synthetic, noisy standard test, and biomedical images are provided to illustrate

different diffusion schemes considered here.

One of the highlights of the paper is the introduction of the concept of partial variation, which enables

us to define and employ the Banach space of functions of bounded partial variation. Our approach appears

to be relevant in the context of evolutionary problems which involve singular diffusion of 1-Laplacian kind

or gradients of linear growth functionals, and holds promise for wide applicability.

The rest of the paper is organized as follows. Section 2 is devoted to the modelling issues. Section 3 ex-
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amines the conditions needed for wellposedness of the proposed regularization-inspired forward-backward

PDE in various scenarios. In Section 4, we provide numerical experiments to prove the effectiveness of

the proposed multi-scale scheme as well as examples for various cases.

2 Preliminary observations and the proposed model

The motivation for the Perona-Malik nonlinear diffusivity is that inside the regions where the magnitude

of the gradient of u is weak, equation (1) acts like a heat equation, resulting in isotropic smoothing,

whereas near the edges, where the magnitude of the gradient is large, the diffusion is “stopped” and the

edges are preserved.

To see the underlying details, we split the divergence term in Eqn. (1),

div
(
C(|∇u|2)∇u

)
= 2(u2

xuxx + u2
yuyy + 2uxuyuxy) C′(|∇u|2) + C(|∇u|2) (uxx + uyy). (4)

Considering the tangent T and normal N directions of the isophote lines, and setting

B(s) = C(s) + 2sC′(s), (5)

we infer

div
(
C(|∇u|2)∇u

)
= C(|∇u|2)uT T + B(|∇u|2)uNN . (6)

We thus see that the Perona-Malik diffusion (1) is the sum of the tangential diffusion weighted by the

function C(·) plus the normal (transverse) diffusion weighted by the function B(·), resp. Since smoothing

with edge preservation is of paramount importance in image processing, it is desirable to smooth more

in the tangent direction than in the normal direction. This can be translated to the condition

lim
s→∞

B(s)

C(s)
≤ 0, or equivalently, lim

s→∞

s C′(s)
C(s)

≤ −1

2
. (7)

For example, in the case of the power growth functions

C(s) ≈ sq

the above limit gives that

q ≤ −1

2
. (8)

Note that for the original diffusion function C2 in (2) we have B2(s) > 0 if s < K2, implying forward

diffusion in the regions where the gradient magnitude of the image function is less than K, whereas

B2(s) < 0 if s > K2, yielding backward diffusion in the area where absolute values of the gradient are

larger than K. The same is true for C1 with the threshold value 2−1/2K. Thus, the PDE (1) promotes

combined forward-backward diffusion flow, see Figure 2 for a comparison with the heat equation. The
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(a) Original (b) Noisy

(c) Diffusion coefficient (left) initial (right) at iteration 20 (d) Flux function (left) initial (right) at iteration 20

(e) Heat equation result (f) Perona and Malik anisotropic diffusion equation result

Figure 2: Diffusion process for a simple synthetic image. (a) Original synthetic image of size 31× 31, a

square (2× 2, gray value = 1) at the center with uniform background (gray value = 0). (b) Input image

obtained by adding Gaussian noise σn = 30 to the original image. This noisy image is used as the initial

value u0. (c) Diffusion coefficient C1 in (2), with K = 20. This acts as a discontinuity detector and stops

the diffusion spread across edges. (d) Flux function C1(|∇u|) · |∇u|. (e) Result of heat equation with

20 iterations in (left) image (right) surface format. (f) Result of PMADE Eqn. (1) with 20 iterations in

(left) image (right) surface format. The white dotted lines indicate the influence region at the center.

(For interpretation of color in this figure, the reader is referred to the web version of this article.)
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(a) φ (b) φ′ (c) φ′(s)/s

Figure 3: Well known regularization functions and their qualitative shapes: (a) Regularization (b) Flux

(c) Diffusion coefficients. Convex functions: Tikhonov, total variation (TV). Non-convex functions:

Perona-Malik regularizations φ1-PM1, φ2-PM2 see Eqns. (12). Normalized to [0, 1] for visualization.

Perona-Malik anisotropic diffusion equation (PMADE for short) thus balances forward and backward

diffusion regimes using a tunable K, the contrast parameter [48, 57]. These two competing requirements

constitute a common theme in many PDE based image restoration models [76, 18, 16, 19]. Moreover,

from Eqn. (6) we see that Eqn. (1) is a time dependent nonlinear diffusion equation with preferential

smoothing in the tangential direction T than normal N to edges. This property has been exploited in

image processing and in particular in edge preserving image restoration [9].

The PDE models of Perona-Malik type have strong connections to variational energy minimization

problems and this fact is exploited by many to design various diffusion functions [9, 60]. Following [71],

consider the next minimization problem for image restoration:

min
u
E(u) =

β

2

∫
Ω

(u0(x)− u(x))2 dx+ α

∫
Ω

φ(|∇u(x)|) dx. (9)

Here α ≥ 0 is regularization parameter, β ≥ 0 fidelity parameter, and φ : R → R+ is an even function,

which is called the regularization function. The a priori constraint on the solution is represented by the

regularizing term φ(|∇u|), and the shape of the regularization determines the qualitative properties of

solutions [52]. The formal gradient flow associated with the functional E(u) is given by,

∂u

∂t
= α div

(
φ′(|∇u|)
|∇u|

∇u
)
− β (u− u0). (10)

We recall two primary choices used widely as regularization functions in various image processing

tasks.

• φ(s) = s2: This corresponds to the classical Tikhonov regularization method [70]. In this case the

Euler-Lagrange equation (written with artificial time evolution, see Eqn. (10)) is,

∂u

∂t
= α∆u− β (u− u0),
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(a) Original (b) Noisy

(c) PMADE, T = 20 (d) PMADE, T = 100

(e) TV-PDE, T = 100 (f) TV-PDE, T = 200

Figure 4: Advantages and disadvantages of TV-PDE and PMADE (with C1 as the diffusion coefficient

and K = 20) models on a synthetic piecewise constant Circles image. Noisy image is obtained by adding

Gaussian noise σn = 30. |i|ii|iii|iv|: We show in each sub-figure (i) gray-scale image (ii) surface (pixel

values as z values) (iii) level lines (only top 4 level lines are shown for clarity), and (iv) contour maps to

highlight jaggedness of level lines and staircasing artifacts. Better viewed online and zoomed in.

which is an isotropic diffusion equation and hence does not preserve edges, see Figure 2(e). This

heat flow provides a linear scale space and has been widely used in various computer vision tasks

such as feature point detection and object identification [65].

• φ(s) = s: To reduce the smoothing when the magnitude of the gradient is high, Rudin et al., [66]

introduced total variation (TV) based scheme by setting φ(s) = s. In this case the Euler-Lagrange

equation is written as (see Eqn. (10)),

∂u

∂t
= div

(
∇u
|∇u|

)
− β (u− u0), or

∂u

∂t
= div

 ∇u√
ε+ |∇u|2

− β (u− u0), (11)

where ε > 0 is a small number added to avoid numerical instabilities in discrete implementations.

In [18], the existence and uniqueness of the TV minimization is proved in the space of functions

of bounded variation (BV), and the corresponding gradient flow is treated in [7], see also [27, 31,

5, 6, 15, 45] and Remark 10 below. But this global TV model suffers from staircasing and blocky

effects in the restored image [52]. Also, sharp corners will be rounded and thin features are removed

under this regularization model. To see this, let χB be the indicator function of B ⊂ RN a bounded
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set with Lipschitz boundary. Then the total variation term in the regularization functional (9),∫
|∇χB | is the perimeter of the set B. This shows that TV regularization penalizes edge lengths

of an image. Note that this TV diffusion PDE (11) is a borderline case of anisotropic diffusion

PMADE in Eqn. (1) with C(s) = s−1/2, a singular diffusion model.

It is easy to see that the Eqn. (10) almost coincides with the Perona-Malik anisotropic PDE (1) for

φ′(s) = C(s2)s, cf. [54], and the difference between the two equations is the lower order term coming

from the data fidelity in the regularization functional (9). For edge preservation we need to work with

functions φ with at most linear growth at infinity, cf. (8). For example, the Perona-Malik diffusion

coefficients (2), up to multiplicative constants, correspond to the following non-convex regularization

functions (see Figure 3(a), denoted as PM1 and PM2),

φ1(|∇u(x)|) = 1− exp

(
−
(
|∇u(x)|
K

)2
)
, φ2(|∇u(x)|) = log

(
1 +

(
|∇u(x)|
K

)2
)
. (12)

Figure 4 shows an experimental analysis of PMADE (1) against TV PDE (11) on a synthetic image

which consist of various circles with constant pixel values. This piecewise constant image represents a

near ideal scenario and both the PMADE (T = 20, 100) and TV-PDE (T = 100, 200) results indicate

over-smoothing and staircasing artifacts.

Several studies [68, 60, 61, 56, 63, 62, 64] have introduced spatially adaptive regularization functions

to reduce staircasing/blocky artifacts created by the classical TV and PMADE schemes. Such adaptive

methods can be written as an energy minimization of the following form (see, e.g., [68]),

min
u
E(u) = β

∫
Ω

(u0(x)− u(x))2 dx+

∫
Ω

α(x) |∇u(x)| dx. (13)

where the function α(·) self adjusts itself according to an estimate of edge information from each pixel.

Since we want to reduce the regularization/smoothing effect of (9) near edges, hence α(x) is chosen to

be inversely proportional to the likelihood of the presence of an edge. For example, the original function

proposed in [68] is,

α(x) =
1

ε+ |∇Gσ ∗ u0(x)|
, ε > 0. (14)

The term in the denominator provide an estimate of edges from the input image u0 at scale σ using the

Gaussian kernel Gσ filtered gradients. Introduction of such a spatially adaptive parameter, which self

adjusts according to the smoothed gradient of the image, reduces the TV flow in homogenous regions

thereby alleviating the staircasing problem. In [20], the existence and uniqueness of the functional

satisfying (13) is proved under the weighted TV norm. An edge indicator function of the form (14) can

also be introduced directly in the PDE of the form (10). For example, using it in the PMADE (1), we

write adaptive PMADE as

∂u(x, t)

∂t
= div

(
C(|∇u(x, t)|2)

ε+ |∇Gσ ∗ u0(x)|
∇u(x, t)

)
. (15)
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(a) Original (b) Noisy

(c) Non-adaptive PMADE, (15), T = 20 (d) Non-adaptive PMADE, (15), T = 100

(e) Adaptive PMADE, (16), T = 20 (f) Adaptive PMADE (16), T = 100

Figure 5: Using updated edge indicator function results in better final restoration in PMADE (with C1
diffusion coefficient and K = 20). Shown here are the final restoration results at iterations T = 20, 100

for non-adaptive PMADE (15) and adaptive PMADE (16). |i|ii|iii|iv|: We show in each sub-figure (i)

gray-scale image (ii) edge map (heat colormap) (iii) close-up gray-scale image and (iv) close-up edge map.

Note that the smoothness parameter ε = 10−6, is used in this example, see Eqn. (14). Better viewed

online and zoomed in.

It is advantageous to use the current estimate image u in the edge indicator α(x) in (15) instead of the

initial noise image u0, that is

∂u(x, t)

∂t
= div

(
C(|∇u(x, t)|2)

ε+ |∇Gσ ∗ u(x, t)|
∇u(x, t)

)
. (16)

See Figure 5 for an illustration of using adaptive weight function in the final restoration results on a

synthetic image with multiple objects. As can be seen using an adaptive edge indicator keeps the edges

through higher iterations. Moreover, integration of two scales (|∇u| corresponds to scale σ = 0 and

|∇Gσ ∗ u| to scale σ) in one term, see Eqn. (17) below, can regularize the boundaries of the level set of u0

while at the same time keeping more features. Numerical experiments will support our claims about the

advantage of interaction of two scales, see Section 4. Also we use the nonlinear function φ (see Eqn. (9))

to control the growth adaptively as mentioned. Thus the general multi-scale minimization problem now

reads as

min
u
E(u) = β

∫
Ω

(u(x)− u0(x))2 dx+

∫
Ω

φ(∇u(x))

ε+ |∇Gσ ∗ u(x)|
dx. (17)
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A well known method to prove the existence and uniqueness of minimizer to this problem (17) is to obtain

the lower semicontinuity of the functional E using the properties of regularizing function φ.

Remark 1. The functional (17) with φ(∇u) replaced by |Gσ ∗ ∇u|2, and with additional quadratic reg-

ularization term (η
∫

Ω
|∇u|2 dx), which is related to robust Geman-Mclure model [30], was considered

in [41]. The arguments in [41] can also be extended to the general minimization problem (17).

Motivated by the regularization functional (17) and previous discussions, we consider here a general

forward-backward PDE of the following form1,

∂u

∂t
= div

(
ϕy(x, |∇u|)∇u

1 +K g(|Gσ ∗ ∇u|)

)
. (18)

Here ϕy is the partial derivative of ϕ(x, y) with respect to the second variable y = |∇u|. The vari-

ational problem could involve explicit dependence on the function u in the regularization term, φ =

φ(x, u(x),∇u(x)), with the corresponding changes in the evolutionary problem, but we will not study

this general case in this article. For the existence and uniqueness of a solution u, we need additional

assumptions on ϕ which will be discussed at the end of this section and in Section 3. Observe also that,

in the x- and u- independent case, φ and ϕ are related through φ′(s) = sϕ′(s).

Remark 2. The fidelity parameter β in (17) can be tuned to fit the the problem at hand [32, 64], i.e,

D(u, u0) =

∫
Ω

β(x)(u(x)− u0(x))p dx, p = 1, 2.

The major questions we are now concerned with are:

(1) What are the conditions on ϕ to obtain existence of solutions for the PDE (18)?

(2) What are the admissible inverse mollifier g functions?

The answer to the first question depends on the answer to the second. Let us briefly discuss this issue;

more details will be given in the next section. If g is merely continuous, then we admit power growth,

e.g., ϕ(x, y) = yp, 1 < p < +∞, and logarithmic growth ϕ(x, y) = ln y. If g is locally Lipschitz, then

we need a sort of strong parabolicity condition involving ϕ. If the derivative of g is sub-linear near zero

(that is, g may be of order sp, p ≥ 2, for small s), then ϕ(x, y) enjoys a wide range of possibilities with

minor restrictions such as coercivity and weak parabolicity.

3 Existence of various types of solutions

Here we study the equation
∂u

∂t
= div

(
ϕy(x, |∇u|)∇u

1 +K g(|G ∗ ∇u|)

)
, (19)

1We will omit the image fidelity term for brevity, since this lower order term does not cause any special difficulties in

the mathematical analysis of the model.
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which is slightly more general than Eqn. (18) in the sense that we admit arbitrary space dimension n and

generic convolution kernels G.

Throughout this section, we employ Einstein’s summation convention. The inner product in Rn,

n ∈ N, is denoted by a dot. The symbols C(J ;E), Cw(J ;E), L2(J ;E) etc. denote the spaces of

continuous, weakly continuous, quadratically integrable etc. functions on an interval J ⊂ R with values

in a Banach space E. We recall that a function u : J → E is weakly continuous if for any linear continuous

functional g on E the function g(u(·)) : J → R is continuous.

We are going to introduce three different concepts of generalized solution to Eq. (19): viscosity,

weak and dissipative. The relation between different kinds of solution is not an issue here, since our

goal is to construct at least one kind of solution for the widest possible range of assumptions on ϕ. The

interrelation question is very delicate, but it is true that a strong, regular solution, if it exists, is also a

viscosity, dissipative, or weak solution. Moreover, in these circumstances, no other viscosity or dissipative

solution may exist, but a weak solution might. On the other hand, if there are no strong solutions, then

these classes of solutions intersect but do not coincide, e.g., there might exist weak solutions which are

neither viscosity nor dissipative. Under additional assumptions, one can prove that a weak solution is

also dissipative. Roughly speaking, dissipative is the weakest notion of the three, and viscosity is the

strongest. Nonetheless, in the logarithmic case, only weak solutions are proven to exist, and for the

infinity-Laplacian flow (which however does not fit into our framework here) we only know that viscosity

solutions exist.

3.1 Viscosity solutions

We denote

aij(x, p) = ϕy(x, |p|)δij + ϕyy(x, |p|)pipj
|p|

, (20)

h(q) =
1

1 +Kg(|q|)
. (21)

Here δij is Kronecker’s delta, and x, p, q ∈ Rn. In this subsection we consider the case of spatially periodic

boundary conditions [2] for Eq. (19). Namely, we assume that there is an orthogonal basis {bi} in Rn so

that

u(·, x) = u(·, x+ bi), x ∈ Rn, i = 1, . . . , n. (22)

The problem is complemented with the initial condition

u(0, x) = u0(x), (23)

where x ∈ Rn, and u0 is Lipschitz and satisfies (22). Of course, ϕ (and thus a) should also satisfy the

same spatial periodicity restriction (with respect to x).
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We also make the following assumptions:

ϕy, ϕyx, ϕyxx are continuous and bounded functions, (24)

ϕyy, ϕyyx are continuous for y 6= 0, and satisfy (25)

sup
x∈Rn

lim
y→0
|y|(|ϕyy(x, y)|+ |ϕyyx(x, y)|) = 0. (26)

aij(x, p)ξiξj ≥ C
[
mod

(
∂a(x, p)

∂xk

)]
ij

ξiξj , k = 1, . . . , n, ξ, x, p ∈ Rn, (27)

√
h ∈W 1

∞(Rn), h ∈W 2
∞(Rn), G ∈W 3

1 (Rn). (28)

Here and below C stands for a generic positive constant, which can take different values in different lines.

The operator mod (see its exact definition in [64]) maps any symmetric matrix to its suitably defined

“positive-semidefinite part”. Observe also that if

g ∈W 2
∞,loc(0,+∞), g(s) ≥ 0, |g′(s)| = O(s),

|g′(s)| ≤ C(1 + g(s))3/2, |g′′(s)|+ |g
′(s)|
s
≤ C(1 + g(s))2, (29)

then the required conditions for h are satisfied.

Definition 1. A function u from the space

C([0, T ]× Rn) ∩ L∞(0, T,W 1
∞(Rn)) (30)

is a viscosity sub-/supersolution to (19), (22), (23) if, for any φ ∈ C2([0, T ]×Rn) and any point (t0, x0) ∈

(0, T ]× Rn of local maximum/minimum of the function u− φ, one has

∂φ

∂t
− div

(
ϕy(x, |∇φ|)∇φ

1 +K g(|G ∗ ∇u|)

)
≤ 0 / ≥ 0, (31)

and equalities (22), (23) hold in the classical sense. A viscosity solution is a function which is both a

subsolution and a supersolution.

Theorem 1. i) Problem (19), (22), (23) has a viscosity solution in class (30) for every positive T .

Moreover,

inf
Rn
u0 ≤ u(t, x) ≤ sup

Rn

u0. (32)

ii) Assume that ∣∣∣∣(√a(x, p)−
√
a(z, p)

)
ij

∣∣∣∣ ≤ C|x− z|, x, z, p ∈ Rn. (33)

Here
√

is the square root of a positive-semidefinite symmetric matrix [42]. Then the solution is unique.

Moreover, for any two viscosity solutions u and v to (19), (22), the following estimate holds

sup
Rn

|u(t, ·)− v(t, ·)| ≤ Φ(t) sup
Rn

|u(0, ·)− v(0, ·)| (34)

with some non-decreasing continuous scalar function Φ dependent on u and v.
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Proof. (Sketch) We follow the strategy of [64, Section 3], where we studied a related problem, and refer

to it for further details. Note first that (32) is a direct consequence of the definition of viscosity solution:

e.g., to get the second inequality, one can put φ = δt, to derive that the function u(t, x)− δt attains its

global maximum at t = 0, and to let δ → +0.

Now, we need to formally establish a Bernstein estimate for supRn |∇u|. Consider the formal parabolic

operator

L =
∂

∂t
− h(u ∗ ∇G)aij(x,∇u)

∂2

∂xi∂xj

− h(u ∗ ∇G)
∂aij(x,∇u)

∂pl
uxixj

∂

∂xl
− h(u ∗ ∇G)ϕyxl

(x, |∇u|) ∂

∂xl

− h(u ∗ ∇G)
ϕyyxi

(x, |∇u|)uxl
uxi

|∇u|
∂

∂xl

−∇h(u ∗ ∇G) ·
(
u ∗ ∂∇G

∂xi

)
ϕy(x, |∇u|) ∂

∂xi

−∇h(u ∗ ∇G) ·
(
u ∗ ∂∇G

∂xi

)
ϕyy(x, |∇u|)uxl

uxi

|∇u|
∂

∂xl
. (35)

Fix T . Differentiating (19) with respect to each xk, k = 1, . . . , n, multiplying by 2uxk
, and adding the

results, we get

L(|∇u|2) = −2h(u ∗ ∇G)aij(x,∇u)uxkxiuxkxj + 2∇h(u ∗ ∇G) ·
(
u ∗ ∂∇G

∂xk

)
aij(x,∇u)uxixjuxk

+ 2h(u ∗ ∇G)
∂aij(x,∇u)

∂xk
uxixj

uxk

+ 2∇h(u ∗ ∇G) ·
(
u ∗ ∂∇G

∂xk

)
ϕyxi

(x, |∇u|)uxi
uxk

+ 2h(u ∗ ∇G)ϕyxixk
(x, |∇u|)uxi

uxk

+ 2
∂2h

∂qj∂ql
(u ∗ ∇G)

(
u ∗ ∂2G

∂xi∂xj

)(
u ∗ ∂2G

∂xk∂xl

)
ϕy(x, |∇u|)uxi

uxk

+ 2∇h(u ∗ ∇G) ·
(
u ∗ ∂2∇G

∂xi∂xk

)
ϕy(x, |∇u|)uxi

uxk

+ 2∇h(u ∗ ∇G) ·
(
u ∗ ∂∇G

∂xi

)
ϕyxk

(x, |∇u|)uxiuxk
. (36)

Using [64, Lemma 1], it possible to get rid of the second-order terms in the right-hand side, ending

up with

L(|∇u|2) ≤ C(1 + |∇u|2), (37)

which by maximum principle implies

|∇u|2 ≤ C. (38)

We can now approximate our problem by well-posed uniformly parabolic problems in the sense of [47,

Chapter 5], namely, we need to separate h and the eigenvalues of a(x, p) away from zero, and to make
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a(x, p) diagonal for large |p|, simultaneously keeping all involved constants uniformly bounded and the

constant from (27) bounded away from zero. We obtain the required viscosity solution by passing to the

limit in the viscosity sense, employing the general consistency/stability results from the viscosity solution

theory [22] and the Arzelà-Ascoli compactness provided by the Bernstein estimate, cf. [3, 2, 10, 64] with

similar considerations. The uniqueness of solutions follows from the stability inequality (34), which may

be shown by mimicking the proofs of similar bounds in [3, 2, 64].

3.2 Dissipative solutions

The concept of dissipative solution (see [51, 50, 75, 73, 23, 29, 63] and an illustrative discussion in [72])

allows us to significantly relax the assumptions on ϕ and g with respect to the viscosity solution case.

In this subsection we use Neumann’s boundary condition. The Dirichlet boundary conditions can also

be treated with some technical adjustments. Let Ω be a bounded open domain in Rn, n ∈ N, with a

regular boundary ∂Ω. We thus consider (19), (23) to be coupled with

∂u

∂ν
= 0, x ∈ ∂Ω. (39)

The symbol ‖ · ‖ will stand for the Euclidean norm in L2(Ω). The corresponding scalar product will

be denoted by parentheses (·, ·). We will also use this notation for duality between Lp(Ω) and Lp/p−1(Ω).

We assume that for every natural number N , the functions ϕ,ϕy are continuous and bounded on

Ω× (1/N,N). The parabolicity conditions (24)–(27) are replaced by a weaker one:

(ϕy(x, |p1|)p1 − ϕy(x, |p2|)p2) · (p1 − p2) ≥ 0, x ∈ Ω, p1, p2 ∈ Rn\{0}. (40)

We also put weaker assumptions on g, h and G. Namely, h is merely needed to be Lipschitz, which

holds, e.g., if g is non-negative, locally Lipschitz and |g′| ≤ C(1 + g)2, whereas G should be of class

W 1
2 (Rn).

We point out that G ∗ ∇u means the convolution ∇G ∗ ũ, where ũ is an appropriate linear and

continuous extension2 of u onto Rn which may depend on the boundary condition (cf. [17]).

Introduce the following formal expression

Φ(v)(t, x) =
ϕy(x, |∇v(t, x)|)∇v(t, x)

1 +K g(|G ∗ ∇v| (t, x))
. (41)

Definition 2. Let u0 ∈ L2(Ω). A function u from the class

u ∈ Cw([0,∞);L2(Ω)) ∩ L1(0,∞;W 1
1 (Ω)) (42)

2The simplest possible extension is letting ũ to be zero outside of Ω. Another option is to use Hestenes-Seeley-like

extensions [1] which conserve the Sobolev class of u.
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is called a dissipative solution to problem (19), (23), (39) if, for all regular3 functions v : [0,∞)×Ω→ R

satisfying the Neumann boundary condition (39) and all non-negative moments of time t, one has

‖u(t)− v(t, ·)‖2

≤ γt‖u0 − v(0, ·)‖2 −
t∫

0

2γt−s
[(

Φ(v(s, ·)),∇u(s)−∇v(s, ·)
)

+

(
∂v(s, ·)
∂s

, u(s)− v(s, ·)
)]

ds, (43)

where γ is a certain constant4 depending on g, G, ϕ and v (in particular, γ=1 provided g ≡ 0).

Usual argument [72] shows that these dissipative solutions possess the weak-strong uniqueness prop-

erty (any regular solution is a unique dissipative solution).

Theorem 2. Assume

lim
y→+∞

inf
x∈Ω

ϕy(x, y)y = +∞, (44)

lim
y→0

sup
x∈Ω

ϕy(x, y)y = 0. (45)

Assume also that either we have strong parabolicity, namely,

(ϕy(x, |p1|)p1 − ϕy(x, |p2|)p2) · (p1 − p2) ≥ C|p1 − p2|2, x ∈ Ω, p1, p2 ∈ Rn\{0}, (46)

or better regularity of h and G,

h ∈W 2
∞(Rn), G ∈W 2

2 (Rn). (47)

Let u0 ∈ L2(Ω). Then there exists a dissipative solution to problem (19), (23), (39).

Remark 3. In the case when (47) but not (46) holds, the test functions for (43) should additionally

satisfy the condition

div
(
ϕy(x, |∇v|)∇v

)
∈ L∞(0,+∞;L2(Ω)), (48)

which, by the way, automatically holds provided ϕ is more regular, e.g., satisfies the assumptions (24) –

(26) of the previous subsection.

Remark 4. The total variation flow [7] corresponds to the case g ≡ 0, ϕ(x, y) = ln y, so it satisfies (40)

but is ruled out by (44) and (45). We will consider this particular form of ϕ (with generic g) in the next

subsection (cf. Remark 10). The existence of dissipative solutions for the total variation flow is an open

problem. We however believe that the hypotheses of Theorem 2 may be significantly weakened.

Proof of Theorem 2. To begin with, we formally derive some a priori bounds and inequality (43) for the

solutions to problem (19), (23), (39). Firstly, we formally take the L2(Ω)-scalar product of (19) with

2u(t), and integrate by parts:

d

dt
‖u‖2 +

(
2ϕy(x, |∇u|)∇u

1 +K g(|G ∗ ∇u|)
,∇u

)
= 0. (49)

3Here “regular” means that v and ∇v are uniformly bounded and sufficiently smooth, and |∇v| 6= 0 a.e. in (0,∞)× Ω.
4The exact expression for γ follows from the proof below.
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Since the second term is non-negative due to (40) and (45), (49) a priori implies that

‖u‖L∞(0,+∞;L2) ≤ ‖u0‖. (50)

Thus,

|G ∗ ∇u| ≤ ‖∇G‖‖ũ‖ ≤ C‖u‖ ≤ C. (51)

Consider the scalar function Ψ(y) = infx∈Ω ϕy(x, y)y2, y > 0, Ψ(0) = 0. From (49) and (51) we can

conclude that
+∞∫
0

∫
Ω

Ψ(|∇u|) dx dt ≤ C‖u0‖. (52)

The function Ψ(y) is non-negative, continuous (for y = 0 this follows from (45), for positive y it can

be derived from the compactness of Ω) and satisfies the condition limy→+∞Ψ(y)/y = +∞. By the

Vallée-Poussin criterion [26], ∇u a priori belongs to a certain weakly compact set in L1(0, T ;L1) for any

T > 0.

Fix a regular test function v : [0,∞) × Ω → R satisfying the Neumann boundary condition (39).

Adding (19) with the identity

−∂v
∂t

= −div

(
ϕy(x, |∇v|)∇v

1 +K g(|G ∗ ∇v|)

)
+ div Φ(v)− ∂v

∂t
,

which can be understood, e.g., in the sense of distributions, and formally multiplying by 2[u(t)− v(t)] in

L2(Ω), we find

d

dt
‖u− v‖2 + 2

(
ϕy(x, |∇u|)∇u− ϕy(x, |∇v|)∇v

1 +K g(|G ∗ ∇u|)
,∇(u− v)

)
= 2 ([h(G ∗ ∇v)− h(G ∗ ∇u)]ϕy(x, |∇v|)∇v,∇(u− v))

− 2 (Φ(v),∇u−∇v)− 2

(
∂v

∂t
, u− v

)
. (53)

If (46) holds, then, due to (51), (45) and boundedness of Ω, we have

2 ([h(G ∗ ∇v)− h(G ∗ ∇u)]ϕy(x, |∇v|)∇v,∇(u− v))− 2

(
ϕy(x, |∇u|)∇u− ϕy(x, |∇v|)∇v

1 +K g(|G ∗ ∇u|)
,∇(u− v)

)
≤ C‖∇h‖L∞‖G ∗ ∇(u− v)‖L∞‖∇(u− v)‖L1

− C1‖∇(u− v)‖2

≤ C‖∇G‖‖u− v‖‖∇(u− v)‖ − C1‖∇(u− v)‖2 ≤ C‖u− v‖2, (54)

where C1 is the doubled constant from (46).
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If (47) and (48) hold, then, by virtue of (40), we get

2 ([h(G ∗ ∇v)− h(G ∗ ∇u)]ϕy(x, |∇v|)∇v,∇(u− v))− 2

(
ϕy(x, |∇u|)∇u− ϕy(x, |∇v|)∇v

1 +K g(|G ∗ ∇u|)
,∇(u− v)

)
≤ 2

(
div
[
[h(∇G ∗ ũ)− h(∇G ∗ ṽ)]ϕy(x, |∇v|)∇v

]
, u− v

)
= 2 ([h(∇G ∗ ũ)− h(∇G ∗ ṽ)] div[ϕy(x, |∇v|)∇v], u− v)

+ 2

([
∇h(∇G ∗ ũ)

(
∂∇G
∂xi

∗ ũ
)
−∇h(∇G ∗ ṽ)

(
∂∇G
∂xi

∗ ṽ
)]

ϕy(x, |∇v|) ∂v
∂xi

, u− v
)

≤ C‖∇G ∗ (ũ− ṽ)‖L∞‖div[ϕy(x, |∇v|)∇v]‖‖u− v‖

+ 2

(
[∇h(∇G ∗ ũ)−∇h(∇G ∗ ṽ)]

(
∂∇G
∂xi

∗ ũ
)
ϕy(x, |∇v|) ∂v

∂xi
, u− v

)
+ 2

(
∇h(∇G ∗ ṽ)

(
∂∇G
∂xi

∗ (ũ− ṽ)

)
ϕy(x, |∇v|) ∂v

∂xi
, u− v

)
≤ C‖∇G‖‖div[ϕy(x, |∇v|)∇v]‖‖ũ− ṽ‖‖u− v‖

+ C‖∇G‖‖ũ‖‖∇G‖W 1
2
‖ũ− ṽ‖‖u− v‖+ C‖∇G‖W 1

2
‖ũ− ṽ‖‖u− v‖

≤ C‖u− v‖2. (55)

Note that this C can be set to be zero when g ≡ 0.

Thus, in both cases, there is γ > 0 such that

d

dt
‖u− v‖2 ≤ (ln γ)‖u− v‖2 − 2 (Φ(v),∇u−∇v)− 2

(
∂v

∂t
, u− v

)
. (56)

By Gronwall’s lemma, we infer (43).

We recall the following abstract observation [69, 78]. Assume that we have two Hilbert spaces,

X ⊂ Y, with continuous embedding operator i : X → Y , and i(X) is dense in Y . The adjoint operator

i∗ : Y ∗ → X∗ is continuous and, since i(X) is dense in Y , one-to-one. Since i is one-to-one, i∗(Y ∗) is

dense in X∗, and one may identify Y ∗ with a dense subspace of X∗. Due to the Riesz representation

theorem, one may also identify Y with Y ∗. We arrive at the chain of inclusions:

X ⊂ Y ≡ Y ∗ ⊂ X∗. (57)

Both embeddings here are dense and continuous. Observe that in this situation, for f ∈ Y, u ∈ X, their

scalar product in Y coincides with the value of the functional f from X∗ on the element u ∈ X:

(f, u)Y = 〈f, u〉. (58)

Such triples (X,Y,X∗) are called Lions triples.

We will work with the Lions triple (Hm(Ω), L2(Ω), (Hm)
∗
(Ω)) where m > 1 + n

2 is a fixed number.

Denote by A the Riesz bijection between the spaces Hm and (Hm)
∗

(which are not identified). We will

employ the Sobolev embedding Hm ⊂ C1, which is compact.
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Consider the following approximate problem, where the first equality is understood in the sense of

the space (Hm)∗, whereas the second one is in the sense of the space L2:

du

dt
+Q(u) + εAu = 0, u|t=0 = u0. (59)

The operator Q : Hm → (Hm)∗, which respects the Neumann boundary condition, is determined by the

duality

〈Q(u), w〉 =

(
ϕy(·, |∇u|)∇u

1 +K g(|G ∗ ∇u|)
,∇w

)
, ∀w ∈ Hm.

We do not use a notation for partial time derivative since we treat (59) as an ODE in a Banach space.

The operator Q is bounded and continuous from C1 to (Hm)∗. Note that there is no loss of continuity

as ∇u → 0 due to (45). Therefore, Q : Hm → (Hm)∗ is a compact operator. This gives opportunity to

secure existence of solutions to (59) in the class

L2(0,+∞;Hm) ∩W 1
2 (0,+∞; (Hm)∗) ∩ Cb([0,+∞);L2) (60)

by an application of the Leray-Schauder degree theory (a systematic approach to parabolic problems of

kind (59) may be found, e.g., in [78]).

Repeating the arguments above, we deduce, for a fixed test function v, that the approximate solutions

satisfy the inequality

d

dt
‖u− v‖2 ≤ (ln γ)‖u− v‖2 − 2 (Φ(v),∇u−∇v)− 2

(
∂v

∂t
, u− v

)
− 2ε〈Au, u− v〉. (61)

An application of Cauchy’s inequality yields

−2〈Au, u− v〉 ≤ 1

2
〈Av, v〉.

Consequently, the approximate solutions satisfy inequality (43) up to a term of order O(ε).

Due to the observations above, without loss of generality the approximate solutions converge weakly

in L1(0, T ;W 1
1 ) and weakly-* in L∞(0, T ;L2) as ε→ 0 for any T > 0. This is enough for passing to the

limit in inequality (43), since its left-hand side is the only term which is nonlinear in u, but this term is

lower-semicontinuous (we refer to [51, 72] for detailed passages to the limit in some dissipative solution

inequalities).

3.3 Weak and strong solutions

For ϕ of power and logarithmic growth, we can show existence of weak solutions. Moreover, in the first

case the solutions are locally Lipschitz and their gradients are Hölder continuous. We maintain Ω to

be a bounded open domain in Rn with a regular boundary. We assume that g : [0,+∞) → [0,+∞) is

continuous5, and G ∈W 2
2 (Rn).

5Thus, for weak solutions, g is not needed to be locally Lipschitz.
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Firstly, let ϕ(x, y) = c1y
p−1, p > 1, c1 > 0. To simplify the presentation, in the sequel we assume

that c1 = 1. We keep the Neumann boundary condition, but generalization to the Dirichlet case is

straightforward.

Definition 3. A function u from the class

u ∈ Cw([0, T ];L2(Ω)) ∩ Lp(0, T ;W 1
p (Ω)) ∩W 1

p/p−1(0, T ; [L2 ∩W 1
p (Ω)]∗) (62)

is called a weak solution to problem (19), (39) if, for all v ∈ L2(Ω)×W 1
p (Ω) and a.a. t ∈ (0, T ), one has〈

du

dt
, v

〉
+

(
(p− 1)|∇u|p−2∇u
1 +K g(|G ∗ ∇u|)

,∇v
)

= 0. (63)

Theorem 3. Let ϕ(x, y) = yp−1, p > 1, u0 ∈ L2(Ω). There exists a weak solution u to (19), (39)

satisfying (23).

Proof. (Sketch) Although the operator

−div

(
|∇u|p−2∇u

1 +K g(|G ∗ ∇u|)

)
is not monotone, it is still possible to adapt the Minty-Browder technique to prove Theorem 3. The

key point is to pass to the limit. Let {uk} be a sequence of solutions to (59) with ε = εk → 0. Since

〈Auk, uk〉 ≥ 0, every uk satisfies the a priori estimates (50), (51) and (52) (with T instead of +∞). We

have to prove that its limit u (in the weak-* topology of L∞(0, T ;L2)) is a solution. Estimates (50), (51)

and (52) imply that the solutions uk belong to a uniformly bounded set in the space (62). Owing to [67,

Corollary 4], without loss of generality we may assume that uk → u in C([0, T ]; [W 1
2 (Ω)]∗), so the initial

condition is preserved by the limit. One can check that the extension operators mentioned in the previous

subsection are continuous from [W 1
2 (Ω)]∗ to [W 1

2 (Rn)]∗. Therefore, ũk → ũ in C([0, T ]; [W 1
2 (Rn)]∗). Thus,

G ∗ ∇uk → G ∗ ∇u in C([0, T ];L∞(Ω)). The operator G ∗ ∇ : L2(Ω) → W 1
∞(Ω) ⊂ C(Ω) is continuous.

This implies that G ∗ ∇uk → G ∗ ∇u in C([0, T ]× Ω)). Due to the continuity of the Nemytskii operator

on the space of continuous of functions [46], we conclude that h(G ∗ ∇uk) → h(G ∗ ∇u) uniformly on

[0, T ] × Ω. Then we can proceed similarly to the classical monotonicity argument [25, 28, 49] but with

necessary changes.

Remark 5. In a similar way, Theorem 3 may be generalized onto the case of more general ϕ(x, y) with

growth as y →∞ and decay as y → 0 of order |y|p−1.

We next obtain the local Lipschitz-regularity of a weak solution, as well as the local Hölder continuity

of its gradient.

Theorem 4. Assume that h is Lipschitz and u is a weak solution to (19), (23), (39), which is locally

bounded, together with its gradient. Then there exists α ∈ (0, 1) such that for any compact set K ⊂
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(0, T )× Ω there is M > 0 so that

|u(t1, x1)− u(t2, x2)| ≤M
(
|x1 − x2|+

√
|t1 − t2|

)
, (t1, x1), (t2, x2) ∈ K (64)

and

|∇u(t1, x1)−∇u(t2, x2)| ≤M
(
|x1 − x2|+

√
|t1 − t2|

)α
, (t1, x1), (t2, x2) ∈ K. (65)

Remark 6. For the degenerate case p > 2 the behaviour of solutions is a purely local fact and the local

boundedness follows for any local weak solution. On the contrary, in the singular case 1 < p < 2, it must

be derived from global information and may require extra assumptions. Restricting the values of p to the

range
(

2n
n+2 , 2

)
suffices though. Note that for applications in imaging n = 2 and no extra assumption is

needed.

Remark 7. The constant M is determined by the parabolic distance from K to the parabolic boundary

of (0, T ) × Ω and by the supremum of u and ∇u on K, cf. [24, Chapter IX]. The constant α depends

exclusively on p and dimension.

Proof of Theorem 4. Equation (19) with ϕ(x, y) = yp−1 can be written in the form

∂u

∂t
= div

(
h̃(t, x)|∇u|p−2∇u

)
, (66)

where h̃ = (p−1)h(G∗∇u). Similarly to the proof of Theorem 3, one shows that G∗∇u is continuous on

[0, T ]×Ω. Therefore h̃ = (p−1)h(G∗∇u) is continuous and bounded from below by a positive constant.

Moreover, since h is Lipschitz, the partial derivatives ∂h̃
∂xi

= (p− 1)∇h(G ∗∇u) ·
(
∂∇G
∂xi
∗ ũ
)

are bounded.

Thus, the structure conditions of [24, Chapter VIII, pp. 217–218] are fulfilled. The local regularity of

the solution now follows from the general results of [24].

Concerning the optimal Lipschitz regularity of the weak solution we invoke the results of [14], with p

constant. Indeed, condition (7) on page 912 of [14] holds since h̃ is bounded above and below by positive

constants and Lipschitz in space. Moreover, h̃ is Hölder continuous in time because the same holds for

the nonlocal term G ∗∇u, due to the fact that u is Hölder continuous in time up to the lateral boundary

∂Ω (see [24, Chapter III]).

Now we treat the logarithmic growth case. Again, just to simplify the presentation, we merely consider

ϕ(x, y) = ln y. We restrict ourselves to the Neumann boundary condition. Let M be the Banach space

of finite signed Radon measures on (0, T ) × Ω. It is the dual of the space C0((0, T ) × Ω) (the space

of continuous functions on (0, T ) × Ω that vanish at the boundary of this cylinder). For v ∈ M, and

Φ ∈ C([0, T ]× Ω), Φ ≥ 0, we define the weighted partial variation of v as

PVΦ(v) = sup
ψ∈C∞

0 ((0,T )×Ω;Rn): |ψ|≤Φ

〈v,divψ〉M×C0
. (67)
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Observe that if v ∈ L1(0, T ;W 1
1 (Ω)), then PVΦ(v) is equal to

∫ T
0

∫
Ω

Φ(t, x)|∇v(t, x)| dx dt.

The partial variation of v is

PV (v) = PV1(v). (68)

Define the “bounded partial variation space” BPV as{
v ∈M

∣∣∣‖v‖BPV := ‖v‖M + PV (v) < +∞
}
.

Owing to lower semicontinuity of suprema, we have

Proposition 1. For any non-negative function Φ ∈ C([0, T ] × Ω) and a weakly-* converging (in M)

sequence {vm} ⊂ BPV , one has

PVΦ(v) ≤ lim
m→+∞

inf PVΦ(vm). (69)

Using (69) with Φ ≡ 1, we can prove

Proposition 2. BPV is a Banach space.

Definition 4. A function u from the class

u ∈ Cw(0, T ;L2(Ω)) ∩BPV ∩W 1
∞(0, T ; [L2 ∩W 1

1 (Ω)]∗) (70)

is called a weak solution to problem (19), (39), (23) with ϕ(x, y) = ln y and u0 ∈ L2(Ω) if

i) there exists z ∈ L∞((0, T )× Ω;Rn), ‖z‖L∞((0,T )×Ω) ≤ 1, so that for all v ∈ L2 ∩W 1
1 (Ω),〈

du

dt
, v

〉
+
(
h(G ∗ ∇u)z,∇v

)
= 0, (71)

a.e. on (0, T );

ii) for all w ∈ L1(0, T ;W 1
1 (Ω)) ∩W 1

1 (0, T ;L2(Ω)), one has

‖u(T )− w(T )‖2 + 2

T∫
0

(
dw

ds
(s), u(s)

)
ds+ 2PVh(G∗∇u)(u)

≤ ‖u0 − w(0)‖2 + ‖w(T )‖2 − ‖w(0)‖2 + 2

T∫
0

(
h(G ∗ ∇u(s))z(s),∇w(s)

)
ds; (72)

iii) (23) holds in the space L2(Ω).

Remark 8. The motivation for this definition is the following one. Consider, formally, a pair (u, z) of

sufficiently smooth functions satisfying (71), (72), (23). Then

2

T∫
0

(
d(u− w)

ds
(s), (u− w)(s)

)
ds+ 2

T∫
0

(
dw

ds
(s), u(s)

)
ds+ 2

T∫
0

(
h(G ∗ ∇u(s)), |∇u(s)|

)
ds

≤ 2

T∫
0

(
dw

ds
(s), w(s)

)
ds− 2

T∫
0

(
du

ds
(s), w(s)

)
ds. (73)
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Hence,
T∫

0

(
h(G ∗ ∇u(s)), |∇u(s)|

)
ds ≤ −

T∫
0

(
du

ds
(s), u(s)

)
ds. (74)

Therefore,
T∫

0

(
h(G ∗ ∇u(s)), |∇u(s)|

)
ds ≤

T∫
0

(
h(G ∗ ∇u(s))z(s),∇u(s)

)
ds. (75)

On the other hand,

h(G ∗ ∇u)|∇u| ≥ h(G ∗ ∇u)z · ∇u. (76)

All this can be true if and only if

|∇u| = z · ∇u, (77)

i.e.

z =
∇u
|∇u|

= ϕy(·, |∇u|)∇u. (78)

Substituting expression (78) for z into (71) and integrating by parts, we infer∫
Ω

[
∂u

∂t
− div (h(G ∗ ∇u)ϕy(x, |∇u|)∇u)

]
v dx+

∫
∂Ω

h(G ∗ ∇u)ϕy(·, |∇u|)v ∂u
∂ν

dHn−1. (79)

Testing (79) by any v compactly supported in Ω, we deduce (19). Consequently, both integrals in (79) are

identically zero. By arbitrariness of v, Hn−1-a.e. in ∂Ω it holds

h(G ∗ ∇u)ϕy(·, |∇u|)∂u
∂ν

= 0. (80)

Since both h and ϕy are non-vanishing, the Neumann boundary condition (39) is satisfied.

Theorem 5. Let ϕ(x, y) = ln y, u0 ∈ L2(Ω). There exists a weak solution to (19), (39),(23).

Proof. Consider the approximate problem

du

dt
+Qε(u) + εAu = 0, u|t=0 = u0. (81)

The notation and functional framework are the same as in the previous subsection, see the proof of

Theorem 2. The operator Qε : Hm → (Hm)∗ is determined by the duality

〈Qε(u), w〉 =

(
∇u

(ε+ |∇u|)(1 +K g(|G ∗ ∇u|))
,∇w

)
, ∀w ∈ Hm.

The existence of solutions to (81) in class (60) is similar to the existence of solutions to (59) in the

previous subsection. Note that, since condition (45) is violated in the logarithmic case, we do not work

directly with (59). However, the a priori bounds (50), (51) and

T∫
0

∫
Ω

|∇u|2

ε+ |∇u|
≤ C (82)
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(an analogue of (52)) still hold, with C independent of ε. Estimate (82) easily yields

T∫
0

∫
Ω

|∇u| ≤ C. (83)

Let {uk} be a sequence of solutions to (81) with with ε = εk → 0. Set

zk =
∇uk

εk + |∇uk|
.

Fixing a sufficiently smooth function w : [0, T ]× Ω→ R, testing (81) with 2(uk − w), and integrating in

time, we deduce

‖uk(t)− w(t)‖2 + 2

t∫
0

(
dw

ds
(s), uk(s)

)
ds+ 2

t∫
0

(h(G ∗ ∇uk(s))zk(s),∇uk(s)) ds

= ‖u0 − w(0)‖2 + ‖w(t)‖2 − ‖w(0)‖2 + 2

t∫
0

(
h(G ∗ ∇uk(s))zk(s),∇w(s)

)
ds

− 2εk

t∫
0

〈Auk(s), uk(s)− w(s)〉 ds, t ∈ [0, T ], (84)

whence by Cauchy’s inequality

‖uk(t)− w(t)‖2 + 2

t∫
0

(
dw

ds
(s), uk(s)

)
ds+ 2

t∫
0

(h(G ∗ ∇uk(s)), |∇uk(s)|) ds

≤ ‖u0 − w(0)‖2 + ‖w(t)‖2 − ‖w(0)‖2 + 2

t∫
0

(
h(G ∗ ∇uk(s))zk(s),∇w(s)

)
ds

+ 2εk

t∫
0

(
h(G ∗ ∇uk(s)),

|∇uk(s)|
εk + |∇uk|

)
ds+

εk
2

t∫
0

〈Aw(s), w(s)〉 ds, t ∈ [0, T ]. (85)

Let us prove that the limit (u, z) = limk→+∞(uk, zk), which we without loss of generality assume to

exist in the weak-* topology of L∞(0, T ;L2) × L∞(0, T ;L∞), is a weak solution. Estimates (50), (51)

and (83) imply that the solutions uk belong to a uniformly bounded set in the space (62) with p = 1.

Similarly to the proof of Theorem 3, passing to a further subsequence if necessary, we have that uk → u

in C([0, T ]; [W 1
2 (Ω)]∗), and h(G ∗ ∇uk) → h(G ∗ ∇u) in C([0, T ] × Ω). We can pass to the limit in (23)

and in the fourth term of the right-hand side of (85). We can also pass to the limit in the first term of

inequality (85) without affecting its sign, since this term is lower-semicontinuous (cf. [51, 72] and the

proof of Theorem 2). We employ Proposition 1, triangle inequality and the above uniform convergence

of h(G ∗ ∇uk) in order to pass to the limit in the third term of (85). The remaining terms of (85) are

either linear, or constants, or of order O(εk), so the passage to the limit is now straightforward, and we

get (72).
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(a) Shapes (b) Brain

Figure 6: Synthetic Shapes and real Brain images used in our experiments. Noise-free (ground-truth)

images (left), and noisy images obtained by adding Gaussian noise level σn = 30 (right).

Testing (81) by a sufficiently smooth v : [0, T ]× Ω→ R, we derive〈
duk
dt

, v

〉
+
(
h(G ∗ ∇uk)zk,∇v

)
+ εk〈Av, uk〉 = 0. (86)

Passing to the distributional limit, we obtain (71). Finally, by density, the test functions v and w in (71)

and (72) can be taken from the spaces indicated in Definition 4.

Remark 9. In view of lack of monotonicity/accretivity, uniqueness of weak solutions in Theorems 3 and

5 is an open problem.

Remark 10. The total variation flow equation (g ≡ 0, ϕ(x, y) = ln y) was studied in [7] via monotonic-

ity/accretivity arguments such as the Crandall-Liggett theory. Since the operator

− div

(
|∇u|−1∇u

1 +K g(|G ∗ ∇u|)

)
(87)

is not accretive in any sense (for g 6= const), we had to use another approach. The case g ≡ 0 is not

excluded from our results: we have obtained existence of some weak solutions for the total variation flow

(with Neumann boundary condition). However, the advantage of the solutions u obtained in [7] is that

they belong to the space of functions of bounded variation BV (Ω) for a.a. t, and it is thus possible to

employ Anzellotti’s approach [8] to give more direct meaning to the Neumann boundary condition (39).

We conjecture that a theory of that kind (traces, Green formula, etc.) may be developed, for instance,

in the space L2((0, T ) × Ω) ∩ BPV , but for the purposes of this paper we opted to treat the boundary

condition (39) in a more implicit way presented in Remark 8.

4 Experimental results and discussions

In what follows, we provide some experimental results using adaptive forward-backward diffusion flows in

image restoration. All the images are rescaled to [0, 1] for visualization and the PDE (18) is discretized
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using standard finite difference scheme via additive operator splitting (AOS) [74] with time step τ = 0.2,

and grid size one. The discretized version of the PDE Eqn. (18) is utilized out using the following

unconditionally stable semi-implicit scheme. Let h be the grid size, τ > 0 the time step and U tij be the

pixel value u(i, j) at iteration t. The AOS discretization in 1-D with matrix-vector notation is given by,

U t+1 =
[
1− τA(U t)

]−1
U t,

where A(U t) = [aij(U
t)] with

aij(U
t) :=



Cti + Ctj
2h2

, j ∈ Ni,

−
∑
k∈Ni

Cti + Ctk
2h2

, j = i,

0, otherwise.

Here Ni is the set of the two neighbors of location i (boundary locations have only one neighbor) The

values Ci are the discrete values obtained by evaluating the overall diffusion function, C = ϕy(x, |∇u|)/1+

K g(|Gσ ∗ ∇u|) at location i. The Gaussian convolution in the inverse mollification is carried out by the

discrete version with rotationally symmetric Gaussian lowpass filter of size 5 × 5 with variance 2. For

n-D images the modified semi-implicit scheme (AOS) is written as,

U t+1 =
1

n

n∑
l=1

[
1− nτAl(U t)

]−1
U t. (88)

The matrix Al = (aijl)ij corresponds to derivatives along the l-th coordinate axis. Note that this involves

solving a linear system where the system matrix is tridiagonal and diagonally dominant, see [74, 59] for

more details. To avoid the directional (x-y axis) smoothing bias we adapted a multi-direction based

modification [58] , and to be fair the same approach was used to compare all the PDEs here. We used

a non-optimized MATLAB implementation on a 2.3 GHz Intel Core i7, 8GB 1600 MHz DDR3 Mac

Book pro Laptop. The pre-smoothing parameter σ = 1 in (18) is fixed for additive Gaussian noise

level of standard deviation σn = 30 used here. Figure 6 shows the synthetic Shapes and Brain images

(noise-free/ground truth) and its corresponding noisy versions which are utilized in our experiments.

4.1 Effect of inverse mollification, contrast parameter

We first consider the effect of inverse mollification function:

M(x) =
1

1 +K g(|Gσ ∗ ∇u(x)|)
(89)

in edge detection under noise for different choices of the power growth in g(|Gσ ∗ ∇u|) = |Gσ ∗ ∇u|p and

K values. Note that the overall diffusion coefficient acts like an edge detector within PDE based image

restoration thereby guiding the smoothing process in and around edges. Figure 7 shows the computed
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(a) Power growth for the function g(|Gσ ∗ ∇u|) = |Gσ ∗ ∇u|p where p = 1, 2, 3, 4, 5 and K = 10−4 fixed

(b) Contrast parameter K = 10−1, 10−2, 10−3, 10−4, 10−5 with g(|Gσ ∗ ∇u|) = |Gσ ∗ ∇u|2 fixed

Figure 7: Inverse mollification function 1/(1+Kg(|Gσ ∗ ∇u|)) with respect to g(·) and contrast parameter

K computed using noisy synthetic Shapes image (noise standard deviation σn = 30, see Figure 6(a) right).

We show [0, 1] normalized 1/(1 + Kg(|Gσ ∗ ∇u|)) as an image when: (a) g(|Gσ ∗ ∇u|) = |Gσ ∗ ∇u|p for

p = 1, 2, 3, 4, 5 with K = 10−4 fixed, and (b) K = 10−1, 10−2, 10−3, 10−4, 10−5 with g(|Gσ ∗ ∇u|) =

|Gσ ∗ ∇u|2 fixed. Better viewed online and zoomed in.

inverse mollification function M(x) in (89) as images for different values of K and power growth in g(·)

for the noisy Shapes image (noise standard deviation σn = 30, see Figure 6(a) right). The noisy image

is shown in Figure 6(a) right. Higher growth in functions g(|Gσ ∗ ∇u|) = |Gσ ∗ ∇u|p, p > 2 retains noisy

edges and similarly lower K as well. Moreover, we see that the contrast parameter K controls the density

of edges and can be chosen adaptively [57].

4.2 Effect of different exponent values in power growth diffusion

Next, we compare restoration results using PDE Eqn. (18) with and without inverse mollification func-

tion (89). We consider the power growth ϕy(x, |∇u|) = |∇u|p for different exponent values p = 1, 2, 3, 4, 5

as the diffusion function. Figure 8(a) shows restoration of noisy Brain image (noise standard deviation

σn = 30, see Figure 6(b) right) without inverse mollification function, i.e. taking g ≡ 0, and Figure 8(b)

with g(|Gσ ∗ ∇u|) = |Gσ ∗ ∇u|2. As can be seen, taking the non-trivial inverse mollifier function preserves

strong edges in the final result when compared to the smoother results for higher exponent p values.
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(a) g ≡ 0

(b) g(|Gσ ∗ ∇u|) = |Gσ ∗ ∇u|2

Figure 8: Inverse mollification function when combined with power growth numerator can stop diffusion

across edges. Solution of the PDE (18) on noisy synthetic Brain image (noise standard deviation σn = 30,

see Figure 6(b) right) with power growth ϕy(x, |∇u|) = |∇u|p, p = 1, 2, 3, 4, 5 (left to right) without inverse

mollification (a) g ≡ 0, and with (b) g(|Gσ ∗ ∇u|) = |Gσ ∗ ∇u|2. In both cases we used K = 10−4 and

terminal time 100. It is clear visually that the inverse mollification has an effect in keeping homogenous

regions separated by strong edges and avoids leakage.

4.3 GRADE Vs our approach

Finally, we provide a comparison of Catté et al. [17] GRADE (3) to illustrate qualitative differences in

restoration with our inverse mollification term based PDE (18), with g(|Gσ ∗ ∇u|) = |Gσ ∗ ∇u|2, and set

K = 10−4. In our PDE (18), we consider three cases for the diffusion function: Perona-Malik non-convex

regularization functions (φ1, φ2 in (12)), and total variation regularization φ(s) = s. Remember that

the corresponding ϕ in (18) may be recovered from the relation ϕy(x, y)y = φ′(y). In Figure 9 we show

restoration results for the noisy Shapes image (noise standard deviation σn = 30, see Figure 6(a) right)

corresponding to diffusion coefficients ϕy from the Perona-Malik non-convex regularizations (PM1 for φ1,

PM2 for φ2) and the total variation (TV) regularization ϕy(y) = 1/y (the corresponding PDE is ∂u
∂t plus

the diffusive term (87) equals zero; for technical reasons, we actually employ ϕy(y) = 1/
√
ε+ y2 with

ε = 10−6). As can be seen, by comparing the contour images, GRADE tends to smooth and displace

the level lines of resultant image whereas our adaptive schemes obtain better preservation of level lines

in both Perona-Malik and total variation diffusion. Table 1 lists well-known error metrics in the image

processing literature for comparing GRADE against our adaptive PDE methods and supports visual

comparison results that adaptive schemes are better at retaining structures while removing noise. Deeper
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(a) GRADE

(b) Our-PM1

(c) Our-PM2

(d) Our-TV

Figure 9: GRADE versus our approach on noisy synthetic Shapes image (noise standard deviation

σn = 30, see Figure 6(a) right). Results with: (a) GRADE [17], and our adaptive PDE with main

diffusion function (b) PM1 φ1 in (12), (c) PM2 φ2 in (12) (d) TV. In each row (i|ii|iii|iv): we show (i)

final denoised results, (ii) contours from final denoised results, (iii) close-up of the contour map, and (iv)

close-up surface. In PM1, PM2 we used K = 10−4, with terminal time T = 50 and in TV terminal time

T = 200.
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Metric Noisy GRADE Our-PM1 Our-PM2 Our-TV

ISNR 0 1.1120 4.6094 8.4478 5.824

SNR 16.1925 17.3044 24.3237 24.6402 31.5589

PSNR 18.5571 19.6691 26.6883 27.0049 33.9235

MSSIM 0.3333 0.7177 0.8776 0.8529 0.9591

MSE 906.4984 701.7305 139.395 129.5954 26.3467

RMSE 30.1081 26.4902 11.8066 11.384 5.1329

MAE 24.0084 14.7066 5.5361 6.2528 2.2002

MAX 132.8668 208.9502 150.7193 159.5855 126.144

Table 1: Error metrics comparison for PDE based smoothing results on noisy synthetic Shapes image

obtained with noise standard deviation σn = 30. Higher improved signal to noise ratio (ISNR), signal

to noise ratio (SNR), peak signal to noise ratio (PSNR), mean structural similarity (MSSIM) indicate

better restoration whereas lower mean squared error (MSE), root mean square error (RMSE), maximum

absolute error (MAE), maximum absolute difference (MAX) indicate better restoration.

quantitative analysis of the numerical examples is deferred to an upcoming work and we refer to [60] for

an earlier attempt in this direction with a strictly convex regularization.
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[28] H. Gajewski, K. Gröger, and K. Zacharias. Nichtlineare Operatorgleichungen und Operatordifferen-

tialgleichungen. Akademie-Verlag, Berlin, 1974. Mathematische Lehrbücher und Monographien, II.
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